/// @ref gtx_simd_quat
/// @file glm/gtx/simd_quat.inl
namespace glm{
namespace detail{
//////////////////////////////////////
// Debugging
#if 0
void print(__m128 v)
{
GLM_ALIGN(16) float result[4];
_mm_store_ps(result, v);
printf("__m128: %f %f %f %f\n", result[0], result[1], result[2], result[3]);
}
void print(const fvec4SIMD &v)
{
printf("fvec4SIMD: %f %f %f %f\n", v.x, v.y, v.z, v.w);
}
#endif
//////////////////////////////////////
// Implicit basic constructors
# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT)
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD()
# ifdef GLM_FORCE_NO_CTOR_INIT
: Data(_mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f))
# endif
{}
# endif
# if !GLM_HAS_DEFAULTED_FUNCTIONS
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(fquatSIMD const & q) :
Data(q.Data)
{}
# endif//!GLM_HAS_DEFAULTED_FUNCTIONS
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(__m128 const & Data) :
Data(Data)
{}
//////////////////////////////////////
// Explicit basic constructors
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(float const & w, float const & x, float const & y, float const & z) :
Data(_mm_set_ps(w, z, y, x))
{}
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(quat const & q) :
Data(_mm_set_ps(q.w, q.z, q.y, q.x))
{}
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(vec3 const & eulerAngles)
{
vec3 c = glm::cos(eulerAngles * 0.5f);
vec3 s = glm::sin(eulerAngles * 0.5f);
Data = _mm_set_ps(
(c.x * c.y * c.z) + (s.x * s.y * s.z),
(c.x * c.y * s.z) - (s.x * s.y * c.z),
(c.x * s.y * c.z) + (s.x * c.y * s.z),
(s.x * c.y * c.z) - (c.x * s.y * s.z));
}
//////////////////////////////////////
// Unary arithmetic operators
#if !GLM_HAS_DEFAULTED_FUNCTIONS
GLM_FUNC_QUALIFIER fquatSIMD& fquatSIMD::operator=(fquatSIMD const & q)
{
this->Data = q.Data;
return *this;
}
#endif//!GLM_HAS_DEFAULTED_FUNCTIONS
GLM_FUNC_QUALIFIER fquatSIMD& fquatSIMD::operator*=(float const & s)
{
this->Data = _mm_mul_ps(this->Data, _mm_set_ps1(s));
return *this;
}
GLM_FUNC_QUALIFIER fquatSIMD& fquatSIMD::operator/=(float const & s)
{
this->Data = _mm_div_ps(Data, _mm_set1_ps(s));
return *this;
}
// negate operator
GLM_FUNC_QUALIFIER fquatSIMD operator- (fquatSIMD const & q)
{
return fquatSIMD(_mm_mul_ps(q.Data, _mm_set_ps(-1.0f, -1.0f, -1.0f, -1.0f)));
}
// operator+
GLM_FUNC_QUALIFIER fquatSIMD operator+ (fquatSIMD const & q1, fquatSIMD const & q2)
{
return fquatSIMD(_mm_add_ps(q1.Data, q2.Data));
}
//operator*
GLM_FUNC_QUALIFIER fquatSIMD operator* (fquatSIMD const & q1, fquatSIMD const & q2)
{
// SSE2 STATS:
// 11 shuffle
// 8 mul
// 8 add
// SSE4 STATS:
// 3 shuffle
// 4 mul
// 4 dpps
__m128 mul0 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(0, 1, 2, 3)));
__m128 mul1 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(1, 0, 3, 2)));
__m128 mul2 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(2, 3, 0, 1)));
__m128 mul3 = _mm_mul_ps(q1.Data, q2.Data);
# if(GLM_ARCH & GLM_ARCH_SSE41_BIT)
__m128 add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f), 0xff);
__m128 add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f), 0xff);
__m128 add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f), 0xff);
__m128 add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff);
# else
mul0 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f));
__m128 add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul0, mul0));
add0 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1));
mul1 = _mm_mul_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f));
__m128 add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul1, mul1));
add1 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1));
mul2 = _mm_mul_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f));
__m128 add2 = _mm_add_ps(mul2, _mm_movehl_ps(mul2, mul2));
add2 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1));
mul3 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f));
__m128 add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul3, mul3));
add3 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1));
#endif
// This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than
// the final code below. I'll keep this here for reference - maybe somebody else can do something better...
//
//__m128 xxyy = _mm_shuffle_ps(add0, add1, _MM_SHUFFLE(0, 0, 0, 0));
//__m128 zzww = _mm_shuffle_ps(add2, add3, _MM_SHUFFLE(0, 0, 0, 0));
//
//return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0));
float x;
float y;
float z;
float w;
_mm_store_ss(&x, add0);
_mm_store_ss(&y, add1);
_mm_store_ss(&z, add2);
_mm_store_ss(&w, add3);
return detail::fquatSIMD(w, x, y, z);
}
GLM_FUNC_QUALIFIER fvec4SIMD operator* (fquatSIMD const & q, fvec4SIMD const & v)
{
static const __m128 two = _mm_set1_ps(2.0f);
__m128 q_wwww = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 3, 3, 3));
__m128 q_swp0 = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 0, 2, 1));
__m128 q_swp1 = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 1, 0, 2));
__m128 v_swp0 = _mm_shuffle_ps(v.Data, v.Data, _MM_SHUFFLE(3, 0, 2, 1));
__m128 v_swp1 = _mm_shuffle_ps(v.Data, v.Data, _MM_SHUFFLE(3, 1, 0, 2));
__m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0));
__m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1));
__m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2));
__m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0));
uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two));
uuv = _mm_mul_ps(uuv, two);
return _mm_add_ps(v.Data, _mm_add_ps(uv, uuv));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator* (fvec4SIMD const & v, fquatSIMD const & q)
{
return glm::inverse(q) * v;
}
GLM_FUNC_QUALIFIER fquatSIMD operator* (fquatSIMD const & q, float s)
{
return fquatSIMD(_mm_mul_ps(q.Data, _mm_set1_ps(s)));
}
GLM_FUNC_QUALIFIER fquatSIMD operator* (float s, fquatSIMD const & q)
{
return fquatSIMD(_mm_mul_ps(_mm_set1_ps(s), q.Data));
}
//operator/
GLM_FUNC_QUALIFIER fquatSIMD operator/ (fquatSIMD const & q, float s)
{
return fquatSIMD(_mm_div_ps(q.Data, _mm_set1_ps(s)));
}
}//namespace detail
GLM_FUNC_QUALIFIER quat quat_cast
(
detail::fquatSIMD const & x
)
{
GLM_ALIGN(16) quat Result;
_mm_store_ps(&Result[0], x.Data);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::fquatSIMD quatSIMD_cast_impl(const T m0[], const T m1[], const T m2[])
{
T trace = m0[0] + m1[1] + m2[2] + T(1.0);
if (trace > T(0))
{
T s = static_cast<T>(0.5) / sqrt(trace);
return _mm_set_ps(
static_cast<float>(T(0.25) / s),
static_cast<float>((m0[1] - m1[0]) * s),
static_cast<float>((m2[0] - m0[2]) * s),
static_cast<float>((m1[2] - m2[1]) * s));
}
else
{
if (m0[0] > m1[1])
{
if (m0[0] > m2[2])
{
// X is biggest.
T s = sqrt(m0[0] - m1[1] - m2[2] + T(1.0)) * T(0.5);
return _mm_set_ps(
static_cast<float>((m1[2] - m2[1]) * s),
static_cast<float>((m2[0] + m0[2]) * s),
static_cast<float>((m0[1] + m1[0]) * s),
static_cast<float>(T(0.5) * s));
}
}
else
{
if (m1[1] > m2[2])
{
// Y is biggest.
T s = sqrt(m1[1] - m0[0] - m2[2] + T(1.0)) * T(0.5);
return _mm_set_ps(
static_cast<float>((m2[0] - m0[2]) * s),
static_cast<float>((m1[2] + m2[1]) * s),
static_cast<float>(T(0.5) * s),
static_cast<float>((m0[1] + m1[0]) * s));
}
}
// Z is biggest.
T s = sqrt(m2[2] - m0[0] - m1[1] + T(1.0)) * T(0.5);
return _mm_set_ps(
static_cast<float>((m0[1] - m1[0]) * s),
static_cast<float>(T(0.5) * s),
static_cast<float>((m1[2] + m2[1]) * s),
static_cast<float>((m2[0] + m0[2]) * s));
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD quatSIMD_cast
(
detail::fmat4x4SIMD const & m
)
{
// Scalar implementation for now.
GLM_ALIGN(16) float m0[4];
GLM_ALIGN(16) float m1[4];
GLM_ALIGN(16) float m2[4];
_mm_store_ps(m0, m[0].Data);
_mm_store_ps(m1, m[1].Data);
_mm_store_ps(m2, m[2].Data);
return quatSIMD_cast_impl(m0, m1, m2);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::fquatSIMD quatSIMD_cast
(
tmat4x4<T, P> const & m
)
{
return quatSIMD_cast_impl(&m[0][0], &m[1][0], &m[2][0]);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::fquatSIMD quatSIMD_cast
(
tmat3x3<T, P> const & m
)
{
return quatSIMD_cast_impl(&m[0][0], &m[1][0], &m[2][0]);
}
GLM_FUNC_QUALIFIER detail::fmat4x4SIMD mat4SIMD_cast
(
detail::fquatSIMD const & q
)
{
detail::fmat4x4SIMD result;
__m128 _wwww = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 3, 3, 3));
__m128 _xyzw = q.Data;
__m128 _zxyw = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 1, 0, 2));
__m128 _yzxw = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 0, 2, 1));
__m128 _xyzw2 = _mm_add_ps(_xyzw, _xyzw);
__m128 _zxyw2 = _mm_shuffle_ps(_xyzw2, _xyzw2, _MM_SHUFFLE(3, 1, 0, 2));
__m128 _yzxw2 = _mm_shuffle_ps(_xyzw2, _xyzw2, _MM_SHUFFLE(3, 0, 2, 1));
__m128 _tmp0 = _mm_sub_ps(_mm_set1_ps(1.0f), _mm_mul_ps(_yzxw2, _yzxw));
_tmp0 = _mm_sub_ps(_tmp0, _mm_mul_ps(_zxyw2, _zxyw));
__m128 _tmp1 = _mm_mul_ps(_yzxw2, _xyzw);
_tmp1 = _mm_add_ps(_tmp1, _mm_mul_ps(_zxyw2, _wwww));
__m128 _tmp2 = _mm_mul_ps(_zxyw2, _xyzw);
_tmp2 = _mm_sub_ps(_tmp2, _mm_mul_ps(_yzxw2, _wwww));
// There's probably a better, more politically correct way of doing this...
result[0].Data = _mm_set_ps(
0.0f,
reinterpret_cast<float*>(&_tmp2)[0],
reinterpret_cast<float*>(&_tmp1)[0],
reinterpret_cast<float*>(&_tmp0)[0]);
result[1].Data = _mm_set_ps(
0.0f,
reinterpret_cast<float*>(&_tmp1)[1],
reinterpret_cast<float*>(&_tmp0)[1],
reinterpret_cast<float*>(&_tmp2)[1]);
result[2].Data = _mm_set_ps(
0.0f,
reinterpret_cast<float*>(&_tmp0)[2],
reinterpret_cast<float*>(&_tmp2)[2],
reinterpret_cast<float*>(&_tmp1)[2]);
result[3].Data = _mm_set_ps(
1.0f,
0.0f,
0.0f,
0.0f);
return result;
}
GLM_FUNC_QUALIFIER mat4 mat4_cast
(
detail::fquatSIMD const & q
)
{
return mat4_cast(mat4SIMD_cast(q));
}
GLM_FUNC_QUALIFIER float length
(
detail::fquatSIMD const & q
)
{
return glm::sqrt(dot(q, q));
}
GLM_FUNC_QUALIFIER detail::fquatSIMD normalize
(
detail::fquatSIMD const & q
)
{
return _mm_mul_ps(q.Data, _mm_set1_ps(1.0f / length(q)));
}
GLM_FUNC_QUALIFIER float dot
(
detail::fquatSIMD const & q1,
detail::fquatSIMD const & q2
)
{
float result;
_mm_store_ss(&result, detail::sse_dot_ps(q1.Data, q2.Data));
return result;
}
GLM_FUNC_QUALIFIER detail::fquatSIMD mix
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
float cosTheta = dot(x, y);
if (cosTheta > 1.0f - glm::epsilon<float>())
{
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
else
{
float angle = glm::acos(cosTheta);
float s0 = glm::sin((1.0f - a) * angle);
float s1 = glm::sin(a * angle);
float d = 1.0f / glm::sin(angle);
return (s0 * x + s1 * y) * d;
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD lerp
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
// Lerp is only defined in [0, 1]
assert(a >= 0.0f);
assert(a <= 1.0f);
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
GLM_FUNC_QUALIFIER detail::fquatSIMD slerp
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
detail::fquatSIMD z = y;
float cosTheta = dot(x, y);
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if (cosTheta < 0.0f)
{
z = -y;
cosTheta = -cosTheta;
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if(cosTheta > 1.0f - epsilon<float>())
{
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
else
{
float angle = glm::acos(cosTheta);
float s0 = glm::sin((1.0f - a) * angle);
float s1 = glm::sin(a * angle);
float d = 1.0f / glm::sin(angle);
return (s0 * x + s1 * y) * d;
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD fastMix
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
float cosTheta = dot(x, y);
if (cosTheta > 1.0f - glm::epsilon<float>())
{
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
else
{
float angle = glm::fastAcos(cosTheta);
__m128 s = glm::fastSin(_mm_set_ps((1.0f - a) * angle, a * angle, angle, 0.0f));
__m128 s0 = _mm_shuffle_ps(s, s, _MM_SHUFFLE(3, 3, 3, 3));
__m128 s1 = _mm_shuffle_ps(s, s, _MM_SHUFFLE(2, 2, 2, 2));
__m128 d = _mm_div_ps(_mm_set1_ps(1.0f), _mm_shuffle_ps(s, s, _MM_SHUFFLE(1, 1, 1, 1)));
return _mm_mul_ps(_mm_add_ps(_mm_mul_ps(s0, x.Data), _mm_mul_ps(s1, y.Data)), d);
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD fastSlerp
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
detail::fquatSIMD z = y;
float cosTheta = dot(x, y);
if (cosTheta < 0.0f)
{
z = -y;
cosTheta = -cosTheta;
}
if(cosTheta > 1.0f - epsilon<float>())
{
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
else
{
float angle = glm::fastAcos(cosTheta);
__m128 s = glm::fastSin(_mm_set_ps((1.0f - a) * angle, a * angle, angle, 0.0f));
__m128 s0 = _mm_shuffle_ps(s, s, _MM_SHUFFLE(3, 3, 3, 3));
__m128 s1 = _mm_shuffle_ps(s, s, _MM_SHUFFLE(2, 2, 2, 2));
__m128 d = _mm_div_ps(_mm_set1_ps(1.0f), _mm_shuffle_ps(s, s, _MM_SHUFFLE(1, 1, 1, 1)));
return _mm_mul_ps(_mm_add_ps(_mm_mul_ps(s0, x.Data), _mm_mul_ps(s1, y.Data)), d);
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD conjugate
(
detail::fquatSIMD const & q
)
{
return detail::fquatSIMD(_mm_mul_ps(q.Data, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f)));
}
GLM_FUNC_QUALIFIER detail::fquatSIMD inverse
(
detail::fquatSIMD const & q
)
{
return conjugate(q) / dot(q, q);
}
GLM_FUNC_QUALIFIER detail::fquatSIMD angleAxisSIMD
(
float const & angle,
vec3 const & v
)
{
float s = glm::sin(angle * 0.5f);
return _mm_set_ps(
glm::cos(angle * 0.5f),
v.z * s,
v.y * s,
v.x * s);
}
GLM_FUNC_QUALIFIER detail::fquatSIMD angleAxisSIMD
(
float const & angle,
float const & x,
float const & y,
float const & z
)
{
return angleAxisSIMD(angle, vec3(x, y, z));
}
GLM_FUNC_QUALIFIER __m128 fastSin(__m128 x)
{
static const __m128 c0 = _mm_set1_ps(0.16666666666666666666666666666667f);
static const __m128 c1 = _mm_set1_ps(0.00833333333333333333333333333333f);
static const __m128 c2 = _mm_set1_ps(0.00019841269841269841269841269841f);
__m128 x3 = _mm_mul_ps(x, _mm_mul_ps(x, x));
__m128 x5 = _mm_mul_ps(x3, _mm_mul_ps(x, x));
__m128 x7 = _mm_mul_ps(x5, _mm_mul_ps(x, x));
__m128 y0 = _mm_mul_ps(x3, c0);
__m128 y1 = _mm_mul_ps(x5, c1);
__m128 y2 = _mm_mul_ps(x7, c2);
return _mm_sub_ps(_mm_add_ps(_mm_sub_ps(x, y0), y1), y2);
}
}//namespace glm