summaryrefslogtreecommitdiffstats
path: root/depedencies/include/glm/gtc
diff options
context:
space:
mode:
authorLaG1924 <12997935+LaG1924@users.noreply.github.com>2017-05-12 15:49:50 +0200
committerLaG1924 <12997935+LaG1924@users.noreply.github.com>2017-05-12 15:49:50 +0200
commite62817b8252974b8a98393275874ee303840bf13 (patch)
tree4565935f06e369f4a84410b0c098958e07a750c7 /depedencies/include/glm/gtc
parent2017-05-10 (diff)
downloadAltCraft-e62817b8252974b8a98393275874ee303840bf13.tar
AltCraft-e62817b8252974b8a98393275874ee303840bf13.tar.gz
AltCraft-e62817b8252974b8a98393275874ee303840bf13.tar.bz2
AltCraft-e62817b8252974b8a98393275874ee303840bf13.tar.lz
AltCraft-e62817b8252974b8a98393275874ee303840bf13.tar.xz
AltCraft-e62817b8252974b8a98393275874ee303840bf13.tar.zst
AltCraft-e62817b8252974b8a98393275874ee303840bf13.zip
Diffstat (limited to '')
-rw-r--r--depedencies/include/glm/gtc/bitfield.hpp207
-rw-r--r--depedencies/include/glm/gtc/bitfield.inl515
-rw-r--r--depedencies/include/glm/gtc/color_encoding.inl65
-rw-r--r--depedencies/include/glm/gtc/color_space.hpp56
-rw-r--r--depedencies/include/glm/gtc/color_space.inl75
-rw-r--r--depedencies/include/glm/gtc/constants.hpp176
-rw-r--r--depedencies/include/glm/gtc/constants.inl181
-rw-r--r--depedencies/include/glm/gtc/epsilon.hpp73
-rw-r--r--depedencies/include/glm/gtc/epsilon.inl125
-rw-r--r--depedencies/include/glm/gtc/functions.hpp53
-rw-r--r--depedencies/include/glm/gtc/functions.inl31
-rw-r--r--depedencies/include/glm/gtc/integer.hpp102
-rw-r--r--depedencies/include/glm/gtc/integer.inl71
-rw-r--r--depedencies/include/glm/gtc/matrix_access.hpp59
-rw-r--r--depedencies/include/glm/gtc/matrix_access.inl63
-rw-r--r--depedencies/include/glm/gtc/matrix_integer.hpp486
-rw-r--r--depedencies/include/glm/gtc/matrix_inverse.hpp49
-rw-r--r--depedencies/include/glm/gtc/matrix_inverse.inl120
-rw-r--r--depedencies/include/glm/gtc/matrix_transform.hpp465
-rw-r--r--depedencies/include/glm/gtc/matrix_transform.inl575
-rw-r--r--depedencies/include/glm/gtc/noise.hpp60
-rw-r--r--depedencies/include/glm/gtc/noise.inl808
-rw-r--r--depedencies/include/glm/gtc/packing.hpp579
-rw-r--r--depedencies/include/glm/gtc/packing.inl781
-rw-r--r--depedencies/include/glm/gtc/quaternion.hpp397
-rw-r--r--depedencies/include/glm/gtc/quaternion.inl795
-rw-r--r--depedencies/include/glm/gtc/quaternion_simd.inl198
-rw-r--r--depedencies/include/glm/gtc/random.hpp98
-rw-r--r--depedencies/include/glm/gtc/random.inl350
-rw-r--r--depedencies/include/glm/gtc/reciprocal.hpp135
-rw-r--r--depedencies/include/glm/gtc/reciprocal.inl192
-rw-r--r--depedencies/include/glm/gtc/round.hpp174
-rw-r--r--depedencies/include/glm/gtc/round.inl344
-rw-r--r--depedencies/include/glm/gtc/type_aligned.hpp362
-rw-r--r--depedencies/include/glm/gtc/type_precision.hpp861
-rw-r--r--depedencies/include/glm/gtc/type_precision.inl7
-rw-r--r--depedencies/include/glm/gtc/type_ptr.hpp149
-rw-r--r--depedencies/include/glm/gtc/type_ptr.inl450
-rw-r--r--depedencies/include/glm/gtc/ulp.hpp63
-rw-r--r--depedencies/include/glm/gtc/ulp.inl321
-rw-r--r--depedencies/include/glm/gtc/vec1.hpp164
-rw-r--r--depedencies/include/glm/gtc/vec1.inl2
42 files changed, 10837 insertions, 0 deletions
diff --git a/depedencies/include/glm/gtc/bitfield.hpp b/depedencies/include/glm/gtc/bitfield.hpp
new file mode 100644
index 0000000..38a38b6
--- /dev/null
+++ b/depedencies/include/glm/gtc/bitfield.hpp
@@ -0,0 +1,207 @@
+/// @ref gtc_bitfield
+/// @file glm/gtc/bitfield.hpp
+///
+/// @see core (dependence)
+/// @see gtc_bitfield (dependence)
+///
+/// @defgroup gtc_bitfield GLM_GTC_bitfield
+/// @ingroup gtc
+///
+/// @brief Allow to perform bit operations on integer values
+///
+/// <glm/gtc/bitfield.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../detail/precision.hpp"
+#include "../detail/type_int.hpp"
+#include "../detail/_vectorize.hpp"
+#include <limits>
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_bitfield extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_bitfield
+ /// @{
+
+ /// Build a mask of 'count' bits
+ ///
+ /// @see gtc_bitfield
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType mask(genIUType Bits);
+
+ /// Build a mask of 'count' bits
+ ///
+ /// @see gtc_bitfield
+ template <typename T, precision P, template <typename, precision> class vecIUType>
+ GLM_FUNC_DECL vecIUType<T, P> mask(vecIUType<T, P> const & v);
+
+ /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side.
+ ///
+ /// @see gtc_bitfield
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType bitfieldRotateRight(genIUType In, int Shift);
+
+ /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side.
+ ///
+ /// @see gtc_bitfield
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift);
+
+ /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side.
+ ///
+ /// @see gtc_bitfield
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType bitfieldRotateLeft(genIUType In, int Shift);
+
+ /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side.
+ ///
+ /// @see gtc_bitfield
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> bitfieldRotateLeft(vecType<T, P> const & In, int Shift);
+
+ /// Set to 1 a range of bits.
+ ///
+ /// @see gtc_bitfield
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount);
+
+ /// Set to 1 a range of bits.
+ ///
+ /// @see gtc_bitfield
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> bitfieldFillOne(vecType<T, P> const & Value, int FirstBit, int BitCount);
+
+ /// Set to 0 a range of bits.
+ ///
+ /// @see gtc_bitfield
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount);
+
+ /// Set to 0 a range of bits.
+ ///
+ /// @see gtc_bitfield
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> bitfieldFillZero(vecType<T, P> const & Value, int FirstBit, int BitCount);
+
+ /// Interleaves the bits of x and y.
+ /// The first bit is the first bit of x followed by the first bit of y.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y);
+
+ /// Interleaves the bits of x and y.
+ /// The first bit is the first bit of x followed by the first bit of y.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y);
+
+ /// Interleaves the bits of x and y.
+ /// The first bit is the first bit of x followed by the first bit of y.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y);
+
+ /// Interleaves the bits of x and y.
+ /// The first bit is the first bit of x followed by the first bit of y.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y);
+
+ /// Interleaves the bits of x and y.
+ /// The first bit is the first bit of x followed by the first bit of y.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y);
+
+ /// Interleaves the bits of x and y.
+ /// The first bit is the first bit of x followed by the first bit of y.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y);
+
+ /// Interleaves the bits of x, y and z.
+ /// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z);
+
+ /// Interleaves the bits of x, y and z.
+ /// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z);
+
+ /// Interleaves the bits of x, y and z.
+ /// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z);
+
+ /// Interleaves the bits of x, y and z.
+ /// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z);
+
+ /// Interleaves the bits of x, y and z.
+ /// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z);
+
+ /// Interleaves the bits of x, y and z.
+ /// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z);
+
+ /// Interleaves the bits of x, y, z and w.
+ /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w);
+
+ /// Interleaves the bits of x, y, z and w.
+ /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w);
+
+ /// Interleaves the bits of x, y, z and w.
+ /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w);
+
+ /// Interleaves the bits of x, y, z and w.
+ /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
+ /// The other bits are interleaved following the previous sequence.
+ ///
+ /// @see gtc_bitfield
+ GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w);
+
+ /// @}
+} //namespace glm
+
+#include "bitfield.inl"
diff --git a/depedencies/include/glm/gtc/bitfield.inl b/depedencies/include/glm/gtc/bitfield.inl
new file mode 100644
index 0000000..490cfb3
--- /dev/null
+++ b/depedencies/include/glm/gtc/bitfield.inl
@@ -0,0 +1,515 @@
+/// @ref gtc_bitfield
+/// @file glm/gtc/bitfield.inl
+
+#include "../simd/integer.h"
+
+namespace glm{
+namespace detail
+{
+ template <typename PARAM, typename RET>
+ GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y);
+
+ template <typename PARAM, typename RET>
+ GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z);
+
+ template <typename PARAM, typename RET>
+ GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w);
+
+ template <>
+ GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
+ {
+ glm::uint16 REG1(x);
+ glm::uint16 REG2(y);
+
+ REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F);
+ REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F);
+
+ REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333);
+ REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333);
+
+ REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555);
+ REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555);
+
+ return REG1 | (REG2 << 1);
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y)
+ {
+ glm::uint32 REG1(x);
+ glm::uint32 REG2(y);
+
+ REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF);
+ REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF);
+
+ REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F);
+ REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F);
+
+ REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333);
+ REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333);
+
+ REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555);
+ REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555);
+
+ return REG1 | (REG2 << 1);
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y)
+ {
+ glm::uint64 REG1(x);
+ glm::uint64 REG2(y);
+
+ REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFFull);
+ REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFFull);
+
+ REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FFull);
+ REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FFull);
+
+ REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0Full);
+ REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0Full);
+
+ REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333ull);
+ REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333ull);
+
+ REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555ull);
+ REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555ull);
+
+ return REG1 | (REG2 << 1);
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z)
+ {
+ glm::uint32 REG1(x);
+ glm::uint32 REG2(y);
+ glm::uint32 REG3(z);
+
+ REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF);
+ REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF);
+ REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF);
+
+ REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F);
+ REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F);
+ REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F);
+
+ REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3);
+ REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3);
+ REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3);
+
+ REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249);
+ REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249);
+ REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249);
+
+ return REG1 | (REG2 << 1) | (REG3 << 2);
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z)
+ {
+ glm::uint64 REG1(x);
+ glm::uint64 REG2(y);
+ glm::uint64 REG3(z);
+
+ REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull);
+ REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull);
+ REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull);
+
+ REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull);
+ REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull);
+ REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull);
+
+ REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full);
+ REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full);
+ REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full);
+
+ REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull);
+ REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull);
+ REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull);
+
+ REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull);
+ REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull);
+ REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull);
+
+ return REG1 | (REG2 << 1) | (REG3 << 2);
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z)
+ {
+ glm::uint64 REG1(x);
+ glm::uint64 REG2(y);
+ glm::uint64 REG3(z);
+
+ REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull);
+ REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull);
+ REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull);
+
+ REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull);
+ REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull);
+ REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull);
+
+ REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full);
+ REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full);
+ REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full);
+
+ REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull);
+ REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull);
+ REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull);
+
+ REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull);
+ REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull);
+ REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull);
+
+ return REG1 | (REG2 << 1) | (REG3 << 2);
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
+ {
+ glm::uint32 REG1(x);
+ glm::uint32 REG2(y);
+ glm::uint32 REG3(z);
+ glm::uint32 REG4(w);
+
+ REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F);
+ REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F);
+ REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F);
+ REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F);
+
+ REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303);
+ REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303);
+ REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303);
+ REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303);
+
+ REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111);
+ REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111);
+ REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111);
+ REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111);
+
+ return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w)
+ {
+ glm::uint64 REG1(x);
+ glm::uint64 REG2(y);
+ glm::uint64 REG3(z);
+ glm::uint64 REG4(w);
+
+ REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FFull);
+ REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FFull);
+ REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FFull);
+ REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FFull);
+
+ REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000Full);
+ REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000Full);
+ REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000Full);
+ REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000Full);
+
+ REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303ull);
+ REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303ull);
+ REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303ull);
+ REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303ull);
+
+ REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111ull);
+ REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111ull);
+ REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111ull);
+ REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111ull);
+
+ return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
+ }
+}//namespace detail
+
+ template <typename genIUType>
+ GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values");
+
+ return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecIUType>
+ GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const& v)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values");
+
+ return detail::functor1<T, T, P, vecIUType>::call(mask, v);
+ }
+
+ template <typename genIType>
+ GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values");
+
+ int const BitSize = static_cast<genIType>(sizeof(genIType) * 8);
+ return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values");
+
+ int const BitSize = static_cast<int>(sizeof(T) * 8);
+ return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift));
+ }
+
+ template <typename genIType>
+ GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values");
+
+ int const BitSize = static_cast<genIType>(sizeof(genIType) * 8);
+ return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const& In, int Shift)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values");
+
+ int const BitSize = static_cast<int>(sizeof(T) * 8);
+ return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift));
+ }
+
+ template <typename genIUType>
+ GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount)
+ {
+ return Value | static_cast<genIUType>(mask(BitCount) << FirstBit);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const& Value, int FirstBit, int BitCount)
+ {
+ return Value | static_cast<T>(mask(BitCount) << FirstBit);
+ }
+
+ template <typename genIUType>
+ GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount)
+ {
+ return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const& Value, int FirstBit, int BitCount)
+ {
+ return Value & static_cast<T>(~(mask(BitCount) << FirstBit));
+ }
+
+ GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y)
+ {
+ union sign8
+ {
+ int8 i;
+ uint8 u;
+ } sign_x, sign_y;
+
+ union sign16
+ {
+ int16 i;
+ uint16 u;
+ } result;
+
+ sign_x.i = x;
+ sign_y.i = y;
+ result.u = bitfieldInterleave(sign_x.u, sign_y.u);
+
+ return result.i;
+ }
+
+ GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y)
+ {
+ return detail::bitfieldInterleave<uint8, uint16>(x, y);
+ }
+
+ GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y)
+ {
+ union sign16
+ {
+ int16 i;
+ uint16 u;
+ } sign_x, sign_y;
+
+ union sign32
+ {
+ int32 i;
+ uint32 u;
+ } result;
+
+ sign_x.i = x;
+ sign_y.i = y;
+ result.u = bitfieldInterleave(sign_x.u, sign_y.u);
+
+ return result.i;
+ }
+
+ GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y)
+ {
+ return detail::bitfieldInterleave<uint16, uint32>(x, y);
+ }
+
+ GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y)
+ {
+ union sign32
+ {
+ int32 i;
+ uint32 u;
+ } sign_x, sign_y;
+
+ union sign64
+ {
+ int64 i;
+ uint64 u;
+ } result;
+
+ sign_x.i = x;
+ sign_y.i = y;
+ result.u = bitfieldInterleave(sign_x.u, sign_y.u);
+
+ return result.i;
+ }
+
+ GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y)
+ {
+ return detail::bitfieldInterleave<uint32, uint64>(x, y);
+ }
+
+ GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z)
+ {
+ union sign8
+ {
+ int8 i;
+ uint8 u;
+ } sign_x, sign_y, sign_z;
+
+ union sign32
+ {
+ int32 i;
+ uint32 u;
+ } result;
+
+ sign_x.i = x;
+ sign_y.i = y;
+ sign_z.i = z;
+ result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
+
+ return result.i;
+ }
+
+ GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z)
+ {
+ return detail::bitfieldInterleave<uint8, uint32>(x, y, z);
+ }
+
+ GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z)
+ {
+ union sign16
+ {
+ int16 i;
+ uint16 u;
+ } sign_x, sign_y, sign_z;
+
+ union sign64
+ {
+ int64 i;
+ uint64 u;
+ } result;
+
+ sign_x.i = x;
+ sign_y.i = y;
+ sign_z.i = z;
+ result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
+
+ return result.i;
+ }
+
+ GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z)
+ {
+ return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
+ }
+
+ GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z)
+ {
+ union sign16
+ {
+ int32 i;
+ uint32 u;
+ } sign_x, sign_y, sign_z;
+
+ union sign64
+ {
+ int64 i;
+ uint64 u;
+ } result;
+
+ sign_x.i = x;
+ sign_y.i = y;
+ sign_z.i = z;
+ result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
+
+ return result.i;
+ }
+
+ GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z)
+ {
+ return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
+ }
+
+ GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w)
+ {
+ union sign8
+ {
+ int8 i;
+ uint8 u;
+ } sign_x, sign_y, sign_z, sign_w;
+
+ union sign32
+ {
+ int32 i;
+ uint32 u;
+ } result;
+
+ sign_x.i = x;
+ sign_y.i = y;
+ sign_z.i = z;
+ sign_w.i = w;
+ result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
+
+ return result.i;
+ }
+
+ GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w)
+ {
+ return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w);
+ }
+
+ GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w)
+ {
+ union sign16
+ {
+ int16 i;
+ uint16 u;
+ } sign_x, sign_y, sign_z, sign_w;
+
+ union sign64
+ {
+ int64 i;
+ uint64 u;
+ } result;
+
+ sign_x.i = x;
+ sign_y.i = y;
+ sign_z.i = z;
+ sign_w.i = w;
+ result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
+
+ return result.i;
+ }
+
+ GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w)
+ {
+ return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w);
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/color_encoding.inl b/depedencies/include/glm/gtc/color_encoding.inl
new file mode 100644
index 0000000..68570cb
--- /dev/null
+++ b/depedencies/include/glm/gtc/color_encoding.inl
@@ -0,0 +1,65 @@
+/// @ref gtc_color_encoding
+/// @file glm/gtc/color_encoding.inl
+
+namespace glm
+{
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD65XYZ(tvec3<T, P> const& ColorLinearSRGB)
+ {
+ tvec3<T, P> const M(0.490f, 0.17697f, 0.2f);
+ tvec3<T, P> const N(0.31f, 0.8124f, 0.01063f);
+ tvec3<T, P> const O(0.490f, 0.01f, 0.99f);
+
+ return (M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB) * static_cast<T>(5.650675255693055f);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToLinearSRGB(tvec3<T, P> const& ColorD65XYZ)
+ {
+ tvec3<T, P> const M(0.41847f, -0.091169f, 0.0009209f);
+ tvec3<T, P> const N(-0.15866f, 0.25243f, 0.015708f);
+ tvec3<T, P> const O(0.0009209f, -0.0025498f, 0.1786f);
+
+ return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD50XYZ(tvec3<T, P> const& ColorLinearSRGB)
+ {
+ tvec3<T, P> const M(0.436030342570117f, 0.222438466210245f, 0.013897440074263f);
+ tvec3<T, P> const N(0.385101860087134f, 0.716942745571917f, 0.097076381494207f);
+ tvec3<T, P> const O(0.143067806654203f, 0.060618777416563f, 0.713926257896652f);
+
+ return M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToLinearSRGB(tvec3<T, P> const& ColorD50XYZ)
+ {
+ tvec3<T, P> const M();
+ tvec3<T, P> const N();
+ tvec3<T, P> const O();
+
+ return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToD50XYZ(tvec3<T, P> const& ColorD65XYZ)
+ {
+ tvec3<T, P> const M(+1.047844353856414f, +0.029549007606644f, -0.009250984365223f);
+ tvec3<T, P> const N(+0.022898981050086f, +0.990508028941971f, +0.015072338237051f);
+ tvec3<T, P> const O(-0.050206647741605f, -0.017074711360960f, +0.751717835079977f);
+
+ return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToD65XYZ(tvec3<T, P> const& ColorD50XYZ)
+ {
+ tvec3<T, P> const M();
+ tvec3<T, P> const N();
+ tvec3<T, P> const O();
+
+ return M * ColorD50XYZ + N * ColorD50XYZ + O * ColorD50XYZ;
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/color_space.hpp b/depedencies/include/glm/gtc/color_space.hpp
new file mode 100644
index 0000000..08ece8f
--- /dev/null
+++ b/depedencies/include/glm/gtc/color_space.hpp
@@ -0,0 +1,56 @@
+/// @ref gtc_color_space
+/// @file glm/gtc/color_space.hpp
+///
+/// @see core (dependence)
+/// @see gtc_color_space (dependence)
+///
+/// @defgroup gtc_color_space GLM_GTC_color_space
+/// @ingroup gtc
+///
+/// @brief Allow to perform bit operations on integer values
+///
+/// <glm/gtc/color.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../detail/precision.hpp"
+#include "../exponential.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+#include <limits>
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_color_space extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_color_space
+ /// @{
+
+ /// Convert a linear color to sRGB color using a standard gamma correction.
+ /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear);
+
+ /// Convert a linear color to sRGB color using a custom gamma correction.
+ /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear, T Gamma);
+
+ /// Convert a sRGB color to linear color using a standard gamma correction.
+ /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB);
+
+ /// Convert a sRGB color to linear color using a custom gamma correction.
+ // IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB, T Gamma);
+
+ /// @}
+} //namespace glm
+
+#include "color_space.inl"
diff --git a/depedencies/include/glm/gtc/color_space.inl b/depedencies/include/glm/gtc/color_space.inl
new file mode 100644
index 0000000..c9a44ef
--- /dev/null
+++ b/depedencies/include/glm/gtc/color_space.inl
@@ -0,0 +1,75 @@
+/// @ref gtc_color_space
+/// @file glm/gtc/color_space.inl
+
+namespace glm{
+namespace detail
+{
+ template <typename T, precision P, template <typename, precision> class vecType>
+ struct compute_rgbToSrgb
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorRGB, T GammaCorrection)
+ {
+ vecType<T, P> const ClampedColor(clamp(ColorRGB, static_cast<T>(0), static_cast<T>(1)));
+
+ return mix(
+ pow(ClampedColor, vecType<T, P>(GammaCorrection)) * static_cast<T>(1.055) - static_cast<T>(0.055),
+ ClampedColor * static_cast<T>(12.92),
+ lessThan(ClampedColor, vecType<T, P>(static_cast<T>(0.0031308))));
+ }
+ };
+
+ template <typename T, precision P>
+ struct compute_rgbToSrgb<T, P, tvec4>
+ {
+ GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorRGB, T GammaCorrection)
+ {
+ return tvec4<T, P>(compute_rgbToSrgb<T, P, tvec3>::call(tvec3<T, P>(ColorRGB), GammaCorrection), ColorRGB.w);
+ }
+ };
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ struct compute_srgbToRgb
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorSRGB, T Gamma)
+ {
+ return mix(
+ pow((ColorSRGB + static_cast<T>(0.055)) * static_cast<T>(0.94786729857819905213270142180095), vecType<T, P>(Gamma)),
+ ColorSRGB * static_cast<T>(0.07739938080495356037151702786378),
+ lessThanEqual(ColorSRGB, vecType<T, P>(static_cast<T>(0.04045))));
+ }
+ };
+
+ template <typename T, precision P>
+ struct compute_srgbToRgb<T, P, tvec4>
+ {
+ GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorSRGB, T Gamma)
+ {
+ return tvec4<T, P>(compute_srgbToRgb<T, P, tvec3>::call(tvec3<T, P>(ColorSRGB), Gamma), ColorSRGB.w);
+ }
+ };
+}//namespace detail
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear)
+ {
+ return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(0.41666));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear, T Gamma)
+ {
+ return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(1) / Gamma);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB)
+ {
+ return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, static_cast<T>(2.4));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB, T Gamma)
+ {
+ return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, Gamma);
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/constants.hpp b/depedencies/include/glm/gtc/constants.hpp
new file mode 100644
index 0000000..d3358c7
--- /dev/null
+++ b/depedencies/include/glm/gtc/constants.hpp
@@ -0,0 +1,176 @@
+/// @ref gtc_constants
+/// @file glm/gtc/constants.hpp
+///
+/// @see core (dependence)
+/// @see gtc_half_float (dependence)
+///
+/// @defgroup gtc_constants GLM_GTC_constants
+/// @ingroup gtc
+///
+/// @brief Provide a list of constants and precomputed useful values.
+///
+/// <glm/gtc/constants.hpp> need to be included to use these features.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_constants extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_constants
+ /// @{
+
+ /// Return the epsilon constant for floating point types.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon();
+
+ /// Return 0.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType zero();
+
+ /// Return 1.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType one();
+
+ /// Return the pi constant.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType pi();
+
+ /// Return pi * 2.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType two_pi();
+
+ /// Return square root of pi.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType root_pi();
+
+ /// Return pi / 2.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType half_pi();
+
+ /// Return pi / 2 * 3.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType three_over_two_pi();
+
+ /// Return pi / 4.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType quarter_pi();
+
+ /// Return 1 / pi.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_pi();
+
+ /// Return 1 / (pi * 2).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_two_pi();
+
+ /// Return 2 / pi.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_pi();
+
+ /// Return 4 / pi.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType four_over_pi();
+
+ /// Return 2 / sqrt(pi).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_root_pi();
+
+ /// Return 1 / sqrt(2).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_root_two();
+
+ /// Return sqrt(pi / 2).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType root_half_pi();
+
+ /// Return sqrt(2 * pi).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType root_two_pi();
+
+ /// Return sqrt(ln(4)).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType root_ln_four();
+
+ /// Return e constant.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType e();
+
+ /// Return Euler's constant.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType euler();
+
+ /// Return sqrt(2).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType root_two();
+
+ /// Return sqrt(3).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType root_three();
+
+ /// Return sqrt(5).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType root_five();
+
+ /// Return ln(2).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType ln_two();
+
+ /// Return ln(10).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ten();
+
+ /// Return ln(ln(2)).
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ln_two();
+
+ /// Return 1 / 3.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType third();
+
+ /// Return 2 / 3.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType two_thirds();
+
+ /// Return the golden ratio constant.
+ /// @see gtc_constants
+ template <typename genType>
+ GLM_FUNC_DECL GLM_CONSTEXPR genType golden_ratio();
+
+ /// @}
+} //namespace glm
+
+#include "constants.inl"
diff --git a/depedencies/include/glm/gtc/constants.inl b/depedencies/include/glm/gtc/constants.inl
new file mode 100644
index 0000000..cb451d0
--- /dev/null
+++ b/depedencies/include/glm/gtc/constants.inl
@@ -0,0 +1,181 @@
+/// @ref gtc_constants
+/// @file glm/gtc/constants.inl
+
+#include <limits>
+
+namespace glm
+{
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType epsilon()
+ {
+ return std::numeric_limits<genType>::epsilon();
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType zero()
+ {
+ return genType(0);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one()
+ {
+ return genType(1);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType pi()
+ {
+ return genType(3.14159265358979323846264338327950288);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_pi()
+ {
+ return genType(6.28318530717958647692528676655900576);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_pi()
+ {
+ return genType(1.772453850905516027);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType half_pi()
+ {
+ return genType(1.57079632679489661923132169163975144);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType three_over_two_pi()
+ {
+ return genType(4.71238898038468985769396507491925432);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType quarter_pi()
+ {
+ return genType(0.785398163397448309615660845819875721);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_pi()
+ {
+ return genType(0.318309886183790671537767526745028724);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_two_pi()
+ {
+ return genType(0.159154943091895335768883763372514362);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_pi()
+ {
+ return genType(0.636619772367581343075535053490057448);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType four_over_pi()
+ {
+ return genType(1.273239544735162686151070106980114898);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_root_pi()
+ {
+ return genType(1.12837916709551257389615890312154517);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_root_two()
+ {
+ return genType(0.707106781186547524400844362104849039);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_half_pi()
+ {
+ return genType(1.253314137315500251);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two_pi()
+ {
+ return genType(2.506628274631000502);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_ln_four()
+ {
+ return genType(1.17741002251547469);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType e()
+ {
+ return genType(2.71828182845904523536);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType euler()
+ {
+ return genType(0.577215664901532860606);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two()
+ {
+ return genType(1.41421356237309504880168872420969808);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_three()
+ {
+ return genType(1.73205080756887729352744634150587236);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_five()
+ {
+ return genType(2.23606797749978969640917366873127623);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_two()
+ {
+ return genType(0.693147180559945309417232121458176568);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ten()
+ {
+ return genType(2.30258509299404568401799145468436421);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ln_two()
+ {
+ return genType(-0.3665129205816643);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType third()
+ {
+ return genType(0.3333333333333333333333333333333333333333);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_thirds()
+ {
+ return genType(0.666666666666666666666666666666666666667);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType golden_ratio()
+ {
+ return genType(1.61803398874989484820458683436563811);
+ }
+} //namespace glm
diff --git a/depedencies/include/glm/gtc/epsilon.hpp b/depedencies/include/glm/gtc/epsilon.hpp
new file mode 100644
index 0000000..289f5b7
--- /dev/null
+++ b/depedencies/include/glm/gtc/epsilon.hpp
@@ -0,0 +1,73 @@
+/// @ref gtc_epsilon
+/// @file glm/gtc/epsilon.hpp
+///
+/// @see core (dependence)
+/// @see gtc_half_float (dependence)
+/// @see gtc_quaternion (dependence)
+///
+/// @defgroup gtc_epsilon GLM_GTC_epsilon
+/// @ingroup gtc
+///
+/// @brief Comparison functions for a user defined epsilon values.
+///
+/// <glm/gtc/epsilon.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../detail/precision.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_epsilon extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_epsilon
+ /// @{
+
+ /// Returns the component-wise comparison of |x - y| < epsilon.
+ /// True if this expression is satisfied.
+ ///
+ /// @see gtc_epsilon
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<bool, P> epsilonEqual(
+ vecType<T, P> const & x,
+ vecType<T, P> const & y,
+ T const & epsilon);
+
+ /// Returns the component-wise comparison of |x - y| < epsilon.
+ /// True if this expression is satisfied.
+ ///
+ /// @see gtc_epsilon
+ template <typename genType>
+ GLM_FUNC_DECL bool epsilonEqual(
+ genType const & x,
+ genType const & y,
+ genType const & epsilon);
+
+ /// Returns the component-wise comparison of |x - y| < epsilon.
+ /// True if this expression is not satisfied.
+ ///
+ /// @see gtc_epsilon
+ template <typename genType>
+ GLM_FUNC_DECL typename genType::boolType epsilonNotEqual(
+ genType const & x,
+ genType const & y,
+ typename genType::value_type const & epsilon);
+
+ /// Returns the component-wise comparison of |x - y| >= epsilon.
+ /// True if this expression is not satisfied.
+ ///
+ /// @see gtc_epsilon
+ template <typename genType>
+ GLM_FUNC_DECL bool epsilonNotEqual(
+ genType const & x,
+ genType const & y,
+ genType const & epsilon);
+
+ /// @}
+}//namespace glm
+
+#include "epsilon.inl"
diff --git a/depedencies/include/glm/gtc/epsilon.inl b/depedencies/include/glm/gtc/epsilon.inl
new file mode 100644
index 0000000..b5577d9
--- /dev/null
+++ b/depedencies/include/glm/gtc/epsilon.inl
@@ -0,0 +1,125 @@
+/// @ref gtc_epsilon
+/// @file glm/gtc/epsilon.inl
+
+// Dependency:
+#include "quaternion.hpp"
+#include "../vector_relational.hpp"
+#include "../common.hpp"
+#include "../vec2.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+
+namespace glm
+{
+ template <>
+ GLM_FUNC_QUALIFIER bool epsilonEqual
+ (
+ float const & x,
+ float const & y,
+ float const & epsilon
+ )
+ {
+ return abs(x - y) < epsilon;
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER bool epsilonEqual
+ (
+ double const & x,
+ double const & y,
+ double const & epsilon
+ )
+ {
+ return abs(x - y) < epsilon;
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER bool epsilonNotEqual
+ (
+ float const & x,
+ float const & y,
+ float const & epsilon
+ )
+ {
+ return abs(x - y) >= epsilon;
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER bool epsilonNotEqual
+ (
+ double const & x,
+ double const & y,
+ double const & epsilon
+ )
+ {
+ return abs(x - y) >= epsilon;
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual
+ (
+ vecType<T, P> const & x,
+ vecType<T, P> const & y,
+ T const & epsilon
+ )
+ {
+ return lessThan(abs(x - y), vecType<T, P>(epsilon));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual
+ (
+ vecType<T, P> const & x,
+ vecType<T, P> const & y,
+ vecType<T, P> const & epsilon
+ )
+ {
+ return lessThan(abs(x - y), vecType<T, P>(epsilon));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual
+ (
+ vecType<T, P> const & x,
+ vecType<T, P> const & y,
+ T const & epsilon
+ )
+ {
+ return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual
+ (
+ vecType<T, P> const & x,
+ vecType<T, P> const & y,
+ vecType<T, P> const & epsilon
+ )
+ {
+ return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonEqual
+ (
+ tquat<T, P> const & x,
+ tquat<T, P> const & y,
+ T const & epsilon
+ )
+ {
+ tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w);
+ return lessThan(abs(v), tvec4<T, P>(epsilon));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonNotEqual
+ (
+ tquat<T, P> const & x,
+ tquat<T, P> const & y,
+ T const & epsilon
+ )
+ {
+ tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w);
+ return greaterThanEqual(abs(v), tvec4<T, P>(epsilon));
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/functions.hpp b/depedencies/include/glm/gtc/functions.hpp
new file mode 100644
index 0000000..ab1590b
--- /dev/null
+++ b/depedencies/include/glm/gtc/functions.hpp
@@ -0,0 +1,53 @@
+/// @ref gtc_functions
+/// @file glm/gtc/functions.hpp
+///
+/// @see core (dependence)
+/// @see gtc_half_float (dependence)
+/// @see gtc_quaternion (dependence)
+///
+/// @defgroup gtc_functions GLM_GTC_functions
+/// @ingroup gtc
+///
+/// @brief List of useful common functions.
+///
+/// <glm/gtc/functions.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../detail/precision.hpp"
+#include "../detail/type_vec2.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_functions extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_functions
+ /// @{
+
+ /// 1D gauss function
+ ///
+ /// @see gtc_epsilon
+ template <typename T>
+ GLM_FUNC_DECL T gauss(
+ T x,
+ T ExpectedValue,
+ T StandardDeviation);
+
+ /// 2D gauss function
+ ///
+ /// @see gtc_epsilon
+ template <typename T, precision P>
+ GLM_FUNC_DECL T gauss(
+ tvec2<T, P> const& Coord,
+ tvec2<T, P> const& ExpectedValue,
+ tvec2<T, P> const& StandardDeviation);
+
+ /// @}
+}//namespace glm
+
+#include "functions.inl"
+
diff --git a/depedencies/include/glm/gtc/functions.inl b/depedencies/include/glm/gtc/functions.inl
new file mode 100644
index 0000000..1dbc496
--- /dev/null
+++ b/depedencies/include/glm/gtc/functions.inl
@@ -0,0 +1,31 @@
+/// @ref gtc_functions
+/// @file glm/gtc/functions.inl
+
+#include "../detail/func_exponential.hpp"
+
+namespace glm
+{
+ template <typename T>
+ GLM_FUNC_QUALIFIER T gauss
+ (
+ T x,
+ T ExpectedValue,
+ T StandardDeviation
+ )
+ {
+ return exp(-((x - ExpectedValue) * (x - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation)) / (StandardDeviation * sqrt(static_cast<T>(6.28318530717958647692528676655900576)));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T gauss
+ (
+ tvec2<T, P> const& Coord,
+ tvec2<T, P> const& ExpectedValue,
+ tvec2<T, P> const& StandardDeviation
+ )
+ {
+ tvec2<T, P> const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation);
+ return exp(-(Squared.x + Squared.y));
+ }
+}//namespace glm
+
diff --git a/depedencies/include/glm/gtc/integer.hpp b/depedencies/include/glm/gtc/integer.hpp
new file mode 100644
index 0000000..69ffb1d
--- /dev/null
+++ b/depedencies/include/glm/gtc/integer.hpp
@@ -0,0 +1,102 @@
+/// @ref gtc_integer
+/// @file glm/gtc/integer.hpp
+///
+/// @see core (dependence)
+/// @see gtc_integer (dependence)
+///
+/// @defgroup gtc_integer GLM_GTC_integer
+/// @ingroup gtc
+///
+/// @brief Allow to perform bit operations on integer values
+///
+/// <glm/gtc/integer.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../detail/precision.hpp"
+#include "../detail/func_common.hpp"
+#include "../detail/func_integer.hpp"
+#include "../detail/func_exponential.hpp"
+#include <limits>
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_integer extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_integer
+ /// @{
+
+ /// Returns the log2 of x for integer values. Can be reliably using to compute mipmap count from the texture size.
+ /// @see gtc_integer
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType log2(genIUType x);
+
+ /// Modulus. Returns x % y
+ /// for each component in x using the floating point value y.
+ ///
+ /// @tparam genIUType Integer-point scalar or vector types.
+ ///
+ /// @see gtc_integer
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType mod(genIUType x, genIUType y);
+
+ /// Modulus. Returns x % y
+ /// for each component in x using the floating point value y.
+ ///
+ /// @tparam T Integer scalar types.
+ /// @tparam vecType vector types.
+ ///
+ /// @see gtc_integer
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, T y);
+
+ /// Modulus. Returns x % y
+ /// for each component in x using the floating point value y.
+ ///
+ /// @tparam T Integer scalar types.
+ /// @tparam vecType vector types.
+ ///
+ /// @see gtc_integer
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, vecType<T, P> const & y);
+
+ /// Returns a value equal to the nearest integer to x.
+ /// The fraction 0.5 will round in a direction chosen by the
+ /// implementation, presumably the direction that is fastest.
+ ///
+ /// @param x The values of the argument must be greater or equal to zero.
+ /// @tparam T floating point scalar types.
+ /// @tparam vecType vector types.
+ ///
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a>
+ /// @see gtc_integer
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<int, P> iround(vecType<T, P> const & x);
+
+ /// Returns a value equal to the nearest integer to x.
+ /// The fraction 0.5 will round in a direction chosen by the
+ /// implementation, presumably the direction that is fastest.
+ ///
+ /// @param x The values of the argument must be greater or equal to zero.
+ /// @tparam T floating point scalar types.
+ /// @tparam vecType vector types.
+ ///
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a>
+ /// @see gtc_integer
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<uint, P> uround(vecType<T, P> const & x);
+
+ /// @}
+} //namespace glm
+
+#include "integer.inl"
diff --git a/depedencies/include/glm/gtc/integer.inl b/depedencies/include/glm/gtc/integer.inl
new file mode 100644
index 0000000..7ce2918
--- /dev/null
+++ b/depedencies/include/glm/gtc/integer.inl
@@ -0,0 +1,71 @@
+/// @ref gtc_integer
+/// @file glm/gtc/integer.inl
+
+namespace glm{
+namespace detail
+{
+ template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
+ struct compute_log2<T, P, vecType, false, Aligned>
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & vec)
+ {
+ //Equivalent to return findMSB(vec); but save one function call in ASM with VC
+ //return findMSB(vec);
+ return vecType<T, P>(detail::compute_findMSB_vec<T, P, vecType, sizeof(T) * 8>::call(vec));
+ }
+ };
+
+# if GLM_HAS_BITSCAN_WINDOWS
+ template <precision P, bool Aligned>
+ struct compute_log2<int, P, tvec4, false, Aligned>
+ {
+ GLM_FUNC_QUALIFIER static tvec4<int, P> call(tvec4<int, P> const & vec)
+ {
+ tvec4<int, P> Result(glm::uninitialize);
+
+ _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.x), vec.x);
+ _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.y), vec.y);
+ _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.z), vec.z);
+ _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.w), vec.w);
+
+ return Result;
+ }
+ };
+# endif//GLM_HAS_BITSCAN_WINDOWS
+}//namespace detail
+ template <typename genType>
+ GLM_FUNC_QUALIFIER int iround(genType x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'iround' only accept floating-point inputs");
+ assert(static_cast<genType>(0.0) <= x);
+
+ return static_cast<int>(x + static_cast<genType>(0.5));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<int, P> iround(vecType<T, P> const& x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'iround' only accept floating-point inputs");
+ assert(all(lessThanEqual(vecType<T, P>(0), x)));
+
+ return vecType<int, P>(x + static_cast<T>(0.5));
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER uint uround(genType x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'uround' only accept floating-point inputs");
+ assert(static_cast<genType>(0.0) <= x);
+
+ return static_cast<uint>(x + static_cast<genType>(0.5));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<uint, P> uround(vecType<T, P> const& x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'uround' only accept floating-point inputs");
+ assert(all(lessThanEqual(vecType<T, P>(0), x)));
+
+ return vecType<uint, P>(x + static_cast<T>(0.5));
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/matrix_access.hpp b/depedencies/include/glm/gtc/matrix_access.hpp
new file mode 100644
index 0000000..e4156ef
--- /dev/null
+++ b/depedencies/include/glm/gtc/matrix_access.hpp
@@ -0,0 +1,59 @@
+/// @ref gtc_matrix_access
+/// @file glm/gtc/matrix_access.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_matrix_access GLM_GTC_matrix_access
+/// @ingroup gtc
+///
+/// Defines functions to access rows or columns of a matrix easily.
+/// <glm/gtc/matrix_access.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependency:
+#include "../detail/setup.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_matrix_access extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_matrix_access
+ /// @{
+
+ /// Get a specific row of a matrix.
+ /// @see gtc_matrix_access
+ template <typename genType>
+ GLM_FUNC_DECL typename genType::row_type row(
+ genType const & m,
+ length_t index);
+
+ /// Set a specific row to a matrix.
+ /// @see gtc_matrix_access
+ template <typename genType>
+ GLM_FUNC_DECL genType row(
+ genType const & m,
+ length_t index,
+ typename genType::row_type const & x);
+
+ /// Get a specific column of a matrix.
+ /// @see gtc_matrix_access
+ template <typename genType>
+ GLM_FUNC_DECL typename genType::col_type column(
+ genType const & m,
+ length_t index);
+
+ /// Set a specific column to a matrix.
+ /// @see gtc_matrix_access
+ template <typename genType>
+ GLM_FUNC_DECL genType column(
+ genType const & m,
+ length_t index,
+ typename genType::col_type const & x);
+
+ /// @}
+}//namespace glm
+
+#include "matrix_access.inl"
diff --git a/depedencies/include/glm/gtc/matrix_access.inl b/depedencies/include/glm/gtc/matrix_access.inl
new file mode 100644
index 0000000..831b940
--- /dev/null
+++ b/depedencies/include/glm/gtc/matrix_access.inl
@@ -0,0 +1,63 @@
+/// @ref gtc_matrix_access
+/// @file glm/gtc/matrix_access.inl
+
+namespace glm
+{
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType row
+ (
+ genType const & m,
+ length_t index,
+ typename genType::row_type const & x
+ )
+ {
+ assert(index >= 0 && index < m[0].length());
+
+ genType Result = m;
+ for(length_t i = 0; i < m.length(); ++i)
+ Result[i][index] = x[i];
+ return Result;
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER typename genType::row_type row
+ (
+ genType const & m,
+ length_t index
+ )
+ {
+ assert(index >= 0 && index < m[0].length());
+
+ typename genType::row_type Result;
+ for(length_t i = 0; i < m.length(); ++i)
+ Result[i] = m[i][index];
+ return Result;
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType column
+ (
+ genType const & m,
+ length_t index,
+ typename genType::col_type const & x
+ )
+ {
+ assert(index >= 0 && index < m.length());
+
+ genType Result = m;
+ Result[index] = x;
+ return Result;
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER typename genType::col_type column
+ (
+ genType const & m,
+ length_t index
+ )
+ {
+ assert(index >= 0 && index < m.length());
+
+ return m[index];
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/matrix_integer.hpp b/depedencies/include/glm/gtc/matrix_integer.hpp
new file mode 100644
index 0000000..fdc816d
--- /dev/null
+++ b/depedencies/include/glm/gtc/matrix_integer.hpp
@@ -0,0 +1,486 @@
+/// @ref gtc_matrix_integer
+/// @file glm/gtc/matrix_integer.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer
+/// @ingroup gtc
+///
+/// Defines a number of matrices with integer types.
+/// <glm/gtc/matrix_integer.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependency:
+#include "../mat2x2.hpp"
+#include "../mat2x3.hpp"
+#include "../mat2x4.hpp"
+#include "../mat3x2.hpp"
+#include "../mat3x3.hpp"
+#include "../mat3x4.hpp"
+#include "../mat4x2.hpp"
+#include "../mat4x3.hpp"
+#include "../mat4x4.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_matrix_integer extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_matrix_integer
+ /// @{
+
+ /// High-precision signed integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<int, highp> highp_imat2;
+
+ /// High-precision signed integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<int, highp> highp_imat3;
+
+ /// High-precision signed integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<int, highp> highp_imat4;
+
+ /// High-precision signed integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<int, highp> highp_imat2x2;
+
+ /// High-precision signed integer 2x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x3<int, highp> highp_imat2x3;
+
+ /// High-precision signed integer 2x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x4<int, highp> highp_imat2x4;
+
+ /// High-precision signed integer 3x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x2<int, highp> highp_imat3x2;
+
+ /// High-precision signed integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<int, highp> highp_imat3x3;
+
+ /// High-precision signed integer 3x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x4<int, highp> highp_imat3x4;
+
+ /// High-precision signed integer 4x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x2<int, highp> highp_imat4x2;
+
+ /// High-precision signed integer 4x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x3<int, highp> highp_imat4x3;
+
+ /// High-precision signed integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<int, highp> highp_imat4x4;
+
+
+ /// Medium-precision signed integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<int, mediump> mediump_imat2;
+
+ /// Medium-precision signed integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<int, mediump> mediump_imat3;
+
+ /// Medium-precision signed integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<int, mediump> mediump_imat4;
+
+
+ /// Medium-precision signed integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<int, mediump> mediump_imat2x2;
+
+ /// Medium-precision signed integer 2x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x3<int, mediump> mediump_imat2x3;
+
+ /// Medium-precision signed integer 2x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x4<int, mediump> mediump_imat2x4;
+
+ /// Medium-precision signed integer 3x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x2<int, mediump> mediump_imat3x2;
+
+ /// Medium-precision signed integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<int, mediump> mediump_imat3x3;
+
+ /// Medium-precision signed integer 3x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x4<int, mediump> mediump_imat3x4;
+
+ /// Medium-precision signed integer 4x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x2<int, mediump> mediump_imat4x2;
+
+ /// Medium-precision signed integer 4x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x3<int, mediump> mediump_imat4x3;
+
+ /// Medium-precision signed integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<int, mediump> mediump_imat4x4;
+
+
+ /// Low-precision signed integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<int, lowp> lowp_imat2;
+
+ /// Low-precision signed integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<int, lowp> lowp_imat3;
+
+ /// Low-precision signed integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<int, lowp> lowp_imat4;
+
+
+ /// Low-precision signed integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<int, lowp> lowp_imat2x2;
+
+ /// Low-precision signed integer 2x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x3<int, lowp> lowp_imat2x3;
+
+ /// Low-precision signed integer 2x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x4<int, lowp> lowp_imat2x4;
+
+ /// Low-precision signed integer 3x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x2<int, lowp> lowp_imat3x2;
+
+ /// Low-precision signed integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<int, lowp> lowp_imat3x3;
+
+ /// Low-precision signed integer 3x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x4<int, lowp> lowp_imat3x4;
+
+ /// Low-precision signed integer 4x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x2<int, lowp> lowp_imat4x2;
+
+ /// Low-precision signed integer 4x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x3<int, lowp> lowp_imat4x3;
+
+ /// Low-precision signed integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<int, lowp> lowp_imat4x4;
+
+
+ /// High-precision unsigned integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<uint, highp> highp_umat2;
+
+ /// High-precision unsigned integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<uint, highp> highp_umat3;
+
+ /// High-precision unsigned integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<uint, highp> highp_umat4;
+
+ /// High-precision unsigned integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<uint, highp> highp_umat2x2;
+
+ /// High-precision unsigned integer 2x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x3<uint, highp> highp_umat2x3;
+
+ /// High-precision unsigned integer 2x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x4<uint, highp> highp_umat2x4;
+
+ /// High-precision unsigned integer 3x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x2<uint, highp> highp_umat3x2;
+
+ /// High-precision unsigned integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<uint, highp> highp_umat3x3;
+
+ /// High-precision unsigned integer 3x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x4<uint, highp> highp_umat3x4;
+
+ /// High-precision unsigned integer 4x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x2<uint, highp> highp_umat4x2;
+
+ /// High-precision unsigned integer 4x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x3<uint, highp> highp_umat4x3;
+
+ /// High-precision unsigned integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<uint, highp> highp_umat4x4;
+
+
+ /// Medium-precision unsigned integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<uint, mediump> mediump_umat2;
+
+ /// Medium-precision unsigned integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<uint, mediump> mediump_umat3;
+
+ /// Medium-precision unsigned integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<uint, mediump> mediump_umat4;
+
+
+ /// Medium-precision unsigned integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<uint, mediump> mediump_umat2x2;
+
+ /// Medium-precision unsigned integer 2x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x3<uint, mediump> mediump_umat2x3;
+
+ /// Medium-precision unsigned integer 2x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x4<uint, mediump> mediump_umat2x4;
+
+ /// Medium-precision unsigned integer 3x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x2<uint, mediump> mediump_umat3x2;
+
+ /// Medium-precision unsigned integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<uint, mediump> mediump_umat3x3;
+
+ /// Medium-precision unsigned integer 3x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x4<uint, mediump> mediump_umat3x4;
+
+ /// Medium-precision unsigned integer 4x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x2<uint, mediump> mediump_umat4x2;
+
+ /// Medium-precision unsigned integer 4x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x3<uint, mediump> mediump_umat4x3;
+
+ /// Medium-precision unsigned integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<uint, mediump> mediump_umat4x4;
+
+
+ /// Low-precision unsigned integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<uint, lowp> lowp_umat2;
+
+ /// Low-precision unsigned integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<uint, lowp> lowp_umat3;
+
+ /// Low-precision unsigned integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<uint, lowp> lowp_umat4;
+
+
+ /// Low-precision unsigned integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x2<uint, lowp> lowp_umat2x2;
+
+ /// Low-precision unsigned integer 2x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x3<uint, lowp> lowp_umat2x3;
+
+ /// Low-precision unsigned integer 2x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat2x4<uint, lowp> lowp_umat2x4;
+
+ /// Low-precision unsigned integer 3x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x2<uint, lowp> lowp_umat3x2;
+
+ /// Low-precision unsigned integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x3<uint, lowp> lowp_umat3x3;
+
+ /// Low-precision unsigned integer 3x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat3x4<uint, lowp> lowp_umat3x4;
+
+ /// Low-precision unsigned integer 4x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x2<uint, lowp> lowp_umat4x2;
+
+ /// Low-precision unsigned integer 4x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x3<uint, lowp> lowp_umat4x3;
+
+ /// Low-precision unsigned integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef tmat4x4<uint, lowp> lowp_umat4x4;
+
+#if(defined(GLM_PRECISION_HIGHP_INT))
+ typedef highp_imat2 imat2;
+ typedef highp_imat3 imat3;
+ typedef highp_imat4 imat4;
+ typedef highp_imat2x2 imat2x2;
+ typedef highp_imat2x3 imat2x3;
+ typedef highp_imat2x4 imat2x4;
+ typedef highp_imat3x2 imat3x2;
+ typedef highp_imat3x3 imat3x3;
+ typedef highp_imat3x4 imat3x4;
+ typedef highp_imat4x2 imat4x2;
+ typedef highp_imat4x3 imat4x3;
+ typedef highp_imat4x4 imat4x4;
+#elif(defined(GLM_PRECISION_LOWP_INT))
+ typedef lowp_imat2 imat2;
+ typedef lowp_imat3 imat3;
+ typedef lowp_imat4 imat4;
+ typedef lowp_imat2x2 imat2x2;
+ typedef lowp_imat2x3 imat2x3;
+ typedef lowp_imat2x4 imat2x4;
+ typedef lowp_imat3x2 imat3x2;
+ typedef lowp_imat3x3 imat3x3;
+ typedef lowp_imat3x4 imat3x4;
+ typedef lowp_imat4x2 imat4x2;
+ typedef lowp_imat4x3 imat4x3;
+ typedef lowp_imat4x4 imat4x4;
+#else //if(defined(GLM_PRECISION_MEDIUMP_INT))
+
+ /// Signed integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat2 imat2;
+
+ /// Signed integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat3 imat3;
+
+ /// Signed integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat4 imat4;
+
+ /// Signed integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat2x2 imat2x2;
+
+ /// Signed integer 2x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat2x3 imat2x3;
+
+ /// Signed integer 2x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat2x4 imat2x4;
+
+ /// Signed integer 3x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat3x2 imat3x2;
+
+ /// Signed integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat3x3 imat3x3;
+
+ /// Signed integer 3x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat3x4 imat3x4;
+
+ /// Signed integer 4x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat4x2 imat4x2;
+
+ /// Signed integer 4x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat4x3 imat4x3;
+
+ /// Signed integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_imat4x4 imat4x4;
+#endif//GLM_PRECISION
+
+#if(defined(GLM_PRECISION_HIGHP_UINT))
+ typedef highp_umat2 umat2;
+ typedef highp_umat3 umat3;
+ typedef highp_umat4 umat4;
+ typedef highp_umat2x2 umat2x2;
+ typedef highp_umat2x3 umat2x3;
+ typedef highp_umat2x4 umat2x4;
+ typedef highp_umat3x2 umat3x2;
+ typedef highp_umat3x3 umat3x3;
+ typedef highp_umat3x4 umat3x4;
+ typedef highp_umat4x2 umat4x2;
+ typedef highp_umat4x3 umat4x3;
+ typedef highp_umat4x4 umat4x4;
+#elif(defined(GLM_PRECISION_LOWP_UINT))
+ typedef lowp_umat2 umat2;
+ typedef lowp_umat3 umat3;
+ typedef lowp_umat4 umat4;
+ typedef lowp_umat2x2 umat2x2;
+ typedef lowp_umat2x3 umat2x3;
+ typedef lowp_umat2x4 umat2x4;
+ typedef lowp_umat3x2 umat3x2;
+ typedef lowp_umat3x3 umat3x3;
+ typedef lowp_umat3x4 umat3x4;
+ typedef lowp_umat4x2 umat4x2;
+ typedef lowp_umat4x3 umat4x3;
+ typedef lowp_umat4x4 umat4x4;
+#else //if(defined(GLM_PRECISION_MEDIUMP_UINT))
+
+ /// Unsigned integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat2 umat2;
+
+ /// Unsigned integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat3 umat3;
+
+ /// Unsigned integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat4 umat4;
+
+ /// Unsigned integer 2x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat2x2 umat2x2;
+
+ /// Unsigned integer 2x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat2x3 umat2x3;
+
+ /// Unsigned integer 2x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat2x4 umat2x4;
+
+ /// Unsigned integer 3x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat3x2 umat3x2;
+
+ /// Unsigned integer 3x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat3x3 umat3x3;
+
+ /// Unsigned integer 3x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat3x4 umat3x4;
+
+ /// Unsigned integer 4x2 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat4x2 umat4x2;
+
+ /// Unsigned integer 4x3 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat4x3 umat4x3;
+
+ /// Unsigned integer 4x4 matrix.
+ /// @see gtc_matrix_integer
+ typedef mediump_umat4x4 umat4x4;
+#endif//GLM_PRECISION
+
+ /// @}
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/matrix_inverse.hpp b/depedencies/include/glm/gtc/matrix_inverse.hpp
new file mode 100644
index 0000000..589381d
--- /dev/null
+++ b/depedencies/include/glm/gtc/matrix_inverse.hpp
@@ -0,0 +1,49 @@
+/// @ref gtc_matrix_inverse
+/// @file glm/gtc/matrix_inverse.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse
+/// @ingroup gtc
+///
+/// Defines additional matrix inverting functions.
+/// <glm/gtc/matrix_inverse.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../matrix.hpp"
+#include "../mat2x2.hpp"
+#include "../mat3x3.hpp"
+#include "../mat4x4.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_matrix_inverse extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_matrix_inverse
+ /// @{
+
+ /// Fast matrix inverse for affine matrix.
+ ///
+ /// @param m Input matrix to invert.
+ /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate.
+ /// @see gtc_matrix_inverse
+ template <typename genType>
+ GLM_FUNC_DECL genType affineInverse(genType const & m);
+
+ /// Compute the inverse transpose of a matrix.
+ ///
+ /// @param m Input matrix to invert transpose.
+ /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate.
+ /// @see gtc_matrix_inverse
+ template <typename genType>
+ GLM_FUNC_DECL genType inverseTranspose(genType const & m);
+
+ /// @}
+}//namespace glm
+
+#include "matrix_inverse.inl"
diff --git a/depedencies/include/glm/gtc/matrix_inverse.inl b/depedencies/include/glm/gtc/matrix_inverse.inl
new file mode 100644
index 0000000..36c9bf7
--- /dev/null
+++ b/depedencies/include/glm/gtc/matrix_inverse.inl
@@ -0,0 +1,120 @@
+/// @ref gtc_matrix_inverse
+/// @file glm/gtc/matrix_inverse.inl
+
+namespace glm
+{
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat3x3<T, P> affineInverse(tmat3x3<T, P> const & m)
+ {
+ tmat2x2<T, P> const Inv(inverse(tmat2x2<T, P>(m)));
+
+ return tmat3x3<T, P>(
+ tvec3<T, P>(Inv[0], static_cast<T>(0)),
+ tvec3<T, P>(Inv[1], static_cast<T>(0)),
+ tvec3<T, P>(-Inv * tvec2<T, P>(m[2]), static_cast<T>(1)));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> affineInverse(tmat4x4<T, P> const & m)
+ {
+ tmat3x3<T, P> const Inv(inverse(tmat3x3<T, P>(m)));
+
+ return tmat4x4<T, P>(
+ tvec4<T, P>(Inv[0], static_cast<T>(0)),
+ tvec4<T, P>(Inv[1], static_cast<T>(0)),
+ tvec4<T, P>(Inv[2], static_cast<T>(0)),
+ tvec4<T, P>(-Inv * tvec3<T, P>(m[3]), static_cast<T>(1)));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat2x2<T, P> inverseTranspose(tmat2x2<T, P> const & m)
+ {
+ T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
+
+ tmat2x2<T, P> Inverse(
+ + m[1][1] / Determinant,
+ - m[0][1] / Determinant,
+ - m[1][0] / Determinant,
+ + m[0][0] / Determinant);
+
+ return Inverse;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat3x3<T, P> inverseTranspose(tmat3x3<T, P> const & m)
+ {
+ T Determinant =
+ + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
+ - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
+ + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
+
+ tmat3x3<T, P> Inverse(uninitialize);
+ Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
+ Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
+ Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
+ Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
+ Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
+ Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
+ Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
+ Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
+ Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
+ Inverse /= Determinant;
+
+ return Inverse;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> inverseTranspose(tmat4x4<T, P> const & m)
+ {
+ T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
+ T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
+ T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
+ T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
+ T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
+ T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
+ T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
+ T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
+ T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
+ T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
+ T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
+ T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
+ T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
+ T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
+ T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
+ T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
+ T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
+ T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
+ T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
+
+ tmat4x4<T, P> Inverse(uninitialize);
+ Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
+ Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
+ Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
+ Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
+
+ Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
+ Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
+ Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
+ Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
+
+ Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
+ Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
+ Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
+ Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
+
+ Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
+ Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
+ Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
+ Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
+
+ T Determinant =
+ + m[0][0] * Inverse[0][0]
+ + m[0][1] * Inverse[0][1]
+ + m[0][2] * Inverse[0][2]
+ + m[0][3] * Inverse[0][3];
+
+ Inverse /= Determinant;
+
+ return Inverse;
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/matrix_transform.hpp b/depedencies/include/glm/gtc/matrix_transform.hpp
new file mode 100644
index 0000000..c97b89a
--- /dev/null
+++ b/depedencies/include/glm/gtc/matrix_transform.hpp
@@ -0,0 +1,465 @@
+/// @ref gtc_matrix_transform
+/// @file glm/gtc/matrix_transform.hpp
+///
+/// @see core (dependence)
+/// @see gtx_transform
+/// @see gtx_transform2
+///
+/// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform
+/// @ingroup gtc
+///
+/// @brief Defines functions that generate common transformation matrices.
+///
+/// The matrices generated by this extension use standard OpenGL fixed-function
+/// conventions. For example, the lookAt function generates a transform from world
+/// space into the specific eye space that the projective matrix functions
+/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility
+/// specifications defines the particular layout of this eye space.
+///
+/// <glm/gtc/matrix_transform.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../mat4x4.hpp"
+#include "../vec2.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+#include "../gtc/constants.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_matrix_transform extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_matrix_transform
+ /// @{
+
+ /// Builds a translation 4 * 4 matrix created from a vector of 3 components.
+ ///
+ /// @param m Input matrix multiplied by this translation matrix.
+ /// @param v Coordinates of a translation vector.
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @code
+ /// #include <glm/glm.hpp>
+ /// #include <glm/gtc/matrix_transform.hpp>
+ /// ...
+ /// glm::mat4 m = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f));
+ /// // m[0][0] == 1.0f, m[0][1] == 0.0f, m[0][2] == 0.0f, m[0][3] == 0.0f
+ /// // m[1][0] == 0.0f, m[1][1] == 1.0f, m[1][2] == 0.0f, m[1][3] == 0.0f
+ /// // m[2][0] == 0.0f, m[2][1] == 0.0f, m[2][2] == 1.0f, m[2][3] == 0.0f
+ /// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f
+ /// @endcode
+ /// @see gtc_matrix_transform
+ /// @see - translate(tmat4x4<T, P> const & m, T x, T y, T z)
+ /// @see - translate(tvec3<T, P> const & v)
+ template <typename T, precision P>
+ GLM_FUNC_DECL tmat4x4<T, P> translate(
+ tmat4x4<T, P> const & m,
+ tvec3<T, P> const & v);
+
+ /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle.
+ ///
+ /// @param m Input matrix multiplied by this rotation matrix.
+ /// @param angle Rotation angle expressed in radians.
+ /// @param axis Rotation axis, recommended to be normalized.
+ /// @tparam T Value type used to build the matrix. Supported: half, float or double.
+ /// @see gtc_matrix_transform
+ /// @see - rotate(tmat4x4<T, P> const & m, T angle, T x, T y, T z)
+ /// @see - rotate(T angle, tvec3<T, P> const & v)
+ template <typename T, precision P>
+ GLM_FUNC_DECL tmat4x4<T, P> rotate(
+ tmat4x4<T, P> const & m,
+ T angle,
+ tvec3<T, P> const & axis);
+
+ /// Builds a scale 4 * 4 matrix created from 3 scalars.
+ ///
+ /// @param m Input matrix multiplied by this scale matrix.
+ /// @param v Ratio of scaling for each axis.
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ /// @see - scale(tmat4x4<T, P> const & m, T x, T y, T z)
+ /// @see - scale(tvec3<T, P> const & v)
+ template <typename T, precision P>
+ GLM_FUNC_DECL tmat4x4<T, P> scale(
+ tmat4x4<T, P> const & m,
+ tvec3<T, P> const & v);
+
+ /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness.
+ ///
+ /// @param left
+ /// @param right
+ /// @param bottom
+ /// @param top
+ /// @param zNear
+ /// @param zFar
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> ortho(
+ T left,
+ T right,
+ T bottom,
+ T top,
+ T zNear,
+ T zFar);
+
+ /// Creates a matrix for an orthographic parallel viewing volume, using left-handedness.
+ ///
+ /// @param left
+ /// @param right
+ /// @param bottom
+ /// @param top
+ /// @param zNear
+ /// @param zFar
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> orthoLH(
+ T left,
+ T right,
+ T bottom,
+ T top,
+ T zNear,
+ T zFar);
+
+ /// Creates a matrix for an orthographic parallel viewing volume, using right-handedness.
+ ///
+ /// @param left
+ /// @param right
+ /// @param bottom
+ /// @param top
+ /// @param zNear
+ /// @param zFar
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> orthoRH(
+ T left,
+ T right,
+ T bottom,
+ T top,
+ T zNear,
+ T zFar);
+
+ /// Creates a matrix for projecting two-dimensional coordinates onto the screen.
+ ///
+ /// @param left
+ /// @param right
+ /// @param bottom
+ /// @param top
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top, T const & zNear, T const & zFar)
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> ortho(
+ T left,
+ T right,
+ T bottom,
+ T top);
+
+ /// Creates a frustum matrix with default handedness.
+ ///
+ /// @param left
+ /// @param right
+ /// @param bottom
+ /// @param top
+ /// @param near
+ /// @param far
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> frustum(
+ T left,
+ T right,
+ T bottom,
+ T top,
+ T near,
+ T far);
+
+ /// Creates a left handed frustum matrix.
+ ///
+ /// @param left
+ /// @param right
+ /// @param bottom
+ /// @param top
+ /// @param near
+ /// @param far
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> frustumLH(
+ T left,
+ T right,
+ T bottom,
+ T top,
+ T near,
+ T far);
+
+ /// Creates a right handed frustum matrix.
+ ///
+ /// @param left
+ /// @param right
+ /// @param bottom
+ /// @param top
+ /// @param near
+ /// @param far
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> frustumRH(
+ T left,
+ T right,
+ T bottom,
+ T top,
+ T near,
+ T far);
+
+ /// Creates a matrix for a symetric perspective-view frustum based on the default handedness.
+ ///
+ /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians.
+ /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> perspective(
+ T fovy,
+ T aspect,
+ T near,
+ T far);
+
+ /// Creates a matrix for a right handed, symetric perspective-view frustum.
+ ///
+ /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+ /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveRH(
+ T fovy,
+ T aspect,
+ T near,
+ T far);
+
+ /// Creates a matrix for a left handed, symetric perspective-view frustum.
+ ///
+ /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+ /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveLH(
+ T fovy,
+ T aspect,
+ T near,
+ T far);
+
+ /// Builds a perspective projection matrix based on a field of view and the default handedness.
+ ///
+ /// @param fov Expressed in radians.
+ /// @param width
+ /// @param height
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFov(
+ T fov,
+ T width,
+ T height,
+ T near,
+ T far);
+
+ /// Builds a right handed perspective projection matrix based on a field of view.
+ ///
+ /// @param fov Expressed in radians.
+ /// @param width
+ /// @param height
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovRH(
+ T fov,
+ T width,
+ T height,
+ T near,
+ T far);
+
+ /// Builds a left handed perspective projection matrix based on a field of view.
+ ///
+ /// @param fov Expressed in radians.
+ /// @param width
+ /// @param height
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovLH(
+ T fov,
+ T width,
+ T height,
+ T near,
+ T far);
+
+ /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness.
+ ///
+ /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+ /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspective(
+ T fovy, T aspect, T near);
+
+ /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite.
+ ///
+ /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+ /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveLH(
+ T fovy, T aspect, T near);
+
+ /// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite.
+ ///
+ /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+ /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveRH(
+ T fovy, T aspect, T near);
+
+ /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
+ ///
+ /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+ /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective(
+ T fovy, T aspect, T near);
+
+ /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
+ ///
+ /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
+ /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
+ /// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
+ /// @param ep
+ /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
+ /// @see gtc_matrix_transform
+ template <typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective(
+ T fovy, T aspect, T near, T ep);
+
+ /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
+ ///
+ /// @param obj Specify the object coordinates.
+ /// @param model Specifies the current modelview matrix
+ /// @param proj Specifies the current projection matrix
+ /// @param viewport Specifies the current viewport
+ /// @return Return the computed window coordinates.
+ /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
+ /// @tparam U Currently supported: Floating-point types and integer types.
+ /// @see gtc_matrix_transform
+ template <typename T, typename U, precision P>
+ GLM_FUNC_DECL tvec3<T, P> project(
+ tvec3<T, P> const & obj,
+ tmat4x4<T, P> const & model,
+ tmat4x4<T, P> const & proj,
+ tvec4<U, P> const & viewport);
+
+ /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
+ ///
+ /// @param win Specify the window coordinates to be mapped.
+ /// @param model Specifies the modelview matrix
+ /// @param proj Specifies the projection matrix
+ /// @param viewport Specifies the viewport
+ /// @return Returns the computed object coordinates.
+ /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
+ /// @tparam U Currently supported: Floating-point types and integer types.
+ /// @see gtc_matrix_transform
+ template <typename T, typename U, precision P>
+ GLM_FUNC_DECL tvec3<T, P> unProject(
+ tvec3<T, P> const & win,
+ tmat4x4<T, P> const & model,
+ tmat4x4<T, P> const & proj,
+ tvec4<U, P> const & viewport);
+
+ /// Define a picking region
+ ///
+ /// @param center
+ /// @param delta
+ /// @param viewport
+ /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
+ /// @tparam U Currently supported: Floating-point types and integer types.
+ /// @see gtc_matrix_transform
+ template <typename T, precision P, typename U>
+ GLM_FUNC_DECL tmat4x4<T, P> pickMatrix(
+ tvec2<T, P> const & center,
+ tvec2<T, P> const & delta,
+ tvec4<U, P> const & viewport);
+
+ /// Build a look at view matrix based on the default handedness.
+ ///
+ /// @param eye Position of the camera
+ /// @param center Position where the camera is looking at
+ /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
+ /// @see gtc_matrix_transform
+ /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
+ template <typename T, precision P>
+ GLM_FUNC_DECL tmat4x4<T, P> lookAt(
+ tvec3<T, P> const & eye,
+ tvec3<T, P> const & center,
+ tvec3<T, P> const & up);
+
+ /// Build a right handed look at view matrix.
+ ///
+ /// @param eye Position of the camera
+ /// @param center Position where the camera is looking at
+ /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
+ /// @see gtc_matrix_transform
+ /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
+ template <typename T, precision P>
+ GLM_FUNC_DECL tmat4x4<T, P> lookAtRH(
+ tvec3<T, P> const & eye,
+ tvec3<T, P> const & center,
+ tvec3<T, P> const & up);
+
+ /// Build a left handed look at view matrix.
+ ///
+ /// @param eye Position of the camera
+ /// @param center Position where the camera is looking at
+ /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
+ /// @see gtc_matrix_transform
+ /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
+ template <typename T, precision P>
+ GLM_FUNC_DECL tmat4x4<T, P> lookAtLH(
+ tvec3<T, P> const & eye,
+ tvec3<T, P> const & center,
+ tvec3<T, P> const & up);
+
+ /// @}
+}//namespace glm
+
+#include "matrix_transform.inl"
diff --git a/depedencies/include/glm/gtc/matrix_transform.inl b/depedencies/include/glm/gtc/matrix_transform.inl
new file mode 100644
index 0000000..b9ff418
--- /dev/null
+++ b/depedencies/include/glm/gtc/matrix_transform.inl
@@ -0,0 +1,575 @@
+/// @ref gtc_matrix_transform
+/// @file glm/gtc/matrix_transform.inl
+
+#include "../geometric.hpp"
+#include "../trigonometric.hpp"
+#include "../matrix.hpp"
+
+namespace glm
+{
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> translate(tmat4x4<T, P> const & m, tvec3<T, P> const & v)
+ {
+ tmat4x4<T, P> Result(m);
+ Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v)
+ {
+ T const a = angle;
+ T const c = cos(a);
+ T const s = sin(a);
+
+ tvec3<T, P> axis(normalize(v));
+ tvec3<T, P> temp((T(1) - c) * axis);
+
+ tmat4x4<T, P> Rotate(uninitialize);
+ Rotate[0][0] = c + temp[0] * axis[0];
+ Rotate[0][1] = temp[0] * axis[1] + s * axis[2];
+ Rotate[0][2] = temp[0] * axis[2] - s * axis[1];
+
+ Rotate[1][0] = temp[1] * axis[0] - s * axis[2];
+ Rotate[1][1] = c + temp[1] * axis[1];
+ Rotate[1][2] = temp[1] * axis[2] + s * axis[0];
+
+ Rotate[2][0] = temp[2] * axis[0] + s * axis[1];
+ Rotate[2][1] = temp[2] * axis[1] - s * axis[0];
+ Rotate[2][2] = c + temp[2] * axis[2];
+
+ tmat4x4<T, P> Result(uninitialize);
+ Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2];
+ Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2];
+ Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2];
+ Result[3] = m[3];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v)
+ {
+ T const a = angle;
+ T const c = cos(a);
+ T const s = sin(a);
+ tmat4x4<T, P> Result;
+
+ tvec3<T, P> axis = normalize(v);
+
+ Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x;
+ Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z;
+ Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y;
+ Result[0][3] = static_cast<T>(0);
+
+ Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z;
+ Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y;
+ Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x;
+ Result[1][3] = static_cast<T>(0);
+
+ Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y;
+ Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x;
+ Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z;
+ Result[2][3] = static_cast<T>(0);
+
+ Result[3] = tvec4<T, P>(0, 0, 0, 1);
+ return m * Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> scale(tmat4x4<T, P> const & m, tvec3<T, P> const & v)
+ {
+ tmat4x4<T, P> Result(uninitialize);
+ Result[0] = m[0] * v[0];
+ Result[1] = m[1] * v[1];
+ Result[2] = m[2] * v[2];
+ Result[3] = m[3];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow(tmat4x4<T, P> const & m, tvec3<T, P> const & v)
+ {
+ tmat4x4<T, P> Result(T(1));
+ Result[0][0] = v.x;
+ Result[1][1] = v.y;
+ Result[2][2] = v.z;
+ return m * Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho
+ (
+ T left, T right,
+ T bottom, T top,
+ T zNear, T zFar
+ )
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return orthoLH(left, right, bottom, top, zNear, zFar);
+# else
+ return orthoRH(left, right, bottom, top, zNear, zFar);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH
+ (
+ T left, T right,
+ T bottom, T top,
+ T zNear, T zFar
+ )
+ {
+ tmat4x4<T, defaultp> Result(1);
+ Result[0][0] = static_cast<T>(2) / (right - left);
+ Result[1][1] = static_cast<T>(2) / (top - bottom);
+ Result[3][0] = - (right + left) / (right - left);
+ Result[3][1] = - (top + bottom) / (top - bottom);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = static_cast<T>(1) / (zFar - zNear);
+ Result[3][2] = - zNear / (zFar - zNear);
+# else
+ Result[2][2] = static_cast<T>(2) / (zFar - zNear);
+ Result[3][2] = - (zFar + zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH
+ (
+ T left, T right,
+ T bottom, T top,
+ T zNear, T zFar
+ )
+ {
+ tmat4x4<T, defaultp> Result(1);
+ Result[0][0] = static_cast<T>(2) / (right - left);
+ Result[1][1] = static_cast<T>(2) / (top - bottom);
+ Result[3][0] = - (right + left) / (right - left);
+ Result[3][1] = - (top + bottom) / (top - bottom);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
+ Result[3][2] = - zNear / (zFar - zNear);
+# else
+ Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
+ Result[3][2] = - (zFar + zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho
+ (
+ T left, T right,
+ T bottom, T top
+ )
+ {
+ tmat4x4<T, defaultp> Result(static_cast<T>(1));
+ Result[0][0] = static_cast<T>(2) / (right - left);
+ Result[1][1] = static_cast<T>(2) / (top - bottom);
+ Result[2][2] = - static_cast<T>(1);
+ Result[3][0] = - (right + left) / (right - left);
+ Result[3][1] = - (top + bottom) / (top - bottom);
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum
+ (
+ T left, T right,
+ T bottom, T top,
+ T nearVal, T farVal
+ )
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return frustumLH(left, right, bottom, top, nearVal, farVal);
+# else
+ return frustumRH(left, right, bottom, top, nearVal, farVal);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH
+ (
+ T left, T right,
+ T bottom, T top,
+ T nearVal, T farVal
+ )
+ {
+ tmat4x4<T, defaultp> Result(0);
+ Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
+ Result[2][0] = (right + left) / (right - left);
+ Result[2][1] = (top + bottom) / (top - bottom);
+ Result[2][3] = static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = farVal / (farVal - nearVal);
+ Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
+# else
+ Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
+ Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH
+ (
+ T left, T right,
+ T bottom, T top,
+ T nearVal, T farVal
+ )
+ {
+ tmat4x4<T, defaultp> Result(0);
+ Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
+ Result[2][0] = (right + left) / (right - left);
+ Result[2][1] = (top + bottom) / (top - bottom);
+ Result[2][3] = static_cast<T>(-1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = farVal / (nearVal - farVal);
+ Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
+# else
+ Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
+ Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar)
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return perspectiveLH(fovy, aspect, zNear, zFar);
+# else
+ return perspectiveRH(fovy, aspect, zNear, zFar);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar)
+ {
+ assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
+
+ T const tanHalfFovy = tan(fovy / static_cast<T>(2));
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
+ Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
+ Result[2][3] = - static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = zFar / (zNear - zFar);
+ Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+# else
+ Result[2][2] = - (zFar + zNear) / (zFar - zNear);
+ Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar)
+ {
+ assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
+
+ T const tanHalfFovy = tan(fovy / static_cast<T>(2));
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
+ Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
+ Result[2][3] = static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = zFar / (zFar - zNear);
+ Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+# else
+ Result[2][2] = (zFar + zNear) / (zFar - zNear);
+ Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar)
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return perspectiveFovLH(fov, width, height, zNear, zFar);
+# else
+ return perspectiveFovRH(fov, width, height, zNear, zFar);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar)
+ {
+ assert(width > static_cast<T>(0));
+ assert(height > static_cast<T>(0));
+ assert(fov > static_cast<T>(0));
+
+ T const rad = fov;
+ T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
+ T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = w;
+ Result[1][1] = h;
+ Result[2][3] = - static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = zFar / (zNear - zFar);
+ Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+# else
+ Result[2][2] = - (zFar + zNear) / (zFar - zNear);
+ Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar)
+ {
+ assert(width > static_cast<T>(0));
+ assert(height > static_cast<T>(0));
+ assert(fov > static_cast<T>(0));
+
+ T const rad = fov;
+ T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
+ T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = w;
+ Result[1][1] = h;
+ Result[2][3] = static_cast<T>(1);
+
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ Result[2][2] = zFar / (zFar - zNear);
+ Result[3][2] = -(zFar * zNear) / (zFar - zNear);
+# else
+ Result[2][2] = (zFar + zNear) / (zFar - zNear);
+ Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
+# endif
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return infinitePerspectiveLH(fovy, aspect, zNear);
+# else
+ return infinitePerspectiveRH(fovy, aspect, zNear);
+# endif
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear)
+ {
+ T const range = tan(fovy / static_cast<T>(2)) * zNear;
+ T const left = -range * aspect;
+ T const right = range * aspect;
+ T const bottom = -range;
+ T const top = range;
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+ Result[2][2] = - static_cast<T>(1);
+ Result[2][3] = - static_cast<T>(1);
+ Result[3][2] = - static_cast<T>(2) * zNear;
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear)
+ {
+ T const range = tan(fovy / static_cast<T>(2)) * zNear;
+ T const left = -range * aspect;
+ T const right = range * aspect;
+ T const bottom = -range;
+ T const top = range;
+
+ tmat4x4<T, defaultp> Result(T(0));
+ Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+ Result[2][2] = static_cast<T>(1);
+ Result[2][3] = static_cast<T>(1);
+ Result[3][2] = - static_cast<T>(2) * zNear;
+ return Result;
+ }
+
+ // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep)
+ {
+ T const range = tan(fovy / static_cast<T>(2)) * zNear;
+ T const left = -range * aspect;
+ T const right = range * aspect;
+ T const bottom = -range;
+ T const top = range;
+
+ tmat4x4<T, defaultp> Result(static_cast<T>(0));
+ Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
+ Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
+ Result[2][2] = ep - static_cast<T>(1);
+ Result[2][3] = static_cast<T>(-1);
+ Result[3][2] = (ep - static_cast<T>(2)) * zNear;
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear)
+ {
+ return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>());
+ }
+
+ template <typename T, typename U, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> project
+ (
+ tvec3<T, P> const & obj,
+ tmat4x4<T, P> const & model,
+ tmat4x4<T, P> const & proj,
+ tvec4<U, P> const & viewport
+ )
+ {
+ tvec4<T, P> tmp = tvec4<T, P>(obj, static_cast<T>(1));
+ tmp = model * tmp;
+ tmp = proj * tmp;
+
+ tmp /= tmp.w;
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5);
+ tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5);
+# else
+ tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5);
+# endif
+ tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
+ tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
+
+ return tvec3<T, P>(tmp);
+ }
+
+ template <typename T, typename U, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> unProject
+ (
+ tvec3<T, P> const & win,
+ tmat4x4<T, P> const & model,
+ tmat4x4<T, P> const & proj,
+ tvec4<U, P> const & viewport
+ )
+ {
+ tmat4x4<T, P> Inverse = inverse(proj * model);
+
+ tvec4<T, P> tmp = tvec4<T, P>(win, T(1));
+ tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
+ tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
+# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
+ tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1);
+ tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1);
+# else
+ tmp = tmp * static_cast<T>(2) - static_cast<T>(1);
+# endif
+
+ tvec4<T, P> obj = Inverse * tmp;
+ obj /= obj.w;
+
+ return tvec3<T, P>(obj);
+ }
+
+ template <typename T, precision P, typename U>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix(tvec2<T, P> const & center, tvec2<T, P> const & delta, tvec4<U, P> const & viewport)
+ {
+ assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0));
+ tmat4x4<T, P> Result(static_cast<T>(1));
+
+ if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)))
+ return Result; // Error
+
+ tvec3<T, P> Temp(
+ (static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x,
+ (static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y,
+ static_cast<T>(0));
+
+ // Translate and scale the picked region to the entire window
+ Result = translate(Result, Temp);
+ return scale(Result, tvec3<T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1)));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up)
+ {
+# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
+ return lookAtLH(eye, center, up);
+# else
+ return lookAtRH(eye, center, up);
+# endif
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH
+ (
+ tvec3<T, P> const & eye,
+ tvec3<T, P> const & center,
+ tvec3<T, P> const & up
+ )
+ {
+ tvec3<T, P> const f(normalize(center - eye));
+ tvec3<T, P> const s(normalize(cross(f, up)));
+ tvec3<T, P> const u(cross(s, f));
+
+ tmat4x4<T, P> Result(1);
+ Result[0][0] = s.x;
+ Result[1][0] = s.y;
+ Result[2][0] = s.z;
+ Result[0][1] = u.x;
+ Result[1][1] = u.y;
+ Result[2][1] = u.z;
+ Result[0][2] =-f.x;
+ Result[1][2] =-f.y;
+ Result[2][2] =-f.z;
+ Result[3][0] =-dot(s, eye);
+ Result[3][1] =-dot(u, eye);
+ Result[3][2] = dot(f, eye);
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH
+ (
+ tvec3<T, P> const & eye,
+ tvec3<T, P> const & center,
+ tvec3<T, P> const & up
+ )
+ {
+ tvec3<T, P> const f(normalize(center - eye));
+ tvec3<T, P> const s(normalize(cross(up, f)));
+ tvec3<T, P> const u(cross(f, s));
+
+ tmat4x4<T, P> Result(1);
+ Result[0][0] = s.x;
+ Result[1][0] = s.y;
+ Result[2][0] = s.z;
+ Result[0][1] = u.x;
+ Result[1][1] = u.y;
+ Result[2][1] = u.z;
+ Result[0][2] = f.x;
+ Result[1][2] = f.y;
+ Result[2][2] = f.z;
+ Result[3][0] = -dot(s, eye);
+ Result[3][1] = -dot(u, eye);
+ Result[3][2] = -dot(f, eye);
+ return Result;
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/noise.hpp b/depedencies/include/glm/gtc/noise.hpp
new file mode 100644
index 0000000..aec4f18
--- /dev/null
+++ b/depedencies/include/glm/gtc/noise.hpp
@@ -0,0 +1,60 @@
+/// @ref gtc_noise
+/// @file glm/gtc/noise.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_noise GLM_GTC_noise
+/// @ingroup gtc
+///
+/// Defines 2D, 3D and 4D procedural noise functions
+/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
+/// https://github.com/ashima/webgl-noise
+/// Following Stefan Gustavson's paper "Simplex noise demystified":
+/// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
+/// <glm/gtc/noise.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../detail/precision.hpp"
+#include "../detail/_noise.hpp"
+#include "../geometric.hpp"
+#include "../common.hpp"
+#include "../vector_relational.hpp"
+#include "../vec2.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_noise extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_noise
+ /// @{
+
+ /// Classic perlin noise.
+ /// @see gtc_noise
+ template <typename T, precision P, template<typename, precision> class vecType>
+ GLM_FUNC_DECL T perlin(
+ vecType<T, P> const & p);
+
+ /// Periodic perlin noise.
+ /// @see gtc_noise
+ template <typename T, precision P, template<typename, precision> class vecType>
+ GLM_FUNC_DECL T perlin(
+ vecType<T, P> const & p,
+ vecType<T, P> const & rep);
+
+ /// Simplex noise.
+ /// @see gtc_noise
+ template <typename T, precision P, template<typename, precision> class vecType>
+ GLM_FUNC_DECL T simplex(
+ vecType<T, P> const & p);
+
+ /// @}
+}//namespace glm
+
+#include "noise.inl"
diff --git a/depedencies/include/glm/gtc/noise.inl b/depedencies/include/glm/gtc/noise.inl
new file mode 100644
index 0000000..4f2731c
--- /dev/null
+++ b/depedencies/include/glm/gtc/noise.inl
@@ -0,0 +1,808 @@
+/// @ref gtc_noise
+/// @file glm/gtc/noise.inl
+///
+// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
+// https://github.com/ashima/webgl-noise
+// Following Stefan Gustavson's paper "Simplex noise demystified":
+// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
+
+namespace glm{
+namespace gtc
+{
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<T, P> grad4(T const & j, tvec4<T, P> const & ip)
+ {
+ tvec3<T, P> pXYZ = floor(fract(tvec3<T, P>(j) * tvec3<T, P>(ip)) * T(7)) * ip[2] - T(1);
+ T pW = static_cast<T>(1.5) - dot(abs(pXYZ), tvec3<T, P>(1));
+ tvec4<T, P> s = tvec4<T, P>(lessThan(tvec4<T, P>(pXYZ, pW), tvec4<T, P>(0.0)));
+ pXYZ = pXYZ + (tvec3<T, P>(s) * T(2) - T(1)) * s.w;
+ return tvec4<T, P>(pXYZ, pW);
+ }
+}//namespace gtc
+
+ // Classic Perlin noise
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position)
+ {
+ tvec4<T, P> Pi = glm::floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
+ tvec4<T, P> Pf = glm::fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
+ Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation
+ tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z);
+ tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w);
+ tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z);
+ tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w);
+
+ tvec4<T, P> i = detail::permute(detail::permute(ix) + iy);
+
+ tvec4<T, P> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1);
+ tvec4<T, P> gy = glm::abs(gx) - T(0.5);
+ tvec4<T, P> tx = glm::floor(gx + T(0.5));
+ gx = gx - tx;
+
+ tvec2<T, P> g00(gx.x, gy.x);
+ tvec2<T, P> g10(gx.y, gy.y);
+ tvec2<T, P> g01(gx.z, gy.z);
+ tvec2<T, P> g11(gx.w, gy.w);
+
+ tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
+ g00 *= norm.x;
+ g01 *= norm.y;
+ g10 *= norm.z;
+ g11 *= norm.w;
+
+ T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x));
+ T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y));
+ T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z));
+ T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w));
+
+ tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y));
+ tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x);
+ T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
+ return T(2.3) * n_xy;
+ }
+
+ // Classic Perlin noise
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position)
+ {
+ tvec3<T, P> Pi0 = floor(Position); // Integer part for indexing
+ tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1
+ Pi0 = detail::mod289(Pi0);
+ Pi1 = detail::mod289(Pi1);
+ tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation
+ tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
+ tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
+ tvec4<T, P> iy = tvec4<T, P>(tvec2<T, P>(Pi0.y), tvec2<T, P>(Pi1.y));
+ tvec4<T, P> iz0(Pi0.z);
+ tvec4<T, P> iz1(Pi1.z);
+
+ tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
+ tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
+ tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
+
+ tvec4<T, P> gx0 = ixy0 * T(1.0 / 7.0);
+ tvec4<T, P> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5);
+ gx0 = fract(gx0);
+ tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
+ tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0));
+ gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
+ gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
+
+ tvec4<T, P> gx1 = ixy1 * T(1.0 / 7.0);
+ tvec4<T, P> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5);
+ gx1 = fract(gx1);
+ tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
+ tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0));
+ gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
+ gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
+
+ tvec3<T, P> g000(gx0.x, gy0.x, gz0.x);
+ tvec3<T, P> g100(gx0.y, gy0.y, gz0.y);
+ tvec3<T, P> g010(gx0.z, gy0.z, gz0.z);
+ tvec3<T, P> g110(gx0.w, gy0.w, gz0.w);
+ tvec3<T, P> g001(gx1.x, gy1.x, gz1.x);
+ tvec3<T, P> g101(gx1.y, gy1.y, gz1.y);
+ tvec3<T, P> g011(gx1.z, gy1.z, gz1.z);
+ tvec3<T, P> g111(gx1.w, gy1.w, gz1.w);
+
+ tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
+ g000 *= norm0.x;
+ g010 *= norm0.y;
+ g100 *= norm0.z;
+ g110 *= norm0.w;
+ tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
+ g001 *= norm1.x;
+ g011 *= norm1.y;
+ g101 *= norm1.z;
+ g111 *= norm1.w;
+
+ T n000 = dot(g000, Pf0);
+ T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
+ T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
+ T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
+ T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
+ T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
+ T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
+ T n111 = dot(g111, Pf1);
+
+ tvec3<T, P> fade_xyz = detail::fade(Pf0);
+ tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
+ tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
+ T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
+ return T(2.2) * n_xyz;
+ }
+ /*
+ // Classic Perlin noise
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & P)
+ {
+ tvec3<T, P> Pi0 = floor(P); // Integer part for indexing
+ tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1
+ Pi0 = mod(Pi0, T(289));
+ Pi1 = mod(Pi1, T(289));
+ tvec3<T, P> Pf0 = fract(P); // Fractional part for interpolation
+ tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
+ tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
+ tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
+ tvec4<T, P> iz0(Pi0.z);
+ tvec4<T, P> iz1(Pi1.z);
+
+ tvec4<T, P> ixy = permute(permute(ix) + iy);
+ tvec4<T, P> ixy0 = permute(ixy + iz0);
+ tvec4<T, P> ixy1 = permute(ixy + iz1);
+
+ tvec4<T, P> gx0 = ixy0 / T(7);
+ tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
+ gx0 = fract(gx0);
+ tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
+ tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0));
+ gx0 -= sz0 * (step(0.0, gx0) - T(0.5));
+ gy0 -= sz0 * (step(0.0, gy0) - T(0.5));
+
+ tvec4<T, P> gx1 = ixy1 / T(7);
+ tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
+ gx1 = fract(gx1);
+ tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
+ tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0));
+ gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
+ gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
+
+ tvec3<T, P> g000(gx0.x, gy0.x, gz0.x);
+ tvec3<T, P> g100(gx0.y, gy0.y, gz0.y);
+ tvec3<T, P> g010(gx0.z, gy0.z, gz0.z);
+ tvec3<T, P> g110(gx0.w, gy0.w, gz0.w);
+ tvec3<T, P> g001(gx1.x, gy1.x, gz1.x);
+ tvec3<T, P> g101(gx1.y, gy1.y, gz1.y);
+ tvec3<T, P> g011(gx1.z, gy1.z, gz1.z);
+ tvec3<T, P> g111(gx1.w, gy1.w, gz1.w);
+
+ tvec4<T, P> norm0 = taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
+ g000 *= norm0.x;
+ g010 *= norm0.y;
+ g100 *= norm0.z;
+ g110 *= norm0.w;
+ tvec4<T, P> norm1 = taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
+ g001 *= norm1.x;
+ g011 *= norm1.y;
+ g101 *= norm1.z;
+ g111 *= norm1.w;
+
+ T n000 = dot(g000, Pf0);
+ T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
+ T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
+ T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
+ T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
+ T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
+ T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
+ T n111 = dot(g111, Pf1);
+
+ tvec3<T, P> fade_xyz = fade(Pf0);
+ tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
+ tvec2<T, P> n_yz = mix(
+ tvec2<T, P>(n_z.x, n_z.y),
+ tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
+ T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
+ return T(2.2) * n_xyz;
+ }
+ */
+ // Classic Perlin noise
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position)
+ {
+ tvec4<T, P> Pi0 = floor(Position); // Integer part for indexing
+ tvec4<T, P> Pi1 = Pi0 + T(1); // Integer part + 1
+ Pi0 = mod(Pi0, tvec4<T, P>(289));
+ Pi1 = mod(Pi1, tvec4<T, P>(289));
+ tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation
+ tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
+ tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
+ tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
+ tvec4<T, P> iz0(Pi0.z);
+ tvec4<T, P> iz1(Pi1.z);
+ tvec4<T, P> iw0(Pi0.w);
+ tvec4<T, P> iw1(Pi1.w);
+
+ tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
+ tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
+ tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
+ tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0);
+ tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1);
+ tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0);
+ tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1);
+
+ tvec4<T, P> gx00 = ixy00 / T(7);
+ tvec4<T, P> gy00 = floor(gx00) / T(7);
+ tvec4<T, P> gz00 = floor(gy00) / T(6);
+ gx00 = fract(gx00) - T(0.5);
+ gy00 = fract(gy00) - T(0.5);
+ gz00 = fract(gz00) - T(0.5);
+ tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
+ tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0.0));
+ gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
+ gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
+
+ tvec4<T, P> gx01 = ixy01 / T(7);
+ tvec4<T, P> gy01 = floor(gx01) / T(7);
+ tvec4<T, P> gz01 = floor(gy01) / T(6);
+ gx01 = fract(gx01) - T(0.5);
+ gy01 = fract(gy01) - T(0.5);
+ gz01 = fract(gz01) - T(0.5);
+ tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
+ tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0));
+ gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
+ gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
+
+ tvec4<T, P> gx10 = ixy10 / T(7);
+ tvec4<T, P> gy10 = floor(gx10) / T(7);
+ tvec4<T, P> gz10 = floor(gy10) / T(6);
+ gx10 = fract(gx10) - T(0.5);
+ gy10 = fract(gy10) - T(0.5);
+ gz10 = fract(gz10) - T(0.5);
+ tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
+ tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0));
+ gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
+ gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
+
+ tvec4<T, P> gx11 = ixy11 / T(7);
+ tvec4<T, P> gy11 = floor(gx11) / T(7);
+ tvec4<T, P> gz11 = floor(gy11) / T(6);
+ gx11 = fract(gx11) - T(0.5);
+ gy11 = fract(gy11) - T(0.5);
+ gz11 = fract(gz11) - T(0.5);
+ tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
+ tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(0.0));
+ gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
+ gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
+
+ tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
+ tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
+ tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
+ tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
+ tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
+ tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
+ tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
+ tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
+ tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
+ tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
+ tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
+ tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
+ tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
+ tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
+ tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
+ tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
+
+ tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
+ g0000 *= norm00.x;
+ g0100 *= norm00.y;
+ g1000 *= norm00.z;
+ g1100 *= norm00.w;
+
+ tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
+ g0001 *= norm01.x;
+ g0101 *= norm01.y;
+ g1001 *= norm01.z;
+ g1101 *= norm01.w;
+
+ tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
+ g0010 *= norm10.x;
+ g0110 *= norm10.y;
+ g1010 *= norm10.z;
+ g1110 *= norm10.w;
+
+ tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
+ g0011 *= norm11.x;
+ g0111 *= norm11.y;
+ g1011 *= norm11.z;
+ g1111 *= norm11.w;
+
+ T n0000 = dot(g0000, Pf0);
+ T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
+ T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
+ T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
+ T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
+ T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
+ T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
+ T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
+ T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
+ T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
+ T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
+ T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
+ T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
+ T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
+ T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
+ T n1111 = dot(g1111, Pf1);
+
+ tvec4<T, P> fade_xyzw = detail::fade(Pf0);
+ tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w);
+ tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w);
+ tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
+ tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y);
+ T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
+ return T(2.2) * n_xyzw;
+ }
+
+ // Classic Perlin noise, periodic variant
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position, tvec2<T, P> const & rep)
+ {
+ tvec4<T, P> Pi = floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
+ tvec4<T, P> Pf = fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
+ Pi = mod(Pi, tvec4<T, P>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period
+ Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation
+ tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z);
+ tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w);
+ tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z);
+ tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w);
+
+ tvec4<T, P> i = detail::permute(detail::permute(ix) + iy);
+
+ tvec4<T, P> gx = static_cast<T>(2) * fract(i / T(41)) - T(1);
+ tvec4<T, P> gy = abs(gx) - T(0.5);
+ tvec4<T, P> tx = floor(gx + T(0.5));
+ gx = gx - tx;
+
+ tvec2<T, P> g00(gx.x, gy.x);
+ tvec2<T, P> g10(gx.y, gy.y);
+ tvec2<T, P> g01(gx.z, gy.z);
+ tvec2<T, P> g11(gx.w, gy.w);
+
+ tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
+ g00 *= norm.x;
+ g01 *= norm.y;
+ g10 *= norm.z;
+ g11 *= norm.w;
+
+ T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x));
+ T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y));
+ T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z));
+ T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w));
+
+ tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y));
+ tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x);
+ T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
+ return T(2.3) * n_xy;
+ }
+
+ // Classic Perlin noise, periodic variant
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position, tvec3<T, P> const & rep)
+ {
+ tvec3<T, P> Pi0 = mod(floor(Position), rep); // Integer part, modulo period
+ tvec3<T, P> Pi1 = mod(Pi0 + tvec3<T, P>(T(1)), rep); // Integer part + 1, mod period
+ Pi0 = mod(Pi0, tvec3<T, P>(289));
+ Pi1 = mod(Pi1, tvec3<T, P>(289));
+ tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation
+ tvec3<T, P> Pf1 = Pf0 - tvec3<T, P>(T(1)); // Fractional part - 1.0
+ tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
+ tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
+ tvec4<T, P> iz0(Pi0.z);
+ tvec4<T, P> iz1(Pi1.z);
+
+ tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
+ tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
+ tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
+
+ tvec4<T, P> gx0 = ixy0 / T(7);
+ tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
+ gx0 = fract(gx0);
+ tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
+ tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0));
+ gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
+ gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
+
+ tvec4<T, P> gx1 = ixy1 / T(7);
+ tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
+ gx1 = fract(gx1);
+ tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
+ tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(T(0)));
+ gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
+ gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
+
+ tvec3<T, P> g000 = tvec3<T, P>(gx0.x, gy0.x, gz0.x);
+ tvec3<T, P> g100 = tvec3<T, P>(gx0.y, gy0.y, gz0.y);
+ tvec3<T, P> g010 = tvec3<T, P>(gx0.z, gy0.z, gz0.z);
+ tvec3<T, P> g110 = tvec3<T, P>(gx0.w, gy0.w, gz0.w);
+ tvec3<T, P> g001 = tvec3<T, P>(gx1.x, gy1.x, gz1.x);
+ tvec3<T, P> g101 = tvec3<T, P>(gx1.y, gy1.y, gz1.y);
+ tvec3<T, P> g011 = tvec3<T, P>(gx1.z, gy1.z, gz1.z);
+ tvec3<T, P> g111 = tvec3<T, P>(gx1.w, gy1.w, gz1.w);
+
+ tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
+ g000 *= norm0.x;
+ g010 *= norm0.y;
+ g100 *= norm0.z;
+ g110 *= norm0.w;
+ tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
+ g001 *= norm1.x;
+ g011 *= norm1.y;
+ g101 *= norm1.z;
+ g111 *= norm1.w;
+
+ T n000 = dot(g000, Pf0);
+ T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
+ T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
+ T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
+ T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
+ T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
+ T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
+ T n111 = dot(g111, Pf1);
+
+ tvec3<T, P> fade_xyz = detail::fade(Pf0);
+ tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
+ tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
+ T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
+ return T(2.2) * n_xyz;
+ }
+
+ // Classic Perlin noise, periodic version
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position, tvec4<T, P> const & rep)
+ {
+ tvec4<T, P> Pi0 = mod(floor(Position), rep); // Integer part modulo rep
+ tvec4<T, P> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep
+ tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation
+ tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
+ tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
+ tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
+ tvec4<T, P> iz0(Pi0.z);
+ tvec4<T, P> iz1(Pi1.z);
+ tvec4<T, P> iw0(Pi0.w);
+ tvec4<T, P> iw1(Pi1.w);
+
+ tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
+ tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
+ tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
+ tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0);
+ tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1);
+ tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0);
+ tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1);
+
+ tvec4<T, P> gx00 = ixy00 / T(7);
+ tvec4<T, P> gy00 = floor(gx00) / T(7);
+ tvec4<T, P> gz00 = floor(gy00) / T(6);
+ gx00 = fract(gx00) - T(0.5);
+ gy00 = fract(gy00) - T(0.5);
+ gz00 = fract(gz00) - T(0.5);
+ tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
+ tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0));
+ gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
+ gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
+
+ tvec4<T, P> gx01 = ixy01 / T(7);
+ tvec4<T, P> gy01 = floor(gx01) / T(7);
+ tvec4<T, P> gz01 = floor(gy01) / T(6);
+ gx01 = fract(gx01) - T(0.5);
+ gy01 = fract(gy01) - T(0.5);
+ gz01 = fract(gz01) - T(0.5);
+ tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
+ tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0));
+ gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
+ gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
+
+ tvec4<T, P> gx10 = ixy10 / T(7);
+ tvec4<T, P> gy10 = floor(gx10) / T(7);
+ tvec4<T, P> gz10 = floor(gy10) / T(6);
+ gx10 = fract(gx10) - T(0.5);
+ gy10 = fract(gy10) - T(0.5);
+ gz10 = fract(gz10) - T(0.5);
+ tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
+ tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0.0));
+ gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
+ gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
+
+ tvec4<T, P> gx11 = ixy11 / T(7);
+ tvec4<T, P> gy11 = floor(gx11) / T(7);
+ tvec4<T, P> gz11 = floor(gy11) / T(6);
+ gx11 = fract(gx11) - T(0.5);
+ gy11 = fract(gy11) - T(0.5);
+ gz11 = fract(gz11) - T(0.5);
+ tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
+ tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(T(0)));
+ gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
+ gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
+
+ tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
+ tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
+ tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
+ tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
+ tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
+ tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
+ tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
+ tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
+ tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
+ tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
+ tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
+ tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
+ tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
+ tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
+ tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
+ tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
+
+ tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
+ g0000 *= norm00.x;
+ g0100 *= norm00.y;
+ g1000 *= norm00.z;
+ g1100 *= norm00.w;
+
+ tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
+ g0001 *= norm01.x;
+ g0101 *= norm01.y;
+ g1001 *= norm01.z;
+ g1101 *= norm01.w;
+
+ tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
+ g0010 *= norm10.x;
+ g0110 *= norm10.y;
+ g1010 *= norm10.z;
+ g1110 *= norm10.w;
+
+ tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
+ g0011 *= norm11.x;
+ g0111 *= norm11.y;
+ g1011 *= norm11.z;
+ g1111 *= norm11.w;
+
+ T n0000 = dot(g0000, Pf0);
+ T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
+ T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
+ T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
+ T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
+ T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
+ T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
+ T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
+ T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
+ T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
+ T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
+ T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
+ T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
+ T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
+ T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
+ T n1111 = dot(g1111, Pf1);
+
+ tvec4<T, P> fade_xyzw = detail::fade(Pf0);
+ tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w);
+ tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w);
+ tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
+ tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y);
+ T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
+ return T(2.2) * n_xyzw;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T simplex(glm::tvec2<T, P> const & v)
+ {
+ tvec4<T, P> const C = tvec4<T, P>(
+ T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0
+ T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0)
+ T(-0.577350269189626), // -1.0 + 2.0 * C.x
+ T( 0.024390243902439)); // 1.0 / 41.0
+
+ // First corner
+ tvec2<T, P> i = floor(v + dot(v, tvec2<T, P>(C[1])));
+ tvec2<T, P> x0 = v - i + dot(i, tvec2<T, P>(C[0]));
+
+ // Other corners
+ //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
+ //i1.y = 1.0 - i1.x;
+ tvec2<T, P> i1 = (x0.x > x0.y) ? tvec2<T, P>(1, 0) : tvec2<T, P>(0, 1);
+ // x0 = x0 - 0.0 + 0.0 * C.xx ;
+ // x1 = x0 - i1 + 1.0 * C.xx ;
+ // x2 = x0 - 1.0 + 2.0 * C.xx ;
+ tvec4<T, P> x12 = tvec4<T, P>(x0.x, x0.y, x0.x, x0.y) + tvec4<T, P>(C.x, C.x, C.z, C.z);
+ x12 = tvec4<T, P>(tvec2<T, P>(x12) - i1, x12.z, x12.w);
+
+ // Permutations
+ i = mod(i, tvec2<T, P>(289)); // Avoid truncation effects in permutation
+ tvec3<T, P> p = detail::permute(
+ detail::permute(i.y + tvec3<T, P>(T(0), i1.y, T(1)))
+ + i.x + tvec3<T, P>(T(0), i1.x, T(1)));
+
+ tvec3<T, P> m = max(tvec3<T, P>(0.5) - tvec3<T, P>(
+ dot(x0, x0),
+ dot(tvec2<T, P>(x12.x, x12.y), tvec2<T, P>(x12.x, x12.y)),
+ dot(tvec2<T, P>(x12.z, x12.w), tvec2<T, P>(x12.z, x12.w))), tvec3<T, P>(0));
+ m = m * m ;
+ m = m * m ;
+
+ // Gradients: 41 points uniformly over a line, mapped onto a diamond.
+ // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
+
+ tvec3<T, P> x = static_cast<T>(2) * fract(p * C.w) - T(1);
+ tvec3<T, P> h = abs(x) - T(0.5);
+ tvec3<T, P> ox = floor(x + T(0.5));
+ tvec3<T, P> a0 = x - ox;
+
+ // Normalise gradients implicitly by scaling m
+ // Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h );
+ m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h);
+
+ // Compute final noise value at P
+ tvec3<T, P> g;
+ g.x = a0.x * x0.x + h.x * x0.y;
+ //g.yz = a0.yz * x12.xz + h.yz * x12.yw;
+ g.y = a0.y * x12.x + h.y * x12.y;
+ g.z = a0.z * x12.z + h.z * x12.w;
+ return T(130) * dot(m, g);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T simplex(tvec3<T, P> const & v)
+ {
+ tvec2<T, P> const C(1.0 / 6.0, 1.0 / 3.0);
+ tvec4<T, P> const D(0.0, 0.5, 1.0, 2.0);
+
+ // First corner
+ tvec3<T, P> i(floor(v + dot(v, tvec3<T, P>(C.y))));
+ tvec3<T, P> x0(v - i + dot(i, tvec3<T, P>(C.x)));
+
+ // Other corners
+ tvec3<T, P> g(step(tvec3<T, P>(x0.y, x0.z, x0.x), x0));
+ tvec3<T, P> l(T(1) - g);
+ tvec3<T, P> i1(min(g, tvec3<T, P>(l.z, l.x, l.y)));
+ tvec3<T, P> i2(max(g, tvec3<T, P>(l.z, l.x, l.y)));
+
+ // x0 = x0 - 0.0 + 0.0 * C.xxx;
+ // x1 = x0 - i1 + 1.0 * C.xxx;
+ // x2 = x0 - i2 + 2.0 * C.xxx;
+ // x3 = x0 - 1.0 + 3.0 * C.xxx;
+ tvec3<T, P> x1(x0 - i1 + C.x);
+ tvec3<T, P> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y
+ tvec3<T, P> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y
+
+ // Permutations
+ i = detail::mod289(i);
+ tvec4<T, P> p(detail::permute(detail::permute(detail::permute(
+ i.z + tvec4<T, P>(T(0), i1.z, i2.z, T(1))) +
+ i.y + tvec4<T, P>(T(0), i1.y, i2.y, T(1))) +
+ i.x + tvec4<T, P>(T(0), i1.x, i2.x, T(1))));
+
+ // Gradients: 7x7 points over a square, mapped onto an octahedron.
+ // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
+ T n_ = static_cast<T>(0.142857142857); // 1.0/7.0
+ tvec3<T, P> ns(n_ * tvec3<T, P>(D.w, D.y, D.z) - tvec3<T, P>(D.x, D.z, D.x));
+
+ tvec4<T, P> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7)
+
+ tvec4<T, P> x_(floor(j * ns.z));
+ tvec4<T, P> y_(floor(j - T(7) * x_)); // mod(j,N)
+
+ tvec4<T, P> x(x_ * ns.x + ns.y);
+ tvec4<T, P> y(y_ * ns.x + ns.y);
+ tvec4<T, P> h(T(1) - abs(x) - abs(y));
+
+ tvec4<T, P> b0(x.x, x.y, y.x, y.y);
+ tvec4<T, P> b1(x.z, x.w, y.z, y.w);
+
+ // vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
+ // vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
+ tvec4<T, P> s0(floor(b0) * T(2) + T(1));
+ tvec4<T, P> s1(floor(b1) * T(2) + T(1));
+ tvec4<T, P> sh(-step(h, tvec4<T, P>(0.0)));
+
+ tvec4<T, P> a0 = tvec4<T, P>(b0.x, b0.z, b0.y, b0.w) + tvec4<T, P>(s0.x, s0.z, s0.y, s0.w) * tvec4<T, P>(sh.x, sh.x, sh.y, sh.y);
+ tvec4<T, P> a1 = tvec4<T, P>(b1.x, b1.z, b1.y, b1.w) + tvec4<T, P>(s1.x, s1.z, s1.y, s1.w) * tvec4<T, P>(sh.z, sh.z, sh.w, sh.w);
+
+ tvec3<T, P> p0(a0.x, a0.y, h.x);
+ tvec3<T, P> p1(a0.z, a0.w, h.y);
+ tvec3<T, P> p2(a1.x, a1.y, h.z);
+ tvec3<T, P> p3(a1.z, a1.w, h.w);
+
+ // Normalise gradients
+ tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
+ p0 *= norm.x;
+ p1 *= norm.y;
+ p2 *= norm.z;
+ p3 *= norm.w;
+
+ // Mix final noise value
+ tvec4<T, P> m = max(T(0.6) - tvec4<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), tvec4<T, P>(0));
+ m = m * m;
+ return T(42) * dot(m * m, tvec4<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T simplex(tvec4<T, P> const & v)
+ {
+ tvec4<T, P> const C(
+ 0.138196601125011, // (5 - sqrt(5))/20 G4
+ 0.276393202250021, // 2 * G4
+ 0.414589803375032, // 3 * G4
+ -0.447213595499958); // -1 + 4 * G4
+
+ // (sqrt(5) - 1)/4 = F4, used once below
+ T const F4 = static_cast<T>(0.309016994374947451);
+
+ // First corner
+ tvec4<T, P> i = floor(v + dot(v, vec4(F4)));
+ tvec4<T, P> x0 = v - i + dot(i, vec4(C.x));
+
+ // Other corners
+
+ // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
+ tvec4<T, P> i0;
+ tvec3<T, P> isX = step(tvec3<T, P>(x0.y, x0.z, x0.w), tvec3<T, P>(x0.x));
+ tvec3<T, P> isYZ = step(tvec3<T, P>(x0.z, x0.w, x0.w), tvec3<T, P>(x0.y, x0.y, x0.z));
+ // i0.x = dot(isX, vec3(1.0));
+ //i0.x = isX.x + isX.y + isX.z;
+ //i0.yzw = static_cast<T>(1) - isX;
+ i0 = tvec4<T, P>(isX.x + isX.y + isX.z, T(1) - isX);
+ // i0.y += dot(isYZ.xy, vec2(1.0));
+ i0.y += isYZ.x + isYZ.y;
+ //i0.zw += 1.0 - tvec2<T, P>(isYZ.x, isYZ.y);
+ i0.z += static_cast<T>(1) - isYZ.x;
+ i0.w += static_cast<T>(1) - isYZ.y;
+ i0.z += isYZ.z;
+ i0.w += static_cast<T>(1) - isYZ.z;
+
+ // i0 now contains the unique values 0,1,2,3 in each channel
+ tvec4<T, P> i3 = clamp(i0, T(0), T(1));
+ tvec4<T, P> i2 = clamp(i0 - T(1), T(0), T(1));
+ tvec4<T, P> i1 = clamp(i0 - T(2), T(0), T(1));
+
+ // x0 = x0 - 0.0 + 0.0 * C.xxxx
+ // x1 = x0 - i1 + 0.0 * C.xxxx
+ // x2 = x0 - i2 + 0.0 * C.xxxx
+ // x3 = x0 - i3 + 0.0 * C.xxxx
+ // x4 = x0 - 1.0 + 4.0 * C.xxxx
+ tvec4<T, P> x1 = x0 - i1 + C.x;
+ tvec4<T, P> x2 = x0 - i2 + C.y;
+ tvec4<T, P> x3 = x0 - i3 + C.z;
+ tvec4<T, P> x4 = x0 + C.w;
+
+ // Permutations
+ i = mod(i, tvec4<T, P>(289));
+ T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x);
+ tvec4<T, P> j1 = detail::permute(detail::permute(detail::permute(detail::permute(
+ i.w + tvec4<T, P>(i1.w, i2.w, i3.w, T(1))) +
+ i.z + tvec4<T, P>(i1.z, i2.z, i3.z, T(1))) +
+ i.y + tvec4<T, P>(i1.y, i2.y, i3.y, T(1))) +
+ i.x + tvec4<T, P>(i1.x, i2.x, i3.x, T(1)));
+
+ // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
+ // 7*7*6 = 294, which is close to the ring size 17*17 = 289.
+ tvec4<T, P> ip = tvec4<T, P>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0));
+
+ tvec4<T, P> p0 = gtc::grad4(j0, ip);
+ tvec4<T, P> p1 = gtc::grad4(j1.x, ip);
+ tvec4<T, P> p2 = gtc::grad4(j1.y, ip);
+ tvec4<T, P> p3 = gtc::grad4(j1.z, ip);
+ tvec4<T, P> p4 = gtc::grad4(j1.w, ip);
+
+ // Normalise gradients
+ tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
+ p0 *= norm.x;
+ p1 *= norm.y;
+ p2 *= norm.z;
+ p3 *= norm.w;
+ p4 *= detail::taylorInvSqrt(dot(p4, p4));
+
+ // Mix contributions from the five corners
+ tvec3<T, P> m0 = max(T(0.6) - tvec3<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), tvec3<T, P>(0));
+ tvec2<T, P> m1 = max(T(0.6) - tvec2<T, P>(dot(x3, x3), dot(x4, x4) ), tvec2<T, P>(0));
+ m0 = m0 * m0;
+ m1 = m1 * m1;
+ return T(49) *
+ (dot(m0 * m0, tvec3<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) +
+ dot(m1 * m1, tvec2<T, P>(dot(p3, x3), dot(p4, x4))));
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/packing.hpp b/depedencies/include/glm/gtc/packing.hpp
new file mode 100644
index 0000000..1389d95
--- /dev/null
+++ b/depedencies/include/glm/gtc/packing.hpp
@@ -0,0 +1,579 @@
+/// @ref gtc_packing
+/// @file glm/gtc/packing.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_packing GLM_GTC_packing
+/// @ingroup gtc
+///
+/// @brief This extension provides a set of function to convert vertors to packed
+/// formats.
+///
+/// <glm/gtc/packing.hpp> need to be included to use these features.
+
+#pragma once
+
+// Dependency:
+#include "type_precision.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_packing extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_packing
+ /// @{
+
+ /// First, converts the normalized floating-point value v into a 8-bit integer value.
+ /// Then, the results are packed into the returned 8-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm1x8: round(clamp(c, 0, +1) * 255.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm2x8(vec2 const & v)
+ /// @see uint32 packUnorm4x8(vec4 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint8 packUnorm1x8(float v);
+
+ /// Convert a single 8-bit integer to a normalized floating-point value.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm4x8: f / 255.0
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackUnorm2x8(uint16 p)
+ /// @see vec4 unpackUnorm4x8(uint32 p)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL float unpackUnorm1x8(uint8 p);
+
+ /// First, converts each component of the normalized floating-point value v into 8-bit integer values.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm2x8: round(clamp(c, 0, +1) * 255.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint8 packUnorm1x8(float const & v)
+ /// @see uint32 packUnorm4x8(vec4 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm4x8: f / 255.0
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackUnorm1x8(uint8 v)
+ /// @see vec4 unpackUnorm4x8(uint32 p)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p);
+
+ /// First, converts the normalized floating-point value v into 8-bit integer value.
+ /// Then, the results are packed into the returned 8-bit unsigned integer.
+ ///
+ /// The conversion to fixed point is done as follows:
+ /// packSnorm1x8: round(clamp(s, -1, +1) * 127.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm2x8(vec2 const & v)
+ /// @see uint32 packSnorm4x8(vec4 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint8 packSnorm1x8(float s);
+
+ /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers.
+ /// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm1x8: clamp(f / 127.0, -1, +1)
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackSnorm2x8(uint16 p)
+ /// @see vec4 unpackSnorm4x8(uint32 p)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL float unpackSnorm1x8(uint8 p);
+
+ /// First, converts each component of the normalized floating-point value v into 8-bit integer values.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm2x8: round(clamp(c, -1, +1) * 127.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint8 packSnorm1x8(float const & v)
+ /// @see uint32 packSnorm4x8(vec4 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm2x8: clamp(f / 127.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackSnorm1x8(uint8 p)
+ /// @see vec4 unpackSnorm4x8(uint32 p)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p);
+
+ /// First, converts the normalized floating-point value v into a 16-bit integer value.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm1x16(float const & v)
+ /// @see uint64 packSnorm4x16(vec4 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint16 packUnorm1x16(float v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers.
+ /// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm1x16: f / 65535.0
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackUnorm2x16(uint32 p)
+ /// @see vec4 unpackUnorm4x16(uint64 p)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL float unpackUnorm1x16(uint16 p);
+
+ /// First, converts each component of the normalized floating-point value v into 16-bit integer values.
+ /// Then, the results are packed into the returned 64-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm4x16: round(clamp(c, 0, +1) * 65535.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm1x16(float const & v)
+ /// @see uint32 packUnorm2x16(vec2 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v);
+
+ /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnormx4x16: f / 65535.0
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackUnorm1x16(uint16 p)
+ /// @see vec2 unpackUnorm2x16(uint32 p)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 p);
+
+ /// First, converts the normalized floating-point value v into 16-bit integer value.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion to fixed point is done as follows:
+ /// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm2x16(vec2 const & v)
+ /// @see uint64 packSnorm4x16(vec4 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint16 packSnorm1x16(float v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm1x16: clamp(f / 32767.0, -1, +1)
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackSnorm2x16(uint32 p)
+ /// @see vec4 unpackSnorm4x16(uint64 p)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm1x16.xml">GLSL unpackSnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL float unpackSnorm1x16(uint16 p);
+
+ /// First, converts each component of the normalized floating-point value v into 16-bit integer values.
+ /// Then, the results are packed into the returned 64-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm2x8: round(clamp(c, -1, +1) * 32767.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm1x16(float const & v)
+ /// @see uint32 packSnorm2x16(vec2 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v);
+
+ /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm4x16: clamp(f / 32767.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackSnorm1x16(uint16 p)
+ /// @see vec2 unpackSnorm2x16(uint32 p)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm4x8 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p);
+
+ /// Returns an unsigned integer obtained by converting the components of a floating-point scalar
+ /// to the 16-bit floating-point representation found in the OpenGL Specification,
+ /// and then packing this 16-bit value into a 16-bit unsigned integer.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packHalf2x16(vec2 const & v)
+ /// @see uint64 packHalf4x16(vec4 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint16 packHalf1x16(float v);
+
+ /// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value,
+ /// interpreted as a 16-bit floating-point number according to the OpenGL Specification,
+ /// and converting it to 32-bit floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackHalf2x16(uint32 const & v)
+ /// @see vec4 unpackHalf4x16(uint64 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL float unpackHalf1x16(uint16 v);
+
+ /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector
+ /// to the 16-bit floating-point representation found in the OpenGL Specification,
+ /// and then packing these four 16-bit values into a 64-bit unsigned integer.
+ /// The first vector component specifies the 16 least-significant bits of the result;
+ /// the forth component specifies the 16 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packHalf1x16(float const & v)
+ /// @see uint32 packHalf2x16(vec2 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v);
+
+ /// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values,
+ /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification,
+ /// and converting them to 32-bit floating-point values.
+ /// The first component of the vector is obtained from the 16 least-significant bits of v;
+ /// the forth component is obtained from the 16 most-significant bits of v.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackHalf1x16(uint16 const & v)
+ /// @see vec2 unpackHalf2x16(uint32 const & v)
+ /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a>
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p);
+
+ /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector
+ /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification,
+ /// and then packing these four values into a 32-bit unsigned integer.
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packI3x10_1x2(uvec4 const & v)
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see ivec4 unpackI3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v);
+
+ /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p);
+ GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p);
+
+ /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector
+ /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification,
+ /// and then packing these four values into a 32-bit unsigned integer.
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see ivec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v);
+
+ /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p);
+ GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p);
+
+ /// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values.
+ /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0)
+ /// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0)
+ ///
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
+ GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1)
+ /// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p))
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p)
+ /// @see uvec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p);
+
+ /// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values.
+ /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0)
+ /// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0)
+ ///
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
+ GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1)
+ /// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see vec4 unpackInorm3x10_1x2(uint32 const & p))
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p)
+ /// @see uvec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p);
+
+ /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values.
+ /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The first vector component specifies the 11 least-significant bits of the result;
+ /// the last component specifies the 10 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec3 unpackF2x11_1x10(uint32 const & p)
+ GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .
+ /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packF2x11_1x10(vec3 const & v)
+ GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p);
+
+
+ /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values.
+ /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The first vector component specifies the 11 least-significant bits of the result;
+ /// the last component specifies the 10 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec3 unpackF3x9_E1x5(uint32 const & p)
+ GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .
+ /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packF3x9_E1x5(vec3 const & v)
+ GLM_FUNC_DECL vec3 unpackF3x9_E1x5(uint32 p);
+
+ /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector
+ /// to the 16-bit floating-point representation found in the OpenGL Specification.
+ /// The first vector component specifies the 16 least-significant bits of the result;
+ /// the forth component specifies the 16 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vecType<float, P> unpackHalf(vecType<uint16, P> const & p)
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ template <precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<uint16, P> packHalf(vecType<float, P> const & v);
+
+ /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values.
+ /// The first component of the vector is obtained from the 16 least-significant bits of v;
+ /// the forth component is obtained from the 16 most-significant bits of v.
+ ///
+ /// @see gtc_packing
+ /// @see vecType<uint16, P> packHalf(vecType<float, P> const & v)
+ /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
+ template <precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<float, P> unpackHalf(vecType<uint16, P> const & p);
+
+ /// Convert each component of the normalized floating-point vector into unsigned integer values.
+ ///
+ /// @see gtc_packing
+ /// @see vecType<floatType, P> unpackUnorm(vecType<intType, P> const & p);
+ template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<uintType, P> packUnorm(vecType<floatType, P> const & v);
+
+ /// Convert each unsigned integer components of a vector to normalized floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see vecType<intType, P> packUnorm(vecType<floatType, P> const & v)
+ template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v);
+
+ /// Convert each component of the normalized floating-point vector into signed integer values.
+ ///
+ /// @see gtc_packing
+ /// @see vecType<floatType, P> unpackSnorm(vecType<intType, P> const & p);
+ template <typename intType, typename floatType, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<intType, P> packSnorm(vecType<floatType, P> const & v);
+
+ /// Convert each signed integer components of a vector to normalized floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see vecType<intType, P> packSnorm(vecType<floatType, P> const & v)
+ template <typename intType, typename floatType, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v);
+
+ /// Convert each component of the normalized floating-point vector into unsigned integer values.
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackUnorm2x4(uint8 p)
+ GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const & v);
+
+ /// Convert each unsigned integer components of a vector to normalized floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see uint8 packUnorm2x4(vec2 const & v)
+ GLM_FUNC_DECL vec2 unpackUnorm2x4(uint8 p);
+
+ /// Convert each component of the normalized floating-point vector into unsigned integer values.
+ ///
+ /// @see gtc_packing
+ /// @see vec4 unpackUnorm4x4(uint16 p)
+ GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const & v);
+
+ /// Convert each unsigned integer components of a vector to normalized floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm4x4(vec4 const & v)
+ GLM_FUNC_DECL vec4 unpackUnorm4x4(uint16 p);
+
+ /// Convert each component of the normalized floating-point vector into unsigned integer values.
+ ///
+ /// @see gtc_packing
+ /// @see vec3 unpackUnorm1x5_1x6_1x5(uint16 p)
+ GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const & v);
+
+ /// Convert each unsigned integer components of a vector to normalized floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm1x5_1x6_1x5(vec3 const & v)
+ GLM_FUNC_DECL vec3 unpackUnorm1x5_1x6_1x5(uint16 p);
+
+ /// Convert each component of the normalized floating-point vector into unsigned integer values.
+ ///
+ /// @see gtc_packing
+ /// @see vec4 unpackUnorm3x5_1x1(uint16 p)
+ GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const & v);
+
+ /// Convert each unsigned integer components of a vector to normalized floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm3x5_1x1(vec4 const & v)
+ GLM_FUNC_DECL vec4 unpackUnorm3x5_1x1(uint16 p);
+
+ /// Convert each component of the normalized floating-point vector into unsigned integer values.
+ ///
+ /// @see gtc_packing
+ /// @see vec3 unpackUnorm2x3_1x2(uint8 p)
+ GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const & v);
+
+ /// Convert each unsigned integer components of a vector to normalized floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see uint8 packUnorm2x3_1x2(vec3 const & v)
+ GLM_FUNC_DECL vec3 unpackUnorm2x3_1x2(uint8 p);
+ /// @}
+}// namespace glm
+
+#include "packing.inl"
diff --git a/depedencies/include/glm/gtc/packing.inl b/depedencies/include/glm/gtc/packing.inl
new file mode 100644
index 0000000..618fb9e
--- /dev/null
+++ b/depedencies/include/glm/gtc/packing.inl
@@ -0,0 +1,781 @@
+/// @ref gtc_packing
+/// @file glm/gtc/packing.inl
+
+#include "../common.hpp"
+#include "../vec2.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+#include "../detail/type_half.hpp"
+#include <cstring>
+#include <limits>
+
+namespace glm{
+namespace detail
+{
+ GLM_FUNC_QUALIFIER glm::uint16 float2half(glm::uint32 f)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x00007c00 => 00000000 00000000 01111100 00000000
+ // 0x000003ff => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((f >> 16) & 0x8000) | // sign
+ ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential
+ ((f >> 13) & 0x03ff); // Mantissa
+ }
+
+ GLM_FUNC_QUALIFIER glm::uint32 float2packed11(glm::uint32 f)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x000007c0 => 00000000 00000000 00000111 11000000
+ // 0x00007c00 => 00000000 00000000 01111100 00000000
+ // 0x000003ff => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential
+ ((f >> 17) & 0x003f); // Mantissa
+ }
+
+ GLM_FUNC_QUALIFIER glm::uint32 packed11ToFloat(glm::uint32 p)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x000007c0 => 00000000 00000000 00000111 11000000
+ // 0x00007c00 => 00000000 00000000 01111100 00000000
+ // 0x000003ff => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential
+ ((p & 0x003f) << 17); // Mantissa
+ }
+
+ GLM_FUNC_QUALIFIER glm::uint32 float2packed10(glm::uint32 f)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x0000001F => 00000000 00000000 00000000 00011111
+ // 0x0000003F => 00000000 00000000 00000000 00111111
+ // 0x000003E0 => 00000000 00000000 00000011 11100000
+ // 0x000007C0 => 00000000 00000000 00000111 11000000
+ // 0x00007C00 => 00000000 00000000 01111100 00000000
+ // 0x000003FF => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential
+ ((f >> 18) & 0x001f); // Mantissa
+ }
+
+ GLM_FUNC_QUALIFIER glm::uint32 packed10ToFloat(glm::uint32 p)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x0000001F => 00000000 00000000 00000000 00011111
+ // 0x0000003F => 00000000 00000000 00000000 00111111
+ // 0x000003E0 => 00000000 00000000 00000011 11100000
+ // 0x000007C0 => 00000000 00000000 00000111 11000000
+ // 0x00007C00 => 00000000 00000000 01111100 00000000
+ // 0x000003FF => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential
+ ((p & 0x001f) << 18); // Mantissa
+ }
+
+ GLM_FUNC_QUALIFIER glm::uint half2float(glm::uint h)
+ {
+ return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13);
+ }
+
+ GLM_FUNC_QUALIFIER glm::uint floatTo11bit(float x)
+ {
+ if(x == 0.0f)
+ return 0u;
+ else if(glm::isnan(x))
+ return ~0u;
+ else if(glm::isinf(x))
+ return 0x1Fu << 6u;
+
+ uint Pack = 0u;
+ memcpy(&Pack, &x, sizeof(Pack));
+ return float2packed11(Pack);
+ }
+
+ GLM_FUNC_QUALIFIER float packed11bitToFloat(glm::uint x)
+ {
+ if(x == 0)
+ return 0.0f;
+ else if(x == ((1 << 11) - 1))
+ return ~0;//NaN
+ else if(x == (0x1f << 6))
+ return ~0;//Inf
+
+ uint Result = packed11ToFloat(x);
+
+ float Temp = 0;
+ memcpy(&Temp, &Result, sizeof(Temp));
+ return Temp;
+ }
+
+ GLM_FUNC_QUALIFIER glm::uint floatTo10bit(float x)
+ {
+ if(x == 0.0f)
+ return 0u;
+ else if(glm::isnan(x))
+ return ~0u;
+ else if(glm::isinf(x))
+ return 0x1Fu << 5u;
+
+ uint Pack = 0;
+ memcpy(&Pack, &x, sizeof(Pack));
+ return float2packed10(Pack);
+ }
+
+ GLM_FUNC_QUALIFIER float packed10bitToFloat(glm::uint x)
+ {
+ if(x == 0)
+ return 0.0f;
+ else if(x == ((1 << 10) - 1))
+ return ~0;//NaN
+ else if(x == (0x1f << 5))
+ return ~0;//Inf
+
+ uint Result = packed10ToFloat(x);
+
+ float Temp = 0;
+ memcpy(&Temp, &Result, sizeof(Temp));
+ return Temp;
+ }
+
+// GLM_FUNC_QUALIFIER glm::uint f11_f11_f10(float x, float y, float z)
+// {
+// return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) | ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22);
+// }
+
+ union u3u3u2
+ {
+ struct
+ {
+ uint x : 3;
+ uint y : 3;
+ uint z : 2;
+ } data;
+ uint8 pack;
+ };
+
+ union u4u4
+ {
+ struct
+ {
+ uint x : 4;
+ uint y : 4;
+ } data;
+ uint8 pack;
+ };
+
+ union u4u4u4u4
+ {
+ struct
+ {
+ uint x : 4;
+ uint y : 4;
+ uint z : 4;
+ uint w : 4;
+ } data;
+ uint16 pack;
+ };
+
+ union u5u6u5
+ {
+ struct
+ {
+ uint x : 5;
+ uint y : 6;
+ uint z : 5;
+ } data;
+ uint16 pack;
+ };
+
+ union u5u5u5u1
+ {
+ struct
+ {
+ uint x : 5;
+ uint y : 5;
+ uint z : 5;
+ uint w : 1;
+ } data;
+ uint16 pack;
+ };
+
+ union u10u10u10u2
+ {
+ struct
+ {
+ uint x : 10;
+ uint y : 10;
+ uint z : 10;
+ uint w : 2;
+ } data;
+ uint32 pack;
+ };
+
+ union i10i10i10i2
+ {
+ struct
+ {
+ int x : 10;
+ int y : 10;
+ int z : 10;
+ int w : 2;
+ } data;
+ uint32 pack;
+ };
+
+ union u9u9u9e5
+ {
+ struct
+ {
+ uint x : 9;
+ uint y : 9;
+ uint z : 9;
+ uint w : 5;
+ } data;
+ uint32 pack;
+ };
+
+ template <precision P, template <typename, precision> class vecType>
+ struct compute_half
+ {};
+
+ template <precision P>
+ struct compute_half<P, tvec1>
+ {
+ GLM_FUNC_QUALIFIER static tvec1<uint16, P> pack(tvec1<float, P> const & v)
+ {
+ int16 const Unpack(detail::toFloat16(v.x));
+ u16vec1 Packed(uninitialize);
+ memcpy(&Packed, &Unpack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER static tvec1<float, P> unpack(tvec1<uint16, P> const & v)
+ {
+ i16vec1 Unpack(uninitialize);
+ memcpy(&Unpack, &v, sizeof(Unpack));
+ return tvec1<float, P>(detail::toFloat32(v.x));
+ }
+ };
+
+ template <precision P>
+ struct compute_half<P, tvec2>
+ {
+ GLM_FUNC_QUALIFIER static tvec2<uint16, P> pack(tvec2<float, P> const & v)
+ {
+ tvec2<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y));
+ u16vec2 Packed(uninitialize);
+ memcpy(&Packed, &Unpack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER static tvec2<float, P> unpack(tvec2<uint16, P> const & v)
+ {
+ i16vec2 Unpack(uninitialize);
+ memcpy(&Unpack, &v, sizeof(Unpack));
+ return tvec2<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y));
+ }
+ };
+
+ template <precision P>
+ struct compute_half<P, tvec3>
+ {
+ GLM_FUNC_QUALIFIER static tvec3<uint16, P> pack(tvec3<float, P> const & v)
+ {
+ tvec3<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z));
+ u16vec3 Packed(uninitialize);
+ memcpy(&Packed, &Unpack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER static tvec3<float, P> unpack(tvec3<uint16, P> const & v)
+ {
+ i16vec3 Unpack(uninitialize);
+ memcpy(&Unpack, &v, sizeof(Unpack));
+ return tvec3<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z));
+ }
+ };
+
+ template <precision P>
+ struct compute_half<P, tvec4>
+ {
+ GLM_FUNC_QUALIFIER static tvec4<uint16, P> pack(tvec4<float, P> const & v)
+ {
+ tvec4<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w));
+ u16vec4 Packed(uninitialize);
+ memcpy(&Packed, &Unpack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER static tvec4<float, P> unpack(tvec4<uint16, P> const & v)
+ {
+ i16vec4 Unpack(uninitialize);
+ memcpy(&Unpack, &v, sizeof(Unpack));
+ return tvec4<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w));
+ }
+ };
+}//namespace detail
+
+ GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float v)
+ {
+ return static_cast<uint8>(round(clamp(v, 0.0f, 1.0f) * 255.0f));
+ }
+
+ GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p)
+ {
+ float const Unpack(p);
+ return Unpack * static_cast<float>(0.0039215686274509803921568627451); // 1 / 255
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v)
+ {
+ u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f));
+
+ uint16 Unpack = 0;
+ memcpy(&Unpack, &Topack, sizeof(Unpack));
+ return Unpack;
+ }
+
+ GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p)
+ {
+ u8vec2 Unpack(uninitialize);
+ memcpy(&Unpack, &p, sizeof(Unpack));
+ return vec2(Unpack) * float(0.0039215686274509803921568627451); // 1 / 255
+ }
+
+ GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float v)
+ {
+ int8 const Topack(static_cast<int8>(round(clamp(v ,-1.0f, 1.0f) * 127.0f)));
+ uint8 Packed = 0;
+ memcpy(&Packed, &Topack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p)
+ {
+ int8 Unpack = 0;
+ memcpy(&Unpack, &p, sizeof(Unpack));
+ return clamp(
+ static_cast<float>(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f
+ -1.0f, 1.0f);
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v)
+ {
+ i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f));
+ uint16 Packed = 0;
+ memcpy(&Packed, &Topack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p)
+ {
+ i8vec2 Unpack(uninitialize);
+ memcpy(&Unpack, &p, sizeof(Unpack));
+ return clamp(
+ vec2(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f
+ -1.0f, 1.0f);
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s)
+ {
+ return static_cast<uint16>(round(clamp(s, 0.0f, 1.0f) * 65535.0f));
+ }
+
+ GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p)
+ {
+ float const Unpack(p);
+ return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0
+ }
+
+ GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v)
+ {
+ u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f));
+ uint64 Packed = 0;
+ memcpy(&Packed, &Topack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p)
+ {
+ u16vec4 Unpack(uninitialize);
+ memcpy(&Unpack, &p, sizeof(Unpack));
+ return vec4(Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v)
+ {
+ int16 const Topack = static_cast<int16>(round(clamp(v ,-1.0f, 1.0f) * 32767.0f));
+ uint16 Packed = 0;
+ memcpy(&Packed, &Topack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p)
+ {
+ int16 Unpack = 0;
+ memcpy(&Unpack, &p, sizeof(Unpack));
+ return clamp(
+ static_cast<float>(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f,
+ -1.0f, 1.0f);
+ }
+
+ GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v)
+ {
+ i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f));
+ uint64 Packed = 0;
+ memcpy(&Packed, &Topack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p)
+ {
+ i16vec4 Unpack(uninitialize);
+ memcpy(&Unpack, &p, sizeof(Unpack));
+ return clamp(
+ vec4(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f,
+ -1.0f, 1.0f);
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packHalf1x16(float v)
+ {
+ int16 const Topack(detail::toFloat16(v));
+ uint16 Packed = 0;
+ memcpy(&Packed, &Topack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER float unpackHalf1x16(uint16 v)
+ {
+ int16 Unpack = 0;
+ memcpy(&Unpack, &v, sizeof(Unpack));
+ return detail::toFloat32(Unpack);
+ }
+
+ GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v)
+ {
+ i16vec4 const Unpack(
+ detail::toFloat16(v.x),
+ detail::toFloat16(v.y),
+ detail::toFloat16(v.z),
+ detail::toFloat16(v.w));
+ uint64 Packed = 0;
+ memcpy(&Packed, &Unpack, sizeof(Packed));
+ return Packed;
+ }
+
+ GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v)
+ {
+ i16vec4 Unpack(uninitialize);
+ memcpy(&Unpack, &v, sizeof(Unpack));
+ return vec4(
+ detail::toFloat32(Unpack.x),
+ detail::toFloat32(Unpack.y),
+ detail::toFloat32(Unpack.z),
+ detail::toFloat32(Unpack.w));
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v)
+ {
+ detail::i10i10i10i2 Result;
+ Result.data.x = v.x;
+ Result.data.y = v.y;
+ Result.data.z = v.z;
+ Result.data.w = v.w;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v)
+ {
+ detail::i10i10i10i2 Unpack;
+ Unpack.pack = v;
+ return ivec4(
+ Unpack.data.x,
+ Unpack.data.y,
+ Unpack.data.z,
+ Unpack.data.w);
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v)
+ {
+ detail::u10u10u10u2 Result;
+ Result.data.x = v.x;
+ Result.data.y = v.y;
+ Result.data.z = v.z;
+ Result.data.w = v.w;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v)
+ {
+ detail::u10u10u10u2 Unpack;
+ Unpack.pack = v;
+ return uvec4(
+ Unpack.data.x,
+ Unpack.data.y,
+ Unpack.data.z,
+ Unpack.data.w);
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v)
+ {
+ detail::i10i10i10i2 Result;
+ Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f));
+ Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f));
+ Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f));
+ Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f));
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 v)
+ {
+ detail::i10i10i10i2 Unpack;
+ Unpack.pack = v;
+ vec4 Result;
+ Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f);
+ Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f);
+ Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f);
+ Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f);
+ return Result;
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v)
+ {
+ uvec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(1023.f, 1023.f, 1023.f, 3.f)));
+
+ detail::u10u10u10u2 Result;
+ Result.data.x = Unpack.x;
+ Result.data.y = Unpack.y;
+ Result.data.z = Unpack.z;
+ Result.data.w = Unpack.w;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 v)
+ {
+ vec4 const ScaleFactors(1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 3.f);
+
+ detail::u10u10u10u2 Unpack;
+ Unpack.pack = v;
+ return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactors;
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v)
+ {
+ return
+ ((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) |
+ ((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) |
+ ((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22);
+ }
+
+ GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 v)
+ {
+ return vec3(
+ detail::packed11bitToFloat(v >> 0),
+ detail::packed11bitToFloat(v >> 11),
+ detail::packed10bitToFloat(v >> 22));
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const & v)
+ {
+ float const SharedExpMax = (pow(2.0f, 9.0f - 1.0f) / pow(2.0f, 9.0f)) * pow(2.0f, 31.f - 15.f);
+ vec3 const Color = clamp(v, 0.0f, SharedExpMax);
+ float const MaxColor = max(Color.x, max(Color.y, Color.z));
+
+ float const ExpSharedP = max(-15.f - 1.f, floor(log2(MaxColor))) + 1.0f + 15.f;
+ float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 16.f - 9.f)) + 0.5f);
+ float const ExpShared = MaxShared == pow(2.0f, 9.0f) ? ExpSharedP + 1.0f : ExpSharedP;
+
+ uvec3 const ColorComp(floor(Color / pow(2.f, (ExpShared - 15.f - 9.f)) + 0.5f));
+
+ detail::u9u9u9e5 Unpack;
+ Unpack.data.x = ColorComp.x;
+ Unpack.data.y = ColorComp.y;
+ Unpack.data.z = ColorComp.z;
+ Unpack.data.w = uint(ExpShared);
+ return Unpack.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec3 unpackF3x9_E1x5(uint32 v)
+ {
+ detail::u9u9u9e5 Unpack;
+ Unpack.pack = v;
+
+ return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * pow(2.0f, Unpack.data.w - 15.f - 9.f);
+ }
+
+ template <precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<uint16, P> packHalf(vecType<float, P> const & v)
+ {
+ return detail::compute_half<P, vecType>::pack(v);
+ }
+
+ template <precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<float, P> unpackHalf(vecType<uint16, P> const & v)
+ {
+ return detail::compute_half<P, vecType>::unpack(v);
+ }
+
+ template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<uintType, P> packUnorm(vecType<floatType, P> const & v)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type");
+ GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type");
+
+ return vecType<uintType, P>(round(clamp(v, static_cast<floatType>(0), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<uintType>::max())));
+ }
+
+ template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type");
+ GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type");
+
+ return vecType<float, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<uintType>::max()));
+ }
+
+ template <typename intType, typename floatType, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<intType, P> packSnorm(vecType<floatType, P> const & v)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type");
+ GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type");
+
+ return vecType<intType, P>(round(clamp(v , static_cast<floatType>(-1), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<intType>::max())));
+ }
+
+ template <typename intType, typename floatType, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type");
+ GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type");
+
+ return clamp(vecType<floatType, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<intType>::max())), static_cast<floatType>(-1), static_cast<floatType>(1));
+ }
+
+ GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const & v)
+ {
+ u32vec2 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f));
+ detail::u4u4 Result;
+ Result.data.x = Unpack.x;
+ Result.data.y = Unpack.y;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec2 unpackUnorm2x4(uint8 v)
+ {
+ float const ScaleFactor(1.f / 15.f);
+ detail::u4u4 Unpack;
+ Unpack.pack = v;
+ return vec2(Unpack.data.x, Unpack.data.y) * ScaleFactor;
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const & v)
+ {
+ u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f));
+ detail::u4u4u4u4 Result;
+ Result.data.x = Unpack.x;
+ Result.data.y = Unpack.y;
+ Result.data.z = Unpack.z;
+ Result.data.w = Unpack.w;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackUnorm4x4(uint16 v)
+ {
+ float const ScaleFactor(1.f / 15.f);
+ detail::u4u4u4u4 Unpack;
+ Unpack.pack = v;
+ return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor;
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const & v)
+ {
+ u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(31.f, 63.f, 31.f)));
+ detail::u5u6u5 Result;
+ Result.data.x = Unpack.x;
+ Result.data.y = Unpack.y;
+ Result.data.z = Unpack.z;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec3 unpackUnorm1x5_1x6_1x5(uint16 v)
+ {
+ vec3 const ScaleFactor(1.f / 31.f, 1.f / 63.f, 1.f / 31.f);
+ detail::u5u6u5 Unpack;
+ Unpack.pack = v;
+ return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor;
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const & v)
+ {
+ u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(31.f, 31.f, 31.f, 1.f)));
+ detail::u5u5u5u1 Result;
+ Result.data.x = Unpack.x;
+ Result.data.y = Unpack.y;
+ Result.data.z = Unpack.z;
+ Result.data.w = Unpack.w;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackUnorm3x5_1x1(uint16 v)
+ {
+ vec4 const ScaleFactor(1.f / 31.f, 1.f / 31.f, 1.f / 31.f, 1.f);
+ detail::u5u5u5u1 Unpack;
+ Unpack.pack = v;
+ return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor;
+ }
+
+ GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const & v)
+ {
+ u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(7.f, 7.f, 3.f)));
+ detail::u3u3u2 Result;
+ Result.data.x = Unpack.x;
+ Result.data.y = Unpack.y;
+ Result.data.z = Unpack.z;
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec3 unpackUnorm2x3_1x2(uint8 v)
+ {
+ vec3 const ScaleFactor(1.f / 7.f, 1.f / 7.f, 1.f / 3.f);
+ detail::u3u3u2 Unpack;
+ Unpack.pack = v;
+ return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor;
+ }
+}//namespace glm
+
diff --git a/depedencies/include/glm/gtc/quaternion.hpp b/depedencies/include/glm/gtc/quaternion.hpp
new file mode 100644
index 0000000..8af1c8b
--- /dev/null
+++ b/depedencies/include/glm/gtc/quaternion.hpp
@@ -0,0 +1,397 @@
+/// @ref gtc_quaternion
+/// @file glm/gtc/quaternion.hpp
+///
+/// @see core (dependence)
+/// @see gtc_half_float (dependence)
+/// @see gtc_constants (dependence)
+///
+/// @defgroup gtc_quaternion GLM_GTC_quaternion
+/// @ingroup gtc
+///
+/// @brief Defines a templated quaternion type and several quaternion operations.
+///
+/// <glm/gtc/quaternion.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependency:
+#include "../mat3x3.hpp"
+#include "../mat4x4.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+#include "../gtc/constants.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_quaternion extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_quaternion
+ /// @{
+
+ template <typename T, precision P = defaultp>
+ struct tquat
+ {
+ // -- Implementation detail --
+
+ typedef tquat<T, P> type;
+ typedef T value_type;
+
+ // -- Data --
+
+# if GLM_HAS_ALIGNED_TYPE
+# if GLM_COMPILER & GLM_COMPILER_GCC
+# pragma GCC diagnostic push
+# pragma GCC diagnostic ignored "-Wpedantic"
+# endif
+# if GLM_COMPILER & GLM_COMPILER_CLANG
+# pragma clang diagnostic push
+# pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
+# pragma clang diagnostic ignored "-Wnested-anon-types"
+# endif
+
+ union
+ {
+ struct { T x, y, z, w;};
+ typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<P>::value>::type data;
+ };
+
+# if GLM_COMPILER & GLM_COMPILER_CLANG
+# pragma clang diagnostic pop
+# endif
+# if GLM_COMPILER & GLM_COMPILER_GCC
+# pragma GCC diagnostic pop
+# endif
+# else
+ T x, y, z, w;
+# endif
+
+ // -- Component accesses --
+
+ typedef length_t length_type;
+ /// Return the count of components of a quaternion
+ GLM_FUNC_DECL static length_type length(){return 4;}
+
+ GLM_FUNC_DECL T & operator[](length_type i);
+ GLM_FUNC_DECL T const & operator[](length_type i) const;
+
+ // -- Implicit basic constructors --
+
+ GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR;
+ GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const & q) GLM_DEFAULT;
+ template <precision Q>
+ GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const & q);
+
+ // -- Explicit basic constructors --
+
+ GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor);
+ GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & s, tvec3<T, P> const & v);
+ GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & w, T const & x, T const & y, T const & z);
+
+ // -- Conversion constructors --
+
+ template <typename U, precision Q>
+ GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, Q> const & q);
+
+ /// Explicit conversion operators
+# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
+ GLM_FUNC_DECL explicit operator tmat3x3<T, P>();
+ GLM_FUNC_DECL explicit operator tmat4x4<T, P>();
+# endif
+
+ /// Create a quaternion from two normalized axis
+ ///
+ /// @param u A first normalized axis
+ /// @param v A second normalized axis
+ /// @see gtc_quaternion
+ /// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors
+ GLM_FUNC_DECL tquat(tvec3<T, P> const & u, tvec3<T, P> const & v);
+
+ /// Build a quaternion from euler angles (pitch, yaw, roll), in radians.
+ GLM_FUNC_DECL GLM_EXPLICIT tquat(tvec3<T, P> const & eulerAngles);
+ GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat3x3<T, P> const & m);
+ GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat4x4<T, P> const & m);
+
+ // -- Unary arithmetic operators --
+
+ GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m) GLM_DEFAULT;
+
+ template <typename U>
+ GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m);
+ template <typename U>
+ GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q);
+ template <typename U>
+ GLM_FUNC_DECL tquat<T, P> & operator-=(tquat<U, P> const & q);
+ template <typename U>
+ GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q);
+ template <typename U>
+ GLM_FUNC_DECL tquat<T, P> & operator*=(U s);
+ template <typename U>
+ GLM_FUNC_DECL tquat<T, P> & operator/=(U s);
+ };
+
+ // -- Unary bit operators --
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q);
+
+ // -- Binary operators --
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s);
+
+ // -- Boolean operators --
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2);
+
+ template <typename T, precision P>
+ GLM_FUNC_DECL bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2);
+
+ /// Returns the length of the quaternion.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL T length(tquat<T, P> const & q);
+
+ /// Returns the normalized quaternion.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q);
+
+ /// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ...
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P, template <typename, precision> class quatType>
+ GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y);
+
+ /// Spherical linear interpolation of two quaternions.
+ /// The interpolation is oriented and the rotation is performed at constant speed.
+ /// For short path spherical linear interpolation, use the slerp function.
+ ///
+ /// @param x A quaternion
+ /// @param y A quaternion
+ /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
+ /// @tparam T Value type used to build the quaternion. Supported: half, float or double.
+ /// @see gtc_quaternion
+ /// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a)
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a);
+
+ /// Linear interpolation of two quaternions.
+ /// The interpolation is oriented.
+ ///
+ /// @param x A quaternion
+ /// @param y A quaternion
+ /// @param a Interpolation factor. The interpolation is defined in the range [0, 1].
+ /// @tparam T Value type used to build the quaternion. Supported: half, float or double.
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a);
+
+ /// Spherical linear interpolation of two quaternions.
+ /// The interpolation always take the short path and the rotation is performed at constant speed.
+ ///
+ /// @param x A quaternion
+ /// @param y A quaternion
+ /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
+ /// @tparam T Value type used to build the quaternion. Supported: half, float or double.
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a);
+
+ /// Returns the q conjugate.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q);
+
+ /// Returns the q inverse.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q);
+
+ /// Rotates a quaternion from a vector of 3 components axis and an angle.
+ ///
+ /// @param q Source orientation
+ /// @param angle Angle expressed in radians.
+ /// @param axis Axis of the rotation
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis);
+
+ /// Returns euler angles, pitch as x, yaw as y, roll as z.
+ /// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x);
+
+ /// Returns roll value of euler angles expressed in radians.
+ ///
+ /// @see gtx_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL T roll(tquat<T, P> const & x);
+
+ /// Returns pitch value of euler angles expressed in radians.
+ ///
+ /// @see gtx_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL T pitch(tquat<T, P> const & x);
+
+ /// Returns yaw value of euler angles expressed in radians.
+ ///
+ /// @see gtx_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL T yaw(tquat<T, P> const & x);
+
+ /// Converts a quaternion to a 3 * 3 matrix.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x);
+
+ /// Converts a quaternion to a 4 * 4 matrix.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x);
+
+ /// Converts a 3 * 3 matrix to a quaternion.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x);
+
+ /// Converts a 4 * 4 matrix to a quaternion.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x);
+
+ /// Returns the quaternion rotation angle.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL T angle(tquat<T, P> const & x);
+
+ /// Returns the q rotation axis.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x);
+
+ /// Build a quaternion from an angle and a normalized axis.
+ ///
+ /// @param angle Angle expressed in radians.
+ /// @param axis Axis of the quaternion, must be normalized.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis);
+
+ /// Returns the component-wise comparison result of x < y.
+ ///
+ /// @tparam quatType Floating-point quaternion types.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y);
+
+ /// Returns the component-wise comparison of result x <= y.
+ ///
+ /// @tparam quatType Floating-point quaternion types.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y);
+
+ /// Returns the component-wise comparison of result x > y.
+ ///
+ /// @tparam quatType Floating-point quaternion types.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y);
+
+ /// Returns the component-wise comparison of result x >= y.
+ ///
+ /// @tparam quatType Floating-point quaternion types.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y);
+
+ /// Returns the component-wise comparison of result x == y.
+ ///
+ /// @tparam quatType Floating-point quaternion types.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y);
+
+ /// Returns the component-wise comparison of result x != y.
+ ///
+ /// @tparam quatType Floating-point quaternion types.
+ ///
+ /// @see gtc_quaternion
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y);
+
+ /// Returns true if x holds a NaN (not a number)
+ /// representation in the underlying implementation's set of
+ /// floating point representations. Returns false otherwise,
+ /// including for implementations with no NaN
+ /// representations.
+ ///
+ /// /!\ When using compiler fast math, this function may fail.
+ ///
+ /// @tparam genType Floating-point scalar or vector types.
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<bool, P> isnan(tquat<T, P> const & x);
+
+ /// Returns true if x holds a positive infinity or negative
+ /// infinity representation in the underlying implementation's
+ /// set of floating point representations. Returns false
+ /// otherwise, including for implementations with no infinity
+ /// representations.
+ ///
+ /// @tparam genType Floating-point scalar or vector types.
+ template <typename T, precision P>
+ GLM_FUNC_DECL tvec4<bool, P> isinf(tquat<T, P> const & x);
+
+ /// @}
+} //namespace glm
+
+#include "quaternion.inl"
diff --git a/depedencies/include/glm/gtc/quaternion.inl b/depedencies/include/glm/gtc/quaternion.inl
new file mode 100644
index 0000000..c9b2af7
--- /dev/null
+++ b/depedencies/include/glm/gtc/quaternion.inl
@@ -0,0 +1,795 @@
+/// @ref gtc_quaternion
+/// @file glm/gtc/quaternion.inl
+
+#include "../trigonometric.hpp"
+#include "../geometric.hpp"
+#include "../exponential.hpp"
+#include <limits>
+
+namespace glm{
+namespace detail
+{
+ template <typename T, precision P, bool Aligned>
+ struct compute_dot<tquat, T, P, Aligned>
+ {
+ static GLM_FUNC_QUALIFIER T call(tquat<T, P> const& x, tquat<T, P> const& y)
+ {
+ tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w);
+ return (tmp.x + tmp.y) + (tmp.z + tmp.w);
+ }
+ };
+
+ template <typename T, precision P, bool Aligned>
+ struct compute_quat_add
+ {
+ static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p)
+ {
+ return tquat<T, P>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z);
+ }
+ };
+
+ template <typename T, precision P, bool Aligned>
+ struct compute_quat_sub
+ {
+ static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p)
+ {
+ return tquat<T, P>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z);
+ }
+ };
+
+ template <typename T, precision P, bool Aligned>
+ struct compute_quat_mul_scalar
+ {
+ static tquat<T, P> call(tquat<T, P> const& q, T s)
+ {
+ return tquat<T, P>(q.w * s, q.x * s, q.y * s, q.z * s);
+ }
+ };
+
+ template <typename T, precision P, bool Aligned>
+ struct compute_quat_div_scalar
+ {
+ static tquat<T, P> call(tquat<T, P> const& q, T s)
+ {
+ return tquat<T, P>(q.w / s, q.x / s, q.y / s, q.z / s);
+ }
+ };
+
+ template <typename T, precision P, bool Aligned>
+ struct compute_quat_mul_vec4
+ {
+ static tvec4<T, P> call(tquat<T, P> const & q, tvec4<T, P> const & v)
+ {
+ return tvec4<T, P>(q * tvec3<T, P>(v), v.w);
+ }
+ };
+}//namespace detail
+
+ // -- Component accesses --
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i)
+ {
+ assert(i >= 0 && i < this->length());
+ return (&x)[i];
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const
+ {
+ assert(i >= 0 && i < this->length());
+ return (&x)[i];
+ }
+
+ // -- Implicit basic constructors --
+
+# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT)
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat()
+# ifndef GLM_FORCE_NO_CTOR_INIT
+ : x(0), y(0), z(0), w(1)
+# endif
+ {}
+# endif
+
+# if !GLM_HAS_DEFAULTED_FUNCTIONS
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, P> const & q)
+ : x(q.x), y(q.y), z(q.z), w(q.w)
+ {}
+# endif//!GLM_HAS_DEFAULTED_FUNCTIONS
+
+ template <typename T, precision P>
+ template <precision Q>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, Q> const & q)
+ : x(q.x), y(q.y), z(q.z), w(q.w)
+ {}
+
+ // -- Explicit basic constructors --
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat<T, P>::tquat(ctor)
+ {}
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & s, tvec3<T, P> const & v)
+ : x(v.x), y(v.y), z(v.z), w(s)
+ {}
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & w, T const & x, T const & y, T const & z)
+ : x(x), y(y), z(z), w(w)
+ {}
+
+ // -- Conversion constructors --
+
+ template <typename T, precision P>
+ template <typename U, precision Q>
+ GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<U, Q> const & q)
+ : x(static_cast<T>(q.x))
+ , y(static_cast<T>(q.y))
+ , z(static_cast<T>(q.z))
+ , w(static_cast<T>(q.w))
+ {}
+
+ //template <typename valType>
+ //GLM_FUNC_QUALIFIER tquat<valType>::tquat
+ //(
+ // valType const & pitch,
+ // valType const & yaw,
+ // valType const & roll
+ //)
+ //{
+ // tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5));
+ // tvec3<valType> c = glm::cos(eulerAngle * valType(0.5));
+ // tvec3<valType> s = glm::sin(eulerAngle * valType(0.5));
+ //
+ // this->w = c.x * c.y * c.z + s.x * s.y * s.z;
+ // this->x = s.x * c.y * c.z - c.x * s.y * s.z;
+ // this->y = c.x * s.y * c.z + s.x * c.y * s.z;
+ // this->z = c.x * c.y * s.z - s.x * s.y * c.z;
+ //}
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & u, tvec3<T, P> const & v)
+ {
+ tvec3<T, P> const LocalW(cross(u, v));
+ T Dot = detail::compute_dot<tvec3, T, P, detail::is_aligned<P>::value>::call(u, v);
+ tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z);
+
+ *this = normalize(q);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & eulerAngle)
+ {
+ tvec3<T, P> c = glm::cos(eulerAngle * T(0.5));
+ tvec3<T, P> s = glm::sin(eulerAngle * T(0.5));
+
+ this->w = c.x * c.y * c.z + s.x * s.y * s.z;
+ this->x = s.x * c.y * c.z - c.x * s.y * s.z;
+ this->y = c.x * s.y * c.z + s.x * c.y * s.z;
+ this->z = c.x * c.y * s.z - s.x * s.y * c.z;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat3x3<T, P> const & m)
+ {
+ *this = quat_cast(m);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat4x4<T, P> const & m)
+ {
+ *this = quat_cast(m);
+ }
+
+# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat3x3<T, P>()
+ {
+ return mat3_cast(*this);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat4x4<T, P>()
+ {
+ return mat4_cast(*this);
+ }
+# endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const & q)
+ {
+ return tquat<T, P>(q.w, -q.x, -q.y, -q.z);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q)
+ {
+ return conjugate(q) / dot(q, q);
+ }
+
+ // -- Unary arithmetic operators --
+
+# if !GLM_HAS_DEFAULTED_FUNCTIONS
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q)
+ {
+ this->w = q.w;
+ this->x = q.x;
+ this->y = q.y;
+ this->z = q.z;
+ return *this;
+ }
+# endif//!GLM_HAS_DEFAULTED_FUNCTIONS
+
+ template <typename T, precision P>
+ template <typename U>
+ GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q)
+ {
+ this->w = static_cast<T>(q.w);
+ this->x = static_cast<T>(q.x);
+ this->y = static_cast<T>(q.y);
+ this->z = static_cast<T>(q.z);
+ return *this;
+ }
+
+ template <typename T, precision P>
+ template <typename U>
+ GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const& q)
+ {
+ return (*this = detail::compute_quat_add<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q)));
+ }
+
+ template <typename T, precision P>
+ template <typename U>
+ GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator-=(tquat<U, P> const& q)
+ {
+ return (*this = detail::compute_quat_sub<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q)));
+ }
+
+ template <typename T, precision P>
+ template <typename U>
+ GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r)
+ {
+ tquat<T, P> const p(*this);
+ tquat<T, P> const q(r);
+
+ this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z;
+ this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y;
+ this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z;
+ this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x;
+ return *this;
+ }
+
+ template <typename T, precision P>
+ template <typename U>
+ GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s)
+ {
+ return (*this = detail::compute_quat_mul_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s)));
+ }
+
+ template <typename T, precision P>
+ template <typename U>
+ GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s)
+ {
+ return (*this = detail::compute_quat_div_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s)));
+ }
+
+ // -- Unary bit operators --
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q)
+ {
+ return q;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q)
+ {
+ return tquat<T, P>(-q.w, -q.x, -q.y, -q.z);
+ }
+
+ // -- Binary operators --
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p)
+ {
+ return tquat<T, P>(q) += p;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p)
+ {
+ return tquat<T, P>(q) *= p;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v)
+ {
+ tvec3<T, P> const QuatVector(q.x, q.y, q.z);
+ tvec3<T, P> const uv(glm::cross(QuatVector, v));
+ tvec3<T, P> const uuv(glm::cross(QuatVector, uv));
+
+ return v + ((uv * q.w) + uuv) * static_cast<T>(2);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q)
+ {
+ return glm::inverse(q) * v;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tquat<T, P> const& q, tvec4<T, P> const& v)
+ {
+ return detail::compute_quat_mul_vec4<T, P, detail::is_aligned<P>::value>::call(q, v);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q)
+ {
+ return glm::inverse(q) * v;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s)
+ {
+ return tquat<T, P>(
+ q.w * s, q.x * s, q.y * s, q.z * s);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q)
+ {
+ return q * s;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s)
+ {
+ return tquat<T, P>(
+ q.w / s, q.x / s, q.y / s, q.z / s);
+ }
+
+ // -- Boolean operators --
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2)
+ {
+ return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2)
+ {
+ return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w);
+ }
+
+ // -- Operations --
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q)
+ {
+ return glm::sqrt(dot(q, q));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q)
+ {
+ T len = length(q);
+ if(len <= T(0)) // Problem
+ return tquat<T, P>(1, 0, 0, 0);
+ T oneOverLen = T(1) / len;
+ return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2)
+ {
+ return tquat<T, P>(
+ q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z,
+ q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y,
+ q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z,
+ q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x);
+ }
+/*
+ // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle))
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a)
+ {
+ if(a <= T(0)) return x;
+ if(a >= T(1)) return y;
+
+ float fCos = dot(x, y);
+ tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2;
+ if(fCos < T(0))
+ {
+ y2 = -y;
+ fCos = -fCos;
+ }
+
+ //if(fCos > 1.0f) // problem
+ float k0, k1;
+ if(fCos > T(0.9999))
+ {
+ k0 = T(1) - a;
+ k1 = T(0) + a; //BUG!!! 1.0f + a;
+ }
+ else
+ {
+ T fSin = sqrt(T(1) - fCos * fCos);
+ T fAngle = atan(fSin, fCos);
+ T fOneOverSin = static_cast<T>(1) / fSin;
+ k0 = sin((T(1) - a) * fAngle) * fOneOverSin;
+ k1 = sin((T(0) + a) * fAngle) * fOneOverSin;
+ }
+
+ return tquat<T, P>(
+ k0 * x.w + k1 * y2.w,
+ k0 * x.x + k1 * y2.x,
+ k0 * x.y + k1 * y2.y,
+ k0 * x.z + k1 * y2.z);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> mix2
+ (
+ tquat<T, P> const & x,
+ tquat<T, P> const & y,
+ T const & a
+ )
+ {
+ bool flip = false;
+ if(a <= static_cast<T>(0)) return x;
+ if(a >= static_cast<T>(1)) return y;
+
+ T cos_t = dot(x, y);
+ if(cos_t < T(0))
+ {
+ cos_t = -cos_t;
+ flip = true;
+ }
+
+ T alpha(0), beta(0);
+
+ if(T(1) - cos_t < 1e-7)
+ beta = static_cast<T>(1) - alpha;
+ else
+ {
+ T theta = acos(cos_t);
+ T sin_t = sin(theta);
+ beta = sin(theta * (T(1) - alpha)) / sin_t;
+ alpha = sin(alpha * theta) / sin_t;
+ }
+
+ if(flip)
+ alpha = -alpha;
+
+ return normalize(beta * x + alpha * y);
+ }
+*/
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a)
+ {
+ T cosTheta = dot(x, y);
+
+ // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
+ if(cosTheta > T(1) - epsilon<T>())
+ {
+ // Linear interpolation
+ return tquat<T, P>(
+ mix(x.w, y.w, a),
+ mix(x.x, y.x, a),
+ mix(x.y, y.y, a),
+ mix(x.z, y.z, a));
+ }
+ else
+ {
+ // Essential Mathematics, page 467
+ T angle = acos(cosTheta);
+ return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle);
+ }
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a)
+ {
+ // Lerp is only defined in [0, 1]
+ assert(a >= static_cast<T>(0));
+ assert(a <= static_cast<T>(1));
+
+ return x * (T(1) - a) + (y * a);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a)
+ {
+ tquat<T, P> z = y;
+
+ T cosTheta = dot(x, y);
+
+ // If cosTheta < 0, the interpolation will take the long way around the sphere.
+ // To fix this, one quat must be negated.
+ if (cosTheta < T(0))
+ {
+ z = -y;
+ cosTheta = -cosTheta;
+ }
+
+ // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
+ if(cosTheta > T(1) - epsilon<T>())
+ {
+ // Linear interpolation
+ return tquat<T, P>(
+ mix(x.w, z.w, a),
+ mix(x.x, z.x, a),
+ mix(x.y, z.y, a),
+ mix(x.z, z.z, a));
+ }
+ else
+ {
+ // Essential Mathematics, page 467
+ T angle = acos(cosTheta);
+ return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle);
+ }
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & v)
+ {
+ tvec3<T, P> Tmp = v;
+
+ // Axis of rotation must be normalised
+ T len = glm::length(Tmp);
+ if(abs(len - T(1)) > T(0.001))
+ {
+ T oneOverLen = static_cast<T>(1) / len;
+ Tmp.x *= oneOverLen;
+ Tmp.y *= oneOverLen;
+ Tmp.z *= oneOverLen;
+ }
+
+ T const AngleRad(angle);
+ T const Sin = sin(AngleRad * T(0.5));
+
+ return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin);
+ //return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> eulerAngles(tquat<T, P> const & x)
+ {
+ return tvec3<T, P>(pitch(x), yaw(x), roll(x));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q)
+ {
+ return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q)
+ {
+ return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q)
+ {
+ return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1)));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat3x3<T, P> mat3_cast(tquat<T, P> const & q)
+ {
+ tmat3x3<T, P> Result(T(1));
+ T qxx(q.x * q.x);
+ T qyy(q.y * q.y);
+ T qzz(q.z * q.z);
+ T qxz(q.x * q.z);
+ T qxy(q.x * q.y);
+ T qyz(q.y * q.z);
+ T qwx(q.w * q.x);
+ T qwy(q.w * q.y);
+ T qwz(q.w * q.z);
+
+ Result[0][0] = T(1) - T(2) * (qyy + qzz);
+ Result[0][1] = T(2) * (qxy + qwz);
+ Result[0][2] = T(2) * (qxz - qwy);
+
+ Result[1][0] = T(2) * (qxy - qwz);
+ Result[1][1] = T(1) - T(2) * (qxx + qzz);
+ Result[1][2] = T(2) * (qyz + qwx);
+
+ Result[2][0] = T(2) * (qxz + qwy);
+ Result[2][1] = T(2) * (qyz - qwx);
+ Result[2][2] = T(1) - T(2) * (qxx + qyy);
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tmat4x4<T, P> mat4_cast(tquat<T, P> const & q)
+ {
+ return tmat4x4<T, P>(mat3_cast(q));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat3x3<T, P> const & m)
+ {
+ T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2];
+ T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2];
+ T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1];
+ T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2];
+
+ int biggestIndex = 0;
+ T fourBiggestSquaredMinus1 = fourWSquaredMinus1;
+ if(fourXSquaredMinus1 > fourBiggestSquaredMinus1)
+ {
+ fourBiggestSquaredMinus1 = fourXSquaredMinus1;
+ biggestIndex = 1;
+ }
+ if(fourYSquaredMinus1 > fourBiggestSquaredMinus1)
+ {
+ fourBiggestSquaredMinus1 = fourYSquaredMinus1;
+ biggestIndex = 2;
+ }
+ if(fourZSquaredMinus1 > fourBiggestSquaredMinus1)
+ {
+ fourBiggestSquaredMinus1 = fourZSquaredMinus1;
+ biggestIndex = 3;
+ }
+
+ T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5);
+ T mult = static_cast<T>(0.25) / biggestVal;
+
+ tquat<T, P> Result(uninitialize);
+ switch(biggestIndex)
+ {
+ case 0:
+ Result.w = biggestVal;
+ Result.x = (m[1][2] - m[2][1]) * mult;
+ Result.y = (m[2][0] - m[0][2]) * mult;
+ Result.z = (m[0][1] - m[1][0]) * mult;
+ break;
+ case 1:
+ Result.w = (m[1][2] - m[2][1]) * mult;
+ Result.x = biggestVal;
+ Result.y = (m[0][1] + m[1][0]) * mult;
+ Result.z = (m[2][0] + m[0][2]) * mult;
+ break;
+ case 2:
+ Result.w = (m[2][0] - m[0][2]) * mult;
+ Result.x = (m[0][1] + m[1][0]) * mult;
+ Result.y = biggestVal;
+ Result.z = (m[1][2] + m[2][1]) * mult;
+ break;
+ case 3:
+ Result.w = (m[0][1] - m[1][0]) * mult;
+ Result.x = (m[2][0] + m[0][2]) * mult;
+ Result.y = (m[1][2] + m[2][1]) * mult;
+ Result.z = biggestVal;
+ break;
+
+ default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity.
+ assert(false);
+ break;
+ }
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat4x4<T, P> const & m4)
+ {
+ return quat_cast(tmat3x3<T, P>(m4));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x)
+ {
+ return acos(x.w) * T(2);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec3<T, P> axis(tquat<T, P> const & x)
+ {
+ T tmp1 = static_cast<T>(1) - x.w * x.w;
+ if(tmp1 <= static_cast<T>(0))
+ return tvec3<T, P>(0, 0, 1);
+ T tmp2 = static_cast<T>(1) / sqrt(tmp1);
+ return tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2);
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & v)
+ {
+ tquat<T, P> Result(uninitialize);
+
+ T const a(angle);
+ T const s = glm::sin(a * static_cast<T>(0.5));
+
+ Result.w = glm::cos(a * static_cast<T>(0.5));
+ Result.x = v.x * s;
+ Result.y = v.y * s;
+ Result.z = v.z * s;
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y)
+ {
+ tvec4<bool, P> Result(uninitialize);
+ for(length_t i = 0; i < x.length(); ++i)
+ Result[i] = x[i] < y[i];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y)
+ {
+ tvec4<bool, P> Result(uninitialize);
+ for(length_t i = 0; i < x.length(); ++i)
+ Result[i] = x[i] <= y[i];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y)
+ {
+ tvec4<bool, P> Result(uninitialize);
+ for(length_t i = 0; i < x.length(); ++i)
+ Result[i] = x[i] > y[i];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y)
+ {
+ tvec4<bool, P> Result(uninitialize);
+ for(length_t i = 0; i < x.length(); ++i)
+ Result[i] = x[i] >= y[i];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y)
+ {
+ tvec4<bool, P> Result(uninitialize);
+ for(length_t i = 0; i < x.length(); ++i)
+ Result[i] = x[i] == y[i];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y)
+ {
+ tvec4<bool, P> Result(uninitialize);
+ for(length_t i = 0; i < x.length(); ++i)
+ Result[i] = x[i] != y[i];
+ return Result;
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> isnan(tquat<T, P> const& q)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs");
+
+ return tvec4<bool, P>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w));
+ }
+
+ template <typename T, precision P>
+ GLM_FUNC_QUALIFIER tvec4<bool, P> isinf(tquat<T, P> const& q)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs");
+
+ return tvec4<bool, P>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w));
+ }
+}//namespace glm
+
+#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_ALIGNED_TYPE
+# include "quaternion_simd.inl"
+#endif
+
diff --git a/depedencies/include/glm/gtc/quaternion_simd.inl b/depedencies/include/glm/gtc/quaternion_simd.inl
new file mode 100644
index 0000000..cca874b
--- /dev/null
+++ b/depedencies/include/glm/gtc/quaternion_simd.inl
@@ -0,0 +1,198 @@
+/// @ref core
+/// @file glm/gtc/quaternion_simd.inl
+
+#if GLM_ARCH & GLM_ARCH_SSE2_BIT
+
+namespace glm{
+namespace detail
+{
+/*
+ template <precision P>
+ struct compute_quat_mul<float, P, true>
+ {
+ static tquat<float, P> call(tquat<float, P> const& q1, tquat<float, P> const& q2)
+ {
+ // SSE2 STATS: 11 shuffle, 8 mul, 8 add
+ // SSE4 STATS: 3 shuffle, 4 mul, 4 dpps
+
+ __m128 const mul0 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(0, 1, 2, 3)));
+ __m128 const mul1 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(1, 0, 3, 2)));
+ __m128 const mul2 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(2, 3, 0, 1)));
+ __m128 const mul3 = _mm_mul_ps(q1.Data, q2.Data);
+
+# if GLM_ARCH & GLM_ARCH_SSE41_BIT
+ __m128 const add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f), 0xff);
+ __m128 const add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f), 0xff);
+ __m128 const add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f), 0xff);
+ __m128 const add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff);
+# else
+ __m128 const mul4 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f));
+ __m128 const add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul4, mul4));
+ __m128 const add4 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1));
+
+ __m128 const mul5 = _mm_mul_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f));
+ __m128 const add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul5, mul5));
+ __m128 const add5 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1));
+
+ __m128 const mul6 = _mm_mul_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f));
+ __m128 const add2 = _mm_add_ps(mul6, _mm_movehl_ps(mul6, mul6));
+ __m128 const add6 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1));
+
+ __m128 const mul7 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f));
+ __m128 const add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul7, mul7));
+ __m128 const add7 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1));
+ #endif
+
+ // This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than
+ // the final code below. I'll keep this here for reference - maybe somebody else can do something better...
+ //
+ //__m128 xxyy = _mm_shuffle_ps(add4, add5, _MM_SHUFFLE(0, 0, 0, 0));
+ //__m128 zzww = _mm_shuffle_ps(add6, add7, _MM_SHUFFLE(0, 0, 0, 0));
+ //
+ //return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0));
+
+ tquat<float, P> Result(uninitialize);
+ _mm_store_ss(&Result.x, add4);
+ _mm_store_ss(&Result.y, add5);
+ _mm_store_ss(&Result.z, add6);
+ _mm_store_ss(&Result.w, add7);
+ return Result;
+ }
+ };
+*/
+
+ template <precision P>
+ struct compute_dot<tquat, float, P, true>
+ {
+ static GLM_FUNC_QUALIFIER float call(tquat<float, P> const& x, tquat<float, P> const& y)
+ {
+ return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data));
+ }
+ };
+
+ template <precision P>
+ struct compute_quat_add<float, P, true>
+ {
+ static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p)
+ {
+ tquat<float, P> Result(uninitialize);
+ Result.data = _mm_add_ps(q.data, p.data);
+ return Result;
+ }
+ };
+
+# if GLM_ARCH & GLM_ARCH_AVX_BIT
+ template <precision P>
+ struct compute_quat_add<double, P, true>
+ {
+ static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b)
+ {
+ tquat<double, P> Result(uninitialize);
+ Result.data = _mm256_add_pd(a.data, b.data);
+ return Result;
+ }
+ };
+# endif
+
+ template <precision P>
+ struct compute_quat_sub<float, P, true>
+ {
+ static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p)
+ {
+ tvec4<float, P> Result(uninitialize);
+ Result.data = _mm_sub_ps(q.data, p.data);
+ return Result;
+ }
+ };
+
+# if GLM_ARCH & GLM_ARCH_AVX_BIT
+ template <precision P>
+ struct compute_quat_sub<double, P, true>
+ {
+ static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b)
+ {
+ tquat<double, P> Result(uninitialize);
+ Result.data = _mm256_sub_pd(a.data, b.data);
+ return Result;
+ }
+ };
+# endif
+
+ template <precision P>
+ struct compute_quat_mul_scalar<float, P, true>
+ {
+ static tquat<float, P> call(tquat<float, P> const& q, float s)
+ {
+ tvec4<float, P> Result(uninitialize);
+ Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s));
+ return Result;
+ }
+ };
+
+# if GLM_ARCH & GLM_ARCH_AVX_BIT
+ template <precision P>
+ struct compute_quat_mul_scalar<double, P, true>
+ {
+ static tquat<double, P> call(tquat<double, P> const& q, double s)
+ {
+ tquat<double, P> Result(uninitialize);
+ Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s));
+ return Result;
+ }
+ };
+# endif
+
+ template <precision P>
+ struct compute_quat_div_scalar<float, P, true>
+ {
+ static tquat<float, P> call(tquat<float, P> const& q, float s)
+ {
+ tvec4<float, P> Result(uninitialize);
+ Result.data = _mm_div_ps(q.data, _mm_set_ps1(s));
+ return Result;
+ }
+ };
+
+# if GLM_ARCH & GLM_ARCH_AVX_BIT
+ template <precision P>
+ struct compute_quat_div_scalar<double, P, true>
+ {
+ static tquat<double, P> call(tquat<double, P> const& q, double s)
+ {
+ tquat<double, P> Result(uninitialize);
+ Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s));
+ return Result;
+ }
+ };
+# endif
+
+ template <precision P>
+ struct compute_quat_mul_vec4<float, P, true>
+ {
+ static tvec4<float, P> call(tquat<float, P> const& q, tvec4<float, P> const& v)
+ {
+ __m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3));
+ __m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1));
+ __m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2));
+ __m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1));
+ __m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2));
+
+ __m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0));
+ __m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1));
+ __m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2));
+ __m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0));
+
+ __m128 const two = _mm_set1_ps(2.0f);
+ uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two));
+ uuv = _mm_mul_ps(uuv, two);
+
+ tvec4<float, P> Result(uninitialize);
+ Result.data = _mm_add_ps(v.Data, _mm_add_ps(uv, uuv));
+ return Result;
+ }
+ };
+}//namespace detail
+}//namespace glm
+
+#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT
+
diff --git a/depedencies/include/glm/gtc/random.hpp b/depedencies/include/glm/gtc/random.hpp
new file mode 100644
index 0000000..fa3956e
--- /dev/null
+++ b/depedencies/include/glm/gtc/random.hpp
@@ -0,0 +1,98 @@
+/// @ref gtc_random
+/// @file glm/gtc/random.hpp
+///
+/// @see core (dependence)
+/// @see gtc_half_float (dependence)
+/// @see gtx_random (extended)
+///
+/// @defgroup gtc_random GLM_GTC_random
+/// @ingroup gtc
+///
+/// @brief Generate random number from various distribution methods.
+///
+/// <glm/gtc/random.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependency:
+#include "../vec2.hpp"
+#include "../vec3.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_random extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_random
+ /// @{
+
+ /// Generate random numbers in the interval [Min, Max], according a linear distribution
+ ///
+ /// @param Min
+ /// @param Max
+ /// @tparam genType Value type. Currently supported: float or double scalars.
+ /// @see gtc_random
+ template <typename genTYpe>
+ GLM_FUNC_DECL genTYpe linearRand(
+ genTYpe Min,
+ genTYpe Max);
+
+ /// Generate random numbers in the interval [Min, Max], according a linear distribution
+ ///
+ /// @param Min
+ /// @param Max
+ /// @tparam T Value type. Currently supported: float or double.
+ /// @tparam vecType A vertor type: tvec1, tvec2, tvec3, tvec4 or compatible
+ /// @see gtc_random
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> linearRand(
+ vecType<T, P> const & Min,
+ vecType<T, P> const & Max);
+
+ /// Generate random numbers in the interval [Min, Max], according a gaussian distribution
+ ///
+ /// @param Mean
+ /// @param Deviation
+ /// @see gtc_random
+ template <typename genType>
+ GLM_FUNC_DECL genType gaussRand(
+ genType Mean,
+ genType Deviation);
+
+ /// Generate a random 2D vector which coordinates are regulary distributed on a circle of a given radius
+ ///
+ /// @param Radius
+ /// @see gtc_random
+ template <typename T>
+ GLM_FUNC_DECL tvec2<T, defaultp> circularRand(
+ T Radius);
+
+ /// Generate a random 3D vector which coordinates are regulary distributed on a sphere of a given radius
+ ///
+ /// @param Radius
+ /// @see gtc_random
+ template <typename T>
+ GLM_FUNC_DECL tvec3<T, defaultp> sphericalRand(
+ T Radius);
+
+ /// Generate a random 2D vector which coordinates are regulary distributed within the area of a disk of a given radius
+ ///
+ /// @param Radius
+ /// @see gtc_random
+ template <typename T>
+ GLM_FUNC_DECL tvec2<T, defaultp> diskRand(
+ T Radius);
+
+ /// Generate a random 3D vector which coordinates are regulary distributed within the volume of a ball of a given radius
+ ///
+ /// @param Radius
+ /// @see gtc_random
+ template <typename T>
+ GLM_FUNC_DECL tvec3<T, defaultp> ballRand(
+ T Radius);
+
+ /// @}
+}//namespace glm
+
+#include "random.inl"
diff --git a/depedencies/include/glm/gtc/random.inl b/depedencies/include/glm/gtc/random.inl
new file mode 100644
index 0000000..ad5926e
--- /dev/null
+++ b/depedencies/include/glm/gtc/random.inl
@@ -0,0 +1,350 @@
+/// @ref gtc_random
+/// @file glm/gtc/random.inl
+
+#include "../geometric.hpp"
+#include "../exponential.hpp"
+#include <cstdlib>
+#include <ctime>
+#include <cassert>
+
+namespace glm{
+namespace detail
+{
+ template <typename T, precision P, template <class, precision> class vecType>
+ struct compute_rand
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call();
+ };
+
+ template <precision P>
+ struct compute_rand<uint8, P, tvec1>
+ {
+ GLM_FUNC_QUALIFIER static tvec1<uint8, P> call()
+ {
+ return tvec1<uint8, P>(
+ std::rand() % std::numeric_limits<uint8>::max());
+ }
+ };
+
+ template <precision P>
+ struct compute_rand<uint8, P, tvec2>
+ {
+ GLM_FUNC_QUALIFIER static tvec2<uint8, P> call()
+ {
+ return tvec2<uint8, P>(
+ std::rand() % std::numeric_limits<uint8>::max(),
+ std::rand() % std::numeric_limits<uint8>::max());
+ }
+ };
+
+ template <precision P>
+ struct compute_rand<uint8, P, tvec3>
+ {
+ GLM_FUNC_QUALIFIER static tvec3<uint8, P> call()
+ {
+ return tvec3<uint8, P>(
+ std::rand() % std::numeric_limits<uint8>::max(),
+ std::rand() % std::numeric_limits<uint8>::max(),
+ std::rand() % std::numeric_limits<uint8>::max());
+ }
+ };
+
+ template <precision P>
+ struct compute_rand<uint8, P, tvec4>
+ {
+ GLM_FUNC_QUALIFIER static tvec4<uint8, P> call()
+ {
+ return tvec4<uint8, P>(
+ std::rand() % std::numeric_limits<uint8>::max(),
+ std::rand() % std::numeric_limits<uint8>::max(),
+ std::rand() % std::numeric_limits<uint8>::max(),
+ std::rand() % std::numeric_limits<uint8>::max());
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_rand<uint16, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<uint16, P> call()
+ {
+ return
+ (vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(8)) |
+ (vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(0));
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_rand<uint32, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<uint32, P> call()
+ {
+ return
+ (vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(16)) |
+ (vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(0));
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_rand<uint64, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<uint64, P> call()
+ {
+ return
+ (vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(32)) |
+ (vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(0));
+ }
+ };
+
+ template <typename T, precision P, template <class, precision> class vecType>
+ struct compute_linearRand
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & Min, vecType<T, P> const & Max);
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_linearRand<int8, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<int8, P> call(vecType<int8, P> const & Min, vecType<int8, P> const & Max)
+ {
+ return (vecType<int8, P>(compute_rand<uint8, P, vecType>::call() % vecType<uint8, P>(Max + static_cast<int8>(1) - Min))) + Min;
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_linearRand<uint8, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<uint8, P> call(vecType<uint8, P> const & Min, vecType<uint8, P> const & Max)
+ {
+ return (compute_rand<uint8, P, vecType>::call() % (Max + static_cast<uint8>(1) - Min)) + Min;
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_linearRand<int16, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<int16, P> call(vecType<int16, P> const & Min, vecType<int16, P> const & Max)
+ {
+ return (vecType<int16, P>(compute_rand<uint16, P, vecType>::call() % vecType<uint16, P>(Max + static_cast<int16>(1) - Min))) + Min;
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_linearRand<uint16, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<uint16, P> call(vecType<uint16, P> const & Min, vecType<uint16, P> const & Max)
+ {
+ return (compute_rand<uint16, P, vecType>::call() % (Max + static_cast<uint16>(1) - Min)) + Min;
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_linearRand<int32, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<int32, P> call(vecType<int32, P> const & Min, vecType<int32, P> const & Max)
+ {
+ return (vecType<int32, P>(compute_rand<uint32, P, vecType>::call() % vecType<uint32, P>(Max + static_cast<int32>(1) - Min))) + Min;
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_linearRand<uint32, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<uint32, P> call(vecType<uint32, P> const & Min, vecType<uint32, P> const & Max)
+ {
+ return (compute_rand<uint32, P, vecType>::call() % (Max + static_cast<uint32>(1) - Min)) + Min;
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_linearRand<int64, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<int64, P> call(vecType<int64, P> const & Min, vecType<int64, P> const & Max)
+ {
+ return (vecType<int64, P>(compute_rand<uint64, P, vecType>::call() % vecType<uint64, P>(Max + static_cast<int64>(1) - Min))) + Min;
+ }
+ };
+
+ template <precision P, template <class, precision> class vecType>
+ struct compute_linearRand<uint64, P, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<uint64, P> call(vecType<uint64, P> const & Min, vecType<uint64, P> const & Max)
+ {
+ return (compute_rand<uint64, P, vecType>::call() % (Max + static_cast<uint64>(1) - Min)) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<float, lowp, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<float, lowp> call(vecType<float, lowp> const & Min, vecType<float, lowp> const & Max)
+ {
+ return vecType<float, lowp>(compute_rand<uint8, lowp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint8>::max()) * (Max - Min) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<float, mediump, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<float, mediump> call(vecType<float, mediump> const & Min, vecType<float, mediump> const & Max)
+ {
+ return vecType<float, mediump>(compute_rand<uint16, mediump, vecType>::call()) / static_cast<float>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<float, highp, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<float, highp> call(vecType<float, highp> const & Min, vecType<float, highp> const & Max)
+ {
+ return vecType<float, highp>(compute_rand<uint32, highp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<double, lowp, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<double, lowp> call(vecType<double, lowp> const & Min, vecType<double, lowp> const & Max)
+ {
+ return vecType<double, lowp>(compute_rand<uint16, lowp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<double, mediump, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<double, mediump> call(vecType<double, mediump> const & Min, vecType<double, mediump> const & Max)
+ {
+ return vecType<double, mediump>(compute_rand<uint32, mediump, vecType>::call()) / static_cast<double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<double, highp, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<double, highp> call(vecType<double, highp> const & Min, vecType<double, highp> const & Max)
+ {
+ return vecType<double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<long double, lowp, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<long double, lowp> call(vecType<long double, lowp> const & Min, vecType<long double, lowp> const & Max)
+ {
+ return vecType<long double, lowp>(compute_rand<uint32, lowp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<long double, mediump, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<long double, mediump> call(vecType<long double, mediump> const & Min, vecType<long double, mediump> const & Max)
+ {
+ return vecType<long double, mediump>(compute_rand<uint64, mediump, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
+ }
+ };
+
+ template <template <class, precision> class vecType>
+ struct compute_linearRand<long double, highp, vecType>
+ {
+ GLM_FUNC_QUALIFIER static vecType<long double, highp> call(vecType<long double, highp> const & Min, vecType<long double, highp> const & Max)
+ {
+ return vecType<long double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
+ }
+ };
+}//namespace detail
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max)
+ {
+ return detail::compute_linearRand<genType, highp, tvec1>::call(
+ tvec1<genType, highp>(Min),
+ tvec1<genType, highp>(Max)).x;
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> linearRand(vecType<T, P> const & Min, vecType<T, P> const & Max)
+ {
+ return detail::compute_linearRand<T, P, vecType>::call(Min, Max);
+ }
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation)
+ {
+ genType w, x1, x2;
+
+ do
+ {
+ x1 = linearRand(genType(-1), genType(1));
+ x2 = linearRand(genType(-1), genType(1));
+
+ w = x1 * x1 + x2 * x2;
+ } while(w > genType(1));
+
+ return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean;
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> gaussRand(vecType<T, P> const & Mean, vecType<T, P> const & Deviation)
+ {
+ return detail::functor2<T, P, vecType>::call(gaussRand, Mean, Deviation);
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tvec2<T, defaultp> diskRand(T Radius)
+ {
+ tvec2<T, defaultp> Result(T(0));
+ T LenRadius(T(0));
+
+ do
+ {
+ Result = linearRand(
+ tvec2<T, defaultp>(-Radius),
+ tvec2<T, defaultp>(Radius));
+ LenRadius = length(Result);
+ }
+ while(LenRadius > Radius);
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tvec3<T, defaultp> ballRand(T Radius)
+ {
+ tvec3<T, defaultp> Result(T(0));
+ T LenRadius(T(0));
+
+ do
+ {
+ Result = linearRand(
+ tvec3<T, defaultp>(-Radius),
+ tvec3<T, defaultp>(Radius));
+ LenRadius = length(Result);
+ }
+ while(LenRadius > Radius);
+
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tvec2<T, defaultp> circularRand(T Radius)
+ {
+ T a = linearRand(T(0), T(6.283185307179586476925286766559f));
+ return tvec2<T, defaultp>(cos(a), sin(a)) * Radius;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER tvec3<T, defaultp> sphericalRand(T Radius)
+ {
+ T z = linearRand(T(-1), T(1));
+ T a = linearRand(T(0), T(6.283185307179586476925286766559f));
+
+ T r = sqrt(T(1) - z * z);
+
+ T x = r * cos(a);
+ T y = r * sin(a);
+
+ return tvec3<T, defaultp>(x, y, z) * Radius;
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/reciprocal.hpp b/depedencies/include/glm/gtc/reciprocal.hpp
new file mode 100644
index 0000000..c14a4fe
--- /dev/null
+++ b/depedencies/include/glm/gtc/reciprocal.hpp
@@ -0,0 +1,135 @@
+/// @ref gtc_reciprocal
+/// @file glm/gtc/reciprocal.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_reciprocal GLM_GTC_reciprocal
+/// @ingroup gtc
+///
+/// @brief Define secant, cosecant and cotangent functions.
+///
+/// <glm/gtc/reciprocal.hpp> need to be included to use these features.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_reciprocal extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_reciprocal
+ /// @{
+
+ /// Secant function.
+ /// hypotenuse / adjacent or 1 / cos(x)
+ ///
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType sec(genType angle);
+
+ /// Cosecant function.
+ /// hypotenuse / opposite or 1 / sin(x)
+ ///
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType csc(genType angle);
+
+ /// Cotangent function.
+ /// adjacent / opposite or 1 / tan(x)
+ ///
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType cot(genType angle);
+
+ /// Inverse secant function.
+ ///
+ /// @return Return an angle expressed in radians.
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType asec(genType x);
+
+ /// Inverse cosecant function.
+ ///
+ /// @return Return an angle expressed in radians.
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType acsc(genType x);
+
+ /// Inverse cotangent function.
+ ///
+ /// @return Return an angle expressed in radians.
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType acot(genType x);
+
+ /// Secant hyperbolic function.
+ ///
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType sech(genType angle);
+
+ /// Cosecant hyperbolic function.
+ ///
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType csch(genType angle);
+
+ /// Cotangent hyperbolic function.
+ ///
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType coth(genType angle);
+
+ /// Inverse secant hyperbolic function.
+ ///
+ /// @return Return an angle expressed in radians.
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType asech(genType x);
+
+ /// Inverse cosecant hyperbolic function.
+ ///
+ /// @return Return an angle expressed in radians.
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType acsch(genType x);
+
+ /// Inverse cotangent hyperbolic function.
+ ///
+ /// @return Return an angle expressed in radians.
+ /// @tparam genType Floating-point scalar or vector types.
+ ///
+ /// @see gtc_reciprocal
+ template <typename genType>
+ GLM_FUNC_DECL genType acoth(genType x);
+
+ /// @}
+}//namespace glm
+
+#include "reciprocal.inl"
diff --git a/depedencies/include/glm/gtc/reciprocal.inl b/depedencies/include/glm/gtc/reciprocal.inl
new file mode 100644
index 0000000..c625ac9
--- /dev/null
+++ b/depedencies/include/glm/gtc/reciprocal.inl
@@ -0,0 +1,192 @@
+/// @ref gtc_reciprocal
+/// @file glm/gtc/reciprocal.inl
+
+#include "../trigonometric.hpp"
+#include <limits>
+
+namespace glm
+{
+ // sec
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType sec(genType angle)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sec' only accept floating-point values");
+ return genType(1) / glm::cos(angle);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> sec(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sec' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(sec, x);
+ }
+
+ // csc
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType csc(genType angle)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csc' only accept floating-point values");
+ return genType(1) / glm::sin(angle);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> csc(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csc' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(csc, x);
+ }
+
+ // cot
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType cot(genType angle)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cot' only accept floating-point values");
+
+ genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0);
+ return glm::tan(pi_over_2 - angle);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> cot(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cot' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(cot, x);
+ }
+
+ // asec
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType asec(genType x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asec' only accept floating-point values");
+ return acos(genType(1) / x);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> asec(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asec' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(asec, x);
+ }
+
+ // acsc
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType acsc(genType x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsc' only accept floating-point values");
+ return asin(genType(1) / x);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> acsc(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsc' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(acsc, x);
+ }
+
+ // acot
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType acot(genType x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acot' only accept floating-point values");
+
+ genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0);
+ return pi_over_2 - atan(x);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> acot(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acot' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(acot, x);
+ }
+
+ // sech
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType sech(genType angle)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sech' only accept floating-point values");
+ return genType(1) / glm::cosh(angle);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> sech(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sech' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(sech, x);
+ }
+
+ // csch
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType csch(genType angle)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csch' only accept floating-point values");
+ return genType(1) / glm::sinh(angle);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> csch(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csch' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(csch, x);
+ }
+
+ // coth
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType coth(genType angle)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'coth' only accept floating-point values");
+ return glm::cosh(angle) / glm::sinh(angle);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> coth(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'coth' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(coth, x);
+ }
+
+ // asech
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType asech(genType x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asech' only accept floating-point values");
+ return acosh(genType(1) / x);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> asech(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asech' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(asech, x);
+ }
+
+ // acsch
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType acsch(genType x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsch' only accept floating-point values");
+ return acsch(genType(1) / x);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> acsch(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsch' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(acsch, x);
+ }
+
+ // acoth
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType acoth(genType x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acoth' only accept floating-point values");
+ return atanh(genType(1) / x);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> acoth(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acoth' only accept floating-point inputs");
+ return detail::functor1<T, T, P, vecType>::call(acoth, x);
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/round.hpp b/depedencies/include/glm/gtc/round.hpp
new file mode 100644
index 0000000..a583592
--- /dev/null
+++ b/depedencies/include/glm/gtc/round.hpp
@@ -0,0 +1,174 @@
+/// @ref gtc_round
+/// @file glm/gtc/round.hpp
+///
+/// @see core (dependence)
+/// @see gtc_round (dependence)
+///
+/// @defgroup gtc_round GLM_GTC_round
+/// @ingroup gtc
+///
+/// @brief rounding value to specific boundings
+///
+/// <glm/gtc/round.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../detail/precision.hpp"
+#include "../detail/_vectorize.hpp"
+#include "../vector_relational.hpp"
+#include "../common.hpp"
+#include <limits>
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_integer extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_round
+ /// @{
+
+ /// Return true if the value is a power of two number.
+ ///
+ /// @see gtc_round
+ template <typename genIUType>
+ GLM_FUNC_DECL bool isPowerOfTwo(genIUType Value);
+
+ /// Return true if the value is a power of two number.
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<bool, P> isPowerOfTwo(vecType<T, P> const & value);
+
+ /// Return the power of two number which value is just higher the input value,
+ /// round up to a power of two.
+ ///
+ /// @see gtc_round
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType Value);
+
+ /// Return the power of two number which value is just higher the input value,
+ /// round up to a power of two.
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & value);
+
+ /// Return the power of two number which value is just lower the input value,
+ /// round down to a power of two.
+ ///
+ /// @see gtc_round
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType Value);
+
+ /// Return the power of two number which value is just lower the input value,
+ /// round down to a power of two.
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> floorPowerOfTwo(vecType<T, P> const & value);
+
+ /// Return the power of two number which value is the closet to the input value.
+ ///
+ /// @see gtc_round
+ template <typename genIUType>
+ GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType Value);
+
+ /// Return the power of two number which value is the closet to the input value.
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> roundPowerOfTwo(vecType<T, P> const & value);
+
+ /// Return true if the 'Value' is a multiple of 'Multiple'.
+ ///
+ /// @see gtc_round
+ template <typename genIUType>
+ GLM_FUNC_DECL bool isMultiple(genIUType Value, genIUType Multiple);
+
+ /// Return true if the 'Value' is a multiple of 'Multiple'.
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple);
+
+ /// Return true if the 'Value' is a multiple of 'Multiple'.
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple);
+
+ /// Higher multiple number of Source.
+ ///
+ /// @tparam genType Floating-point or integer scalar or vector types.
+ /// @param Source
+ /// @param Multiple Must be a null or positive value
+ ///
+ /// @see gtc_round
+ template <typename genType>
+ GLM_FUNC_DECL genType ceilMultiple(genType Source, genType Multiple);
+
+ /// Higher multiple number of Source.
+ ///
+ /// @tparam genType Floating-point or integer scalar or vector types.
+ /// @param Source
+ /// @param Multiple Must be a null or positive value
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple);
+
+ /// Lower multiple number of Source.
+ ///
+ /// @tparam genType Floating-point or integer scalar or vector types.
+ /// @param Source
+ /// @param Multiple Must be a null or positive value
+ ///
+ /// @see gtc_round
+ template <typename genType>
+ GLM_FUNC_DECL genType floorMultiple(
+ genType Source,
+ genType Multiple);
+
+ /// Lower multiple number of Source.
+ ///
+ /// @tparam genType Floating-point or integer scalar or vector types.
+ /// @param Source
+ /// @param Multiple Must be a null or positive value
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> floorMultiple(
+ vecType<T, P> const & Source,
+ vecType<T, P> const & Multiple);
+
+ /// Lower multiple number of Source.
+ ///
+ /// @tparam genType Floating-point or integer scalar or vector types.
+ /// @param Source
+ /// @param Multiple Must be a null or positive value
+ ///
+ /// @see gtc_round
+ template <typename genType>
+ GLM_FUNC_DECL genType roundMultiple(
+ genType Source,
+ genType Multiple);
+
+ /// Lower multiple number of Source.
+ ///
+ /// @tparam genType Floating-point or integer scalar or vector types.
+ /// @param Source
+ /// @param Multiple Must be a null or positive value
+ ///
+ /// @see gtc_round
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_DECL vecType<T, P> roundMultiple(
+ vecType<T, P> const & Source,
+ vecType<T, P> const & Multiple);
+
+ /// @}
+} //namespace glm
+
+#include "round.inl"
diff --git a/depedencies/include/glm/gtc/round.inl b/depedencies/include/glm/gtc/round.inl
new file mode 100644
index 0000000..f583c40
--- /dev/null
+++ b/depedencies/include/glm/gtc/round.inl
@@ -0,0 +1,344 @@
+/// @ref gtc_round
+/// @file glm/gtc/round.inl
+
+#include "../detail/func_integer.hpp"
+
+namespace glm{
+namespace detail
+{
+ template <typename T, precision P, template <typename, precision> class vecType, bool compute = false>
+ struct compute_ceilShift
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T)
+ {
+ return v;
+ }
+ };
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ struct compute_ceilShift<T, P, vecType, true>
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Shift)
+ {
+ return v | (v >> Shift);
+ }
+ };
+
+ template <typename T, precision P, template <typename, precision> class vecType, bool isSigned = true>
+ struct compute_ceilPowerOfTwo
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
+
+ vecType<T, P> const Sign(sign(x));
+
+ vecType<T, P> v(abs(x));
+
+ v = v - static_cast<T>(1);
+ v = v | (v >> static_cast<T>(1));
+ v = v | (v >> static_cast<T>(2));
+ v = v | (v >> static_cast<T>(4));
+ v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8);
+ v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16);
+ v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32);
+ return (v + static_cast<T>(1)) * Sign;
+ }
+ };
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ struct compute_ceilPowerOfTwo<T, P, vecType, false>
+ {
+ GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
+ {
+ GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
+
+ vecType<T, P> v(x);
+
+ v = v - static_cast<T>(1);
+ v = v | (v >> static_cast<T>(1));
+ v = v | (v >> static_cast<T>(2));
+ v = v | (v >> static_cast<T>(4));
+ v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8);
+ v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16);
+ v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32);
+ return v + static_cast<T>(1);
+ }
+ };
+
+ template <bool is_float, bool is_signed>
+ struct compute_ceilMultiple{};
+
+ template <>
+ struct compute_ceilMultiple<true, true>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ if(Source > genType(0))
+ return Source + (Multiple - std::fmod(Source, Multiple));
+ else
+ return Source + std::fmod(-Source, Multiple);
+ }
+ };
+
+ template <>
+ struct compute_ceilMultiple<false, false>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ genType Tmp = Source - genType(1);
+ return Tmp + (Multiple - (Tmp % Multiple));
+ }
+ };
+
+ template <>
+ struct compute_ceilMultiple<false, true>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ if(Source > genType(0))
+ {
+ genType Tmp = Source - genType(1);
+ return Tmp + (Multiple - (Tmp % Multiple));
+ }
+ else
+ return Source + (-Source % Multiple);
+ }
+ };
+
+ template <bool is_float, bool is_signed>
+ struct compute_floorMultiple{};
+
+ template <>
+ struct compute_floorMultiple<true, true>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ if(Source >= genType(0))
+ return Source - std::fmod(Source, Multiple);
+ else
+ return Source - std::fmod(Source, Multiple) - Multiple;
+ }
+ };
+
+ template <>
+ struct compute_floorMultiple<false, false>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ if(Source >= genType(0))
+ return Source - Source % Multiple;
+ else
+ {
+ genType Tmp = Source + genType(1);
+ return Tmp - Tmp % Multiple - Multiple;
+ }
+ }
+ };
+
+ template <>
+ struct compute_floorMultiple<false, true>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ if(Source >= genType(0))
+ return Source - Source % Multiple;
+ else
+ {
+ genType Tmp = Source + genType(1);
+ return Tmp - Tmp % Multiple - Multiple;
+ }
+ }
+ };
+
+ template <bool is_float, bool is_signed>
+ struct compute_roundMultiple{};
+
+ template <>
+ struct compute_roundMultiple<true, true>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ if(Source >= genType(0))
+ return Source - std::fmod(Source, Multiple);
+ else
+ {
+ genType Tmp = Source + genType(1);
+ return Tmp - std::fmod(Tmp, Multiple) - Multiple;
+ }
+ }
+ };
+
+ template <>
+ struct compute_roundMultiple<false, false>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ if(Source >= genType(0))
+ return Source - Source % Multiple;
+ else
+ {
+ genType Tmp = Source + genType(1);
+ return Tmp - Tmp % Multiple - Multiple;
+ }
+ }
+ };
+
+ template <>
+ struct compute_roundMultiple<false, true>
+ {
+ template <typename genType>
+ GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
+ {
+ if(Source >= genType(0))
+ return Source - Source % Multiple;
+ else
+ {
+ genType Tmp = Source + genType(1);
+ return Tmp - Tmp % Multiple - Multiple;
+ }
+ }
+ };
+}//namespace detail
+
+ ////////////////
+ // isPowerOfTwo
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value)
+ {
+ genType const Result = glm::abs(Value);
+ return !(Result & (Result - 1));
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<bool, P> isPowerOfTwo(vecType<T, P> const & Value)
+ {
+ vecType<T, P> const Result(abs(Value));
+ return equal(Result & (Result - 1), vecType<T, P>(0));
+ }
+
+ //////////////////
+ // ceilPowerOfTwo
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value)
+ {
+ return detail::compute_ceilPowerOfTwo<genType, defaultp, tvec1, std::numeric_limits<genType>::is_signed>::call(tvec1<genType, defaultp>(value)).x;
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & v)
+ {
+ return detail::compute_ceilPowerOfTwo<T, P, vecType, std::numeric_limits<T>::is_signed>::call(v);
+ }
+
+ ///////////////////
+ // floorPowerOfTwo
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value)
+ {
+ return isPowerOfTwo(value) ? value : static_cast<genType>(1) << findMSB(value);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> floorPowerOfTwo(vecType<T, P> const & v)
+ {
+ return detail::functor1<T, T, P, vecType>::call(floorPowerOfTwo, v);
+ }
+
+ ///////////////////
+ // roundPowerOfTwo
+
+ template <typename genIUType>
+ GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value)
+ {
+ if(isPowerOfTwo(value))
+ return value;
+
+ genIUType const prev = static_cast<genIUType>(1) << findMSB(value);
+ genIUType const next = prev << static_cast<genIUType>(1);
+ return (next - value) < (value - prev) ? next : prev;
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> roundPowerOfTwo(vecType<T, P> const & v)
+ {
+ return detail::functor1<T, T, P, vecType>::call(roundPowerOfTwo, v);
+ }
+
+ ////////////////
+ // isMultiple
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple)
+ {
+ return isMultiple(tvec1<genType>(Value), tvec1<genType>(Multiple)).x;
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple)
+ {
+ return (Value % Multiple) == vecType<T, P>(0);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple)
+ {
+ return (Value % Multiple) == vecType<T, P>(0);
+ }
+
+ //////////////////////
+ // ceilMultiple
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple)
+ {
+ return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
+ {
+ return detail::functor2<T, P, vecType>::call(ceilMultiple, Source, Multiple);
+ }
+
+ //////////////////////
+ // floorMultiple
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple)
+ {
+ return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> floorMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
+ {
+ return detail::functor2<T, P, vecType>::call(floorMultiple, Source, Multiple);
+ }
+
+ //////////////////////
+ // roundMultiple
+
+ template <typename genType>
+ GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple)
+ {
+ return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
+ }
+
+ template <typename T, precision P, template <typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> roundMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
+ {
+ return detail::functor2<T, P, vecType>::call(roundMultiple, Source, Multiple);
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/type_aligned.hpp b/depedencies/include/glm/gtc/type_aligned.hpp
new file mode 100644
index 0000000..2e4503c
--- /dev/null
+++ b/depedencies/include/glm/gtc/type_aligned.hpp
@@ -0,0 +1,362 @@
+/// @ref gtc_type_aligned
+/// @file glm/gtc/type_aligned.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_type_aligned GLM_GTC_type_aligned
+/// @ingroup gtc
+///
+/// @brief Aligned types.
+/// <glm/gtc/type_aligned.hpp> need to be included to use these features.
+
+#pragma once
+
+#if !GLM_HAS_ALIGNED_TYPE
+# error "GLM: Aligned types are not supported on this platform"
+#endif
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_type_aligned extension included")
+#endif
+
+#include "../vec2.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+#include "../gtc/vec1.hpp"
+
+namespace glm
+{
+ template <typename T, precision P> struct tvec1;
+ template <typename T, precision P> struct tvec2;
+ template <typename T, precision P> struct tvec3;
+ template <typename T, precision P> struct tvec4;
+ /// @addtogroup gtc_type_aligned
+ /// @{
+
+ // -- *vec1 --
+
+ typedef tvec1<float, aligned_highp> aligned_highp_vec1;
+ typedef tvec1<float, aligned_mediump> aligned_mediump_vec1;
+ typedef tvec1<float, aligned_lowp> aligned_lowp_vec1;
+ typedef tvec1<double, aligned_highp> aligned_highp_dvec1;
+ typedef tvec1<double, aligned_mediump> aligned_mediump_dvec1;
+ typedef tvec1<double, aligned_lowp> aligned_lowp_dvec1;
+ typedef tvec1<int, aligned_highp> aligned_highp_ivec1;
+ typedef tvec1<int, aligned_mediump> aligned_mediump_ivec1;
+ typedef tvec1<int, aligned_lowp> aligned_lowp_ivec1;
+ typedef tvec1<uint, aligned_highp> aligned_highp_uvec1;
+ typedef tvec1<uint, aligned_mediump> aligned_mediump_uvec1;
+ typedef tvec1<uint, aligned_lowp> aligned_lowp_uvec1;
+ typedef tvec1<bool, aligned_highp> aligned_highp_bvec1;
+ typedef tvec1<bool, aligned_mediump> aligned_mediump_bvec1;
+ typedef tvec1<bool, aligned_lowp> aligned_lowp_bvec1;
+
+ typedef tvec1<float, packed_highp> packed_highp_vec1;
+ typedef tvec1<float, packed_mediump> packed_mediump_vec1;
+ typedef tvec1<float, packed_lowp> packed_lowp_vec1;
+ typedef tvec1<double, packed_highp> packed_highp_dvec1;
+ typedef tvec1<double, packed_mediump> packed_mediump_dvec1;
+ typedef tvec1<double, packed_lowp> packed_lowp_dvec1;
+ typedef tvec1<int, packed_highp> packed_highp_ivec1;
+ typedef tvec1<int, packed_mediump> packed_mediump_ivec1;
+ typedef tvec1<int, packed_lowp> packed_lowp_ivec1;
+ typedef tvec1<uint, packed_highp> packed_highp_uvec1;
+ typedef tvec1<uint, packed_mediump> packed_mediump_uvec1;
+ typedef tvec1<uint, packed_lowp> packed_lowp_uvec1;
+ typedef tvec1<bool, packed_highp> packed_highp_bvec1;
+ typedef tvec1<bool, packed_mediump> packed_mediump_bvec1;
+ typedef tvec1<bool, packed_lowp> packed_lowp_bvec1;
+
+ // -- *vec2 --
+
+ /// 2 components vector of high single-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<float, aligned_highp> aligned_highp_vec2;
+
+ /// 2 components vector of medium single-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<float, aligned_mediump> aligned_mediump_vec2;
+
+ /// 2 components vector of low single-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<float, aligned_lowp> aligned_lowp_vec2;
+
+ /// 2 components vector of high double-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<double, aligned_highp> aligned_highp_dvec2;
+
+ /// 2 components vector of medium double-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<double, aligned_mediump> aligned_mediump_dvec2;
+
+ /// 2 components vector of low double-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<double, aligned_lowp> aligned_lowp_dvec2;
+
+ /// 2 components vector of high precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<int, aligned_highp> aligned_highp_ivec2;
+
+ /// 2 components vector of medium precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<int, aligned_mediump> aligned_mediump_ivec2;
+
+ /// 2 components vector of low precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<int, aligned_lowp> aligned_lowp_ivec2;
+
+ /// 2 components vector of high precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<uint, aligned_highp> aligned_highp_uvec2;
+
+ /// 2 components vector of medium precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<uint, aligned_mediump> aligned_mediump_uvec2;
+
+ /// 2 components vector of low precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<uint, aligned_lowp> aligned_lowp_uvec2;
+
+ /// 2 components vector of high precision bool numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<bool, aligned_highp> aligned_highp_bvec2;
+
+ /// 2 components vector of medium precision bool numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<bool, aligned_mediump> aligned_mediump_bvec2;
+
+ /// 2 components vector of low precision bool numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec2<bool, aligned_lowp> aligned_lowp_bvec2;
+
+ // -- *vec3 --
+
+ /// 3 components vector of high single-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<float, aligned_highp> aligned_highp_vec3;
+
+ /// 3 components vector of medium single-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<float, aligned_mediump> aligned_mediump_vec3;
+
+ /// 3 components vector of low single-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<float, aligned_lowp> aligned_lowp_vec3;
+
+ /// 3 components vector of high double-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<double, aligned_highp> aligned_highp_dvec3;
+
+ /// 3 components vector of medium double-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<double, aligned_mediump> aligned_mediump_dvec3;
+
+ /// 3 components vector of low double-precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<double, aligned_lowp> aligned_lowp_dvec3;
+
+ /// 3 components vector of high precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<int, aligned_highp> aligned_highp_ivec3;
+
+ /// 3 components vector of medium precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<int, aligned_mediump> aligned_mediump_ivec3;
+
+ /// 3 components vector of low precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<int, aligned_lowp> aligned_lowp_ivec3;
+
+ /// 3 components vector of high precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<uint, aligned_highp> aligned_highp_uvec3;
+
+ /// 3 components vector of medium precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<uint, aligned_mediump> aligned_mediump_uvec3;
+
+ /// 3 components vector of low precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ typedef tvec3<uint, aligned_lowp> aligned_lowp_uvec3;
+
+ /// 3 components vector of high precision bool numbers.
+ typedef tvec3<bool, aligned_highp> aligned_highp_bvec3;
+
+ /// 3 components vector of medium precision bool numbers.
+ typedef tvec3<bool, aligned_mediump> aligned_mediump_bvec3;
+
+ /// 3 components vector of low precision bool numbers.
+ typedef tvec3<bool, aligned_lowp> aligned_lowp_bvec3;
+
+ // -- *vec4 --
+
+ /// 4 components vector of high single-precision floating-point numbers.
+ typedef tvec4<float, aligned_highp> aligned_highp_vec4;
+
+ /// 4 components vector of medium single-precision floating-point numbers.
+ typedef tvec4<float, aligned_mediump> aligned_mediump_vec4;
+
+ /// 4 components vector of low single-precision floating-point numbers.
+ typedef tvec4<float, aligned_lowp> aligned_lowp_vec4;
+
+ /// 4 components vector of high double-precision floating-point numbers.
+ typedef tvec4<double, aligned_highp> aligned_highp_dvec4;
+
+ /// 4 components vector of medium double-precision floating-point numbers.
+ typedef tvec4<double, aligned_mediump> aligned_mediump_dvec4;
+
+ /// 4 components vector of low double-precision floating-point numbers.
+ typedef tvec4<double, aligned_lowp> aligned_lowp_dvec4;
+
+ /// 4 components vector of high precision signed integer numbers.
+ typedef tvec4<int, aligned_highp> aligned_highp_ivec4;
+
+ /// 4 components vector of medium precision signed integer numbers.
+ typedef tvec4<int, aligned_mediump> aligned_mediump_ivec4;
+
+ /// 4 components vector of low precision signed integer numbers.
+ typedef tvec4<int, aligned_lowp> aligned_lowp_ivec4;
+
+ /// 4 components vector of high precision unsigned integer numbers.
+ typedef tvec4<uint, aligned_highp> aligned_highp_uvec4;
+
+ /// 4 components vector of medium precision unsigned integer numbers.
+ typedef tvec4<uint, aligned_mediump> aligned_mediump_uvec4;
+
+ /// 4 components vector of low precision unsigned integer numbers.
+ typedef tvec4<uint, aligned_lowp> aligned_lowp_uvec4;
+
+ /// 4 components vector of high precision bool numbers.
+ typedef tvec4<bool, aligned_highp> aligned_highp_bvec4;
+
+ /// 4 components vector of medium precision bool numbers.
+ typedef tvec4<bool, aligned_mediump> aligned_mediump_bvec4;
+
+ /// 4 components vector of low precision bool numbers.
+ typedef tvec4<bool, aligned_lowp> aligned_lowp_bvec4;
+
+ // -- default --
+
+#if(defined(GLM_PRECISION_LOWP_FLOAT))
+ typedef aligned_lowp_vec1 aligned_vec1;
+ typedef aligned_lowp_vec2 aligned_vec2;
+ typedef aligned_lowp_vec3 aligned_vec3;
+ typedef aligned_lowp_vec4 aligned_vec4;
+#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT))
+ typedef aligned_mediump_vec1 aligned_vec1;
+ typedef aligned_mediump_vec2 aligned_vec2;
+ typedef aligned_mediump_vec3 aligned_vec3;
+ typedef aligned_mediump_vec4 aligned_vec4;
+#else //defined(GLM_PRECISION_HIGHP_FLOAT)
+ /// 1 component vector of floating-point numbers.
+ typedef aligned_highp_vec1 aligned_vec1;
+
+ /// 2 components vector of floating-point numbers.
+ typedef aligned_highp_vec2 aligned_vec2;
+
+ /// 3 components vector of floating-point numbers.
+ typedef aligned_highp_vec3 aligned_vec3;
+
+ /// 4 components vector of floating-point numbers.
+ typedef aligned_highp_vec4 aligned_vec4;
+#endif//GLM_PRECISION
+
+#if(defined(GLM_PRECISION_LOWP_DOUBLE))
+ typedef aligned_lowp_dvec1 aligned_dvec1;
+ typedef aligned_lowp_dvec2 aligned_dvec2;
+ typedef aligned_lowp_dvec3 aligned_dvec3;
+ typedef aligned_lowp_dvec4 aligned_dvec4;
+#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE))
+ typedef aligned_mediump_dvec1 aligned_dvec1;
+ typedef aligned_mediump_dvec2 aligned_dvec2;
+ typedef aligned_mediump_dvec3 aligned_dvec3;
+ typedef aligned_mediump_dvec4 aligned_dvec4;
+#else //defined(GLM_PRECISION_HIGHP_DOUBLE)
+ /// 1 component vector of double-precision floating-point numbers.
+ typedef aligned_highp_dvec1 aligned_dvec1;
+
+ /// 2 components vector of double-precision floating-point numbers.
+ typedef aligned_highp_dvec2 aligned_dvec2;
+
+ /// 3 components vector of double-precision floating-point numbers.
+ typedef aligned_highp_dvec3 aligned_dvec3;
+
+ /// 4 components vector of double-precision floating-point numbers.
+ typedef aligned_highp_dvec4 aligned_dvec4;
+#endif//GLM_PRECISION
+
+#if(defined(GLM_PRECISION_LOWP_INT))
+ typedef aligned_lowp_ivec1 aligned_ivec1;
+ typedef aligned_lowp_ivec2 aligned_ivec2;
+ typedef aligned_lowp_ivec3 aligned_ivec3;
+ typedef aligned_lowp_ivec4 aligned_ivec4;
+#elif(defined(GLM_PRECISION_MEDIUMP_INT))
+ typedef aligned_mediump_ivec1 aligned_ivec1;
+ typedef aligned_mediump_ivec2 aligned_ivec2;
+ typedef aligned_mediump_ivec3 aligned_ivec3;
+ typedef aligned_mediump_ivec4 aligned_ivec4;
+#else //defined(GLM_PRECISION_HIGHP_INT)
+ /// 1 component vector of signed integer numbers.
+ typedef aligned_highp_ivec1 aligned_ivec1;
+
+ /// 2 components vector of signed integer numbers.
+ typedef aligned_highp_ivec2 aligned_ivec2;
+
+ /// 3 components vector of signed integer numbers.
+ typedef aligned_highp_ivec3 aligned_ivec3;
+
+ /// 4 components vector of signed integer numbers.
+ typedef aligned_highp_ivec4 aligned_ivec4;
+#endif//GLM_PRECISION
+
+ // -- Unsigned integer definition --
+
+#if(defined(GLM_PRECISION_LOWP_UINT))
+ typedef aligned_lowp_uvec1 aligned_uvec1;
+ typedef aligned_lowp_uvec2 aligned_uvec2;
+ typedef aligned_lowp_uvec3 aligned_uvec3;
+ typedef aligned_lowp_uvec4 aligned_uvec4;
+#elif(defined(GLM_PRECISION_MEDIUMP_UINT))
+ typedef aligned_mediump_uvec1 aligned_uvec1;
+ typedef aligned_mediump_uvec2 aligned_uvec2;
+ typedef aligned_mediump_uvec3 aligned_uvec3;
+ typedef aligned_mediump_uvec4 aligned_uvec4;
+#else //defined(GLM_PRECISION_HIGHP_UINT)
+ /// 1 component vector of unsigned integer numbers.
+ typedef aligned_highp_uvec1 aligned_uvec1;
+
+ /// 2 components vector of unsigned integer numbers.
+ typedef aligned_highp_uvec2 aligned_uvec2;
+
+ /// 3 components vector of unsigned integer numbers.
+ typedef aligned_highp_uvec3 aligned_uvec3;
+
+ /// 4 components vector of unsigned integer numbers.
+ typedef aligned_highp_uvec4 aligned_uvec4;
+#endif//GLM_PRECISION
+
+#if(defined(GLM_PRECISION_LOWP_BOOL))
+ typedef aligned_lowp_bvec1 aligned_bvec1;
+ typedef aligned_lowp_bvec2 aligned_bvec2;
+ typedef aligned_lowp_bvec3 aligned_bvec3;
+ typedef aligned_lowp_bvec4 aligned_bvec4;
+#elif(defined(GLM_PRECISION_MEDIUMP_BOOL))
+ typedef aligned_mediump_bvec1 aligned_bvec1;
+ typedef aligned_mediump_bvec2 aligned_bvec2;
+ typedef aligned_mediump_bvec3 aligned_bvec3;
+ typedef aligned_mediump_bvec4 aligned_bvec4;
+#else //defined(GLM_PRECISION_HIGHP_BOOL)
+ /// 1 component vector of boolean.
+ typedef aligned_highp_bvec1 aligned_bvec1;
+
+ /// 2 components vector of boolean.
+ typedef aligned_highp_bvec2 aligned_bvec2;
+
+ /// 3 components vector of boolean.
+ typedef aligned_highp_bvec3 aligned_bvec3;
+
+ /// 4 components vector of boolean.
+ typedef aligned_highp_bvec4 aligned_bvec4;
+#endif//GLM_PRECISION
+
+ /// @}
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/type_precision.hpp b/depedencies/include/glm/gtc/type_precision.hpp
new file mode 100644
index 0000000..a2dbb66
--- /dev/null
+++ b/depedencies/include/glm/gtc/type_precision.hpp
@@ -0,0 +1,861 @@
+/// @ref gtc_type_precision
+/// @file glm/gtc/type_precision.hpp
+///
+/// @see core (dependence)
+/// @see gtc_half_float (dependence)
+/// @see gtc_quaternion (dependence)
+///
+/// @defgroup gtc_type_precision GLM_GTC_type_precision
+/// @ingroup gtc
+///
+/// @brief Defines specific C++-based precision types.
+///
+/// @ref core_precision defines types based on GLSL's precision qualifiers. This
+/// extension defines types based on explicitly-sized C++ data types.
+///
+/// <glm/gtc/type_precision.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependency:
+#include "../gtc/quaternion.hpp"
+#include "../gtc/vec1.hpp"
+#include "../vec2.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+#include "../mat2x2.hpp"
+#include "../mat2x3.hpp"
+#include "../mat2x4.hpp"
+#include "../mat3x2.hpp"
+#include "../mat3x3.hpp"
+#include "../mat3x4.hpp"
+#include "../mat4x2.hpp"
+#include "../mat4x3.hpp"
+#include "../mat4x4.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_type_precision extension included")
+#endif
+
+namespace glm
+{
+ ///////////////////////////
+ // Signed int vector types
+
+ /// @addtogroup gtc_type_precision
+ /// @{
+
+ /// Low precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 lowp_int8;
+
+ /// Low precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 lowp_int16;
+
+ /// Low precision 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 lowp_int32;
+
+ /// Low precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 lowp_int64;
+
+ /// Low precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 lowp_int8_t;
+
+ /// Low precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 lowp_int16_t;
+
+ /// Low precision 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 lowp_int32_t;
+
+ /// Low precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 lowp_int64_t;
+
+ /// Low precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 lowp_i8;
+
+ /// Low precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 lowp_i16;
+
+ /// Low precision 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 lowp_i32;
+
+ /// Low precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 lowp_i64;
+
+ /// Medium precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 mediump_int8;
+
+ /// Medium precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 mediump_int16;
+
+ /// Medium precision 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 mediump_int32;
+
+ /// Medium precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 mediump_int64;
+
+ /// Medium precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 mediump_int8_t;
+
+ /// Medium precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 mediump_int16_t;
+
+ /// Medium precision 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 mediump_int32_t;
+
+ /// Medium precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 mediump_int64_t;
+
+ /// Medium precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 mediump_i8;
+
+ /// Medium precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 mediump_i16;
+
+ /// Medium precision 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 mediump_i32;
+
+ /// Medium precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 mediump_i64;
+
+ /// High precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 highp_int8;
+
+ /// High precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 highp_int16;
+
+ /// High precision 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 highp_int32;
+
+ /// High precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 highp_int64;
+
+ /// High precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 highp_int8_t;
+
+ /// High precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 highp_int16_t;
+
+ /// 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 highp_int32_t;
+
+ /// High precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 highp_int64_t;
+
+ /// High precision 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 highp_i8;
+
+ /// High precision 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 highp_i16;
+
+ /// High precision 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 highp_i32;
+
+ /// High precision 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 highp_i64;
+
+
+ /// 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 int8;
+
+ /// 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 int16;
+
+ /// 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 int32;
+
+ /// 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 int64;
+
+#if GLM_HAS_EXTENDED_INTEGER_TYPE
+ using std::int8_t;
+ using std::int16_t;
+ using std::int32_t;
+ using std::int64_t;
+#else
+ /// 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 int8_t;
+
+ /// 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 int16_t;
+
+ /// 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 int32_t;
+
+ /// 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 int64_t;
+#endif
+
+ /// 8 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int8 i8;
+
+ /// 16 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int16 i16;
+
+ /// 32 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int32 i32;
+
+ /// 64 bit signed integer type.
+ /// @see gtc_type_precision
+ typedef detail::int64 i64;
+
+
+ /// 8 bit signed integer scalar type.
+ /// @see gtc_type_precision
+ typedef tvec1<i8, defaultp> i8vec1;
+
+ /// 8 bit signed integer vector of 2 components type.
+ /// @see gtc_type_precision
+ typedef tvec2<i8, defaultp> i8vec2;
+
+ /// 8 bit signed integer vector of 3 components type.
+ /// @see gtc_type_precision
+ typedef tvec3<i8, defaultp> i8vec3;
+
+ /// 8 bit signed integer vector of 4 components type.
+ /// @see gtc_type_precision
+ typedef tvec4<i8, defaultp> i8vec4;
+
+
+ /// 16 bit signed integer scalar type.
+ /// @see gtc_type_precision
+ typedef tvec1<i16, defaultp> i16vec1;
+
+ /// 16 bit signed integer vector of 2 components type.
+ /// @see gtc_type_precision
+ typedef tvec2<i16, defaultp> i16vec2;
+
+ /// 16 bit signed integer vector of 3 components type.
+ /// @see gtc_type_precision
+ typedef tvec3<i16, defaultp> i16vec3;
+
+ /// 16 bit signed integer vector of 4 components type.
+ /// @see gtc_type_precision
+ typedef tvec4<i16, defaultp> i16vec4;
+
+
+ /// 32 bit signed integer scalar type.
+ /// @see gtc_type_precision
+ typedef tvec1<i32, defaultp> i32vec1;
+
+ /// 32 bit signed integer vector of 2 components type.
+ /// @see gtc_type_precision
+ typedef tvec2<i32, defaultp> i32vec2;
+
+ /// 32 bit signed integer vector of 3 components type.
+ /// @see gtc_type_precision
+ typedef tvec3<i32, defaultp> i32vec3;
+
+ /// 32 bit signed integer vector of 4 components type.
+ /// @see gtc_type_precision
+ typedef tvec4<i32, defaultp> i32vec4;
+
+
+ /// 64 bit signed integer scalar type.
+ /// @see gtc_type_precision
+ typedef tvec1<i64, defaultp> i64vec1;
+
+ /// 64 bit signed integer vector of 2 components type.
+ /// @see gtc_type_precision
+ typedef tvec2<i64, defaultp> i64vec2;
+
+ /// 64 bit signed integer vector of 3 components type.
+ /// @see gtc_type_precision
+ typedef tvec3<i64, defaultp> i64vec3;
+
+ /// 64 bit signed integer vector of 4 components type.
+ /// @see gtc_type_precision
+ typedef tvec4<i64, defaultp> i64vec4;
+
+
+ /////////////////////////////
+ // Unsigned int vector types
+
+ /// Low precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 lowp_uint8;
+
+ /// Low precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 lowp_uint16;
+
+ /// Low precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 lowp_uint32;
+
+ /// Low precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 lowp_uint64;
+
+ /// Low precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 lowp_uint8_t;
+
+ /// Low precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 lowp_uint16_t;
+
+ /// Low precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 lowp_uint32_t;
+
+ /// Low precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 lowp_uint64_t;
+
+ /// Low precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 lowp_u8;
+
+ /// Low precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 lowp_u16;
+
+ /// Low precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 lowp_u32;
+
+ /// Low precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 lowp_u64;
+
+ /// Medium precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 mediump_uint8;
+
+ /// Medium precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 mediump_uint16;
+
+ /// Medium precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 mediump_uint32;
+
+ /// Medium precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 mediump_uint64;
+
+ /// Medium precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 mediump_uint8_t;
+
+ /// Medium precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 mediump_uint16_t;
+
+ /// Medium precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 mediump_uint32_t;
+
+ /// Medium precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 mediump_uint64_t;
+
+ /// Medium precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 mediump_u8;
+
+ /// Medium precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 mediump_u16;
+
+ /// Medium precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 mediump_u32;
+
+ /// Medium precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 mediump_u64;
+
+ /// High precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 highp_uint8;
+
+ /// High precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 highp_uint16;
+
+ /// High precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 highp_uint32;
+
+ /// High precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 highp_uint64;
+
+ /// High precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 highp_uint8_t;
+
+ /// High precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 highp_uint16_t;
+
+ /// High precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 highp_uint32_t;
+
+ /// High precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 highp_uint64_t;
+
+ /// High precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 highp_u8;
+
+ /// High precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 highp_u16;
+
+ /// High precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 highp_u32;
+
+ /// High precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 highp_u64;
+
+ /// Default precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 uint8;
+
+ /// Default precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 uint16;
+
+ /// Default precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 uint32;
+
+ /// Default precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 uint64;
+
+#if GLM_HAS_EXTENDED_INTEGER_TYPE
+ using std::uint8_t;
+ using std::uint16_t;
+ using std::uint32_t;
+ using std::uint64_t;
+#else
+ /// Default precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 uint8_t;
+
+ /// Default precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 uint16_t;
+
+ /// Default precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 uint32_t;
+
+ /// Default precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 uint64_t;
+#endif
+
+ /// Default precision 8 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint8 u8;
+
+ /// Default precision 16 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint16 u16;
+
+ /// Default precision 32 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint32 u32;
+
+ /// Default precision 64 bit unsigned integer type.
+ /// @see gtc_type_precision
+ typedef detail::uint64 u64;
+
+
+
+ /// Default precision 8 bit unsigned integer scalar type.
+ /// @see gtc_type_precision
+ typedef tvec1<u8, defaultp> u8vec1;
+
+ /// Default precision 8 bit unsigned integer vector of 2 components type.
+ /// @see gtc_type_precision
+ typedef tvec2<u8, defaultp> u8vec2;
+
+ /// Default precision 8 bit unsigned integer vector of 3 components type.
+ /// @see gtc_type_precision
+ typedef tvec3<u8, defaultp> u8vec3;
+
+ /// Default precision 8 bit unsigned integer vector of 4 components type.
+ /// @see gtc_type_precision
+ typedef tvec4<u8, defaultp> u8vec4;
+
+
+ /// Default precision 16 bit unsigned integer scalar type.
+ /// @see gtc_type_precision
+ typedef tvec1<u16, defaultp> u16vec1;
+
+ /// Default precision 16 bit unsigned integer vector of 2 components type.
+ /// @see gtc_type_precision
+ typedef tvec2<u16, defaultp> u16vec2;
+
+ /// Default precision 16 bit unsigned integer vector of 3 components type.
+ /// @see gtc_type_precision
+ typedef tvec3<u16, defaultp> u16vec3;
+
+ /// Default precision 16 bit unsigned integer vector of 4 components type.
+ /// @see gtc_type_precision
+ typedef tvec4<u16, defaultp> u16vec4;
+
+
+ /// Default precision 32 bit unsigned integer scalar type.
+ /// @see gtc_type_precision
+ typedef tvec1<u32, defaultp> u32vec1;
+
+ /// Default precision 32 bit unsigned integer vector of 2 components type.
+ /// @see gtc_type_precision
+ typedef tvec2<u32, defaultp> u32vec2;
+
+ /// Default precision 32 bit unsigned integer vector of 3 components type.
+ /// @see gtc_type_precision
+ typedef tvec3<u32, defaultp> u32vec3;
+
+ /// Default precision 32 bit unsigned integer vector of 4 components type.
+ /// @see gtc_type_precision
+ typedef tvec4<u32, defaultp> u32vec4;
+
+
+ /// Default precision 64 bit unsigned integer scalar type.
+ /// @see gtc_type_precision
+ typedef tvec1<u64, defaultp> u64vec1;
+
+ /// Default precision 64 bit unsigned integer vector of 2 components type.
+ /// @see gtc_type_precision
+ typedef tvec2<u64, defaultp> u64vec2;
+
+ /// Default precision 64 bit unsigned integer vector of 3 components type.
+ /// @see gtc_type_precision
+ typedef tvec3<u64, defaultp> u64vec3;
+
+ /// Default precision 64 bit unsigned integer vector of 4 components type.
+ /// @see gtc_type_precision
+ typedef tvec4<u64, defaultp> u64vec4;
+
+
+ //////////////////////
+ // Float vector types
+
+ /// 32 bit single-precision floating-point scalar.
+ /// @see gtc_type_precision
+ typedef detail::float32 float32;
+
+ /// 64 bit double-precision floating-point scalar.
+ /// @see gtc_type_precision
+ typedef detail::float64 float64;
+
+
+ /// 32 bit single-precision floating-point scalar.
+ /// @see gtc_type_precision
+ typedef detail::float32 float32_t;
+
+ /// 64 bit double-precision floating-point scalar.
+ /// @see gtc_type_precision
+ typedef detail::float64 float64_t;
+
+
+ /// 32 bit single-precision floating-point scalar.
+ /// @see gtc_type_precision
+ typedef float32 f32;
+
+ /// 64 bit double-precision floating-point scalar.
+ /// @see gtc_type_precision
+ typedef float64 f64;
+
+
+ /// Single-precision floating-point vector of 1 component.
+ /// @see gtc_type_precision
+ typedef tvec1<float, defaultp> fvec1;
+
+ /// Single-precision floating-point vector of 2 components.
+ /// @see gtc_type_precision
+ typedef tvec2<float, defaultp> fvec2;
+
+ /// Single-precision floating-point vector of 3 components.
+ /// @see gtc_type_precision
+ typedef tvec3<float, defaultp> fvec3;
+
+ /// Single-precision floating-point vector of 4 components.
+ /// @see gtc_type_precision
+ typedef tvec4<float, defaultp> fvec4;
+
+
+ /// Single-precision floating-point vector of 1 component.
+ /// @see gtc_type_precision
+ typedef tvec1<f32, defaultp> f32vec1;
+
+ /// Single-precision floating-point vector of 2 components.
+ /// @see gtc_type_precision
+ typedef tvec2<f32, defaultp> f32vec2;
+
+ /// Single-precision floating-point vector of 3 components.
+ /// @see gtc_type_precision
+ typedef tvec3<f32, defaultp> f32vec3;
+
+ /// Single-precision floating-point vector of 4 components.
+ /// @see gtc_type_precision
+ typedef tvec4<f32, defaultp> f32vec4;
+
+
+ /// Double-precision floating-point vector of 1 component.
+ /// @see gtc_type_precision
+ typedef tvec1<f64, defaultp> f64vec1;
+
+ /// Double-precision floating-point vector of 2 components.
+ /// @see gtc_type_precision
+ typedef tvec2<f64, defaultp> f64vec2;
+
+ /// Double-precision floating-point vector of 3 components.
+ /// @see gtc_type_precision
+ typedef tvec3<f64, defaultp> f64vec3;
+
+ /// Double-precision floating-point vector of 4 components.
+ /// @see gtc_type_precision
+ typedef tvec4<f64, defaultp> f64vec4;
+
+
+ //////////////////////
+ // Float matrix types
+
+ /// Single-precision floating-point 1x1 matrix.
+ /// @see gtc_type_precision
+ //typedef detail::tmat1x1<f32> fmat1;
+
+ /// Single-precision floating-point 2x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x2<f32, defaultp> fmat2;
+
+ /// Single-precision floating-point 3x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x3<f32, defaultp> fmat3;
+
+ /// Single-precision floating-point 4x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x4<f32, defaultp> fmat4;
+
+
+ /// Single-precision floating-point 1x1 matrix.
+ /// @see gtc_type_precision
+ //typedef f32 fmat1x1;
+
+ /// Single-precision floating-point 2x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x2<f32, defaultp> fmat2x2;
+
+ /// Single-precision floating-point 2x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x3<f32, defaultp> fmat2x3;
+
+ /// Single-precision floating-point 2x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x4<f32, defaultp> fmat2x4;
+
+ /// Single-precision floating-point 3x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x2<f32, defaultp> fmat3x2;
+
+ /// Single-precision floating-point 3x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x3<f32, defaultp> fmat3x3;
+
+ /// Single-precision floating-point 3x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x4<f32, defaultp> fmat3x4;
+
+ /// Single-precision floating-point 4x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x2<f32, defaultp> fmat4x2;
+
+ /// Single-precision floating-point 4x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x3<f32, defaultp> fmat4x3;
+
+ /// Single-precision floating-point 4x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x4<f32, defaultp> fmat4x4;
+
+
+ /// Single-precision floating-point 1x1 matrix.
+ /// @see gtc_type_precision
+ //typedef detail::tmat1x1<f32, defaultp> f32mat1;
+
+ /// Single-precision floating-point 2x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x2<f32, defaultp> f32mat2;
+
+ /// Single-precision floating-point 3x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x3<f32, defaultp> f32mat3;
+
+ /// Single-precision floating-point 4x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x4<f32, defaultp> f32mat4;
+
+
+ /// Single-precision floating-point 1x1 matrix.
+ /// @see gtc_type_precision
+ //typedef f32 f32mat1x1;
+
+ /// Single-precision floating-point 2x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x2<f32, defaultp> f32mat2x2;
+
+ /// Single-precision floating-point 2x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x3<f32, defaultp> f32mat2x3;
+
+ /// Single-precision floating-point 2x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x4<f32, defaultp> f32mat2x4;
+
+ /// Single-precision floating-point 3x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x2<f32, defaultp> f32mat3x2;
+
+ /// Single-precision floating-point 3x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x3<f32, defaultp> f32mat3x3;
+
+ /// Single-precision floating-point 3x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x4<f32, defaultp> f32mat3x4;
+
+ /// Single-precision floating-point 4x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x2<f32, defaultp> f32mat4x2;
+
+ /// Single-precision floating-point 4x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x3<f32, defaultp> f32mat4x3;
+
+ /// Single-precision floating-point 4x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x4<f32, defaultp> f32mat4x4;
+
+
+ /// Double-precision floating-point 1x1 matrix.
+ /// @see gtc_type_precision
+ //typedef detail::tmat1x1<f64, defaultp> f64mat1;
+
+ /// Double-precision floating-point 2x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x2<f64, defaultp> f64mat2;
+
+ /// Double-precision floating-point 3x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x3<f64, defaultp> f64mat3;
+
+ /// Double-precision floating-point 4x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x4<f64, defaultp> f64mat4;
+
+
+ /// Double-precision floating-point 1x1 matrix.
+ /// @see gtc_type_precision
+ //typedef f64 f64mat1x1;
+
+ /// Double-precision floating-point 2x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x2<f64, defaultp> f64mat2x2;
+
+ /// Double-precision floating-point 2x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x3<f64, defaultp> f64mat2x3;
+
+ /// Double-precision floating-point 2x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat2x4<f64, defaultp> f64mat2x4;
+
+ /// Double-precision floating-point 3x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x2<f64, defaultp> f64mat3x2;
+
+ /// Double-precision floating-point 3x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x3<f64, defaultp> f64mat3x3;
+
+ /// Double-precision floating-point 3x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat3x4<f64, defaultp> f64mat3x4;
+
+ /// Double-precision floating-point 4x2 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x2<f64, defaultp> f64mat4x2;
+
+ /// Double-precision floating-point 4x3 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x3<f64, defaultp> f64mat4x3;
+
+ /// Double-precision floating-point 4x4 matrix.
+ /// @see gtc_type_precision
+ typedef tmat4x4<f64, defaultp> f64mat4x4;
+
+
+ //////////////////////////
+ // Quaternion types
+
+ /// Single-precision floating-point quaternion.
+ /// @see gtc_type_precision
+ typedef tquat<f32, defaultp> f32quat;
+
+ /// Double-precision floating-point quaternion.
+ /// @see gtc_type_precision
+ typedef tquat<f64, defaultp> f64quat;
+
+ /// @}
+}//namespace glm
+
+#include "type_precision.inl"
diff --git a/depedencies/include/glm/gtc/type_precision.inl b/depedencies/include/glm/gtc/type_precision.inl
new file mode 100644
index 0000000..cbfd4d8
--- /dev/null
+++ b/depedencies/include/glm/gtc/type_precision.inl
@@ -0,0 +1,7 @@
+/// @ref gtc_swizzle
+/// @file glm/gtc/swizzle.inl
+
+namespace glm
+{
+
+}
diff --git a/depedencies/include/glm/gtc/type_ptr.hpp b/depedencies/include/glm/gtc/type_ptr.hpp
new file mode 100644
index 0000000..008665e
--- /dev/null
+++ b/depedencies/include/glm/gtc/type_ptr.hpp
@@ -0,0 +1,149 @@
+/// @ref gtc_type_ptr
+/// @file glm/gtc/type_ptr.hpp
+///
+/// @see core (dependence)
+/// @see gtc_half_float (dependence)
+/// @see gtc_quaternion (dependence)
+///
+/// @defgroup gtc_type_ptr GLM_GTC_type_ptr
+/// @ingroup gtc
+///
+/// @brief Handles the interaction between pointers and vector, matrix types.
+///
+/// This extension defines an overloaded function, glm::value_ptr, which
+/// takes any of the \ref core_template "core template types". It returns
+/// a pointer to the memory layout of the object. Matrix types store their values
+/// in column-major order.
+///
+/// This is useful for uploading data to matrices or copying data to buffer objects.
+///
+/// Example:
+/// @code
+/// #include <glm/glm.hpp>
+/// #include <glm/gtc/type_ptr.hpp>
+///
+/// glm::vec3 aVector(3);
+/// glm::mat4 someMatrix(1.0);
+///
+/// glUniform3fv(uniformLoc, 1, glm::value_ptr(aVector));
+/// glUniformMatrix4fv(uniformMatrixLoc, 1, GL_FALSE, glm::value_ptr(someMatrix));
+/// @endcode
+///
+/// <glm/gtc/type_ptr.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependency:
+#include "../gtc/quaternion.hpp"
+#include "../vec2.hpp"
+#include "../vec3.hpp"
+#include "../vec4.hpp"
+#include "../mat2x2.hpp"
+#include "../mat2x3.hpp"
+#include "../mat2x4.hpp"
+#include "../mat3x2.hpp"
+#include "../mat3x3.hpp"
+#include "../mat3x4.hpp"
+#include "../mat4x2.hpp"
+#include "../mat4x3.hpp"
+#include "../mat4x4.hpp"
+#include <cstring>
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_type_ptr extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_type_ptr
+ /// @{
+
+ /// Return the constant address to the data of the input parameter.
+ /// @see gtc_type_ptr
+ template<typename genType>
+ GLM_FUNC_DECL typename genType::value_type const * value_ptr(genType const & vec);
+
+ /// Build a vector from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tvec2<T, defaultp> make_vec2(T const * const ptr);
+
+ /// Build a vector from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tvec3<T, defaultp> make_vec3(T const * const ptr);
+
+ /// Build a vector from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tvec4<T, defaultp> make_vec4(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2x2(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat2x3<T, defaultp> make_mat2x3(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat2x4<T, defaultp> make_mat2x4(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat3x2<T, defaultp> make_mat3x2(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3x3(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat3x4<T, defaultp> make_mat3x4(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat4x2<T, defaultp> make_mat4x2(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat4x3<T, defaultp> make_mat4x3(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4x4(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3(T const * const ptr);
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4(T const * const ptr);
+
+ /// Build a quaternion from a pointer.
+ /// @see gtc_type_ptr
+ template<typename T>
+ GLM_FUNC_DECL tquat<T, defaultp> make_quat(T const * const ptr);
+
+ /// @}
+}//namespace glm
+
+#include "type_ptr.inl"
diff --git a/depedencies/include/glm/gtc/type_ptr.inl b/depedencies/include/glm/gtc/type_ptr.inl
new file mode 100644
index 0000000..3aa6ae6
--- /dev/null
+++ b/depedencies/include/glm/gtc/type_ptr.inl
@@ -0,0 +1,450 @@
+/// @ref gtc_type_ptr
+/// @file glm/gtc/type_ptr.inl
+
+#include <cstring>
+
+namespace glm
+{
+ /// @addtogroup gtc_type_ptr
+ /// @{
+
+ /// Return the constant address to the data of the vector input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tvec2<T, P> const & vec
+ )
+ {
+ return &(vec.x);
+ }
+
+ //! Return the address to the data of the vector input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tvec2<T, P> & vec
+ )
+ {
+ return &(vec.x);
+ }
+
+ /// Return the constant address to the data of the vector input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tvec3<T, P> const & vec
+ )
+ {
+ return &(vec.x);
+ }
+
+ //! Return the address to the data of the vector input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tvec3<T, P> & vec
+ )
+ {
+ return &(vec.x);
+ }
+
+ /// Return the constant address to the data of the vector input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tvec4<T, P> const & vec
+ )
+ {
+ return &(vec.x);
+ }
+
+ //! Return the address to the data of the vector input.
+ //! From GLM_GTC_type_ptr extension.
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tvec4<T, P> & vec
+ )
+ {
+ return &(vec.x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat2x2<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ //! Return the address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tmat2x2<T, P> & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat3x3<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ //! Return the address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tmat3x3<T, P> & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat4x4<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ //! Return the address to the data of the matrix input.
+ //! From GLM_GTC_type_ptr extension.
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tmat4x4<T, P> & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat2x3<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ //! Return the address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tmat2x3<T, P> & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat3x2<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ //! Return the address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tmat3x2<T, P> & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat2x4<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ //! Return the address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tmat2x4<T, P> & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat4x2<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ //! Return the address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tmat4x2<T, P> & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat3x4<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ //! Return the address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tmat3x4<T, P> & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tmat4x3<T, P> const & mat
+ )
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the address to the data of the matrix input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr(tmat4x3<T, P> & mat)
+ {
+ return &(mat[0].x);
+ }
+
+ /// Return the constant address to the data of the input parameter.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T const * value_ptr
+ (
+ tquat<T, P> const & q
+ )
+ {
+ return &(q[0]);
+ }
+
+ /// Return the address to the data of the quaternion input.
+ /// @see gtc_type_ptr
+ template<typename T, precision P>
+ GLM_FUNC_QUALIFIER T * value_ptr
+ (
+ tquat<T, P> & q
+ )
+ {
+ return &(q[0]);
+ }
+
+ /// Build a vector from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tvec2<T, defaultp> make_vec2(T const * const ptr)
+ {
+ tvec2<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tvec2<T, defaultp>));
+ return Result;
+ }
+
+ /// Build a vector from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tvec3<T, defaultp> make_vec3(T const * const ptr)
+ {
+ tvec3<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tvec3<T, defaultp>));
+ return Result;
+ }
+
+ /// Build a vector from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tvec4<T, defaultp> make_vec4(T const * const ptr)
+ {
+ tvec4<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tvec4<T, defaultp>));
+ return Result;
+ }
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2x2(T const * const ptr)
+ {
+ tmat2x2<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat2x2<T, defaultp>));
+ return Result;
+ }
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat2x3<T, defaultp> make_mat2x3(T const * const ptr)
+ {
+ tmat2x3<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat2x3<T, defaultp>));
+ return Result;
+ }
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat2x4<T, defaultp> make_mat2x4(T const * const ptr)
+ {
+ tmat2x4<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat2x4<T, defaultp>));
+ return Result;
+ }
+
+ /// Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat3x2<T, defaultp> make_mat3x2(T const * const ptr)
+ {
+ tmat3x2<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat3x2<T, defaultp>));
+ return Result;
+ }
+
+ //! Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3x3(T const * const ptr)
+ {
+ tmat3x3<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat3x3<T, defaultp>));
+ return Result;
+ }
+
+ //! Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat3x4<T, defaultp> make_mat3x4(T const * const ptr)
+ {
+ tmat3x4<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat3x4<T, defaultp>));
+ return Result;
+ }
+
+ //! Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x2<T, defaultp> make_mat4x2(T const * const ptr)
+ {
+ tmat4x2<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat4x2<T, defaultp>));
+ return Result;
+ }
+
+ //! Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x3<T, defaultp> make_mat4x3(T const * const ptr)
+ {
+ tmat4x3<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat4x3<T, defaultp>));
+ return Result;
+ }
+
+ //! Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4x4(T const * const ptr)
+ {
+ tmat4x4<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tmat4x4<T, defaultp>));
+ return Result;
+ }
+
+ //! Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2(T const * const ptr)
+ {
+ return make_mat2x2(ptr);
+ }
+
+ //! Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3(T const * const ptr)
+ {
+ return make_mat3x3(ptr);
+ }
+
+ //! Build a matrix from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4(T const * const ptr)
+ {
+ return make_mat4x4(ptr);
+ }
+
+ //! Build a quaternion from a pointer.
+ /// @see gtc_type_ptr
+ template <typename T>
+ GLM_FUNC_QUALIFIER tquat<T, defaultp> make_quat(T const * const ptr)
+ {
+ tquat<T, defaultp> Result;
+ memcpy(value_ptr(Result), ptr, sizeof(tquat<T, defaultp>));
+ return Result;
+ }
+
+ /// @}
+}//namespace glm
+
diff --git a/depedencies/include/glm/gtc/ulp.hpp b/depedencies/include/glm/gtc/ulp.hpp
new file mode 100644
index 0000000..a82fa4e
--- /dev/null
+++ b/depedencies/include/glm/gtc/ulp.hpp
@@ -0,0 +1,63 @@
+/// @ref gtc_ulp
+/// @file glm/gtc/ulp.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_ulp GLM_GTC_ulp
+/// @ingroup gtc
+///
+/// @brief Allow the measurement of the accuracy of a function against a reference
+/// implementation. This extension works on floating-point data and provide results
+/// in ULP.
+/// <glm/gtc/ulp.hpp> need to be included to use these features.
+
+#pragma once
+
+// Dependencies
+#include "../detail/setup.hpp"
+#include "../detail/precision.hpp"
+#include "../detail/type_int.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_ulp extension included")
+#endif
+
+namespace glm
+{
+ /// @addtogroup gtc_ulp
+ /// @{
+
+ /// Return the next ULP value(s) after the input value(s).
+ /// @see gtc_ulp
+ template <typename genType>
+ GLM_FUNC_DECL genType next_float(genType const & x);
+
+ /// Return the previous ULP value(s) before the input value(s).
+ /// @see gtc_ulp
+ template <typename genType>
+ GLM_FUNC_DECL genType prev_float(genType const & x);
+
+ /// Return the value(s) ULP distance after the input value(s).
+ /// @see gtc_ulp
+ template <typename genType>
+ GLM_FUNC_DECL genType next_float(genType const & x, uint const & Distance);
+
+ /// Return the value(s) ULP distance before the input value(s).
+ /// @see gtc_ulp
+ template <typename genType>
+ GLM_FUNC_DECL genType prev_float(genType const & x, uint const & Distance);
+
+ /// Return the distance in the number of ULP between 2 scalars.
+ /// @see gtc_ulp
+ template <typename T>
+ GLM_FUNC_DECL uint float_distance(T const & x, T const & y);
+
+ /// Return the distance in the number of ULP between 2 vectors.
+ /// @see gtc_ulp
+ template<typename T, template<typename> class vecType>
+ GLM_FUNC_DECL vecType<uint> float_distance(vecType<T> const & x, vecType<T> const & y);
+
+ /// @}
+}// namespace glm
+
+#include "ulp.inl"
diff --git a/depedencies/include/glm/gtc/ulp.inl b/depedencies/include/glm/gtc/ulp.inl
new file mode 100644
index 0000000..54c914a
--- /dev/null
+++ b/depedencies/include/glm/gtc/ulp.inl
@@ -0,0 +1,321 @@
+/// @ref gtc_ulp
+/// @file glm/gtc/ulp.inl
+///
+/// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+///
+/// Developed at SunPro, a Sun Microsystems, Inc. business.
+/// Permission to use, copy, modify, and distribute this
+/// software is freely granted, provided that this notice
+/// is preserved.
+
+#include "../detail/type_int.hpp"
+#include <cmath>
+#include <cfloat>
+#include <limits>
+
+#if(GLM_COMPILER & GLM_COMPILER_VC)
+# pragma warning(push)
+# pragma warning(disable : 4127)
+#endif
+
+typedef union
+{
+ float value;
+ /* FIXME: Assumes 32 bit int. */
+ unsigned int word;
+} ieee_float_shape_type;
+
+typedef union
+{
+ double value;
+ struct
+ {
+ glm::detail::int32 lsw;
+ glm::detail::int32 msw;
+ } parts;
+} ieee_double_shape_type;
+
+#define GLM_EXTRACT_WORDS(ix0,ix1,d) \
+ do { \
+ ieee_double_shape_type ew_u; \
+ ew_u.value = (d); \
+ (ix0) = ew_u.parts.msw; \
+ (ix1) = ew_u.parts.lsw; \
+ } while (0)
+
+#define GLM_GET_FLOAT_WORD(i,d) \
+ do { \
+ ieee_float_shape_type gf_u; \
+ gf_u.value = (d); \
+ (i) = gf_u.word; \
+ } while (0)
+
+#define GLM_SET_FLOAT_WORD(d,i) \
+ do { \
+ ieee_float_shape_type sf_u; \
+ sf_u.word = (i); \
+ (d) = sf_u.value; \
+ } while (0)
+
+#define GLM_INSERT_WORDS(d,ix0,ix1) \
+ do { \
+ ieee_double_shape_type iw_u; \
+ iw_u.parts.msw = (ix0); \
+ iw_u.parts.lsw = (ix1); \
+ (d) = iw_u.value; \
+ } while (0)
+
+namespace glm{
+namespace detail
+{
+ GLM_FUNC_QUALIFIER float nextafterf(float x, float y)
+ {
+ volatile float t;
+ glm::detail::int32 hx, hy, ix, iy;
+
+ GLM_GET_FLOAT_WORD(hx, x);
+ GLM_GET_FLOAT_WORD(hy, y);
+ ix = hx&0x7fffffff; // |x|
+ iy = hy&0x7fffffff; // |y|
+
+ if((ix>0x7f800000) || // x is nan
+ (iy>0x7f800000)) // y is nan
+ return x+y;
+ if(x==y) return y; // x=y, return y
+ if(ix==0) { // x == 0
+ GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal
+ t = x*x;
+ if(t==x) return t; else return x; // raise underflow flag
+ }
+ if(hx>=0) { // x > 0
+ if(hx>hy) { // x > y, x -= ulp
+ hx -= 1;
+ } else { // x < y, x += ulp
+ hx += 1;
+ }
+ } else { // x < 0
+ if(hy>=0||hx>hy){ // x < y, x -= ulp
+ hx -= 1;
+ } else { // x > y, x += ulp
+ hx += 1;
+ }
+ }
+ hy = hx&0x7f800000;
+ if(hy>=0x7f800000) return x+x; // overflow
+ if(hy<0x00800000) { // underflow
+ t = x*x;
+ if(t!=x) { // raise underflow flag
+ GLM_SET_FLOAT_WORD(y,hx);
+ return y;
+ }
+ }
+ GLM_SET_FLOAT_WORD(x,hx);
+ return x;
+ }
+
+ GLM_FUNC_QUALIFIER double nextafter(double x, double y)
+ {
+ volatile double t;
+ glm::detail::int32 hx, hy, ix, iy;
+ glm::detail::uint32 lx, ly;
+
+ GLM_EXTRACT_WORDS(hx, lx, x);
+ GLM_EXTRACT_WORDS(hy, ly, y);
+ ix = hx & 0x7fffffff; // |x|
+ iy = hy & 0x7fffffff; // |y|
+
+ if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan
+ ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan
+ return x+y;
+ if(x==y) return y; // x=y, return y
+ if((ix|lx)==0) { // x == 0
+ GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal
+ t = x*x;
+ if(t==x) return t; else return x; // raise underflow flag
+ }
+ if(hx>=0) { // x > 0
+ if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp
+ if(lx==0) hx -= 1;
+ lx -= 1;
+ } else { // x < y, x += ulp
+ lx += 1;
+ if(lx==0) hx += 1;
+ }
+ } else { // x < 0
+ if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp
+ if(lx==0) hx -= 1;
+ lx -= 1;
+ } else { // x > y, x += ulp
+ lx += 1;
+ if(lx==0) hx += 1;
+ }
+ }
+ hy = hx&0x7ff00000;
+ if(hy>=0x7ff00000) return x+x; // overflow
+ if(hy<0x00100000) { // underflow
+ t = x*x;
+ if(t!=x) { // raise underflow flag
+ GLM_INSERT_WORDS(y,hx,lx);
+ return y;
+ }
+ }
+ GLM_INSERT_WORDS(x,hx,lx);
+ return x;
+ }
+}//namespace detail
+}//namespace glm
+
+#if(GLM_COMPILER & GLM_COMPILER_VC)
+# pragma warning(pop)
+#endif
+
+namespace glm
+{
+ template <>
+ GLM_FUNC_QUALIFIER float next_float(float const & x)
+ {
+# if GLM_HAS_CXX11_STL
+ return std::nextafter(x, std::numeric_limits<float>::max());
+# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
+ return detail::nextafterf(x, FLT_MAX);
+# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
+ return __builtin_nextafterf(x, FLT_MAX);
+# else
+ return nextafterf(x, FLT_MAX);
+# endif
+ }
+
+ template <>
+ GLM_FUNC_QUALIFIER double next_float(double const & x)
+ {
+# if GLM_HAS_CXX11_STL
+ return std::nextafter(x, std::numeric_limits<double>::max());
+# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
+ return detail::nextafter(x, std::numeric_limits<double>::max());
+# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
+ return __builtin_nextafter(x, FLT_MAX);
+# else
+ return nextafter(x, DBL_MAX);
+# endif
+ }
+
+ template<typename T, precision P, template<typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x)
+ {
+ vecType<T, P> Result(uninitialize);
+ for(length_t i = 0, n = Result.length(); i < n; ++i)
+ Result[i] = next_float(x[i]);
+ return Result;
+ }
+
+ GLM_FUNC_QUALIFIER float prev_float(float const & x)
+ {
+# if GLM_HAS_CXX11_STL
+ return std::nextafter(x, std::numeric_limits<float>::min());
+# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
+ return detail::nextafterf(x, FLT_MIN);
+# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
+ return __builtin_nextafterf(x, FLT_MIN);
+# else
+ return nextafterf(x, FLT_MIN);
+# endif
+ }
+
+ GLM_FUNC_QUALIFIER double prev_float(double const & x)
+ {
+# if GLM_HAS_CXX11_STL
+ return std::nextafter(x, std::numeric_limits<double>::min());
+# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
+ return _nextafter(x, DBL_MIN);
+# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
+ return __builtin_nextafter(x, DBL_MIN);
+# else
+ return nextafter(x, DBL_MIN);
+# endif
+ }
+
+ template<typename T, precision P, template<typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x)
+ {
+ vecType<T, P> Result(uninitialize);
+ for(length_t i = 0, n = Result.length(); i < n; ++i)
+ Result[i] = prev_float(x[i]);
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps)
+ {
+ T temp = x;
+ for(uint i = 0; i < ulps; ++i)
+ temp = next_float(temp);
+ return temp;
+ }
+
+ template<typename T, precision P, template<typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x, vecType<uint, P> const & ulps)
+ {
+ vecType<T, P> Result(uninitialize);
+ for(length_t i = 0, n = Result.length(); i < n; ++i)
+ Result[i] = next_float(x[i], ulps[i]);
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps)
+ {
+ T temp = x;
+ for(uint i = 0; i < ulps; ++i)
+ temp = prev_float(temp);
+ return temp;
+ }
+
+ template<typename T, precision P, template<typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x, vecType<uint, P> const & ulps)
+ {
+ vecType<T, P> Result(uninitialize);
+ for(length_t i = 0, n = Result.length(); i < n; ++i)
+ Result[i] = prev_float(x[i], ulps[i]);
+ return Result;
+ }
+
+ template <typename T>
+ GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y)
+ {
+ uint ulp = 0;
+
+ if(x < y)
+ {
+ T temp = x;
+ while(temp != y)// && ulp < std::numeric_limits<std::size_t>::max())
+ {
+ ++ulp;
+ temp = next_float(temp);
+ }
+ }
+ else if(y < x)
+ {
+ T temp = y;
+ while(temp != x)// && ulp < std::numeric_limits<std::size_t>::max())
+ {
+ ++ulp;
+ temp = next_float(temp);
+ }
+ }
+ else // ==
+ {
+
+ }
+
+ return ulp;
+ }
+
+ template<typename T, precision P, template<typename, precision> class vecType>
+ GLM_FUNC_QUALIFIER vecType<uint, P> float_distance(vecType<T, P> const & x, vecType<T, P> const & y)
+ {
+ vecType<uint, P> Result(uninitialize);
+ for(length_t i = 0, n = Result.length(); i < n; ++i)
+ Result[i] = float_distance(x[i], y[i]);
+ return Result;
+ }
+}//namespace glm
diff --git a/depedencies/include/glm/gtc/vec1.hpp b/depedencies/include/glm/gtc/vec1.hpp
new file mode 100644
index 0000000..f84ff97
--- /dev/null
+++ b/depedencies/include/glm/gtc/vec1.hpp
@@ -0,0 +1,164 @@
+/// @ref gtc_vec1
+/// @file glm/gtc/vec1.hpp
+///
+/// @see core (dependence)
+///
+/// @defgroup gtc_vec1 GLM_GTC_vec1
+/// @ingroup gtc
+///
+/// @brief Add vec1, ivec1, uvec1 and bvec1 types.
+/// <glm/gtc/vec1.hpp> need to be included to use these functionalities.
+
+#pragma once
+
+// Dependency:
+#include "../glm.hpp"
+#include "../detail/type_vec1.hpp"
+
+#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED)
+# pragma message("GLM: GLM_GTC_vec1 extension included")
+#endif
+
+namespace glm
+{
+ /// 1 component vector of high precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef highp_vec1_t highp_vec1;
+
+ /// 1 component vector of medium precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef mediump_vec1_t mediump_vec1;
+
+ /// 1 component vector of low precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef lowp_vec1_t lowp_vec1;
+
+ /// 1 component vector of high precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef highp_dvec1_t highp_dvec1;
+
+ /// 1 component vector of medium precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef mediump_dvec1_t mediump_dvec1;
+
+ /// 1 component vector of low precision floating-point numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef lowp_dvec1_t lowp_dvec1;
+
+ /// 1 component vector of high precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef highp_ivec1_t highp_ivec1;
+
+ /// 1 component vector of medium precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef mediump_ivec1_t mediump_ivec1;
+
+ /// 1 component vector of low precision signed integer numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef lowp_ivec1_t lowp_ivec1;
+
+ /// 1 component vector of high precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef highp_uvec1_t highp_uvec1;
+
+ /// 1 component vector of medium precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef mediump_uvec1_t mediump_uvec1;
+
+ /// 1 component vector of low precision unsigned integer numbers.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef lowp_uvec1_t lowp_uvec1;
+
+ /// 1 component vector of high precision boolean.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef highp_bvec1_t highp_bvec1;
+
+ /// 1 component vector of medium precision boolean.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef mediump_bvec1_t mediump_bvec1;
+
+ /// 1 component vector of low precision boolean.
+ /// There is no guarantee on the actual precision.
+ /// @see gtc_vec1 extension.
+ typedef lowp_bvec1_t lowp_bvec1;
+
+ //////////////////////////
+ // vec1 definition
+
+#if(defined(GLM_PRECISION_HIGHP_BOOL))
+ typedef highp_bvec1 bvec1;
+#elif(defined(GLM_PRECISION_MEDIUMP_BOOL))
+ typedef mediump_bvec1 bvec1;
+#elif(defined(GLM_PRECISION_LOWP_BOOL))
+ typedef lowp_bvec1 bvec1;
+#else
+ /// 1 component vector of boolean.
+ /// @see gtc_vec1 extension.
+ typedef highp_bvec1 bvec1;
+#endif//GLM_PRECISION
+
+#if(defined(GLM_PRECISION_HIGHP_FLOAT))
+ typedef highp_vec1 vec1;
+#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT))
+ typedef mediump_vec1 vec1;
+#elif(defined(GLM_PRECISION_LOWP_FLOAT))
+ typedef lowp_vec1 vec1;
+#else
+ /// 1 component vector of floating-point numbers.
+ /// @see gtc_vec1 extension.
+ typedef highp_vec1 vec1;
+#endif//GLM_PRECISION
+
+#if(defined(GLM_PRECISION_HIGHP_DOUBLE))
+ typedef highp_dvec1 dvec1;
+#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE))
+ typedef mediump_dvec1 dvec1;
+#elif(defined(GLM_PRECISION_LOWP_DOUBLE))
+ typedef lowp_dvec1 dvec1;
+#else
+ /// 1 component vector of floating-point numbers.
+ /// @see gtc_vec1 extension.
+ typedef highp_dvec1 dvec1;
+#endif//GLM_PRECISION
+
+#if(defined(GLM_PRECISION_HIGHP_INT))
+ typedef highp_ivec1 ivec1;
+#elif(defined(GLM_PRECISION_MEDIUMP_INT))
+ typedef mediump_ivec1 ivec1;
+#elif(defined(GLM_PRECISION_LOWP_INT))
+ typedef lowp_ivec1 ivec1;
+#else
+ /// 1 component vector of signed integer numbers.
+ /// @see gtc_vec1 extension.
+ typedef highp_ivec1 ivec1;
+#endif//GLM_PRECISION
+
+#if(defined(GLM_PRECISION_HIGHP_UINT))
+ typedef highp_uvec1 uvec1;
+#elif(defined(GLM_PRECISION_MEDIUMP_UINT))
+ typedef mediump_uvec1 uvec1;
+#elif(defined(GLM_PRECISION_LOWP_UINT))
+ typedef lowp_uvec1 uvec1;
+#else
+ /// 1 component vector of unsigned integer numbers.
+ /// @see gtc_vec1 extension.
+ typedef highp_uvec1 uvec1;
+#endif//GLM_PRECISION
+
+}// namespace glm
+
+#include "vec1.inl"
diff --git a/depedencies/include/glm/gtc/vec1.inl b/depedencies/include/glm/gtc/vec1.inl
new file mode 100644
index 0000000..5a6627c
--- /dev/null
+++ b/depedencies/include/glm/gtc/vec1.inl
@@ -0,0 +1,2 @@
+/// @ref gtc_vec1
+/// @file glm/gtc/vec1.inl