diff options
Diffstat (limited to 'depedencies/include/glm/gtc')
42 files changed, 0 insertions, 10837 deletions
diff --git a/depedencies/include/glm/gtc/bitfield.hpp b/depedencies/include/glm/gtc/bitfield.hpp deleted file mode 100644 index 38a38b6..0000000 --- a/depedencies/include/glm/gtc/bitfield.hpp +++ /dev/null @@ -1,207 +0,0 @@ -/// @ref gtc_bitfield -/// @file glm/gtc/bitfield.hpp -/// -/// @see core (dependence) -/// @see gtc_bitfield (dependence) -/// -/// @defgroup gtc_bitfield GLM_GTC_bitfield -/// @ingroup gtc -/// -/// @brief Allow to perform bit operations on integer values -/// -/// <glm/gtc/bitfield.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/type_int.hpp" -#include "../detail/_vectorize.hpp" -#include <limits> - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_bitfield extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_bitfield - /// @{ - - /// Build a mask of 'count' bits - /// - /// @see gtc_bitfield - template <typename genIUType> - GLM_FUNC_DECL genIUType mask(genIUType Bits); - - /// Build a mask of 'count' bits - /// - /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecIUType> - GLM_FUNC_DECL vecIUType<T, P> mask(vecIUType<T, P> const & v); - - /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. - /// - /// @see gtc_bitfield - template <typename genIUType> - GLM_FUNC_DECL genIUType bitfieldRotateRight(genIUType In, int Shift); - - /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. - /// - /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift); - - /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. - /// - /// @see gtc_bitfield - template <typename genIUType> - GLM_FUNC_DECL genIUType bitfieldRotateLeft(genIUType In, int Shift); - - /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. - /// - /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> bitfieldRotateLeft(vecType<T, P> const & In, int Shift); - - /// Set to 1 a range of bits. - /// - /// @see gtc_bitfield - template <typename genIUType> - GLM_FUNC_DECL genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount); - - /// Set to 1 a range of bits. - /// - /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> bitfieldFillOne(vecType<T, P> const & Value, int FirstBit, int BitCount); - - /// Set to 0 a range of bits. - /// - /// @see gtc_bitfield - template <typename genIUType> - GLM_FUNC_DECL genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount); - - /// Set to 0 a range of bits. - /// - /// @see gtc_bitfield - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> bitfieldFillZero(vecType<T, P> const & Value, int FirstBit, int BitCount); - - /// Interleaves the bits of x and y. - /// The first bit is the first bit of x followed by the first bit of y. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y); - - /// Interleaves the bits of x and y. - /// The first bit is the first bit of x followed by the first bit of y. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y); - - /// Interleaves the bits of x and y. - /// The first bit is the first bit of x followed by the first bit of y. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y); - - /// Interleaves the bits of x and y. - /// The first bit is the first bit of x followed by the first bit of y. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y); - - /// Interleaves the bits of x and y. - /// The first bit is the first bit of x followed by the first bit of y. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y); - - /// Interleaves the bits of x and y. - /// The first bit is the first bit of x followed by the first bit of y. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y); - - /// Interleaves the bits of x, y and z. - /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z); - - /// Interleaves the bits of x, y and z. - /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z); - - /// Interleaves the bits of x, y and z. - /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z); - - /// Interleaves the bits of x, y and z. - /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z); - - /// Interleaves the bits of x, y and z. - /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z); - - /// Interleaves the bits of x, y and z. - /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z); - - /// Interleaves the bits of x, y, z and w. - /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w); - - /// Interleaves the bits of x, y, z and w. - /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w); - - /// Interleaves the bits of x, y, z and w. - /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w); - - /// Interleaves the bits of x, y, z and w. - /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. - /// The other bits are interleaved following the previous sequence. - /// - /// @see gtc_bitfield - GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w); - - /// @} -} //namespace glm - -#include "bitfield.inl" diff --git a/depedencies/include/glm/gtc/bitfield.inl b/depedencies/include/glm/gtc/bitfield.inl deleted file mode 100644 index 490cfb3..0000000 --- a/depedencies/include/glm/gtc/bitfield.inl +++ /dev/null @@ -1,515 +0,0 @@ -/// @ref gtc_bitfield -/// @file glm/gtc/bitfield.inl - -#include "../simd/integer.h" - -namespace glm{ -namespace detail -{ - template <typename PARAM, typename RET> - GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); - - template <typename PARAM, typename RET> - GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); - - template <typename PARAM, typename RET> - GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); - - template <> - GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) - { - glm::uint16 REG1(x); - glm::uint16 REG2(y); - - REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F); - REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F); - - REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333); - REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333); - - REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555); - REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555); - - return REG1 | (REG2 << 1); - } - - template <> - GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) - { - glm::uint32 REG1(x); - glm::uint32 REG2(y); - - REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF); - REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF); - - REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F); - REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F); - - REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333); - REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333); - - REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555); - REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555); - - return REG1 | (REG2 << 1); - } - - template <> - GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) - { - glm::uint64 REG1(x); - glm::uint64 REG2(y); - - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFFull); - - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FFull); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FFull); - - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0Full); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0Full); - - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333ull); - - REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555ull); - REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555ull); - - return REG1 | (REG2 << 1); - } - - template <> - GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) - { - glm::uint32 REG1(x); - glm::uint32 REG2(y); - glm::uint32 REG3(z); - - REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); - REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); - REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); - - REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F); - REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F); - REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F); - - REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3); - REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3); - REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3); - - REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249); - REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249); - REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249); - - return REG1 | (REG2 << 1) | (REG3 << 2); - } - - template <> - GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) - { - glm::uint64 REG1(x); - glm::uint64 REG2(y); - glm::uint64 REG3(z); - - REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); - REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); - REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); - - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); - REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); - - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); - REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); - - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); - REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); - - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull); - REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull); - - return REG1 | (REG2 << 1) | (REG3 << 2); - } - - template <> - GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) - { - glm::uint64 REG1(x); - glm::uint64 REG2(y); - glm::uint64 REG3(z); - - REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); - REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); - REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); - - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); - REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); - - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); - REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); - - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); - REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); - - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull); - REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull); - - return REG1 | (REG2 << 1) | (REG3 << 2); - } - - template <> - GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) - { - glm::uint32 REG1(x); - glm::uint32 REG2(y); - glm::uint32 REG3(z); - glm::uint32 REG4(w); - - REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); - REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); - REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); - REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); - - REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303); - REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303); - REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303); - REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303); - - REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111); - REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111); - REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111); - REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111); - - return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); - } - - template <> - GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) - { - glm::uint64 REG1(x); - glm::uint64 REG2(y); - glm::uint64 REG3(z); - glm::uint64 REG4(w); - - REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FFull); - REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FFull); - REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FFull); - REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FFull); - - REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000Full); - REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000Full); - REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000Full); - REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000Full); - - REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303ull); - REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303ull); - REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303ull); - REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303ull); - - REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111ull); - REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111ull); - REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111ull); - REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111ull); - - return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); - } -}//namespace detail - - template <typename genIUType> - GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits) - { - GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values"); - - return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1); - } - - template <typename T, precision P, template <typename, precision> class vecIUType> - GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const& v) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values"); - - return detail::functor1<T, T, P, vecIUType>::call(mask, v); - } - - template <typename genIType> - GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift) - { - GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values"); - - int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); - return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values"); - - int const BitSize = static_cast<int>(sizeof(T) * 8); - return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift)); - } - - template <typename genIType> - GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift) - { - GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); - - int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); - return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const& In, int Shift) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); - - int const BitSize = static_cast<int>(sizeof(T) * 8); - return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift)); - } - - template <typename genIUType> - GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount) - { - return Value | static_cast<genIUType>(mask(BitCount) << FirstBit); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const& Value, int FirstBit, int BitCount) - { - return Value | static_cast<T>(mask(BitCount) << FirstBit); - } - - template <typename genIUType> - GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount) - { - return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const& Value, int FirstBit, int BitCount) - { - return Value & static_cast<T>(~(mask(BitCount) << FirstBit)); - } - - GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) - { - union sign8 - { - int8 i; - uint8 u; - } sign_x, sign_y; - - union sign16 - { - int16 i; - uint16 u; - } result; - - sign_x.i = x; - sign_y.i = y; - result.u = bitfieldInterleave(sign_x.u, sign_y.u); - - return result.i; - } - - GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) - { - return detail::bitfieldInterleave<uint8, uint16>(x, y); - } - - GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y) - { - union sign16 - { - int16 i; - uint16 u; - } sign_x, sign_y; - - union sign32 - { - int32 i; - uint32 u; - } result; - - sign_x.i = x; - sign_y.i = y; - result.u = bitfieldInterleave(sign_x.u, sign_y.u); - - return result.i; - } - - GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y) - { - return detail::bitfieldInterleave<uint16, uint32>(x, y); - } - - GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y) - { - union sign32 - { - int32 i; - uint32 u; - } sign_x, sign_y; - - union sign64 - { - int64 i; - uint64 u; - } result; - - sign_x.i = x; - sign_y.i = y; - result.u = bitfieldInterleave(sign_x.u, sign_y.u); - - return result.i; - } - - GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y) - { - return detail::bitfieldInterleave<uint32, uint64>(x, y); - } - - GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z) - { - union sign8 - { - int8 i; - uint8 u; - } sign_x, sign_y, sign_z; - - union sign32 - { - int32 i; - uint32 u; - } result; - - sign_x.i = x; - sign_y.i = y; - sign_z.i = z; - result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); - - return result.i; - } - - GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z) - { - return detail::bitfieldInterleave<uint8, uint32>(x, y, z); - } - - GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z) - { - union sign16 - { - int16 i; - uint16 u; - } sign_x, sign_y, sign_z; - - union sign64 - { - int64 i; - uint64 u; - } result; - - sign_x.i = x; - sign_y.i = y; - sign_z.i = z; - result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); - - return result.i; - } - - GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z) - { - return detail::bitfieldInterleave<uint32, uint64>(x, y, z); - } - - GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z) - { - union sign16 - { - int32 i; - uint32 u; - } sign_x, sign_y, sign_z; - - union sign64 - { - int64 i; - uint64 u; - } result; - - sign_x.i = x; - sign_y.i = y; - sign_z.i = z; - result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); - - return result.i; - } - - GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z) - { - return detail::bitfieldInterleave<uint32, uint64>(x, y, z); - } - - GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w) - { - union sign8 - { - int8 i; - uint8 u; - } sign_x, sign_y, sign_z, sign_w; - - union sign32 - { - int32 i; - uint32 u; - } result; - - sign_x.i = x; - sign_y.i = y; - sign_z.i = z; - sign_w.i = w; - result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); - - return result.i; - } - - GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w) - { - return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w); - } - - GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w) - { - union sign16 - { - int16 i; - uint16 u; - } sign_x, sign_y, sign_z, sign_w; - - union sign64 - { - int64 i; - uint64 u; - } result; - - sign_x.i = x; - sign_y.i = y; - sign_z.i = z; - sign_w.i = w; - result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); - - return result.i; - } - - GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w) - { - return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w); - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/color_encoding.inl b/depedencies/include/glm/gtc/color_encoding.inl deleted file mode 100644 index 68570cb..0000000 --- a/depedencies/include/glm/gtc/color_encoding.inl +++ /dev/null @@ -1,65 +0,0 @@ -/// @ref gtc_color_encoding -/// @file glm/gtc/color_encoding.inl - -namespace glm -{ - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD65XYZ(tvec3<T, P> const& ColorLinearSRGB) - { - tvec3<T, P> const M(0.490f, 0.17697f, 0.2f); - tvec3<T, P> const N(0.31f, 0.8124f, 0.01063f); - tvec3<T, P> const O(0.490f, 0.01f, 0.99f); - - return (M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB) * static_cast<T>(5.650675255693055f); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToLinearSRGB(tvec3<T, P> const& ColorD65XYZ) - { - tvec3<T, P> const M(0.41847f, -0.091169f, 0.0009209f); - tvec3<T, P> const N(-0.15866f, 0.25243f, 0.015708f); - tvec3<T, P> const O(0.0009209f, -0.0025498f, 0.1786f); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertLinearSRGBToD50XYZ(tvec3<T, P> const& ColorLinearSRGB) - { - tvec3<T, P> const M(0.436030342570117f, 0.222438466210245f, 0.013897440074263f); - tvec3<T, P> const N(0.385101860087134f, 0.716942745571917f, 0.097076381494207f); - tvec3<T, P> const O(0.143067806654203f, 0.060618777416563f, 0.713926257896652f); - - return M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToLinearSRGB(tvec3<T, P> const& ColorD50XYZ) - { - tvec3<T, P> const M(); - tvec3<T, P> const N(); - tvec3<T, P> const O(); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertD65XYZToD50XYZ(tvec3<T, P> const& ColorD65XYZ) - { - tvec3<T, P> const M(+1.047844353856414f, +0.029549007606644f, -0.009250984365223f); - tvec3<T, P> const N(+0.022898981050086f, +0.990508028941971f, +0.015072338237051f); - tvec3<T, P> const O(-0.050206647741605f, -0.017074711360960f, +0.751717835079977f); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> convertD50XYZToD65XYZ(tvec3<T, P> const& ColorD50XYZ) - { - tvec3<T, P> const M(); - tvec3<T, P> const N(); - tvec3<T, P> const O(); - - return M * ColorD50XYZ + N * ColorD50XYZ + O * ColorD50XYZ; - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/color_space.hpp b/depedencies/include/glm/gtc/color_space.hpp deleted file mode 100644 index 08ece8f..0000000 --- a/depedencies/include/glm/gtc/color_space.hpp +++ /dev/null @@ -1,56 +0,0 @@ -/// @ref gtc_color_space -/// @file glm/gtc/color_space.hpp -/// -/// @see core (dependence) -/// @see gtc_color_space (dependence) -/// -/// @defgroup gtc_color_space GLM_GTC_color_space -/// @ingroup gtc -/// -/// @brief Allow to perform bit operations on integer values -/// -/// <glm/gtc/color.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../exponential.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" -#include <limits> - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_color_space extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_color_space - /// @{ - - /// Convert a linear color to sRGB color using a standard gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear); - - /// Convert a linear color to sRGB color using a custom gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> convertLinearToSRGB(vecType<T, P> const & ColorLinear, T Gamma); - - /// Convert a sRGB color to linear color using a standard gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB); - - /// Convert a sRGB color to linear color using a custom gamma correction. - // IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> convertSRGBToLinear(vecType<T, P> const & ColorSRGB, T Gamma); - - /// @} -} //namespace glm - -#include "color_space.inl" diff --git a/depedencies/include/glm/gtc/color_space.inl b/depedencies/include/glm/gtc/color_space.inl deleted file mode 100644 index c9a44ef..0000000 --- a/depedencies/include/glm/gtc/color_space.inl +++ /dev/null @@ -1,75 +0,0 @@ -/// @ref gtc_color_space -/// @file glm/gtc/color_space.inl - -namespace glm{ -namespace detail -{ - template <typename T, precision P, template <typename, precision> class vecType> - struct compute_rgbToSrgb - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorRGB, T GammaCorrection) - { - vecType<T, P> const ClampedColor(clamp(ColorRGB, static_cast<T>(0), static_cast<T>(1))); - - return mix( - pow(ClampedColor, vecType<T, P>(GammaCorrection)) * static_cast<T>(1.055) - static_cast<T>(0.055), - ClampedColor * static_cast<T>(12.92), - lessThan(ClampedColor, vecType<T, P>(static_cast<T>(0.0031308)))); - } - }; - - template <typename T, precision P> - struct compute_rgbToSrgb<T, P, tvec4> - { - GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorRGB, T GammaCorrection) - { - return tvec4<T, P>(compute_rgbToSrgb<T, P, tvec3>::call(tvec3<T, P>(ColorRGB), GammaCorrection), ColorRGB.w); - } - }; - - template <typename T, precision P, template <typename, precision> class vecType> - struct compute_srgbToRgb - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const& ColorSRGB, T Gamma) - { - return mix( - pow((ColorSRGB + static_cast<T>(0.055)) * static_cast<T>(0.94786729857819905213270142180095), vecType<T, P>(Gamma)), - ColorSRGB * static_cast<T>(0.07739938080495356037151702786378), - lessThanEqual(ColorSRGB, vecType<T, P>(static_cast<T>(0.04045)))); - } - }; - - template <typename T, precision P> - struct compute_srgbToRgb<T, P, tvec4> - { - GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const& ColorSRGB, T Gamma) - { - return tvec4<T, P>(compute_srgbToRgb<T, P, tvec3>::call(tvec3<T, P>(ColorSRGB), Gamma), ColorSRGB.w); - } - }; -}//namespace detail - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear) - { - return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(0.41666)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> convertLinearToSRGB(vecType<T, P> const& ColorLinear, T Gamma) - { - return detail::compute_rgbToSrgb<T, P, vecType>::call(ColorLinear, static_cast<T>(1) / Gamma); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB) - { - return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, static_cast<T>(2.4)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> convertSRGBToLinear(vecType<T, P> const& ColorSRGB, T Gamma) - { - return detail::compute_srgbToRgb<T, P, vecType>::call(ColorSRGB, Gamma); - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/constants.hpp b/depedencies/include/glm/gtc/constants.hpp deleted file mode 100644 index d3358c7..0000000 --- a/depedencies/include/glm/gtc/constants.hpp +++ /dev/null @@ -1,176 +0,0 @@ -/// @ref gtc_constants -/// @file glm/gtc/constants.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// -/// @defgroup gtc_constants GLM_GTC_constants -/// @ingroup gtc -/// -/// @brief Provide a list of constants and precomputed useful values. -/// -/// <glm/gtc/constants.hpp> need to be included to use these features. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_constants extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_constants - /// @{ - - /// Return the epsilon constant for floating point types. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon(); - - /// Return 0. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType zero(); - - /// Return 1. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType one(); - - /// Return the pi constant. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType pi(); - - /// Return pi * 2. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType two_pi(); - - /// Return square root of pi. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType root_pi(); - - /// Return pi / 2. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType half_pi(); - - /// Return pi / 2 * 3. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType three_over_two_pi(); - - /// Return pi / 4. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType quarter_pi(); - - /// Return 1 / pi. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_pi(); - - /// Return 1 / (pi * 2). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_two_pi(); - - /// Return 2 / pi. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_pi(); - - /// Return 4 / pi. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType four_over_pi(); - - /// Return 2 / sqrt(pi). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_root_pi(); - - /// Return 1 / sqrt(2). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_root_two(); - - /// Return sqrt(pi / 2). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType root_half_pi(); - - /// Return sqrt(2 * pi). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType root_two_pi(); - - /// Return sqrt(ln(4)). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType root_ln_four(); - - /// Return e constant. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType e(); - - /// Return Euler's constant. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType euler(); - - /// Return sqrt(2). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType root_two(); - - /// Return sqrt(3). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType root_three(); - - /// Return sqrt(5). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType root_five(); - - /// Return ln(2). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType ln_two(); - - /// Return ln(10). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ten(); - - /// Return ln(ln(2)). - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ln_two(); - - /// Return 1 / 3. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType third(); - - /// Return 2 / 3. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType two_thirds(); - - /// Return the golden ratio constant. - /// @see gtc_constants - template <typename genType> - GLM_FUNC_DECL GLM_CONSTEXPR genType golden_ratio(); - - /// @} -} //namespace glm - -#include "constants.inl" diff --git a/depedencies/include/glm/gtc/constants.inl b/depedencies/include/glm/gtc/constants.inl deleted file mode 100644 index cb451d0..0000000 --- a/depedencies/include/glm/gtc/constants.inl +++ /dev/null @@ -1,181 +0,0 @@ -/// @ref gtc_constants -/// @file glm/gtc/constants.inl - -#include <limits> - -namespace glm -{ - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType epsilon() - { - return std::numeric_limits<genType>::epsilon(); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType zero() - { - return genType(0); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one() - { - return genType(1); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType pi() - { - return genType(3.14159265358979323846264338327950288); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_pi() - { - return genType(6.28318530717958647692528676655900576); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_pi() - { - return genType(1.772453850905516027); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType half_pi() - { - return genType(1.57079632679489661923132169163975144); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType three_over_two_pi() - { - return genType(4.71238898038468985769396507491925432); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType quarter_pi() - { - return genType(0.785398163397448309615660845819875721); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_pi() - { - return genType(0.318309886183790671537767526745028724); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_two_pi() - { - return genType(0.159154943091895335768883763372514362); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_pi() - { - return genType(0.636619772367581343075535053490057448); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType four_over_pi() - { - return genType(1.273239544735162686151070106980114898); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_root_pi() - { - return genType(1.12837916709551257389615890312154517); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_root_two() - { - return genType(0.707106781186547524400844362104849039); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_half_pi() - { - return genType(1.253314137315500251); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two_pi() - { - return genType(2.506628274631000502); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_ln_four() - { - return genType(1.17741002251547469); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType e() - { - return genType(2.71828182845904523536); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType euler() - { - return genType(0.577215664901532860606); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two() - { - return genType(1.41421356237309504880168872420969808); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_three() - { - return genType(1.73205080756887729352744634150587236); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_five() - { - return genType(2.23606797749978969640917366873127623); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_two() - { - return genType(0.693147180559945309417232121458176568); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ten() - { - return genType(2.30258509299404568401799145468436421); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ln_two() - { - return genType(-0.3665129205816643); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType third() - { - return genType(0.3333333333333333333333333333333333333333); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_thirds() - { - return genType(0.666666666666666666666666666666666666667); - } - - template <typename genType> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType golden_ratio() - { - return genType(1.61803398874989484820458683436563811); - } -} //namespace glm diff --git a/depedencies/include/glm/gtc/epsilon.hpp b/depedencies/include/glm/gtc/epsilon.hpp deleted file mode 100644 index 289f5b7..0000000 --- a/depedencies/include/glm/gtc/epsilon.hpp +++ /dev/null @@ -1,73 +0,0 @@ -/// @ref gtc_epsilon -/// @file glm/gtc/epsilon.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// @see gtc_quaternion (dependence) -/// -/// @defgroup gtc_epsilon GLM_GTC_epsilon -/// @ingroup gtc -/// -/// @brief Comparison functions for a user defined epsilon values. -/// -/// <glm/gtc/epsilon.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_epsilon extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_epsilon - /// @{ - - /// Returns the component-wise comparison of |x - y| < epsilon. - /// True if this expression is satisfied. - /// - /// @see gtc_epsilon - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<bool, P> epsilonEqual( - vecType<T, P> const & x, - vecType<T, P> const & y, - T const & epsilon); - - /// Returns the component-wise comparison of |x - y| < epsilon. - /// True if this expression is satisfied. - /// - /// @see gtc_epsilon - template <typename genType> - GLM_FUNC_DECL bool epsilonEqual( - genType const & x, - genType const & y, - genType const & epsilon); - - /// Returns the component-wise comparison of |x - y| < epsilon. - /// True if this expression is not satisfied. - /// - /// @see gtc_epsilon - template <typename genType> - GLM_FUNC_DECL typename genType::boolType epsilonNotEqual( - genType const & x, - genType const & y, - typename genType::value_type const & epsilon); - - /// Returns the component-wise comparison of |x - y| >= epsilon. - /// True if this expression is not satisfied. - /// - /// @see gtc_epsilon - template <typename genType> - GLM_FUNC_DECL bool epsilonNotEqual( - genType const & x, - genType const & y, - genType const & epsilon); - - /// @} -}//namespace glm - -#include "epsilon.inl" diff --git a/depedencies/include/glm/gtc/epsilon.inl b/depedencies/include/glm/gtc/epsilon.inl deleted file mode 100644 index b5577d9..0000000 --- a/depedencies/include/glm/gtc/epsilon.inl +++ /dev/null @@ -1,125 +0,0 @@ -/// @ref gtc_epsilon -/// @file glm/gtc/epsilon.inl - -// Dependency: -#include "quaternion.hpp" -#include "../vector_relational.hpp" -#include "../common.hpp" -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" - -namespace glm -{ - template <> - GLM_FUNC_QUALIFIER bool epsilonEqual - ( - float const & x, - float const & y, - float const & epsilon - ) - { - return abs(x - y) < epsilon; - } - - template <> - GLM_FUNC_QUALIFIER bool epsilonEqual - ( - double const & x, - double const & y, - double const & epsilon - ) - { - return abs(x - y) < epsilon; - } - - template <> - GLM_FUNC_QUALIFIER bool epsilonNotEqual - ( - float const & x, - float const & y, - float const & epsilon - ) - { - return abs(x - y) >= epsilon; - } - - template <> - GLM_FUNC_QUALIFIER bool epsilonNotEqual - ( - double const & x, - double const & y, - double const & epsilon - ) - { - return abs(x - y) >= epsilon; - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual - ( - vecType<T, P> const & x, - vecType<T, P> const & y, - T const & epsilon - ) - { - return lessThan(abs(x - y), vecType<T, P>(epsilon)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> epsilonEqual - ( - vecType<T, P> const & x, - vecType<T, P> const & y, - vecType<T, P> const & epsilon - ) - { - return lessThan(abs(x - y), vecType<T, P>(epsilon)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual - ( - vecType<T, P> const & x, - vecType<T, P> const & y, - T const & epsilon - ) - { - return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> epsilonNotEqual - ( - vecType<T, P> const & x, - vecType<T, P> const & y, - vecType<T, P> const & epsilon - ) - { - return greaterThanEqual(abs(x - y), vecType<T, P>(epsilon)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonEqual - ( - tquat<T, P> const & x, - tquat<T, P> const & y, - T const & epsilon - ) - { - tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); - return lessThan(abs(v), tvec4<T, P>(epsilon)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> epsilonNotEqual - ( - tquat<T, P> const & x, - tquat<T, P> const & y, - T const & epsilon - ) - { - tvec4<T, P> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); - return greaterThanEqual(abs(v), tvec4<T, P>(epsilon)); - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/functions.hpp b/depedencies/include/glm/gtc/functions.hpp deleted file mode 100644 index ab1590b..0000000 --- a/depedencies/include/glm/gtc/functions.hpp +++ /dev/null @@ -1,53 +0,0 @@ -/// @ref gtc_functions -/// @file glm/gtc/functions.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// @see gtc_quaternion (dependence) -/// -/// @defgroup gtc_functions GLM_GTC_functions -/// @ingroup gtc -/// -/// @brief List of useful common functions. -/// -/// <glm/gtc/functions.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/type_vec2.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_functions extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_functions - /// @{ - - /// 1D gauss function - /// - /// @see gtc_epsilon - template <typename T> - GLM_FUNC_DECL T gauss( - T x, - T ExpectedValue, - T StandardDeviation); - - /// 2D gauss function - /// - /// @see gtc_epsilon - template <typename T, precision P> - GLM_FUNC_DECL T gauss( - tvec2<T, P> const& Coord, - tvec2<T, P> const& ExpectedValue, - tvec2<T, P> const& StandardDeviation); - - /// @} -}//namespace glm - -#include "functions.inl" - diff --git a/depedencies/include/glm/gtc/functions.inl b/depedencies/include/glm/gtc/functions.inl deleted file mode 100644 index 1dbc496..0000000 --- a/depedencies/include/glm/gtc/functions.inl +++ /dev/null @@ -1,31 +0,0 @@ -/// @ref gtc_functions -/// @file glm/gtc/functions.inl - -#include "../detail/func_exponential.hpp" - -namespace glm -{ - template <typename T> - GLM_FUNC_QUALIFIER T gauss - ( - T x, - T ExpectedValue, - T StandardDeviation - ) - { - return exp(-((x - ExpectedValue) * (x - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation)) / (StandardDeviation * sqrt(static_cast<T>(6.28318530717958647692528676655900576))); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T gauss - ( - tvec2<T, P> const& Coord, - tvec2<T, P> const& ExpectedValue, - tvec2<T, P> const& StandardDeviation - ) - { - tvec2<T, P> const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast<T>(2) * StandardDeviation * StandardDeviation); - return exp(-(Squared.x + Squared.y)); - } -}//namespace glm - diff --git a/depedencies/include/glm/gtc/integer.hpp b/depedencies/include/glm/gtc/integer.hpp deleted file mode 100644 index 69ffb1d..0000000 --- a/depedencies/include/glm/gtc/integer.hpp +++ /dev/null @@ -1,102 +0,0 @@ -/// @ref gtc_integer -/// @file glm/gtc/integer.hpp -/// -/// @see core (dependence) -/// @see gtc_integer (dependence) -/// -/// @defgroup gtc_integer GLM_GTC_integer -/// @ingroup gtc -/// -/// @brief Allow to perform bit operations on integer values -/// -/// <glm/gtc/integer.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/func_common.hpp" -#include "../detail/func_integer.hpp" -#include "../detail/func_exponential.hpp" -#include <limits> - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_integer extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_integer - /// @{ - - /// Returns the log2 of x for integer values. Can be reliably using to compute mipmap count from the texture size. - /// @see gtc_integer - template <typename genIUType> - GLM_FUNC_DECL genIUType log2(genIUType x); - - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam genIUType Integer-point scalar or vector types. - /// - /// @see gtc_integer - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> - template <typename genIUType> - GLM_FUNC_DECL genIUType mod(genIUType x, genIUType y); - - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam T Integer scalar types. - /// @tparam vecType vector types. - /// - /// @see gtc_integer - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, T y); - - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam T Integer scalar types. - /// @tparam vecType vector types. - /// - /// @see gtc_integer - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a> - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, vecType<T, P> const & y); - - /// Returns a value equal to the nearest integer to x. - /// The fraction 0.5 will round in a direction chosen by the - /// implementation, presumably the direction that is fastest. - /// - /// @param x The values of the argument must be greater or equal to zero. - /// @tparam T floating point scalar types. - /// @tparam vecType vector types. - /// - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a> - /// @see gtc_integer - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<int, P> iround(vecType<T, P> const & x); - - /// Returns a value equal to the nearest integer to x. - /// The fraction 0.5 will round in a direction chosen by the - /// implementation, presumably the direction that is fastest. - /// - /// @param x The values of the argument must be greater or equal to zero. - /// @tparam T floating point scalar types. - /// @tparam vecType vector types. - /// - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a> - /// @see gtc_integer - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<uint, P> uround(vecType<T, P> const & x); - - /// @} -} //namespace glm - -#include "integer.inl" diff --git a/depedencies/include/glm/gtc/integer.inl b/depedencies/include/glm/gtc/integer.inl deleted file mode 100644 index 7ce2918..0000000 --- a/depedencies/include/glm/gtc/integer.inl +++ /dev/null @@ -1,71 +0,0 @@ -/// @ref gtc_integer -/// @file glm/gtc/integer.inl - -namespace glm{ -namespace detail -{ - template <typename T, precision P, template <typename, precision> class vecType, bool Aligned> - struct compute_log2<T, P, vecType, false, Aligned> - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & vec) - { - //Equivalent to return findMSB(vec); but save one function call in ASM with VC - //return findMSB(vec); - return vecType<T, P>(detail::compute_findMSB_vec<T, P, vecType, sizeof(T) * 8>::call(vec)); - } - }; - -# if GLM_HAS_BITSCAN_WINDOWS - template <precision P, bool Aligned> - struct compute_log2<int, P, tvec4, false, Aligned> - { - GLM_FUNC_QUALIFIER static tvec4<int, P> call(tvec4<int, P> const & vec) - { - tvec4<int, P> Result(glm::uninitialize); - - _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.x), vec.x); - _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.y), vec.y); - _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.z), vec.z); - _BitScanReverse(reinterpret_cast<unsigned long*>(&Result.w), vec.w); - - return Result; - } - }; -# endif//GLM_HAS_BITSCAN_WINDOWS -}//namespace detail - template <typename genType> - GLM_FUNC_QUALIFIER int iround(genType x) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'iround' only accept floating-point inputs"); - assert(static_cast<genType>(0.0) <= x); - - return static_cast<int>(x + static_cast<genType>(0.5)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<int, P> iround(vecType<T, P> const& x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'iround' only accept floating-point inputs"); - assert(all(lessThanEqual(vecType<T, P>(0), x))); - - return vecType<int, P>(x + static_cast<T>(0.5)); - } - - template <typename genType> - GLM_FUNC_QUALIFIER uint uround(genType x) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'uround' only accept floating-point inputs"); - assert(static_cast<genType>(0.0) <= x); - - return static_cast<uint>(x + static_cast<genType>(0.5)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<uint, P> uround(vecType<T, P> const& x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'uround' only accept floating-point inputs"); - assert(all(lessThanEqual(vecType<T, P>(0), x))); - - return vecType<uint, P>(x + static_cast<T>(0.5)); - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/matrix_access.hpp b/depedencies/include/glm/gtc/matrix_access.hpp deleted file mode 100644 index e4156ef..0000000 --- a/depedencies/include/glm/gtc/matrix_access.hpp +++ /dev/null @@ -1,59 +0,0 @@ -/// @ref gtc_matrix_access -/// @file glm/gtc/matrix_access.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_matrix_access GLM_GTC_matrix_access -/// @ingroup gtc -/// -/// Defines functions to access rows or columns of a matrix easily. -/// <glm/gtc/matrix_access.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependency: -#include "../detail/setup.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_matrix_access extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_matrix_access - /// @{ - - /// Get a specific row of a matrix. - /// @see gtc_matrix_access - template <typename genType> - GLM_FUNC_DECL typename genType::row_type row( - genType const & m, - length_t index); - - /// Set a specific row to a matrix. - /// @see gtc_matrix_access - template <typename genType> - GLM_FUNC_DECL genType row( - genType const & m, - length_t index, - typename genType::row_type const & x); - - /// Get a specific column of a matrix. - /// @see gtc_matrix_access - template <typename genType> - GLM_FUNC_DECL typename genType::col_type column( - genType const & m, - length_t index); - - /// Set a specific column to a matrix. - /// @see gtc_matrix_access - template <typename genType> - GLM_FUNC_DECL genType column( - genType const & m, - length_t index, - typename genType::col_type const & x); - - /// @} -}//namespace glm - -#include "matrix_access.inl" diff --git a/depedencies/include/glm/gtc/matrix_access.inl b/depedencies/include/glm/gtc/matrix_access.inl deleted file mode 100644 index 831b940..0000000 --- a/depedencies/include/glm/gtc/matrix_access.inl +++ /dev/null @@ -1,63 +0,0 @@ -/// @ref gtc_matrix_access -/// @file glm/gtc/matrix_access.inl - -namespace glm -{ - template <typename genType> - GLM_FUNC_QUALIFIER genType row - ( - genType const & m, - length_t index, - typename genType::row_type const & x - ) - { - assert(index >= 0 && index < m[0].length()); - - genType Result = m; - for(length_t i = 0; i < m.length(); ++i) - Result[i][index] = x[i]; - return Result; - } - - template <typename genType> - GLM_FUNC_QUALIFIER typename genType::row_type row - ( - genType const & m, - length_t index - ) - { - assert(index >= 0 && index < m[0].length()); - - typename genType::row_type Result; - for(length_t i = 0; i < m.length(); ++i) - Result[i] = m[i][index]; - return Result; - } - - template <typename genType> - GLM_FUNC_QUALIFIER genType column - ( - genType const & m, - length_t index, - typename genType::col_type const & x - ) - { - assert(index >= 0 && index < m.length()); - - genType Result = m; - Result[index] = x; - return Result; - } - - template <typename genType> - GLM_FUNC_QUALIFIER typename genType::col_type column - ( - genType const & m, - length_t index - ) - { - assert(index >= 0 && index < m.length()); - - return m[index]; - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/matrix_integer.hpp b/depedencies/include/glm/gtc/matrix_integer.hpp deleted file mode 100644 index fdc816d..0000000 --- a/depedencies/include/glm/gtc/matrix_integer.hpp +++ /dev/null @@ -1,486 +0,0 @@ -/// @ref gtc_matrix_integer -/// @file glm/gtc/matrix_integer.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer -/// @ingroup gtc -/// -/// Defines a number of matrices with integer types. -/// <glm/gtc/matrix_integer.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependency: -#include "../mat2x2.hpp" -#include "../mat2x3.hpp" -#include "../mat2x4.hpp" -#include "../mat3x2.hpp" -#include "../mat3x3.hpp" -#include "../mat3x4.hpp" -#include "../mat4x2.hpp" -#include "../mat4x3.hpp" -#include "../mat4x4.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_matrix_integer extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_matrix_integer - /// @{ - - /// High-precision signed integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<int, highp> highp_imat2; - - /// High-precision signed integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<int, highp> highp_imat3; - - /// High-precision signed integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<int, highp> highp_imat4; - - /// High-precision signed integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<int, highp> highp_imat2x2; - - /// High-precision signed integer 2x3 matrix. - /// @see gtc_matrix_integer - typedef tmat2x3<int, highp> highp_imat2x3; - - /// High-precision signed integer 2x4 matrix. - /// @see gtc_matrix_integer - typedef tmat2x4<int, highp> highp_imat2x4; - - /// High-precision signed integer 3x2 matrix. - /// @see gtc_matrix_integer - typedef tmat3x2<int, highp> highp_imat3x2; - - /// High-precision signed integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<int, highp> highp_imat3x3; - - /// High-precision signed integer 3x4 matrix. - /// @see gtc_matrix_integer - typedef tmat3x4<int, highp> highp_imat3x4; - - /// High-precision signed integer 4x2 matrix. - /// @see gtc_matrix_integer - typedef tmat4x2<int, highp> highp_imat4x2; - - /// High-precision signed integer 4x3 matrix. - /// @see gtc_matrix_integer - typedef tmat4x3<int, highp> highp_imat4x3; - - /// High-precision signed integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<int, highp> highp_imat4x4; - - - /// Medium-precision signed integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<int, mediump> mediump_imat2; - - /// Medium-precision signed integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<int, mediump> mediump_imat3; - - /// Medium-precision signed integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<int, mediump> mediump_imat4; - - - /// Medium-precision signed integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<int, mediump> mediump_imat2x2; - - /// Medium-precision signed integer 2x3 matrix. - /// @see gtc_matrix_integer - typedef tmat2x3<int, mediump> mediump_imat2x3; - - /// Medium-precision signed integer 2x4 matrix. - /// @see gtc_matrix_integer - typedef tmat2x4<int, mediump> mediump_imat2x4; - - /// Medium-precision signed integer 3x2 matrix. - /// @see gtc_matrix_integer - typedef tmat3x2<int, mediump> mediump_imat3x2; - - /// Medium-precision signed integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<int, mediump> mediump_imat3x3; - - /// Medium-precision signed integer 3x4 matrix. - /// @see gtc_matrix_integer - typedef tmat3x4<int, mediump> mediump_imat3x4; - - /// Medium-precision signed integer 4x2 matrix. - /// @see gtc_matrix_integer - typedef tmat4x2<int, mediump> mediump_imat4x2; - - /// Medium-precision signed integer 4x3 matrix. - /// @see gtc_matrix_integer - typedef tmat4x3<int, mediump> mediump_imat4x3; - - /// Medium-precision signed integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<int, mediump> mediump_imat4x4; - - - /// Low-precision signed integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<int, lowp> lowp_imat2; - - /// Low-precision signed integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<int, lowp> lowp_imat3; - - /// Low-precision signed integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<int, lowp> lowp_imat4; - - - /// Low-precision signed integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<int, lowp> lowp_imat2x2; - - /// Low-precision signed integer 2x3 matrix. - /// @see gtc_matrix_integer - typedef tmat2x3<int, lowp> lowp_imat2x3; - - /// Low-precision signed integer 2x4 matrix. - /// @see gtc_matrix_integer - typedef tmat2x4<int, lowp> lowp_imat2x4; - - /// Low-precision signed integer 3x2 matrix. - /// @see gtc_matrix_integer - typedef tmat3x2<int, lowp> lowp_imat3x2; - - /// Low-precision signed integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<int, lowp> lowp_imat3x3; - - /// Low-precision signed integer 3x4 matrix. - /// @see gtc_matrix_integer - typedef tmat3x4<int, lowp> lowp_imat3x4; - - /// Low-precision signed integer 4x2 matrix. - /// @see gtc_matrix_integer - typedef tmat4x2<int, lowp> lowp_imat4x2; - - /// Low-precision signed integer 4x3 matrix. - /// @see gtc_matrix_integer - typedef tmat4x3<int, lowp> lowp_imat4x3; - - /// Low-precision signed integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<int, lowp> lowp_imat4x4; - - - /// High-precision unsigned integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<uint, highp> highp_umat2; - - /// High-precision unsigned integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<uint, highp> highp_umat3; - - /// High-precision unsigned integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<uint, highp> highp_umat4; - - /// High-precision unsigned integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<uint, highp> highp_umat2x2; - - /// High-precision unsigned integer 2x3 matrix. - /// @see gtc_matrix_integer - typedef tmat2x3<uint, highp> highp_umat2x3; - - /// High-precision unsigned integer 2x4 matrix. - /// @see gtc_matrix_integer - typedef tmat2x4<uint, highp> highp_umat2x4; - - /// High-precision unsigned integer 3x2 matrix. - /// @see gtc_matrix_integer - typedef tmat3x2<uint, highp> highp_umat3x2; - - /// High-precision unsigned integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<uint, highp> highp_umat3x3; - - /// High-precision unsigned integer 3x4 matrix. - /// @see gtc_matrix_integer - typedef tmat3x4<uint, highp> highp_umat3x4; - - /// High-precision unsigned integer 4x2 matrix. - /// @see gtc_matrix_integer - typedef tmat4x2<uint, highp> highp_umat4x2; - - /// High-precision unsigned integer 4x3 matrix. - /// @see gtc_matrix_integer - typedef tmat4x3<uint, highp> highp_umat4x3; - - /// High-precision unsigned integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<uint, highp> highp_umat4x4; - - - /// Medium-precision unsigned integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<uint, mediump> mediump_umat2; - - /// Medium-precision unsigned integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<uint, mediump> mediump_umat3; - - /// Medium-precision unsigned integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<uint, mediump> mediump_umat4; - - - /// Medium-precision unsigned integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<uint, mediump> mediump_umat2x2; - - /// Medium-precision unsigned integer 2x3 matrix. - /// @see gtc_matrix_integer - typedef tmat2x3<uint, mediump> mediump_umat2x3; - - /// Medium-precision unsigned integer 2x4 matrix. - /// @see gtc_matrix_integer - typedef tmat2x4<uint, mediump> mediump_umat2x4; - - /// Medium-precision unsigned integer 3x2 matrix. - /// @see gtc_matrix_integer - typedef tmat3x2<uint, mediump> mediump_umat3x2; - - /// Medium-precision unsigned integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<uint, mediump> mediump_umat3x3; - - /// Medium-precision unsigned integer 3x4 matrix. - /// @see gtc_matrix_integer - typedef tmat3x4<uint, mediump> mediump_umat3x4; - - /// Medium-precision unsigned integer 4x2 matrix. - /// @see gtc_matrix_integer - typedef tmat4x2<uint, mediump> mediump_umat4x2; - - /// Medium-precision unsigned integer 4x3 matrix. - /// @see gtc_matrix_integer - typedef tmat4x3<uint, mediump> mediump_umat4x3; - - /// Medium-precision unsigned integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<uint, mediump> mediump_umat4x4; - - - /// Low-precision unsigned integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<uint, lowp> lowp_umat2; - - /// Low-precision unsigned integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<uint, lowp> lowp_umat3; - - /// Low-precision unsigned integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<uint, lowp> lowp_umat4; - - - /// Low-precision unsigned integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef tmat2x2<uint, lowp> lowp_umat2x2; - - /// Low-precision unsigned integer 2x3 matrix. - /// @see gtc_matrix_integer - typedef tmat2x3<uint, lowp> lowp_umat2x3; - - /// Low-precision unsigned integer 2x4 matrix. - /// @see gtc_matrix_integer - typedef tmat2x4<uint, lowp> lowp_umat2x4; - - /// Low-precision unsigned integer 3x2 matrix. - /// @see gtc_matrix_integer - typedef tmat3x2<uint, lowp> lowp_umat3x2; - - /// Low-precision unsigned integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef tmat3x3<uint, lowp> lowp_umat3x3; - - /// Low-precision unsigned integer 3x4 matrix. - /// @see gtc_matrix_integer - typedef tmat3x4<uint, lowp> lowp_umat3x4; - - /// Low-precision unsigned integer 4x2 matrix. - /// @see gtc_matrix_integer - typedef tmat4x2<uint, lowp> lowp_umat4x2; - - /// Low-precision unsigned integer 4x3 matrix. - /// @see gtc_matrix_integer - typedef tmat4x3<uint, lowp> lowp_umat4x3; - - /// Low-precision unsigned integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef tmat4x4<uint, lowp> lowp_umat4x4; - -#if(defined(GLM_PRECISION_HIGHP_INT)) - typedef highp_imat2 imat2; - typedef highp_imat3 imat3; - typedef highp_imat4 imat4; - typedef highp_imat2x2 imat2x2; - typedef highp_imat2x3 imat2x3; - typedef highp_imat2x4 imat2x4; - typedef highp_imat3x2 imat3x2; - typedef highp_imat3x3 imat3x3; - typedef highp_imat3x4 imat3x4; - typedef highp_imat4x2 imat4x2; - typedef highp_imat4x3 imat4x3; - typedef highp_imat4x4 imat4x4; -#elif(defined(GLM_PRECISION_LOWP_INT)) - typedef lowp_imat2 imat2; - typedef lowp_imat3 imat3; - typedef lowp_imat4 imat4; - typedef lowp_imat2x2 imat2x2; - typedef lowp_imat2x3 imat2x3; - typedef lowp_imat2x4 imat2x4; - typedef lowp_imat3x2 imat3x2; - typedef lowp_imat3x3 imat3x3; - typedef lowp_imat3x4 imat3x4; - typedef lowp_imat4x2 imat4x2; - typedef lowp_imat4x3 imat4x3; - typedef lowp_imat4x4 imat4x4; -#else //if(defined(GLM_PRECISION_MEDIUMP_INT)) - - /// Signed integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat2 imat2; - - /// Signed integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat3 imat3; - - /// Signed integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat4 imat4; - - /// Signed integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat2x2 imat2x2; - - /// Signed integer 2x3 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat2x3 imat2x3; - - /// Signed integer 2x4 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat2x4 imat2x4; - - /// Signed integer 3x2 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat3x2 imat3x2; - - /// Signed integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat3x3 imat3x3; - - /// Signed integer 3x4 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat3x4 imat3x4; - - /// Signed integer 4x2 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat4x2 imat4x2; - - /// Signed integer 4x3 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat4x3 imat4x3; - - /// Signed integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef mediump_imat4x4 imat4x4; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_UINT)) - typedef highp_umat2 umat2; - typedef highp_umat3 umat3; - typedef highp_umat4 umat4; - typedef highp_umat2x2 umat2x2; - typedef highp_umat2x3 umat2x3; - typedef highp_umat2x4 umat2x4; - typedef highp_umat3x2 umat3x2; - typedef highp_umat3x3 umat3x3; - typedef highp_umat3x4 umat3x4; - typedef highp_umat4x2 umat4x2; - typedef highp_umat4x3 umat4x3; - typedef highp_umat4x4 umat4x4; -#elif(defined(GLM_PRECISION_LOWP_UINT)) - typedef lowp_umat2 umat2; - typedef lowp_umat3 umat3; - typedef lowp_umat4 umat4; - typedef lowp_umat2x2 umat2x2; - typedef lowp_umat2x3 umat2x3; - typedef lowp_umat2x4 umat2x4; - typedef lowp_umat3x2 umat3x2; - typedef lowp_umat3x3 umat3x3; - typedef lowp_umat3x4 umat3x4; - typedef lowp_umat4x2 umat4x2; - typedef lowp_umat4x3 umat4x3; - typedef lowp_umat4x4 umat4x4; -#else //if(defined(GLM_PRECISION_MEDIUMP_UINT)) - - /// Unsigned integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat2 umat2; - - /// Unsigned integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat3 umat3; - - /// Unsigned integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat4 umat4; - - /// Unsigned integer 2x2 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat2x2 umat2x2; - - /// Unsigned integer 2x3 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat2x3 umat2x3; - - /// Unsigned integer 2x4 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat2x4 umat2x4; - - /// Unsigned integer 3x2 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat3x2 umat3x2; - - /// Unsigned integer 3x3 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat3x3 umat3x3; - - /// Unsigned integer 3x4 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat3x4 umat3x4; - - /// Unsigned integer 4x2 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat4x2 umat4x2; - - /// Unsigned integer 4x3 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat4x3 umat4x3; - - /// Unsigned integer 4x4 matrix. - /// @see gtc_matrix_integer - typedef mediump_umat4x4 umat4x4; -#endif//GLM_PRECISION - - /// @} -}//namespace glm diff --git a/depedencies/include/glm/gtc/matrix_inverse.hpp b/depedencies/include/glm/gtc/matrix_inverse.hpp deleted file mode 100644 index 589381d..0000000 --- a/depedencies/include/glm/gtc/matrix_inverse.hpp +++ /dev/null @@ -1,49 +0,0 @@ -/// @ref gtc_matrix_inverse -/// @file glm/gtc/matrix_inverse.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse -/// @ingroup gtc -/// -/// Defines additional matrix inverting functions. -/// <glm/gtc/matrix_inverse.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../matrix.hpp" -#include "../mat2x2.hpp" -#include "../mat3x3.hpp" -#include "../mat4x4.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_matrix_inverse extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_matrix_inverse - /// @{ - - /// Fast matrix inverse for affine matrix. - /// - /// @param m Input matrix to invert. - /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. - /// @see gtc_matrix_inverse - template <typename genType> - GLM_FUNC_DECL genType affineInverse(genType const & m); - - /// Compute the inverse transpose of a matrix. - /// - /// @param m Input matrix to invert transpose. - /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. - /// @see gtc_matrix_inverse - template <typename genType> - GLM_FUNC_DECL genType inverseTranspose(genType const & m); - - /// @} -}//namespace glm - -#include "matrix_inverse.inl" diff --git a/depedencies/include/glm/gtc/matrix_inverse.inl b/depedencies/include/glm/gtc/matrix_inverse.inl deleted file mode 100644 index 36c9bf7..0000000 --- a/depedencies/include/glm/gtc/matrix_inverse.inl +++ /dev/null @@ -1,120 +0,0 @@ -/// @ref gtc_matrix_inverse -/// @file glm/gtc/matrix_inverse.inl - -namespace glm -{ - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat3x3<T, P> affineInverse(tmat3x3<T, P> const & m) - { - tmat2x2<T, P> const Inv(inverse(tmat2x2<T, P>(m))); - - return tmat3x3<T, P>( - tvec3<T, P>(Inv[0], static_cast<T>(0)), - tvec3<T, P>(Inv[1], static_cast<T>(0)), - tvec3<T, P>(-Inv * tvec2<T, P>(m[2]), static_cast<T>(1))); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> affineInverse(tmat4x4<T, P> const & m) - { - tmat3x3<T, P> const Inv(inverse(tmat3x3<T, P>(m))); - - return tmat4x4<T, P>( - tvec4<T, P>(Inv[0], static_cast<T>(0)), - tvec4<T, P>(Inv[1], static_cast<T>(0)), - tvec4<T, P>(Inv[2], static_cast<T>(0)), - tvec4<T, P>(-Inv * tvec3<T, P>(m[3]), static_cast<T>(1))); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat2x2<T, P> inverseTranspose(tmat2x2<T, P> const & m) - { - T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1]; - - tmat2x2<T, P> Inverse( - + m[1][1] / Determinant, - - m[0][1] / Determinant, - - m[1][0] / Determinant, - + m[0][0] / Determinant); - - return Inverse; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat3x3<T, P> inverseTranspose(tmat3x3<T, P> const & m) - { - T Determinant = - + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) - - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) - + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); - - tmat3x3<T, P> Inverse(uninitialize); - Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); - Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); - Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); - Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]); - Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]); - Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]); - Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]); - Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]); - Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]); - Inverse /= Determinant; - - return Inverse; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> inverseTranspose(tmat4x4<T, P> const & m) - { - T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; - T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; - T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; - T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; - T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; - T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; - T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; - T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; - T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; - T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; - T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; - T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; - T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; - T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; - T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; - T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; - T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; - T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; - T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; - - tmat4x4<T, P> Inverse(uninitialize); - Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02); - Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04); - Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05); - Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05); - - Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02); - Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04); - Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05); - Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05); - - Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08); - Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10); - Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12); - Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12); - - Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15); - Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17); - Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18); - Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18); - - T Determinant = - + m[0][0] * Inverse[0][0] - + m[0][1] * Inverse[0][1] - + m[0][2] * Inverse[0][2] - + m[0][3] * Inverse[0][3]; - - Inverse /= Determinant; - - return Inverse; - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/matrix_transform.hpp b/depedencies/include/glm/gtc/matrix_transform.hpp deleted file mode 100644 index c97b89a..0000000 --- a/depedencies/include/glm/gtc/matrix_transform.hpp +++ /dev/null @@ -1,465 +0,0 @@ -/// @ref gtc_matrix_transform -/// @file glm/gtc/matrix_transform.hpp -/// -/// @see core (dependence) -/// @see gtx_transform -/// @see gtx_transform2 -/// -/// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform -/// @ingroup gtc -/// -/// @brief Defines functions that generate common transformation matrices. -/// -/// The matrices generated by this extension use standard OpenGL fixed-function -/// conventions. For example, the lookAt function generates a transform from world -/// space into the specific eye space that the projective matrix functions -/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility -/// specifications defines the particular layout of this eye space. -/// -/// <glm/gtc/matrix_transform.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../mat4x4.hpp" -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" -#include "../gtc/constants.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_matrix_transform extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_matrix_transform - /// @{ - - /// Builds a translation 4 * 4 matrix created from a vector of 3 components. - /// - /// @param m Input matrix multiplied by this translation matrix. - /// @param v Coordinates of a translation vector. - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @code - /// #include <glm/glm.hpp> - /// #include <glm/gtc/matrix_transform.hpp> - /// ... - /// glm::mat4 m = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f)); - /// // m[0][0] == 1.0f, m[0][1] == 0.0f, m[0][2] == 0.0f, m[0][3] == 0.0f - /// // m[1][0] == 0.0f, m[1][1] == 1.0f, m[1][2] == 0.0f, m[1][3] == 0.0f - /// // m[2][0] == 0.0f, m[2][1] == 0.0f, m[2][2] == 1.0f, m[2][3] == 0.0f - /// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f - /// @endcode - /// @see gtc_matrix_transform - /// @see - translate(tmat4x4<T, P> const & m, T x, T y, T z) - /// @see - translate(tvec3<T, P> const & v) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> translate( - tmat4x4<T, P> const & m, - tvec3<T, P> const & v); - - /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle. - /// - /// @param m Input matrix multiplied by this rotation matrix. - /// @param angle Rotation angle expressed in radians. - /// @param axis Rotation axis, recommended to be normalized. - /// @tparam T Value type used to build the matrix. Supported: half, float or double. - /// @see gtc_matrix_transform - /// @see - rotate(tmat4x4<T, P> const & m, T angle, T x, T y, T z) - /// @see - rotate(T angle, tvec3<T, P> const & v) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> rotate( - tmat4x4<T, P> const & m, - T angle, - tvec3<T, P> const & axis); - - /// Builds a scale 4 * 4 matrix created from 3 scalars. - /// - /// @param m Input matrix multiplied by this scale matrix. - /// @param v Ratio of scaling for each axis. - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - scale(tmat4x4<T, P> const & m, T x, T y, T z) - /// @see - scale(tvec3<T, P> const & v) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> scale( - tmat4x4<T, P> const & m, - tvec3<T, P> const & v); - - /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> ortho( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); - - /// Creates a matrix for an orthographic parallel viewing volume, using left-handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> orthoLH( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); - - /// Creates a matrix for an orthographic parallel viewing volume, using right-handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> orthoRH( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); - - /// Creates a matrix for projecting two-dimensional coordinates onto the screen. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top, T const & zNear, T const & zFar) - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> ortho( - T left, - T right, - T bottom, - T top); - - /// Creates a frustum matrix with default handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> frustum( - T left, - T right, - T bottom, - T top, - T near, - T far); - - /// Creates a left handed frustum matrix. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> frustumLH( - T left, - T right, - T bottom, - T top, - T near, - T far); - - /// Creates a right handed frustum matrix. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> frustumRH( - T left, - T right, - T bottom, - T top, - T near, - T far); - - /// Creates a matrix for a symetric perspective-view frustum based on the default handedness. - /// - /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. - /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspective( - T fovy, - T aspect, - T near, - T far); - - /// Creates a matrix for a right handed, symetric perspective-view frustum. - /// - /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. - /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveRH( - T fovy, - T aspect, - T near, - T far); - - /// Creates a matrix for a left handed, symetric perspective-view frustum. - /// - /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. - /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveLH( - T fovy, - T aspect, - T near, - T far); - - /// Builds a perspective projection matrix based on a field of view and the default handedness. - /// - /// @param fov Expressed in radians. - /// @param width - /// @param height - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFov( - T fov, - T width, - T height, - T near, - T far); - - /// Builds a right handed perspective projection matrix based on a field of view. - /// - /// @param fov Expressed in radians. - /// @param width - /// @param height - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovRH( - T fov, - T width, - T height, - T near, - T far); - - /// Builds a left handed perspective projection matrix based on a field of view. - /// - /// @param fov Expressed in radians. - /// @param width - /// @param height - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFovLH( - T fov, - T width, - T height, - T near, - T far); - - /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. - /// - /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. - /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspective( - T fovy, T aspect, T near); - - /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. - /// - /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. - /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveLH( - T fovy, T aspect, T near); - - /// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite. - /// - /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. - /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspectiveRH( - T fovy, T aspect, T near); - - /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. - /// - /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. - /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective( - T fovy, T aspect, T near); - - /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. - /// - /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. - /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). - /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param ep - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template <typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective( - T fovy, T aspect, T near, T ep); - - /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. - /// - /// @param obj Specify the object coordinates. - /// @param model Specifies the current modelview matrix - /// @param proj Specifies the current projection matrix - /// @param viewport Specifies the current viewport - /// @return Return the computed window coordinates. - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. - /// @tparam U Currently supported: Floating-point types and integer types. - /// @see gtc_matrix_transform - template <typename T, typename U, precision P> - GLM_FUNC_DECL tvec3<T, P> project( - tvec3<T, P> const & obj, - tmat4x4<T, P> const & model, - tmat4x4<T, P> const & proj, - tvec4<U, P> const & viewport); - - /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. - /// - /// @param win Specify the window coordinates to be mapped. - /// @param model Specifies the modelview matrix - /// @param proj Specifies the projection matrix - /// @param viewport Specifies the viewport - /// @return Returns the computed object coordinates. - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. - /// @tparam U Currently supported: Floating-point types and integer types. - /// @see gtc_matrix_transform - template <typename T, typename U, precision P> - GLM_FUNC_DECL tvec3<T, P> unProject( - tvec3<T, P> const & win, - tmat4x4<T, P> const & model, - tmat4x4<T, P> const & proj, - tvec4<U, P> const & viewport); - - /// Define a picking region - /// - /// @param center - /// @param delta - /// @param viewport - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. - /// @tparam U Currently supported: Floating-point types and integer types. - /// @see gtc_matrix_transform - template <typename T, precision P, typename U> - GLM_FUNC_DECL tmat4x4<T, P> pickMatrix( - tvec2<T, P> const & center, - tvec2<T, P> const & delta, - tvec4<U, P> const & viewport); - - /// Build a look at view matrix based on the default handedness. - /// - /// @param eye Position of the camera - /// @param center Position where the camera is looking at - /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) - /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> lookAt( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up); - - /// Build a right handed look at view matrix. - /// - /// @param eye Position of the camera - /// @param center Position where the camera is looking at - /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) - /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> lookAtRH( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up); - - /// Build a left handed look at view matrix. - /// - /// @param eye Position of the camera - /// @param center Position where the camera is looking at - /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) - /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> lookAtLH( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up); - - /// @} -}//namespace glm - -#include "matrix_transform.inl" diff --git a/depedencies/include/glm/gtc/matrix_transform.inl b/depedencies/include/glm/gtc/matrix_transform.inl deleted file mode 100644 index b9ff418..0000000 --- a/depedencies/include/glm/gtc/matrix_transform.inl +++ /dev/null @@ -1,575 +0,0 @@ -/// @ref gtc_matrix_transform -/// @file glm/gtc/matrix_transform.inl - -#include "../geometric.hpp" -#include "../trigonometric.hpp" -#include "../matrix.hpp" - -namespace glm -{ - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> translate(tmat4x4<T, P> const & m, tvec3<T, P> const & v) - { - tmat4x4<T, P> Result(m); - Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) - { - T const a = angle; - T const c = cos(a); - T const s = sin(a); - - tvec3<T, P> axis(normalize(v)); - tvec3<T, P> temp((T(1) - c) * axis); - - tmat4x4<T, P> Rotate(uninitialize); - Rotate[0][0] = c + temp[0] * axis[0]; - Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; - Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; - - Rotate[1][0] = temp[1] * axis[0] - s * axis[2]; - Rotate[1][1] = c + temp[1] * axis[1]; - Rotate[1][2] = temp[1] * axis[2] + s * axis[0]; - - Rotate[2][0] = temp[2] * axis[0] + s * axis[1]; - Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; - Rotate[2][2] = c + temp[2] * axis[2]; - - tmat4x4<T, P> Result(uninitialize); - Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; - Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; - Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; - Result[3] = m[3]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow(tmat4x4<T, P> const & m, T angle, tvec3<T, P> const & v) - { - T const a = angle; - T const c = cos(a); - T const s = sin(a); - tmat4x4<T, P> Result; - - tvec3<T, P> axis = normalize(v); - - Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x; - Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z; - Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y; - Result[0][3] = static_cast<T>(0); - - Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z; - Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y; - Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x; - Result[1][3] = static_cast<T>(0); - - Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y; - Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x; - Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z; - Result[2][3] = static_cast<T>(0); - - Result[3] = tvec4<T, P>(0, 0, 0, 1); - return m * Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> scale(tmat4x4<T, P> const & m, tvec3<T, P> const & v) - { - tmat4x4<T, P> Result(uninitialize); - Result[0] = m[0] * v[0]; - Result[1] = m[1] * v[1]; - Result[2] = m[2] * v[2]; - Result[3] = m[3]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow(tmat4x4<T, P> const & m, tvec3<T, P> const & v) - { - tmat4x4<T, P> Result(T(1)); - Result[0][0] = v.x; - Result[1][1] = v.y; - Result[2][2] = v.z; - return m * Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) - { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return orthoLH(left, right, bottom, top, zNear, zFar); -# else - return orthoRH(left, right, bottom, top, zNear, zFar); -# endif - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoLH - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) - { - tmat4x4<T, defaultp> Result(1); - Result[0][0] = static_cast<T>(2) / (right - left); - Result[1][1] = static_cast<T>(2) / (top - bottom); - Result[3][0] = - (right + left) / (right - left); - Result[3][1] = - (top + bottom) / (top - bottom); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = static_cast<T>(1) / (zFar - zNear); - Result[3][2] = - zNear / (zFar - zNear); -# else - Result[2][2] = static_cast<T>(2) / (zFar - zNear); - Result[3][2] = - (zFar + zNear) / (zFar - zNear); -# endif - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> orthoRH - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) - { - tmat4x4<T, defaultp> Result(1); - Result[0][0] = static_cast<T>(2) / (right - left); - Result[1][1] = static_cast<T>(2) / (top - bottom); - Result[3][0] = - (right + left) / (right - left); - Result[3][1] = - (top + bottom) / (top - bottom); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = - static_cast<T>(1) / (zFar - zNear); - Result[3][2] = - zNear / (zFar - zNear); -# else - Result[2][2] = - static_cast<T>(2) / (zFar - zNear); - Result[3][2] = - (zFar + zNear) / (zFar - zNear); -# endif - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho - ( - T left, T right, - T bottom, T top - ) - { - tmat4x4<T, defaultp> Result(static_cast<T>(1)); - Result[0][0] = static_cast<T>(2) / (right - left); - Result[1][1] = static_cast<T>(2) / (top - bottom); - Result[2][2] = - static_cast<T>(1); - Result[3][0] = - (right + left) / (right - left); - Result[3][1] = - (top + bottom) / (top - bottom); - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) - { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return frustumLH(left, right, bottom, top, nearVal, farVal); -# else - return frustumRH(left, right, bottom, top, nearVal, farVal); -# endif - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumLH - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) - { - tmat4x4<T, defaultp> Result(0); - Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); - Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); - Result[2][0] = (right + left) / (right - left); - Result[2][1] = (top + bottom) / (top - bottom); - Result[2][3] = static_cast<T>(1); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = farVal / (farVal - nearVal); - Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); -# else - Result[2][2] = (farVal + nearVal) / (farVal - nearVal); - Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); -# endif - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustumRH - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) - { - tmat4x4<T, defaultp> Result(0); - Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left); - Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom); - Result[2][0] = (right + left) / (right - left); - Result[2][1] = (top + bottom) / (top - bottom); - Result[2][3] = static_cast<T>(-1); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = farVal / (nearVal - farVal); - Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); -# else - Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); - Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal); -# endif - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) - { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return perspectiveLH(fovy, aspect, zNear, zFar); -# else - return perspectiveRH(fovy, aspect, zNear, zFar); -# endif - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) - { - assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); - - T const tanHalfFovy = tan(fovy / static_cast<T>(2)); - - tmat4x4<T, defaultp> Result(static_cast<T>(0)); - Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); - Result[1][1] = static_cast<T>(1) / (tanHalfFovy); - Result[2][3] = - static_cast<T>(1); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zNear - zFar); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = - (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); -# endif - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) - { - assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0)); - - T const tanHalfFovy = tan(fovy / static_cast<T>(2)); - - tmat4x4<T, defaultp> Result(static_cast<T>(0)); - Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy); - Result[1][1] = static_cast<T>(1) / (tanHalfFovy); - Result[2][3] = static_cast<T>(1); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zFar - zNear); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); -# endif - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) - { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return perspectiveFovLH(fov, width, height, zNear, zFar); -# else - return perspectiveFovRH(fov, width, height, zNear, zFar); -# endif - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) - { - assert(width > static_cast<T>(0)); - assert(height > static_cast<T>(0)); - assert(fov > static_cast<T>(0)); - - T const rad = fov; - T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); - T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? - - tmat4x4<T, defaultp> Result(static_cast<T>(0)); - Result[0][0] = w; - Result[1][1] = h; - Result[2][3] = - static_cast<T>(1); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zNear - zFar); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = - (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); -# endif - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) - { - assert(width > static_cast<T>(0)); - assert(height > static_cast<T>(0)); - assert(fov > static_cast<T>(0)); - - T const rad = fov; - T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad); - T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? - - tmat4x4<T, defaultp> Result(static_cast<T>(0)); - Result[0][0] = w; - Result[1][1] = h; - Result[2][3] = static_cast<T>(1); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zFar - zNear); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear); -# endif - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) - { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return infinitePerspectiveLH(fovy, aspect, zNear); -# else - return infinitePerspectiveRH(fovy, aspect, zNear); -# endif - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) - { - T const range = tan(fovy / static_cast<T>(2)) * zNear; - T const left = -range * aspect; - T const right = range * aspect; - T const bottom = -range; - T const top = range; - - tmat4x4<T, defaultp> Result(static_cast<T>(0)); - Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); - Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); - Result[2][2] = - static_cast<T>(1); - Result[2][3] = - static_cast<T>(1); - Result[3][2] = - static_cast<T>(2) * zNear; - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) - { - T const range = tan(fovy / static_cast<T>(2)) * zNear; - T const left = -range * aspect; - T const right = range * aspect; - T const bottom = -range; - T const top = range; - - tmat4x4<T, defaultp> Result(T(0)); - Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); - Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); - Result[2][2] = static_cast<T>(1); - Result[2][3] = static_cast<T>(1); - Result[3][2] = - static_cast<T>(2) * zNear; - return Result; - } - - // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) - { - T const range = tan(fovy / static_cast<T>(2)) * zNear; - T const left = -range * aspect; - T const right = range * aspect; - T const bottom = -range; - T const top = range; - - tmat4x4<T, defaultp> Result(static_cast<T>(0)); - Result[0][0] = (static_cast<T>(2) * zNear) / (right - left); - Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom); - Result[2][2] = ep - static_cast<T>(1); - Result[2][3] = static_cast<T>(-1); - Result[3][2] = (ep - static_cast<T>(2)) * zNear; - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) - { - return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>()); - } - - template <typename T, typename U, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> project - ( - tvec3<T, P> const & obj, - tmat4x4<T, P> const & model, - tmat4x4<T, P> const & proj, - tvec4<U, P> const & viewport - ) - { - tvec4<T, P> tmp = tvec4<T, P>(obj, static_cast<T>(1)); - tmp = model * tmp; - tmp = proj * tmp; - - tmp /= tmp.w; -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5); - tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5); -# else - tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5); -# endif - tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); - tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); - - return tvec3<T, P>(tmp); - } - - template <typename T, typename U, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> unProject - ( - tvec3<T, P> const & win, - tmat4x4<T, P> const & model, - tmat4x4<T, P> const & proj, - tvec4<U, P> const & viewport - ) - { - tmat4x4<T, P> Inverse = inverse(proj * model); - - tvec4<T, P> tmp = tvec4<T, P>(win, T(1)); - tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); - tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1); - tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1); -# else - tmp = tmp * static_cast<T>(2) - static_cast<T>(1); -# endif - - tvec4<T, P> obj = Inverse * tmp; - obj /= obj.w; - - return tvec3<T, P>(obj); - } - - template <typename T, precision P, typename U> - GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix(tvec2<T, P> const & center, tvec2<T, P> const & delta, tvec4<U, P> const & viewport) - { - assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)); - tmat4x4<T, P> Result(static_cast<T>(1)); - - if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0))) - return Result; // Error - - tvec3<T, P> Temp( - (static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x, - (static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y, - static_cast<T>(0)); - - // Translate and scale the picked region to the entire window - Result = translate(Result, Temp); - return scale(Result, tvec3<T, P>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1))); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) - { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return lookAtLH(eye, center, up); -# else - return lookAtRH(eye, center, up); -# endif - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH - ( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up - ) - { - tvec3<T, P> const f(normalize(center - eye)); - tvec3<T, P> const s(normalize(cross(f, up))); - tvec3<T, P> const u(cross(s, f)); - - tmat4x4<T, P> Result(1); - Result[0][0] = s.x; - Result[1][0] = s.y; - Result[2][0] = s.z; - Result[0][1] = u.x; - Result[1][1] = u.y; - Result[2][1] = u.z; - Result[0][2] =-f.x; - Result[1][2] =-f.y; - Result[2][2] =-f.z; - Result[3][0] =-dot(s, eye); - Result[3][1] =-dot(u, eye); - Result[3][2] = dot(f, eye); - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtLH - ( - tvec3<T, P> const & eye, - tvec3<T, P> const & center, - tvec3<T, P> const & up - ) - { - tvec3<T, P> const f(normalize(center - eye)); - tvec3<T, P> const s(normalize(cross(up, f))); - tvec3<T, P> const u(cross(f, s)); - - tmat4x4<T, P> Result(1); - Result[0][0] = s.x; - Result[1][0] = s.y; - Result[2][0] = s.z; - Result[0][1] = u.x; - Result[1][1] = u.y; - Result[2][1] = u.z; - Result[0][2] = f.x; - Result[1][2] = f.y; - Result[2][2] = f.z; - Result[3][0] = -dot(s, eye); - Result[3][1] = -dot(u, eye); - Result[3][2] = -dot(f, eye); - return Result; - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/noise.hpp b/depedencies/include/glm/gtc/noise.hpp deleted file mode 100644 index aec4f18..0000000 --- a/depedencies/include/glm/gtc/noise.hpp +++ /dev/null @@ -1,60 +0,0 @@ -/// @ref gtc_noise -/// @file glm/gtc/noise.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_noise GLM_GTC_noise -/// @ingroup gtc -/// -/// Defines 2D, 3D and 4D procedural noise functions -/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": -/// https://github.com/ashima/webgl-noise -/// Following Stefan Gustavson's paper "Simplex noise demystified": -/// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf -/// <glm/gtc/noise.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/_noise.hpp" -#include "../geometric.hpp" -#include "../common.hpp" -#include "../vector_relational.hpp" -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_noise extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_noise - /// @{ - - /// Classic perlin noise. - /// @see gtc_noise - template <typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_DECL T perlin( - vecType<T, P> const & p); - - /// Periodic perlin noise. - /// @see gtc_noise - template <typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_DECL T perlin( - vecType<T, P> const & p, - vecType<T, P> const & rep); - - /// Simplex noise. - /// @see gtc_noise - template <typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_DECL T simplex( - vecType<T, P> const & p); - - /// @} -}//namespace glm - -#include "noise.inl" diff --git a/depedencies/include/glm/gtc/noise.inl b/depedencies/include/glm/gtc/noise.inl deleted file mode 100644 index 4f2731c..0000000 --- a/depedencies/include/glm/gtc/noise.inl +++ /dev/null @@ -1,808 +0,0 @@ -/// @ref gtc_noise -/// @file glm/gtc/noise.inl -/// -// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": -// https://github.com/ashima/webgl-noise -// Following Stefan Gustavson's paper "Simplex noise demystified": -// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf - -namespace glm{ -namespace gtc -{ - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<T, P> grad4(T const & j, tvec4<T, P> const & ip) - { - tvec3<T, P> pXYZ = floor(fract(tvec3<T, P>(j) * tvec3<T, P>(ip)) * T(7)) * ip[2] - T(1); - T pW = static_cast<T>(1.5) - dot(abs(pXYZ), tvec3<T, P>(1)); - tvec4<T, P> s = tvec4<T, P>(lessThan(tvec4<T, P>(pXYZ, pW), tvec4<T, P>(0.0))); - pXYZ = pXYZ + (tvec3<T, P>(s) * T(2) - T(1)) * s.w; - return tvec4<T, P>(pXYZ, pW); - } -}//namespace gtc - - // Classic Perlin noise - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position) - { - tvec4<T, P> Pi = glm::floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0); - tvec4<T, P> Pf = glm::fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0); - Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation - tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z); - tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w); - tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z); - tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w); - - tvec4<T, P> i = detail::permute(detail::permute(ix) + iy); - - tvec4<T, P> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1); - tvec4<T, P> gy = glm::abs(gx) - T(0.5); - tvec4<T, P> tx = glm::floor(gx + T(0.5)); - gx = gx - tx; - - tvec2<T, P> g00(gx.x, gy.x); - tvec2<T, P> g10(gx.y, gy.y); - tvec2<T, P> g01(gx.z, gy.z); - tvec2<T, P> g11(gx.w, gy.w); - - tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); - g00 *= norm.x; - g01 *= norm.y; - g10 *= norm.z; - g11 *= norm.w; - - T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x)); - T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y)); - T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z)); - T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w)); - - tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y)); - tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x); - T n_xy = mix(n_x.x, n_x.y, fade_xy.y); - return T(2.3) * n_xy; - } - - // Classic Perlin noise - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position) - { - tvec3<T, P> Pi0 = floor(Position); // Integer part for indexing - tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 - Pi0 = detail::mod289(Pi0); - Pi1 = detail::mod289(Pi1); - tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation - tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy = tvec4<T, P>(tvec2<T, P>(Pi0.y), tvec2<T, P>(Pi1.y)); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - - tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); - tvec4<T, P> ixy0 = detail::permute(ixy + iz0); - tvec4<T, P> ixy1 = detail::permute(ixy + iz1); - - tvec4<T, P> gx0 = ixy0 * T(1.0 / 7.0); - tvec4<T, P> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5); - gx0 = fract(gx0); - tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); - tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0)); - gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); - gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); - - tvec4<T, P> gx1 = ixy1 * T(1.0 / 7.0); - tvec4<T, P> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5); - gx1 = fract(gx1); - tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); - tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0)); - gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); - gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - - tvec3<T, P> g000(gx0.x, gy0.x, gz0.x); - tvec3<T, P> g100(gx0.y, gy0.y, gz0.y); - tvec3<T, P> g010(gx0.z, gy0.z, gz0.z); - tvec3<T, P> g110(gx0.w, gy0.w, gz0.w); - tvec3<T, P> g001(gx1.x, gy1.x, gz1.x); - tvec3<T, P> g101(gx1.y, gy1.y, gz1.y); - tvec3<T, P> g011(gx1.z, gy1.z, gz1.z); - tvec3<T, P> g111(gx1.w, gy1.w, gz1.w); - - tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); - g000 *= norm0.x; - g010 *= norm0.y; - g100 *= norm0.z; - g110 *= norm0.w; - tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); - g001 *= norm1.x; - g011 *= norm1.y; - g101 *= norm1.z; - g111 *= norm1.w; - - T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); - T n111 = dot(g111, Pf1); - - tvec3<T, P> fade_xyz = detail::fade(Pf0); - tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); - tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); - T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); - return T(2.2) * n_xyz; - } - /* - // Classic Perlin noise - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & P) - { - tvec3<T, P> Pi0 = floor(P); // Integer part for indexing - tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 - Pi0 = mod(Pi0, T(289)); - Pi1 = mod(Pi1, T(289)); - tvec3<T, P> Pf0 = fract(P); // Fractional part for interpolation - tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - - tvec4<T, P> ixy = permute(permute(ix) + iy); - tvec4<T, P> ixy0 = permute(ixy + iz0); - tvec4<T, P> ixy1 = permute(ixy + iz1); - - tvec4<T, P> gx0 = ixy0 / T(7); - tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5); - gx0 = fract(gx0); - tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); - tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0)); - gx0 -= sz0 * (step(0.0, gx0) - T(0.5)); - gy0 -= sz0 * (step(0.0, gy0) - T(0.5)); - - tvec4<T, P> gx1 = ixy1 / T(7); - tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5); - gx1 = fract(gx1); - tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); - tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0)); - gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); - gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - - tvec3<T, P> g000(gx0.x, gy0.x, gz0.x); - tvec3<T, P> g100(gx0.y, gy0.y, gz0.y); - tvec3<T, P> g010(gx0.z, gy0.z, gz0.z); - tvec3<T, P> g110(gx0.w, gy0.w, gz0.w); - tvec3<T, P> g001(gx1.x, gy1.x, gz1.x); - tvec3<T, P> g101(gx1.y, gy1.y, gz1.y); - tvec3<T, P> g011(gx1.z, gy1.z, gz1.z); - tvec3<T, P> g111(gx1.w, gy1.w, gz1.w); - - tvec4<T, P> norm0 = taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); - g000 *= norm0.x; - g010 *= norm0.y; - g100 *= norm0.z; - g110 *= norm0.w; - tvec4<T, P> norm1 = taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); - g001 *= norm1.x; - g011 *= norm1.y; - g101 *= norm1.z; - g111 *= norm1.w; - - T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); - T n111 = dot(g111, Pf1); - - tvec3<T, P> fade_xyz = fade(Pf0); - tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); - tvec2<T, P> n_yz = mix( - tvec2<T, P>(n_z.x, n_z.y), - tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); - T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); - return T(2.2) * n_xyz; - } - */ - // Classic Perlin noise - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position) - { - tvec4<T, P> Pi0 = floor(Position); // Integer part for indexing - tvec4<T, P> Pi1 = Pi0 + T(1); // Integer part + 1 - Pi0 = mod(Pi0, tvec4<T, P>(289)); - Pi1 = mod(Pi1, tvec4<T, P>(289)); - tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation - tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - tvec4<T, P> iw0(Pi0.w); - tvec4<T, P> iw1(Pi1.w); - - tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); - tvec4<T, P> ixy0 = detail::permute(ixy + iz0); - tvec4<T, P> ixy1 = detail::permute(ixy + iz1); - tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0); - tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1); - tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0); - tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1); - - tvec4<T, P> gx00 = ixy00 / T(7); - tvec4<T, P> gy00 = floor(gx00) / T(7); - tvec4<T, P> gz00 = floor(gy00) / T(6); - gx00 = fract(gx00) - T(0.5); - gy00 = fract(gy00) - T(0.5); - gz00 = fract(gz00) - T(0.5); - tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); - tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0.0)); - gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); - gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); - - tvec4<T, P> gx01 = ixy01 / T(7); - tvec4<T, P> gy01 = floor(gx01) / T(7); - tvec4<T, P> gz01 = floor(gy01) / T(6); - gx01 = fract(gx01) - T(0.5); - gy01 = fract(gy01) - T(0.5); - gz01 = fract(gz01) - T(0.5); - tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); - tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0)); - gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); - gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); - - tvec4<T, P> gx10 = ixy10 / T(7); - tvec4<T, P> gy10 = floor(gx10) / T(7); - tvec4<T, P> gz10 = floor(gy10) / T(6); - gx10 = fract(gx10) - T(0.5); - gy10 = fract(gy10) - T(0.5); - gz10 = fract(gz10) - T(0.5); - tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); - tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0)); - gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); - gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); - - tvec4<T, P> gx11 = ixy11 / T(7); - tvec4<T, P> gy11 = floor(gx11) / T(7); - tvec4<T, P> gz11 = floor(gy11) / T(6); - gx11 = fract(gx11) - T(0.5); - gy11 = fract(gy11) - T(0.5); - gz11 = fract(gz11) - T(0.5); - tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); - tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(0.0)); - gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); - gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); - - tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x); - tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y); - tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z); - tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w); - tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x); - tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y); - tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z); - tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w); - tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x); - tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y); - tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z); - tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w); - tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x); - tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y); - tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z); - tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w); - - tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); - g0000 *= norm00.x; - g0100 *= norm00.y; - g1000 *= norm00.z; - g1100 *= norm00.w; - - tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); - g0001 *= norm01.x; - g0101 *= norm01.y; - g1001 *= norm01.z; - g1101 *= norm01.w; - - tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); - g0010 *= norm10.x; - g0110 *= norm10.y; - g1010 *= norm10.z; - g1110 *= norm10.w; - - tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); - g0011 *= norm11.x; - g0111 *= norm11.y; - g1011 *= norm11.z; - g1111 *= norm11.w; - - T n0000 = dot(g0000, Pf0); - T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); - T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); - T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); - T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); - T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); - T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); - T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); - T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); - T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); - T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); - T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); - T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); - T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); - T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); - T n1111 = dot(g1111, Pf1); - - tvec4<T, P> fade_xyzw = detail::fade(Pf0); - tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w); - tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w); - tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z); - tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y); - T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); - return T(2.2) * n_xyzw; - } - - // Classic Perlin noise, periodic variant - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position, tvec2<T, P> const & rep) - { - tvec4<T, P> Pi = floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0); - tvec4<T, P> Pf = fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0); - Pi = mod(Pi, tvec4<T, P>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period - Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation - tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z); - tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w); - tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z); - tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w); - - tvec4<T, P> i = detail::permute(detail::permute(ix) + iy); - - tvec4<T, P> gx = static_cast<T>(2) * fract(i / T(41)) - T(1); - tvec4<T, P> gy = abs(gx) - T(0.5); - tvec4<T, P> tx = floor(gx + T(0.5)); - gx = gx - tx; - - tvec2<T, P> g00(gx.x, gy.x); - tvec2<T, P> g10(gx.y, gy.y); - tvec2<T, P> g01(gx.z, gy.z); - tvec2<T, P> g11(gx.w, gy.w); - - tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); - g00 *= norm.x; - g01 *= norm.y; - g10 *= norm.z; - g11 *= norm.w; - - T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x)); - T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y)); - T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z)); - T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w)); - - tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y)); - tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x); - T n_xy = mix(n_x.x, n_x.y, fade_xy.y); - return T(2.3) * n_xy; - } - - // Classic Perlin noise, periodic variant - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position, tvec3<T, P> const & rep) - { - tvec3<T, P> Pi0 = mod(floor(Position), rep); // Integer part, modulo period - tvec3<T, P> Pi1 = mod(Pi0 + tvec3<T, P>(T(1)), rep); // Integer part + 1, mod period - Pi0 = mod(Pi0, tvec3<T, P>(289)); - Pi1 = mod(Pi1, tvec3<T, P>(289)); - tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation - tvec3<T, P> Pf1 = Pf0 - tvec3<T, P>(T(1)); // Fractional part - 1.0 - tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - - tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); - tvec4<T, P> ixy0 = detail::permute(ixy + iz0); - tvec4<T, P> ixy1 = detail::permute(ixy + iz1); - - tvec4<T, P> gx0 = ixy0 / T(7); - tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5); - gx0 = fract(gx0); - tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0); - tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0)); - gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); - gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); - - tvec4<T, P> gx1 = ixy1 / T(7); - tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5); - gx1 = fract(gx1); - tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1); - tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(T(0))); - gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); - gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - - tvec3<T, P> g000 = tvec3<T, P>(gx0.x, gy0.x, gz0.x); - tvec3<T, P> g100 = tvec3<T, P>(gx0.y, gy0.y, gz0.y); - tvec3<T, P> g010 = tvec3<T, P>(gx0.z, gy0.z, gz0.z); - tvec3<T, P> g110 = tvec3<T, P>(gx0.w, gy0.w, gz0.w); - tvec3<T, P> g001 = tvec3<T, P>(gx1.x, gy1.x, gz1.x); - tvec3<T, P> g101 = tvec3<T, P>(gx1.y, gy1.y, gz1.y); - tvec3<T, P> g011 = tvec3<T, P>(gx1.z, gy1.z, gz1.z); - tvec3<T, P> g111 = tvec3<T, P>(gx1.w, gy1.w, gz1.w); - - tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); - g000 *= norm0.x; - g010 *= norm0.y; - g100 *= norm0.z; - g110 *= norm0.w; - tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); - g001 *= norm1.x; - g011 *= norm1.y; - g101 *= norm1.z; - g111 *= norm1.w; - - T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z)); - T n111 = dot(g111, Pf1); - - tvec3<T, P> fade_xyz = detail::fade(Pf0); - tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z); - tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y); - T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); - return T(2.2) * n_xyz; - } - - // Classic Perlin noise, periodic version - template <typename T, precision P> - GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position, tvec4<T, P> const & rep) - { - tvec4<T, P> Pi0 = mod(floor(Position), rep); // Integer part modulo rep - tvec4<T, P> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep - tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation - tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4<T, P> iz0(Pi0.z); - tvec4<T, P> iz1(Pi1.z); - tvec4<T, P> iw0(Pi0.w); - tvec4<T, P> iw1(Pi1.w); - - tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy); - tvec4<T, P> ixy0 = detail::permute(ixy + iz0); - tvec4<T, P> ixy1 = detail::permute(ixy + iz1); - tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0); - tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1); - tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0); - tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1); - - tvec4<T, P> gx00 = ixy00 / T(7); - tvec4<T, P> gy00 = floor(gx00) / T(7); - tvec4<T, P> gz00 = floor(gy00) / T(6); - gx00 = fract(gx00) - T(0.5); - gy00 = fract(gy00) - T(0.5); - gz00 = fract(gz00) - T(0.5); - tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); - tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0)); - gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); - gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); - - tvec4<T, P> gx01 = ixy01 / T(7); - tvec4<T, P> gy01 = floor(gx01) / T(7); - tvec4<T, P> gz01 = floor(gy01) / T(6); - gx01 = fract(gx01) - T(0.5); - gy01 = fract(gy01) - T(0.5); - gz01 = fract(gz01) - T(0.5); - tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); - tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0)); - gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); - gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); - - tvec4<T, P> gx10 = ixy10 / T(7); - tvec4<T, P> gy10 = floor(gx10) / T(7); - tvec4<T, P> gz10 = floor(gy10) / T(6); - gx10 = fract(gx10) - T(0.5); - gy10 = fract(gy10) - T(0.5); - gz10 = fract(gz10) - T(0.5); - tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); - tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0.0)); - gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); - gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); - - tvec4<T, P> gx11 = ixy11 / T(7); - tvec4<T, P> gy11 = floor(gx11) / T(7); - tvec4<T, P> gz11 = floor(gy11) / T(6); - gx11 = fract(gx11) - T(0.5); - gy11 = fract(gy11) - T(0.5); - gz11 = fract(gz11) - T(0.5); - tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); - tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(T(0))); - gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); - gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); - - tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x); - tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y); - tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z); - tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w); - tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x); - tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y); - tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z); - tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w); - tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x); - tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y); - tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z); - tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w); - tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x); - tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y); - tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z); - tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w); - - tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); - g0000 *= norm00.x; - g0100 *= norm00.y; - g1000 *= norm00.z; - g1100 *= norm00.w; - - tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); - g0001 *= norm01.x; - g0101 *= norm01.y; - g1001 *= norm01.z; - g1101 *= norm01.w; - - tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); - g0010 *= norm10.x; - g0110 *= norm10.y; - g1010 *= norm10.z; - g1110 *= norm10.w; - - tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); - g0011 *= norm11.x; - g0111 *= norm11.y; - g1011 *= norm11.z; - g1111 *= norm11.w; - - T n0000 = dot(g0000, Pf0); - T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); - T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); - T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); - T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); - T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); - T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); - T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); - T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); - T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); - T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); - T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); - T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); - T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); - T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); - T n1111 = dot(g1111, Pf1); - - tvec4<T, P> fade_xyzw = detail::fade(Pf0); - tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w); - tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w); - tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z); - tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y); - T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); - return T(2.2) * n_xyzw; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T simplex(glm::tvec2<T, P> const & v) - { - tvec4<T, P> const C = tvec4<T, P>( - T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0 - T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0) - T(-0.577350269189626), // -1.0 + 2.0 * C.x - T( 0.024390243902439)); // 1.0 / 41.0 - - // First corner - tvec2<T, P> i = floor(v + dot(v, tvec2<T, P>(C[1]))); - tvec2<T, P> x0 = v - i + dot(i, tvec2<T, P>(C[0])); - - // Other corners - //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 - //i1.y = 1.0 - i1.x; - tvec2<T, P> i1 = (x0.x > x0.y) ? tvec2<T, P>(1, 0) : tvec2<T, P>(0, 1); - // x0 = x0 - 0.0 + 0.0 * C.xx ; - // x1 = x0 - i1 + 1.0 * C.xx ; - // x2 = x0 - 1.0 + 2.0 * C.xx ; - tvec4<T, P> x12 = tvec4<T, P>(x0.x, x0.y, x0.x, x0.y) + tvec4<T, P>(C.x, C.x, C.z, C.z); - x12 = tvec4<T, P>(tvec2<T, P>(x12) - i1, x12.z, x12.w); - - // Permutations - i = mod(i, tvec2<T, P>(289)); // Avoid truncation effects in permutation - tvec3<T, P> p = detail::permute( - detail::permute(i.y + tvec3<T, P>(T(0), i1.y, T(1))) - + i.x + tvec3<T, P>(T(0), i1.x, T(1))); - - tvec3<T, P> m = max(tvec3<T, P>(0.5) - tvec3<T, P>( - dot(x0, x0), - dot(tvec2<T, P>(x12.x, x12.y), tvec2<T, P>(x12.x, x12.y)), - dot(tvec2<T, P>(x12.z, x12.w), tvec2<T, P>(x12.z, x12.w))), tvec3<T, P>(0)); - m = m * m ; - m = m * m ; - - // Gradients: 41 points uniformly over a line, mapped onto a diamond. - // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) - - tvec3<T, P> x = static_cast<T>(2) * fract(p * C.w) - T(1); - tvec3<T, P> h = abs(x) - T(0.5); - tvec3<T, P> ox = floor(x + T(0.5)); - tvec3<T, P> a0 = x - ox; - - // Normalise gradients implicitly by scaling m - // Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h ); - m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h); - - // Compute final noise value at P - tvec3<T, P> g; - g.x = a0.x * x0.x + h.x * x0.y; - //g.yz = a0.yz * x12.xz + h.yz * x12.yw; - g.y = a0.y * x12.x + h.y * x12.y; - g.z = a0.z * x12.z + h.z * x12.w; - return T(130) * dot(m, g); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T simplex(tvec3<T, P> const & v) - { - tvec2<T, P> const C(1.0 / 6.0, 1.0 / 3.0); - tvec4<T, P> const D(0.0, 0.5, 1.0, 2.0); - - // First corner - tvec3<T, P> i(floor(v + dot(v, tvec3<T, P>(C.y)))); - tvec3<T, P> x0(v - i + dot(i, tvec3<T, P>(C.x))); - - // Other corners - tvec3<T, P> g(step(tvec3<T, P>(x0.y, x0.z, x0.x), x0)); - tvec3<T, P> l(T(1) - g); - tvec3<T, P> i1(min(g, tvec3<T, P>(l.z, l.x, l.y))); - tvec3<T, P> i2(max(g, tvec3<T, P>(l.z, l.x, l.y))); - - // x0 = x0 - 0.0 + 0.0 * C.xxx; - // x1 = x0 - i1 + 1.0 * C.xxx; - // x2 = x0 - i2 + 2.0 * C.xxx; - // x3 = x0 - 1.0 + 3.0 * C.xxx; - tvec3<T, P> x1(x0 - i1 + C.x); - tvec3<T, P> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y - tvec3<T, P> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y - - // Permutations - i = detail::mod289(i); - tvec4<T, P> p(detail::permute(detail::permute(detail::permute( - i.z + tvec4<T, P>(T(0), i1.z, i2.z, T(1))) + - i.y + tvec4<T, P>(T(0), i1.y, i2.y, T(1))) + - i.x + tvec4<T, P>(T(0), i1.x, i2.x, T(1)))); - - // Gradients: 7x7 points over a square, mapped onto an octahedron. - // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) - T n_ = static_cast<T>(0.142857142857); // 1.0/7.0 - tvec3<T, P> ns(n_ * tvec3<T, P>(D.w, D.y, D.z) - tvec3<T, P>(D.x, D.z, D.x)); - - tvec4<T, P> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7) - - tvec4<T, P> x_(floor(j * ns.z)); - tvec4<T, P> y_(floor(j - T(7) * x_)); // mod(j,N) - - tvec4<T, P> x(x_ * ns.x + ns.y); - tvec4<T, P> y(y_ * ns.x + ns.y); - tvec4<T, P> h(T(1) - abs(x) - abs(y)); - - tvec4<T, P> b0(x.x, x.y, y.x, y.y); - tvec4<T, P> b1(x.z, x.w, y.z, y.w); - - // vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; - // vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; - tvec4<T, P> s0(floor(b0) * T(2) + T(1)); - tvec4<T, P> s1(floor(b1) * T(2) + T(1)); - tvec4<T, P> sh(-step(h, tvec4<T, P>(0.0))); - - tvec4<T, P> a0 = tvec4<T, P>(b0.x, b0.z, b0.y, b0.w) + tvec4<T, P>(s0.x, s0.z, s0.y, s0.w) * tvec4<T, P>(sh.x, sh.x, sh.y, sh.y); - tvec4<T, P> a1 = tvec4<T, P>(b1.x, b1.z, b1.y, b1.w) + tvec4<T, P>(s1.x, s1.z, s1.y, s1.w) * tvec4<T, P>(sh.z, sh.z, sh.w, sh.w); - - tvec3<T, P> p0(a0.x, a0.y, h.x); - tvec3<T, P> p1(a0.z, a0.w, h.y); - tvec3<T, P> p2(a1.x, a1.y, h.z); - tvec3<T, P> p3(a1.z, a1.w, h.w); - - // Normalise gradients - tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); - p0 *= norm.x; - p1 *= norm.y; - p2 *= norm.z; - p3 *= norm.w; - - // Mix final noise value - tvec4<T, P> m = max(T(0.6) - tvec4<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), tvec4<T, P>(0)); - m = m * m; - return T(42) * dot(m * m, tvec4<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T simplex(tvec4<T, P> const & v) - { - tvec4<T, P> const C( - 0.138196601125011, // (5 - sqrt(5))/20 G4 - 0.276393202250021, // 2 * G4 - 0.414589803375032, // 3 * G4 - -0.447213595499958); // -1 + 4 * G4 - - // (sqrt(5) - 1)/4 = F4, used once below - T const F4 = static_cast<T>(0.309016994374947451); - - // First corner - tvec4<T, P> i = floor(v + dot(v, vec4(F4))); - tvec4<T, P> x0 = v - i + dot(i, vec4(C.x)); - - // Other corners - - // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) - tvec4<T, P> i0; - tvec3<T, P> isX = step(tvec3<T, P>(x0.y, x0.z, x0.w), tvec3<T, P>(x0.x)); - tvec3<T, P> isYZ = step(tvec3<T, P>(x0.z, x0.w, x0.w), tvec3<T, P>(x0.y, x0.y, x0.z)); - // i0.x = dot(isX, vec3(1.0)); - //i0.x = isX.x + isX.y + isX.z; - //i0.yzw = static_cast<T>(1) - isX; - i0 = tvec4<T, P>(isX.x + isX.y + isX.z, T(1) - isX); - // i0.y += dot(isYZ.xy, vec2(1.0)); - i0.y += isYZ.x + isYZ.y; - //i0.zw += 1.0 - tvec2<T, P>(isYZ.x, isYZ.y); - i0.z += static_cast<T>(1) - isYZ.x; - i0.w += static_cast<T>(1) - isYZ.y; - i0.z += isYZ.z; - i0.w += static_cast<T>(1) - isYZ.z; - - // i0 now contains the unique values 0,1,2,3 in each channel - tvec4<T, P> i3 = clamp(i0, T(0), T(1)); - tvec4<T, P> i2 = clamp(i0 - T(1), T(0), T(1)); - tvec4<T, P> i1 = clamp(i0 - T(2), T(0), T(1)); - - // x0 = x0 - 0.0 + 0.0 * C.xxxx - // x1 = x0 - i1 + 0.0 * C.xxxx - // x2 = x0 - i2 + 0.0 * C.xxxx - // x3 = x0 - i3 + 0.0 * C.xxxx - // x4 = x0 - 1.0 + 4.0 * C.xxxx - tvec4<T, P> x1 = x0 - i1 + C.x; - tvec4<T, P> x2 = x0 - i2 + C.y; - tvec4<T, P> x3 = x0 - i3 + C.z; - tvec4<T, P> x4 = x0 + C.w; - - // Permutations - i = mod(i, tvec4<T, P>(289)); - T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x); - tvec4<T, P> j1 = detail::permute(detail::permute(detail::permute(detail::permute( - i.w + tvec4<T, P>(i1.w, i2.w, i3.w, T(1))) + - i.z + tvec4<T, P>(i1.z, i2.z, i3.z, T(1))) + - i.y + tvec4<T, P>(i1.y, i2.y, i3.y, T(1))) + - i.x + tvec4<T, P>(i1.x, i2.x, i3.x, T(1))); - - // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope - // 7*7*6 = 294, which is close to the ring size 17*17 = 289. - tvec4<T, P> ip = tvec4<T, P>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0)); - - tvec4<T, P> p0 = gtc::grad4(j0, ip); - tvec4<T, P> p1 = gtc::grad4(j1.x, ip); - tvec4<T, P> p2 = gtc::grad4(j1.y, ip); - tvec4<T, P> p3 = gtc::grad4(j1.z, ip); - tvec4<T, P> p4 = gtc::grad4(j1.w, ip); - - // Normalise gradients - tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); - p0 *= norm.x; - p1 *= norm.y; - p2 *= norm.z; - p3 *= norm.w; - p4 *= detail::taylorInvSqrt(dot(p4, p4)); - - // Mix contributions from the five corners - tvec3<T, P> m0 = max(T(0.6) - tvec3<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), tvec3<T, P>(0)); - tvec2<T, P> m1 = max(T(0.6) - tvec2<T, P>(dot(x3, x3), dot(x4, x4) ), tvec2<T, P>(0)); - m0 = m0 * m0; - m1 = m1 * m1; - return T(49) * - (dot(m0 * m0, tvec3<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + - dot(m1 * m1, tvec2<T, P>(dot(p3, x3), dot(p4, x4)))); - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/packing.hpp b/depedencies/include/glm/gtc/packing.hpp deleted file mode 100644 index 1389d95..0000000 --- a/depedencies/include/glm/gtc/packing.hpp +++ /dev/null @@ -1,579 +0,0 @@ -/// @ref gtc_packing -/// @file glm/gtc/packing.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_packing GLM_GTC_packing -/// @ingroup gtc -/// -/// @brief This extension provides a set of function to convert vertors to packed -/// formats. -/// -/// <glm/gtc/packing.hpp> need to be included to use these features. - -#pragma once - -// Dependency: -#include "type_precision.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_packing extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_packing - /// @{ - - /// First, converts the normalized floating-point value v into a 8-bit integer value. - /// Then, the results are packed into the returned 8-bit unsigned integer. - /// - /// The conversion for component c of v to fixed point is done as follows: - /// packUnorm1x8: round(clamp(c, 0, +1) * 255.0) - /// - /// @see gtc_packing - /// @see uint16 packUnorm2x8(vec2 const & v) - /// @see uint32 packUnorm4x8(vec4 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint8 packUnorm1x8(float v); - - /// Convert a single 8-bit integer to a normalized floating-point value. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackUnorm4x8: f / 255.0 - /// - /// @see gtc_packing - /// @see vec2 unpackUnorm2x8(uint16 p) - /// @see vec4 unpackUnorm4x8(uint32 p) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL float unpackUnorm1x8(uint8 p); - - /// First, converts each component of the normalized floating-point value v into 8-bit integer values. - /// Then, the results are packed into the returned 16-bit unsigned integer. - /// - /// The conversion for component c of v to fixed point is done as follows: - /// packUnorm2x8: round(clamp(c, 0, +1) * 255.0) - /// - /// The first component of the vector will be written to the least significant bits of the output; - /// the last component will be written to the most significant bits. - /// - /// @see gtc_packing - /// @see uint8 packUnorm1x8(float const & v) - /// @see uint32 packUnorm4x8(vec4 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v); - - /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers. - /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackUnorm4x8: f / 255.0 - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see float unpackUnorm1x8(uint8 v) - /// @see vec4 unpackUnorm4x8(uint32 p) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p); - - /// First, converts the normalized floating-point value v into 8-bit integer value. - /// Then, the results are packed into the returned 8-bit unsigned integer. - /// - /// The conversion to fixed point is done as follows: - /// packSnorm1x8: round(clamp(s, -1, +1) * 127.0) - /// - /// @see gtc_packing - /// @see uint16 packSnorm2x8(vec2 const & v) - /// @see uint32 packSnorm4x8(vec4 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint8 packSnorm1x8(float s); - - /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers. - /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackSnorm1x8: clamp(f / 127.0, -1, +1) - /// - /// @see gtc_packing - /// @see vec2 unpackSnorm2x8(uint16 p) - /// @see vec4 unpackSnorm4x8(uint32 p) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL float unpackSnorm1x8(uint8 p); - - /// First, converts each component of the normalized floating-point value v into 8-bit integer values. - /// Then, the results are packed into the returned 16-bit unsigned integer. - /// - /// The conversion for component c of v to fixed point is done as follows: - /// packSnorm2x8: round(clamp(c, -1, +1) * 127.0) - /// - /// The first component of the vector will be written to the least significant bits of the output; - /// the last component will be written to the most significant bits. - /// - /// @see gtc_packing - /// @see uint8 packSnorm1x8(float const & v) - /// @see uint32 packSnorm4x8(vec4 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v); - - /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers. - /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackSnorm2x8: clamp(f / 127.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see float unpackSnorm1x8(uint8 p) - /// @see vec4 unpackSnorm4x8(uint32 p) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p); - - /// First, converts the normalized floating-point value v into a 16-bit integer value. - /// Then, the results are packed into the returned 16-bit unsigned integer. - /// - /// The conversion for component c of v to fixed point is done as follows: - /// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0) - /// - /// @see gtc_packing - /// @see uint16 packSnorm1x16(float const & v) - /// @see uint64 packSnorm4x16(vec4 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint16 packUnorm1x16(float v); - - /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers. - /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackUnorm1x16: f / 65535.0 - /// - /// @see gtc_packing - /// @see vec2 unpackUnorm2x16(uint32 p) - /// @see vec4 unpackUnorm4x16(uint64 p) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL float unpackUnorm1x16(uint16 p); - - /// First, converts each component of the normalized floating-point value v into 16-bit integer values. - /// Then, the results are packed into the returned 64-bit unsigned integer. - /// - /// The conversion for component c of v to fixed point is done as follows: - /// packUnorm4x16: round(clamp(c, 0, +1) * 65535.0) - /// - /// The first component of the vector will be written to the least significant bits of the output; - /// the last component will be written to the most significant bits. - /// - /// @see gtc_packing - /// @see uint16 packUnorm1x16(float const & v) - /// @see uint32 packUnorm2x16(vec2 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v); - - /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers. - /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackUnormx4x16: f / 65535.0 - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see float unpackUnorm1x16(uint16 p) - /// @see vec2 unpackUnorm2x16(uint32 p) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 p); - - /// First, converts the normalized floating-point value v into 16-bit integer value. - /// Then, the results are packed into the returned 16-bit unsigned integer. - /// - /// The conversion to fixed point is done as follows: - /// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0) - /// - /// @see gtc_packing - /// @see uint32 packSnorm2x16(vec2 const & v) - /// @see uint64 packSnorm4x16(vec4 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint16 packSnorm1x16(float v); - - /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers. - /// Then, each component is converted to a normalized floating-point value to generate the returned scalar. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackSnorm1x16: clamp(f / 32767.0, -1, +1) - /// - /// @see gtc_packing - /// @see vec2 unpackSnorm2x16(uint32 p) - /// @see vec4 unpackSnorm4x16(uint64 p) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm1x16.xml">GLSL unpackSnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL float unpackSnorm1x16(uint16 p); - - /// First, converts each component of the normalized floating-point value v into 16-bit integer values. - /// Then, the results are packed into the returned 64-bit unsigned integer. - /// - /// The conversion for component c of v to fixed point is done as follows: - /// packSnorm2x8: round(clamp(c, -1, +1) * 32767.0) - /// - /// The first component of the vector will be written to the least significant bits of the output; - /// the last component will be written to the most significant bits. - /// - /// @see gtc_packing - /// @see uint16 packSnorm1x16(float const & v) - /// @see uint32 packSnorm2x16(vec2 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v); - - /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers. - /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackSnorm4x16: clamp(f / 32767.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see float unpackSnorm1x16(uint16 p) - /// @see vec2 unpackSnorm2x16(uint32 p) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm4x8 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p); - - /// Returns an unsigned integer obtained by converting the components of a floating-point scalar - /// to the 16-bit floating-point representation found in the OpenGL Specification, - /// and then packing this 16-bit value into a 16-bit unsigned integer. - /// - /// @see gtc_packing - /// @see uint32 packHalf2x16(vec2 const & v) - /// @see uint64 packHalf4x16(vec4 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint16 packHalf1x16(float v); - - /// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value, - /// interpreted as a 16-bit floating-point number according to the OpenGL Specification, - /// and converting it to 32-bit floating-point values. - /// - /// @see gtc_packing - /// @see vec2 unpackHalf2x16(uint32 const & v) - /// @see vec4 unpackHalf4x16(uint64 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL float unpackHalf1x16(uint16 v); - - /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector - /// to the 16-bit floating-point representation found in the OpenGL Specification, - /// and then packing these four 16-bit values into a 64-bit unsigned integer. - /// The first vector component specifies the 16 least-significant bits of the result; - /// the forth component specifies the 16 most-significant bits. - /// - /// @see gtc_packing - /// @see uint16 packHalf1x16(float const & v) - /// @see uint32 packHalf2x16(vec2 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v); - - /// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values, - /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification, - /// and converting them to 32-bit floating-point values. - /// The first component of the vector is obtained from the 16 least-significant bits of v; - /// the forth component is obtained from the 16 most-significant bits of v. - /// - /// @see gtc_packing - /// @see float unpackHalf1x16(uint16 const & v) - /// @see vec2 unpackHalf2x16(uint32 const & v) - /// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a> - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p); - - /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector - /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification, - /// and then packing these four values into a 32-bit unsigned integer. - /// The first vector component specifies the 10 least-significant bits of the result; - /// the forth component specifies the 2 most-significant bits. - /// - /// @see gtc_packing - /// @see uint32 packI3x10_1x2(uvec4 const & v) - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see ivec4 unpackI3x10_1x2(uint32 const & p) - GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v); - - /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); - /// @see uvec4 unpackI3x10_1x2(uint32 const & p); - GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p); - - /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector - /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification, - /// and then packing these four values into a 32-bit unsigned integer. - /// The first vector component specifies the 10 least-significant bits of the result; - /// the forth component specifies the 2 most-significant bits. - /// - /// @see gtc_packing - /// @see uint32 packI3x10_1x2(ivec4 const & v) - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see ivec4 unpackU3x10_1x2(uint32 const & p) - GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v); - - /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); - /// @see uvec4 unpackI3x10_1x2(uint32 const & p); - GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p); - - /// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values. - /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values. - /// Then, the results are packed into the returned 32-bit unsigned integer. - /// - /// The conversion for component c of v to fixed point is done as follows: - /// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0) - /// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0) - /// - /// The first vector component specifies the 10 least-significant bits of the result; - /// the forth component specifies the 2 most-significant bits. - /// - /// @see gtc_packing - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see uint32 packI3x10_1x2(ivec4 const & v) - GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v); - - /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. - /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1) - /// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)) - /// @see uvec4 unpackI3x10_1x2(uint32 const & p) - /// @see uvec4 unpackU3x10_1x2(uint32 const & p) - GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p); - - /// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values. - /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values. - /// Then, the results are packed into the returned 32-bit unsigned integer. - /// - /// The conversion for component c of v to fixed point is done as follows: - /// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0) - /// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0) - /// - /// The first vector component specifies the 10 least-significant bits of the result; - /// the forth component specifies the 2 most-significant bits. - /// - /// @see gtc_packing - /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see uint32 packI3x10_1x2(ivec4 const & v) - GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v); - - /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. - /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// - /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1) - /// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see vec4 unpackInorm3x10_1x2(uint32 const & p)) - /// @see uvec4 unpackI3x10_1x2(uint32 const & p) - /// @see uvec4 unpackU3x10_1x2(uint32 const & p) - GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p); - - /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. - /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. - /// Then, the results are packed into the returned 32-bit unsigned integer. - /// - /// The first vector component specifies the 11 least-significant bits of the result; - /// the last component specifies the 10 most-significant bits. - /// - /// @see gtc_packing - /// @see vec3 unpackF2x11_1x10(uint32 const & p) - GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v); - - /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . - /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see uint32 packF2x11_1x10(vec3 const & v) - GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p); - - - /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. - /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. - /// Then, the results are packed into the returned 32-bit unsigned integer. - /// - /// The first vector component specifies the 11 least-significant bits of the result; - /// the last component specifies the 10 most-significant bits. - /// - /// @see gtc_packing - /// @see vec3 unpackF3x9_E1x5(uint32 const & p) - GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const & v); - - /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . - /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; - /// the last component will be extracted from the most significant bits. - /// - /// @see gtc_packing - /// @see uint32 packF3x9_E1x5(vec3 const & v) - GLM_FUNC_DECL vec3 unpackF3x9_E1x5(uint32 p); - - /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector - /// to the 16-bit floating-point representation found in the OpenGL Specification. - /// The first vector component specifies the 16 least-significant bits of the result; - /// the forth component specifies the 16 most-significant bits. - /// - /// @see gtc_packing - /// @see vecType<float, P> unpackHalf(vecType<uint16, P> const & p) - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - template <precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<uint16, P> packHalf(vecType<float, P> const & v); - - /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. - /// The first component of the vector is obtained from the 16 least-significant bits of v; - /// the forth component is obtained from the 16 most-significant bits of v. - /// - /// @see gtc_packing - /// @see vecType<uint16, P> packHalf(vecType<float, P> const & v) - /// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a> - template <precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<float, P> unpackHalf(vecType<uint16, P> const & p); - - /// Convert each component of the normalized floating-point vector into unsigned integer values. - /// - /// @see gtc_packing - /// @see vecType<floatType, P> unpackUnorm(vecType<intType, P> const & p); - template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<uintType, P> packUnorm(vecType<floatType, P> const & v); - - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// - /// @see gtc_packing - /// @see vecType<intType, P> packUnorm(vecType<floatType, P> const & v) - template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v); - - /// Convert each component of the normalized floating-point vector into signed integer values. - /// - /// @see gtc_packing - /// @see vecType<floatType, P> unpackSnorm(vecType<intType, P> const & p); - template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<intType, P> packSnorm(vecType<floatType, P> const & v); - - /// Convert each signed integer components of a vector to normalized floating-point values. - /// - /// @see gtc_packing - /// @see vecType<intType, P> packSnorm(vecType<floatType, P> const & v) - template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v); - - /// Convert each component of the normalized floating-point vector into unsigned integer values. - /// - /// @see gtc_packing - /// @see vec2 unpackUnorm2x4(uint8 p) - GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const & v); - - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// - /// @see gtc_packing - /// @see uint8 packUnorm2x4(vec2 const & v) - GLM_FUNC_DECL vec2 unpackUnorm2x4(uint8 p); - - /// Convert each component of the normalized floating-point vector into unsigned integer values. - /// - /// @see gtc_packing - /// @see vec4 unpackUnorm4x4(uint16 p) - GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const & v); - - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// - /// @see gtc_packing - /// @see uint16 packUnorm4x4(vec4 const & v) - GLM_FUNC_DECL vec4 unpackUnorm4x4(uint16 p); - - /// Convert each component of the normalized floating-point vector into unsigned integer values. - /// - /// @see gtc_packing - /// @see vec3 unpackUnorm1x5_1x6_1x5(uint16 p) - GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const & v); - - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// - /// @see gtc_packing - /// @see uint16 packUnorm1x5_1x6_1x5(vec3 const & v) - GLM_FUNC_DECL vec3 unpackUnorm1x5_1x6_1x5(uint16 p); - - /// Convert each component of the normalized floating-point vector into unsigned integer values. - /// - /// @see gtc_packing - /// @see vec4 unpackUnorm3x5_1x1(uint16 p) - GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const & v); - - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// - /// @see gtc_packing - /// @see uint16 packUnorm3x5_1x1(vec4 const & v) - GLM_FUNC_DECL vec4 unpackUnorm3x5_1x1(uint16 p); - - /// Convert each component of the normalized floating-point vector into unsigned integer values. - /// - /// @see gtc_packing - /// @see vec3 unpackUnorm2x3_1x2(uint8 p) - GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const & v); - - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// - /// @see gtc_packing - /// @see uint8 packUnorm2x3_1x2(vec3 const & v) - GLM_FUNC_DECL vec3 unpackUnorm2x3_1x2(uint8 p); - /// @} -}// namespace glm - -#include "packing.inl" diff --git a/depedencies/include/glm/gtc/packing.inl b/depedencies/include/glm/gtc/packing.inl deleted file mode 100644 index 618fb9e..0000000 --- a/depedencies/include/glm/gtc/packing.inl +++ /dev/null @@ -1,781 +0,0 @@ -/// @ref gtc_packing -/// @file glm/gtc/packing.inl - -#include "../common.hpp" -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" -#include "../detail/type_half.hpp" -#include <cstring> -#include <limits> - -namespace glm{ -namespace detail -{ - GLM_FUNC_QUALIFIER glm::uint16 float2half(glm::uint32 f) - { - // 10 bits => EE EEEFFFFF - // 11 bits => EEE EEFFFFFF - // Half bits => SEEEEEFF FFFFFFFF - // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF - - // 0x00007c00 => 00000000 00000000 01111100 00000000 - // 0x000003ff => 00000000 00000000 00000011 11111111 - // 0x38000000 => 00111000 00000000 00000000 00000000 - // 0x7f800000 => 01111111 10000000 00000000 00000000 - // 0x00008000 => 00000000 00000000 10000000 00000000 - return - ((f >> 16) & 0x8000) | // sign - ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential - ((f >> 13) & 0x03ff); // Mantissa - } - - GLM_FUNC_QUALIFIER glm::uint32 float2packed11(glm::uint32 f) - { - // 10 bits => EE EEEFFFFF - // 11 bits => EEE EEFFFFFF - // Half bits => SEEEEEFF FFFFFFFF - // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF - - // 0x000007c0 => 00000000 00000000 00000111 11000000 - // 0x00007c00 => 00000000 00000000 01111100 00000000 - // 0x000003ff => 00000000 00000000 00000011 11111111 - // 0x38000000 => 00111000 00000000 00000000 00000000 - // 0x7f800000 => 01111111 10000000 00000000 00000000 - // 0x00008000 => 00000000 00000000 10000000 00000000 - return - ((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential - ((f >> 17) & 0x003f); // Mantissa - } - - GLM_FUNC_QUALIFIER glm::uint32 packed11ToFloat(glm::uint32 p) - { - // 10 bits => EE EEEFFFFF - // 11 bits => EEE EEFFFFFF - // Half bits => SEEEEEFF FFFFFFFF - // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF - - // 0x000007c0 => 00000000 00000000 00000111 11000000 - // 0x00007c00 => 00000000 00000000 01111100 00000000 - // 0x000003ff => 00000000 00000000 00000011 11111111 - // 0x38000000 => 00111000 00000000 00000000 00000000 - // 0x7f800000 => 01111111 10000000 00000000 00000000 - // 0x00008000 => 00000000 00000000 10000000 00000000 - return - ((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential - ((p & 0x003f) << 17); // Mantissa - } - - GLM_FUNC_QUALIFIER glm::uint32 float2packed10(glm::uint32 f) - { - // 10 bits => EE EEEFFFFF - // 11 bits => EEE EEFFFFFF - // Half bits => SEEEEEFF FFFFFFFF - // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF - - // 0x0000001F => 00000000 00000000 00000000 00011111 - // 0x0000003F => 00000000 00000000 00000000 00111111 - // 0x000003E0 => 00000000 00000000 00000011 11100000 - // 0x000007C0 => 00000000 00000000 00000111 11000000 - // 0x00007C00 => 00000000 00000000 01111100 00000000 - // 0x000003FF => 00000000 00000000 00000011 11111111 - // 0x38000000 => 00111000 00000000 00000000 00000000 - // 0x7f800000 => 01111111 10000000 00000000 00000000 - // 0x00008000 => 00000000 00000000 10000000 00000000 - return - ((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential - ((f >> 18) & 0x001f); // Mantissa - } - - GLM_FUNC_QUALIFIER glm::uint32 packed10ToFloat(glm::uint32 p) - { - // 10 bits => EE EEEFFFFF - // 11 bits => EEE EEFFFFFF - // Half bits => SEEEEEFF FFFFFFFF - // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF - - // 0x0000001F => 00000000 00000000 00000000 00011111 - // 0x0000003F => 00000000 00000000 00000000 00111111 - // 0x000003E0 => 00000000 00000000 00000011 11100000 - // 0x000007C0 => 00000000 00000000 00000111 11000000 - // 0x00007C00 => 00000000 00000000 01111100 00000000 - // 0x000003FF => 00000000 00000000 00000011 11111111 - // 0x38000000 => 00111000 00000000 00000000 00000000 - // 0x7f800000 => 01111111 10000000 00000000 00000000 - // 0x00008000 => 00000000 00000000 10000000 00000000 - return - ((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential - ((p & 0x001f) << 18); // Mantissa - } - - GLM_FUNC_QUALIFIER glm::uint half2float(glm::uint h) - { - return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13); - } - - GLM_FUNC_QUALIFIER glm::uint floatTo11bit(float x) - { - if(x == 0.0f) - return 0u; - else if(glm::isnan(x)) - return ~0u; - else if(glm::isinf(x)) - return 0x1Fu << 6u; - - uint Pack = 0u; - memcpy(&Pack, &x, sizeof(Pack)); - return float2packed11(Pack); - } - - GLM_FUNC_QUALIFIER float packed11bitToFloat(glm::uint x) - { - if(x == 0) - return 0.0f; - else if(x == ((1 << 11) - 1)) - return ~0;//NaN - else if(x == (0x1f << 6)) - return ~0;//Inf - - uint Result = packed11ToFloat(x); - - float Temp = 0; - memcpy(&Temp, &Result, sizeof(Temp)); - return Temp; - } - - GLM_FUNC_QUALIFIER glm::uint floatTo10bit(float x) - { - if(x == 0.0f) - return 0u; - else if(glm::isnan(x)) - return ~0u; - else if(glm::isinf(x)) - return 0x1Fu << 5u; - - uint Pack = 0; - memcpy(&Pack, &x, sizeof(Pack)); - return float2packed10(Pack); - } - - GLM_FUNC_QUALIFIER float packed10bitToFloat(glm::uint x) - { - if(x == 0) - return 0.0f; - else if(x == ((1 << 10) - 1)) - return ~0;//NaN - else if(x == (0x1f << 5)) - return ~0;//Inf - - uint Result = packed10ToFloat(x); - - float Temp = 0; - memcpy(&Temp, &Result, sizeof(Temp)); - return Temp; - } - -// GLM_FUNC_QUALIFIER glm::uint f11_f11_f10(float x, float y, float z) -// { -// return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) | ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22); -// } - - union u3u3u2 - { - struct - { - uint x : 3; - uint y : 3; - uint z : 2; - } data; - uint8 pack; - }; - - union u4u4 - { - struct - { - uint x : 4; - uint y : 4; - } data; - uint8 pack; - }; - - union u4u4u4u4 - { - struct - { - uint x : 4; - uint y : 4; - uint z : 4; - uint w : 4; - } data; - uint16 pack; - }; - - union u5u6u5 - { - struct - { - uint x : 5; - uint y : 6; - uint z : 5; - } data; - uint16 pack; - }; - - union u5u5u5u1 - { - struct - { - uint x : 5; - uint y : 5; - uint z : 5; - uint w : 1; - } data; - uint16 pack; - }; - - union u10u10u10u2 - { - struct - { - uint x : 10; - uint y : 10; - uint z : 10; - uint w : 2; - } data; - uint32 pack; - }; - - union i10i10i10i2 - { - struct - { - int x : 10; - int y : 10; - int z : 10; - int w : 2; - } data; - uint32 pack; - }; - - union u9u9u9e5 - { - struct - { - uint x : 9; - uint y : 9; - uint z : 9; - uint w : 5; - } data; - uint32 pack; - }; - - template <precision P, template <typename, precision> class vecType> - struct compute_half - {}; - - template <precision P> - struct compute_half<P, tvec1> - { - GLM_FUNC_QUALIFIER static tvec1<uint16, P> pack(tvec1<float, P> const & v) - { - int16 const Unpack(detail::toFloat16(v.x)); - u16vec1 Packed(uninitialize); - memcpy(&Packed, &Unpack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER static tvec1<float, P> unpack(tvec1<uint16, P> const & v) - { - i16vec1 Unpack(uninitialize); - memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec1<float, P>(detail::toFloat32(v.x)); - } - }; - - template <precision P> - struct compute_half<P, tvec2> - { - GLM_FUNC_QUALIFIER static tvec2<uint16, P> pack(tvec2<float, P> const & v) - { - tvec2<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y)); - u16vec2 Packed(uninitialize); - memcpy(&Packed, &Unpack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER static tvec2<float, P> unpack(tvec2<uint16, P> const & v) - { - i16vec2 Unpack(uninitialize); - memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec2<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y)); - } - }; - - template <precision P> - struct compute_half<P, tvec3> - { - GLM_FUNC_QUALIFIER static tvec3<uint16, P> pack(tvec3<float, P> const & v) - { - tvec3<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z)); - u16vec3 Packed(uninitialize); - memcpy(&Packed, &Unpack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER static tvec3<float, P> unpack(tvec3<uint16, P> const & v) - { - i16vec3 Unpack(uninitialize); - memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec3<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z)); - } - }; - - template <precision P> - struct compute_half<P, tvec4> - { - GLM_FUNC_QUALIFIER static tvec4<uint16, P> pack(tvec4<float, P> const & v) - { - tvec4<int16, P> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); - u16vec4 Packed(uninitialize); - memcpy(&Packed, &Unpack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER static tvec4<float, P> unpack(tvec4<uint16, P> const & v) - { - i16vec4 Unpack(uninitialize); - memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec4<float, P>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w)); - } - }; -}//namespace detail - - GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float v) - { - return static_cast<uint8>(round(clamp(v, 0.0f, 1.0f) * 255.0f)); - } - - GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p) - { - float const Unpack(p); - return Unpack * static_cast<float>(0.0039215686274509803921568627451); // 1 / 255 - } - - GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v) - { - u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f)); - - uint16 Unpack = 0; - memcpy(&Unpack, &Topack, sizeof(Unpack)); - return Unpack; - } - - GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p) - { - u8vec2 Unpack(uninitialize); - memcpy(&Unpack, &p, sizeof(Unpack)); - return vec2(Unpack) * float(0.0039215686274509803921568627451); // 1 / 255 - } - - GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float v) - { - int8 const Topack(static_cast<int8>(round(clamp(v ,-1.0f, 1.0f) * 127.0f))); - uint8 Packed = 0; - memcpy(&Packed, &Topack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p) - { - int8 Unpack = 0; - memcpy(&Unpack, &p, sizeof(Unpack)); - return clamp( - static_cast<float>(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f - -1.0f, 1.0f); - } - - GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v) - { - i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f)); - uint16 Packed = 0; - memcpy(&Packed, &Topack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p) - { - i8vec2 Unpack(uninitialize); - memcpy(&Unpack, &p, sizeof(Unpack)); - return clamp( - vec2(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f - -1.0f, 1.0f); - } - - GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s) - { - return static_cast<uint16>(round(clamp(s, 0.0f, 1.0f) * 65535.0f)); - } - - GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p) - { - float const Unpack(p); - return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 - } - - GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v) - { - u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f)); - uint64 Packed = 0; - memcpy(&Packed, &Topack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p) - { - u16vec4 Unpack(uninitialize); - memcpy(&Unpack, &p, sizeof(Unpack)); - return vec4(Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 - } - - GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v) - { - int16 const Topack = static_cast<int16>(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); - uint16 Packed = 0; - memcpy(&Packed, &Topack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p) - { - int16 Unpack = 0; - memcpy(&Unpack, &p, sizeof(Unpack)); - return clamp( - static_cast<float>(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, - -1.0f, 1.0f); - } - - GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v) - { - i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); - uint64 Packed = 0; - memcpy(&Packed, &Topack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p) - { - i16vec4 Unpack(uninitialize); - memcpy(&Unpack, &p, sizeof(Unpack)); - return clamp( - vec4(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, - -1.0f, 1.0f); - } - - GLM_FUNC_QUALIFIER uint16 packHalf1x16(float v) - { - int16 const Topack(detail::toFloat16(v)); - uint16 Packed = 0; - memcpy(&Packed, &Topack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER float unpackHalf1x16(uint16 v) - { - int16 Unpack = 0; - memcpy(&Unpack, &v, sizeof(Unpack)); - return detail::toFloat32(Unpack); - } - - GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v) - { - i16vec4 const Unpack( - detail::toFloat16(v.x), - detail::toFloat16(v.y), - detail::toFloat16(v.z), - detail::toFloat16(v.w)); - uint64 Packed = 0; - memcpy(&Packed, &Unpack, sizeof(Packed)); - return Packed; - } - - GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v) - { - i16vec4 Unpack(uninitialize); - memcpy(&Unpack, &v, sizeof(Unpack)); - return vec4( - detail::toFloat32(Unpack.x), - detail::toFloat32(Unpack.y), - detail::toFloat32(Unpack.z), - detail::toFloat32(Unpack.w)); - } - - GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v) - { - detail::i10i10i10i2 Result; - Result.data.x = v.x; - Result.data.y = v.y; - Result.data.z = v.z; - Result.data.w = v.w; - return Result.pack; - } - - GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v) - { - detail::i10i10i10i2 Unpack; - Unpack.pack = v; - return ivec4( - Unpack.data.x, - Unpack.data.y, - Unpack.data.z, - Unpack.data.w); - } - - GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v) - { - detail::u10u10u10u2 Result; - Result.data.x = v.x; - Result.data.y = v.y; - Result.data.z = v.z; - Result.data.w = v.w; - return Result.pack; - } - - GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v) - { - detail::u10u10u10u2 Unpack; - Unpack.pack = v; - return uvec4( - Unpack.data.x, - Unpack.data.y, - Unpack.data.z, - Unpack.data.w); - } - - GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v) - { - detail::i10i10i10i2 Result; - Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f)); - Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f)); - Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f)); - Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f)); - return Result.pack; - } - - GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 v) - { - detail::i10i10i10i2 Unpack; - Unpack.pack = v; - vec4 Result; - Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f); - Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f); - Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f); - Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f); - return Result; - } - - GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v) - { - uvec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(1023.f, 1023.f, 1023.f, 3.f))); - - detail::u10u10u10u2 Result; - Result.data.x = Unpack.x; - Result.data.y = Unpack.y; - Result.data.z = Unpack.z; - Result.data.w = Unpack.w; - return Result.pack; - } - - GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 v) - { - vec4 const ScaleFactors(1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 3.f); - - detail::u10u10u10u2 Unpack; - Unpack.pack = v; - return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactors; - } - - GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v) - { - return - ((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) | - ((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) | - ((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22); - } - - GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 v) - { - return vec3( - detail::packed11bitToFloat(v >> 0), - detail::packed11bitToFloat(v >> 11), - detail::packed10bitToFloat(v >> 22)); - } - - GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const & v) - { - float const SharedExpMax = (pow(2.0f, 9.0f - 1.0f) / pow(2.0f, 9.0f)) * pow(2.0f, 31.f - 15.f); - vec3 const Color = clamp(v, 0.0f, SharedExpMax); - float const MaxColor = max(Color.x, max(Color.y, Color.z)); - - float const ExpSharedP = max(-15.f - 1.f, floor(log2(MaxColor))) + 1.0f + 15.f; - float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 16.f - 9.f)) + 0.5f); - float const ExpShared = MaxShared == pow(2.0f, 9.0f) ? ExpSharedP + 1.0f : ExpSharedP; - - uvec3 const ColorComp(floor(Color / pow(2.f, (ExpShared - 15.f - 9.f)) + 0.5f)); - - detail::u9u9u9e5 Unpack; - Unpack.data.x = ColorComp.x; - Unpack.data.y = ColorComp.y; - Unpack.data.z = ColorComp.z; - Unpack.data.w = uint(ExpShared); - return Unpack.pack; - } - - GLM_FUNC_QUALIFIER vec3 unpackF3x9_E1x5(uint32 v) - { - detail::u9u9u9e5 Unpack; - Unpack.pack = v; - - return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * pow(2.0f, Unpack.data.w - 15.f - 9.f); - } - - template <precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<uint16, P> packHalf(vecType<float, P> const & v) - { - return detail::compute_half<P, vecType>::pack(v); - } - - template <precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<float, P> unpackHalf(vecType<uint16, P> const & v) - { - return detail::compute_half<P, vecType>::unpack(v); - } - - template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<uintType, P> packUnorm(vecType<floatType, P> const & v) - { - GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type"); - GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); - - return vecType<uintType, P>(round(clamp(v, static_cast<floatType>(0), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<uintType>::max()))); - } - - template <typename uintType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<floatType, P> unpackUnorm(vecType<uintType, P> const & v) - { - GLM_STATIC_ASSERT(std::numeric_limits<uintType>::is_integer, "uintType must be an integer type"); - GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); - - return vecType<float, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<uintType>::max())); - } - - template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<intType, P> packSnorm(vecType<floatType, P> const & v) - { - GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type"); - GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); - - return vecType<intType, P>(round(clamp(v , static_cast<floatType>(-1), static_cast<floatType>(1)) * static_cast<floatType>(std::numeric_limits<intType>::max()))); - } - - template <typename intType, typename floatType, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<floatType, P> unpackSnorm(vecType<intType, P> const & v) - { - GLM_STATIC_ASSERT(std::numeric_limits<intType>::is_integer, "uintType must be an integer type"); - GLM_STATIC_ASSERT(std::numeric_limits<floatType>::is_iec559, "floatType must be a floating point type"); - - return clamp(vecType<floatType, P>(v) * (static_cast<floatType>(1) / static_cast<floatType>(std::numeric_limits<intType>::max())), static_cast<floatType>(-1), static_cast<floatType>(1)); - } - - GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const & v) - { - u32vec2 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); - detail::u4u4 Result; - Result.data.x = Unpack.x; - Result.data.y = Unpack.y; - return Result.pack; - } - - GLM_FUNC_QUALIFIER vec2 unpackUnorm2x4(uint8 v) - { - float const ScaleFactor(1.f / 15.f); - detail::u4u4 Unpack; - Unpack.pack = v; - return vec2(Unpack.data.x, Unpack.data.y) * ScaleFactor; - } - - GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const & v) - { - u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); - detail::u4u4u4u4 Result; - Result.data.x = Unpack.x; - Result.data.y = Unpack.y; - Result.data.z = Unpack.z; - Result.data.w = Unpack.w; - return Result.pack; - } - - GLM_FUNC_QUALIFIER vec4 unpackUnorm4x4(uint16 v) - { - float const ScaleFactor(1.f / 15.f); - detail::u4u4u4u4 Unpack; - Unpack.pack = v; - return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; - } - - GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const & v) - { - u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(31.f, 63.f, 31.f))); - detail::u5u6u5 Result; - Result.data.x = Unpack.x; - Result.data.y = Unpack.y; - Result.data.z = Unpack.z; - return Result.pack; - } - - GLM_FUNC_QUALIFIER vec3 unpackUnorm1x5_1x6_1x5(uint16 v) - { - vec3 const ScaleFactor(1.f / 31.f, 1.f / 63.f, 1.f / 31.f); - detail::u5u6u5 Unpack; - Unpack.pack = v; - return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; - } - - GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const & v) - { - u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(31.f, 31.f, 31.f, 1.f))); - detail::u5u5u5u1 Result; - Result.data.x = Unpack.x; - Result.data.y = Unpack.y; - Result.data.z = Unpack.z; - Result.data.w = Unpack.w; - return Result.pack; - } - - GLM_FUNC_QUALIFIER vec4 unpackUnorm3x5_1x1(uint16 v) - { - vec4 const ScaleFactor(1.f / 31.f, 1.f / 31.f, 1.f / 31.f, 1.f); - detail::u5u5u5u1 Unpack; - Unpack.pack = v; - return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; - } - - GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const & v) - { - u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(7.f, 7.f, 3.f))); - detail::u3u3u2 Result; - Result.data.x = Unpack.x; - Result.data.y = Unpack.y; - Result.data.z = Unpack.z; - return Result.pack; - } - - GLM_FUNC_QUALIFIER vec3 unpackUnorm2x3_1x2(uint8 v) - { - vec3 const ScaleFactor(1.f / 7.f, 1.f / 7.f, 1.f / 3.f); - detail::u3u3u2 Unpack; - Unpack.pack = v; - return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; - } -}//namespace glm - diff --git a/depedencies/include/glm/gtc/quaternion.hpp b/depedencies/include/glm/gtc/quaternion.hpp deleted file mode 100644 index 8af1c8b..0000000 --- a/depedencies/include/glm/gtc/quaternion.hpp +++ /dev/null @@ -1,397 +0,0 @@ -/// @ref gtc_quaternion -/// @file glm/gtc/quaternion.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// @see gtc_constants (dependence) -/// -/// @defgroup gtc_quaternion GLM_GTC_quaternion -/// @ingroup gtc -/// -/// @brief Defines a templated quaternion type and several quaternion operations. -/// -/// <glm/gtc/quaternion.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependency: -#include "../mat3x3.hpp" -#include "../mat4x4.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" -#include "../gtc/constants.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_quaternion extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_quaternion - /// @{ - - template <typename T, precision P = defaultp> - struct tquat - { - // -- Implementation detail -- - - typedef tquat<T, P> type; - typedef T value_type; - - // -- Data -- - -# if GLM_HAS_ALIGNED_TYPE -# if GLM_COMPILER & GLM_COMPILER_GCC -# pragma GCC diagnostic push -# pragma GCC diagnostic ignored "-Wpedantic" -# endif -# if GLM_COMPILER & GLM_COMPILER_CLANG -# pragma clang diagnostic push -# pragma clang diagnostic ignored "-Wgnu-anonymous-struct" -# pragma clang diagnostic ignored "-Wnested-anon-types" -# endif - - union - { - struct { T x, y, z, w;}; - typename detail::storage<T, sizeof(T) * 4, detail::is_aligned<P>::value>::type data; - }; - -# if GLM_COMPILER & GLM_COMPILER_CLANG -# pragma clang diagnostic pop -# endif -# if GLM_COMPILER & GLM_COMPILER_GCC -# pragma GCC diagnostic pop -# endif -# else - T x, y, z, w; -# endif - - // -- Component accesses -- - - typedef length_t length_type; - /// Return the count of components of a quaternion - GLM_FUNC_DECL static length_type length(){return 4;} - - GLM_FUNC_DECL T & operator[](length_type i); - GLM_FUNC_DECL T const & operator[](length_type i) const; - - // -- Implicit basic constructors -- - - GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR; - GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, P> const & q) GLM_DEFAULT; - template <precision Q> - GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat<T, Q> const & q); - - // -- Explicit basic constructors -- - - GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor); - GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & s, tvec3<T, P> const & v); - GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & w, T const & x, T const & y, T const & z); - - // -- Conversion constructors -- - - template <typename U, precision Q> - GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat<U, Q> const & q); - - /// Explicit conversion operators -# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - GLM_FUNC_DECL explicit operator tmat3x3<T, P>(); - GLM_FUNC_DECL explicit operator tmat4x4<T, P>(); -# endif - - /// Create a quaternion from two normalized axis - /// - /// @param u A first normalized axis - /// @param v A second normalized axis - /// @see gtc_quaternion - /// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors - GLM_FUNC_DECL tquat(tvec3<T, P> const & u, tvec3<T, P> const & v); - - /// Build a quaternion from euler angles (pitch, yaw, roll), in radians. - GLM_FUNC_DECL GLM_EXPLICIT tquat(tvec3<T, P> const & eulerAngles); - GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat3x3<T, P> const & m); - GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat4x4<T, P> const & m); - - // -- Unary arithmetic operators -- - - GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m) GLM_DEFAULT; - - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator-=(tquat<U, P> const & q); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator*=(U s); - template <typename U> - GLM_FUNC_DECL tquat<T, P> & operator/=(U s); - }; - - // -- Unary bit operators -- - - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q); - - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q); - - // -- Binary operators -- - - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p); - - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p); - - template <typename T, precision P> - GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v); - - template <typename T, precision P> - GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q); - - template <typename T, precision P> - GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v); - - template <typename T, precision P> - GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q); - - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s); - - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q); - - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s); - - // -- Boolean operators -- - - template <typename T, precision P> - GLM_FUNC_DECL bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2); - - template <typename T, precision P> - GLM_FUNC_DECL bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2); - - /// Returns the length of the quaternion. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T length(tquat<T, P> const & q); - - /// Returns the normalized quaternion. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q); - - /// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... - /// - /// @see gtc_quaternion - template <typename T, precision P, template <typename, precision> class quatType> - GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y); - - /// Spherical linear interpolation of two quaternions. - /// The interpolation is oriented and the rotation is performed at constant speed. - /// For short path spherical linear interpolation, use the slerp function. - /// - /// @param x A quaternion - /// @param y A quaternion - /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. - /// @see gtc_quaternion - /// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a); - - /// Linear interpolation of two quaternions. - /// The interpolation is oriented. - /// - /// @param x A quaternion - /// @param y A quaternion - /// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); - - /// Spherical linear interpolation of two quaternions. - /// The interpolation always take the short path and the rotation is performed at constant speed. - /// - /// @param x A quaternion - /// @param y A quaternion - /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a); - - /// Returns the q conjugate. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q); - - /// Returns the q inverse. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q); - - /// Rotates a quaternion from a vector of 3 components axis and an angle. - /// - /// @param q Source orientation - /// @param angle Angle expressed in radians. - /// @param axis Axis of the rotation - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis); - - /// Returns euler angles, pitch as x, yaw as y, roll as z. - /// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x); - - /// Returns roll value of euler angles expressed in radians. - /// - /// @see gtx_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T roll(tquat<T, P> const & x); - - /// Returns pitch value of euler angles expressed in radians. - /// - /// @see gtx_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T pitch(tquat<T, P> const & x); - - /// Returns yaw value of euler angles expressed in radians. - /// - /// @see gtx_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T yaw(tquat<T, P> const & x); - - /// Converts a quaternion to a 3 * 3 matrix. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x); - - /// Converts a quaternion to a 4 * 4 matrix. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x); - - /// Converts a 3 * 3 matrix to a quaternion. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x); - - /// Converts a 4 * 4 matrix to a quaternion. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x); - - /// Returns the quaternion rotation angle. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL T angle(tquat<T, P> const & x); - - /// Returns the q rotation axis. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x); - - /// Build a quaternion from an angle and a normalized axis. - /// - /// @param angle Angle expressed in radians. - /// @param axis Axis of the quaternion, must be normalized. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis); - - /// Returns the component-wise comparison result of x < y. - /// - /// @tparam quatType Floating-point quaternion types. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y); - - /// Returns the component-wise comparison of result x <= y. - /// - /// @tparam quatType Floating-point quaternion types. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); - - /// Returns the component-wise comparison of result x > y. - /// - /// @tparam quatType Floating-point quaternion types. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y); - - /// Returns the component-wise comparison of result x >= y. - /// - /// @tparam quatType Floating-point quaternion types. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y); - - /// Returns the component-wise comparison of result x == y. - /// - /// @tparam quatType Floating-point quaternion types. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y); - - /// Returns the component-wise comparison of result x != y. - /// - /// @tparam quatType Floating-point quaternion types. - /// - /// @see gtc_quaternion - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y); - - /// Returns true if x holds a NaN (not a number) - /// representation in the underlying implementation's set of - /// floating point representations. Returns false otherwise, - /// including for implementations with no NaN - /// representations. - /// - /// /!\ When using compiler fast math, this function may fail. - /// - /// @tparam genType Floating-point scalar or vector types. - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> isnan(tquat<T, P> const & x); - - /// Returns true if x holds a positive infinity or negative - /// infinity representation in the underlying implementation's - /// set of floating point representations. Returns false - /// otherwise, including for implementations with no infinity - /// representations. - /// - /// @tparam genType Floating-point scalar or vector types. - template <typename T, precision P> - GLM_FUNC_DECL tvec4<bool, P> isinf(tquat<T, P> const & x); - - /// @} -} //namespace glm - -#include "quaternion.inl" diff --git a/depedencies/include/glm/gtc/quaternion.inl b/depedencies/include/glm/gtc/quaternion.inl deleted file mode 100644 index c9b2af7..0000000 --- a/depedencies/include/glm/gtc/quaternion.inl +++ /dev/null @@ -1,795 +0,0 @@ -/// @ref gtc_quaternion -/// @file glm/gtc/quaternion.inl - -#include "../trigonometric.hpp" -#include "../geometric.hpp" -#include "../exponential.hpp" -#include <limits> - -namespace glm{ -namespace detail -{ - template <typename T, precision P, bool Aligned> - struct compute_dot<tquat, T, P, Aligned> - { - static GLM_FUNC_QUALIFIER T call(tquat<T, P> const& x, tquat<T, P> const& y) - { - tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w); - return (tmp.x + tmp.y) + (tmp.z + tmp.w); - } - }; - - template <typename T, precision P, bool Aligned> - struct compute_quat_add - { - static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) - { - return tquat<T, P>(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); - } - }; - - template <typename T, precision P, bool Aligned> - struct compute_quat_sub - { - static tquat<T, P> call(tquat<T, P> const& q, tquat<T, P> const& p) - { - return tquat<T, P>(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); - } - }; - - template <typename T, precision P, bool Aligned> - struct compute_quat_mul_scalar - { - static tquat<T, P> call(tquat<T, P> const& q, T s) - { - return tquat<T, P>(q.w * s, q.x * s, q.y * s, q.z * s); - } - }; - - template <typename T, precision P, bool Aligned> - struct compute_quat_div_scalar - { - static tquat<T, P> call(tquat<T, P> const& q, T s) - { - return tquat<T, P>(q.w / s, q.x / s, q.y / s, q.z / s); - } - }; - - template <typename T, precision P, bool Aligned> - struct compute_quat_mul_vec4 - { - static tvec4<T, P> call(tquat<T, P> const & q, tvec4<T, P> const & v) - { - return tvec4<T, P>(q * tvec3<T, P>(v), v.w); - } - }; -}//namespace detail - - // -- Component accesses -- - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) - { - assert(i >= 0 && i < this->length()); - return (&x)[i]; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const - { - assert(i >= 0 && i < this->length()); - return (&x)[i]; - } - - // -- Implicit basic constructors -- - -# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT) - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat() -# ifndef GLM_FORCE_NO_CTOR_INIT - : x(0), y(0), z(0), w(1) -# endif - {} -# endif - -# if !GLM_HAS_DEFAULTED_FUNCTIONS - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, P> const & q) - : x(q.x), y(q.y), z(q.z), w(q.w) - {} -# endif//!GLM_HAS_DEFAULTED_FUNCTIONS - - template <typename T, precision P> - template <precision Q> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<T, Q> const & q) - : x(q.x), y(q.y), z(q.z), w(q.w) - {} - - // -- Explicit basic constructors -- - - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat<T, P>::tquat(ctor) - {} - - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & s, tvec3<T, P> const & v) - : x(v.x), y(v.y), z(v.z), w(s) - {} - - template <typename T, precision P> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(T const & w, T const & x, T const & y, T const & z) - : x(x), y(y), z(z), w(w) - {} - - // -- Conversion constructors -- - - template <typename T, precision P> - template <typename U, precision Q> - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat<T, P>::tquat(tquat<U, Q> const & q) - : x(static_cast<T>(q.x)) - , y(static_cast<T>(q.y)) - , z(static_cast<T>(q.z)) - , w(static_cast<T>(q.w)) - {} - - //template <typename valType> - //GLM_FUNC_QUALIFIER tquat<valType>::tquat - //( - // valType const & pitch, - // valType const & yaw, - // valType const & roll - //) - //{ - // tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); - // tvec3<valType> c = glm::cos(eulerAngle * valType(0.5)); - // tvec3<valType> s = glm::sin(eulerAngle * valType(0.5)); - // - // this->w = c.x * c.y * c.z + s.x * s.y * s.z; - // this->x = s.x * c.y * c.z - c.x * s.y * s.z; - // this->y = c.x * s.y * c.z + s.x * c.y * s.z; - // this->z = c.x * c.y * s.z - s.x * s.y * c.z; - //} - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & u, tvec3<T, P> const & v) - { - tvec3<T, P> const LocalW(cross(u, v)); - T Dot = detail::compute_dot<tvec3, T, P, detail::is_aligned<P>::value>::call(u, v); - tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z); - - *this = normalize(q); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & eulerAngle) - { - tvec3<T, P> c = glm::cos(eulerAngle * T(0.5)); - tvec3<T, P> s = glm::sin(eulerAngle * T(0.5)); - - this->w = c.x * c.y * c.z + s.x * s.y * s.z; - this->x = s.x * c.y * c.z - c.x * s.y * s.z; - this->y = c.x * s.y * c.z + s.x * c.y * s.z; - this->z = c.x * c.y * s.z - s.x * s.y * c.z; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat3x3<T, P> const & m) - { - *this = quat_cast(m); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat4x4<T, P> const & m) - { - *this = quat_cast(m); - } - -# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat3x3<T, P>() - { - return mat3_cast(*this); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat4x4<T, P>() - { - return mat4_cast(*this); - } -# endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const & q) - { - return tquat<T, P>(q.w, -q.x, -q.y, -q.z); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q) - { - return conjugate(q) / dot(q, q); - } - - // -- Unary arithmetic operators -- - -# if !GLM_HAS_DEFAULTED_FUNCTIONS - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q) - { - this->w = q.w; - this->x = q.x; - this->y = q.y; - this->z = q.z; - return *this; - } -# endif//!GLM_HAS_DEFAULTED_FUNCTIONS - - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q) - { - this->w = static_cast<T>(q.w); - this->x = static_cast<T>(q.x); - this->y = static_cast<T>(q.y); - this->z = static_cast<T>(q.z); - return *this; - } - - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const& q) - { - return (*this = detail::compute_quat_add<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); - } - - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator-=(tquat<U, P> const& q) - { - return (*this = detail::compute_quat_sub<T, P, detail::is_aligned<P>::value>::call(*this, tquat<T, P>(q))); - } - - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r) - { - tquat<T, P> const p(*this); - tquat<T, P> const q(r); - - this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; - this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; - this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z; - this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x; - return *this; - } - - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s) - { - return (*this = detail::compute_quat_mul_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); - } - - template <typename T, precision P> - template <typename U> - GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s) - { - return (*this = detail::compute_quat_div_scalar<T, P, detail::is_aligned<P>::value>::call(*this, static_cast<U>(s))); - } - - // -- Unary bit operators -- - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q) - { - return q; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q) - { - return tquat<T, P>(-q.w, -q.x, -q.y, -q.z); - } - - // -- Binary operators -- - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p) - { - return tquat<T, P>(q) += p; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p) - { - return tquat<T, P>(q) *= p; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v) - { - tvec3<T, P> const QuatVector(q.x, q.y, q.z); - tvec3<T, P> const uv(glm::cross(QuatVector, v)); - tvec3<T, P> const uuv(glm::cross(QuatVector, uv)); - - return v + ((uv * q.w) + uuv) * static_cast<T>(2); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q) - { - return glm::inverse(q) * v; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tquat<T, P> const& q, tvec4<T, P> const& v) - { - return detail::compute_quat_mul_vec4<T, P, detail::is_aligned<P>::value>::call(q, v); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q) - { - return glm::inverse(q) * v; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s) - { - return tquat<T, P>( - q.w * s, q.x * s, q.y * s, q.z * s); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q) - { - return q * s; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s) - { - return tquat<T, P>( - q.w / s, q.x / s, q.y / s, q.z / s); - } - - // -- Boolean operators -- - - template <typename T, precision P> - GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2) - { - return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2) - { - return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); - } - - // -- Operations -- - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q) - { - return glm::sqrt(dot(q, q)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q) - { - T len = length(q); - if(len <= T(0)) // Problem - return tquat<T, P>(1, 0, 0, 0); - T oneOverLen = T(1) / len; - return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2) - { - return tquat<T, P>( - q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, - q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, - q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, - q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x); - } -/* - // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a) - { - if(a <= T(0)) return x; - if(a >= T(1)) return y; - - float fCos = dot(x, y); - tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2; - if(fCos < T(0)) - { - y2 = -y; - fCos = -fCos; - } - - //if(fCos > 1.0f) // problem - float k0, k1; - if(fCos > T(0.9999)) - { - k0 = T(1) - a; - k1 = T(0) + a; //BUG!!! 1.0f + a; - } - else - { - T fSin = sqrt(T(1) - fCos * fCos); - T fAngle = atan(fSin, fCos); - T fOneOverSin = static_cast<T>(1) / fSin; - k0 = sin((T(1) - a) * fAngle) * fOneOverSin; - k1 = sin((T(0) + a) * fAngle) * fOneOverSin; - } - - return tquat<T, P>( - k0 * x.w + k1 * y2.w, - k0 * x.x + k1 * y2.x, - k0 * x.y + k1 * y2.y, - k0 * x.z + k1 * y2.z); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> mix2 - ( - tquat<T, P> const & x, - tquat<T, P> const & y, - T const & a - ) - { - bool flip = false; - if(a <= static_cast<T>(0)) return x; - if(a >= static_cast<T>(1)) return y; - - T cos_t = dot(x, y); - if(cos_t < T(0)) - { - cos_t = -cos_t; - flip = true; - } - - T alpha(0), beta(0); - - if(T(1) - cos_t < 1e-7) - beta = static_cast<T>(1) - alpha; - else - { - T theta = acos(cos_t); - T sin_t = sin(theta); - beta = sin(theta * (T(1) - alpha)) / sin_t; - alpha = sin(alpha * theta) / sin_t; - } - - if(flip) - alpha = -alpha; - - return normalize(beta * x + alpha * y); - } -*/ - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a) - { - T cosTheta = dot(x, y); - - // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator - if(cosTheta > T(1) - epsilon<T>()) - { - // Linear interpolation - return tquat<T, P>( - mix(x.w, y.w, a), - mix(x.x, y.x, a), - mix(x.y, y.y, a), - mix(x.z, y.z, a)); - } - else - { - // Essential Mathematics, page 467 - T angle = acos(cosTheta); - return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); - } - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) - { - // Lerp is only defined in [0, 1] - assert(a >= static_cast<T>(0)); - assert(a <= static_cast<T>(1)); - - return x * (T(1) - a) + (y * a); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a) - { - tquat<T, P> z = y; - - T cosTheta = dot(x, y); - - // If cosTheta < 0, the interpolation will take the long way around the sphere. - // To fix this, one quat must be negated. - if (cosTheta < T(0)) - { - z = -y; - cosTheta = -cosTheta; - } - - // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator - if(cosTheta > T(1) - epsilon<T>()) - { - // Linear interpolation - return tquat<T, P>( - mix(x.w, z.w, a), - mix(x.x, z.x, a), - mix(x.y, z.y, a), - mix(x.z, z.z, a)); - } - else - { - // Essential Mathematics, page 467 - T angle = acos(cosTheta); - return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); - } - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & v) - { - tvec3<T, P> Tmp = v; - - // Axis of rotation must be normalised - T len = glm::length(Tmp); - if(abs(len - T(1)) > T(0.001)) - { - T oneOverLen = static_cast<T>(1) / len; - Tmp.x *= oneOverLen; - Tmp.y *= oneOverLen; - Tmp.z *= oneOverLen; - } - - T const AngleRad(angle); - T const Sin = sin(AngleRad * T(0.5)); - - return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); - //return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> eulerAngles(tquat<T, P> const & x) - { - return tvec3<T, P>(pitch(x), yaw(x), roll(x)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q) - { - return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q) - { - return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q) - { - return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1))); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat3x3<T, P> mat3_cast(tquat<T, P> const & q) - { - tmat3x3<T, P> Result(T(1)); - T qxx(q.x * q.x); - T qyy(q.y * q.y); - T qzz(q.z * q.z); - T qxz(q.x * q.z); - T qxy(q.x * q.y); - T qyz(q.y * q.z); - T qwx(q.w * q.x); - T qwy(q.w * q.y); - T qwz(q.w * q.z); - - Result[0][0] = T(1) - T(2) * (qyy + qzz); - Result[0][1] = T(2) * (qxy + qwz); - Result[0][2] = T(2) * (qxz - qwy); - - Result[1][0] = T(2) * (qxy - qwz); - Result[1][1] = T(1) - T(2) * (qxx + qzz); - Result[1][2] = T(2) * (qyz + qwx); - - Result[2][0] = T(2) * (qxz + qwy); - Result[2][1] = T(2) * (qyz - qwx); - Result[2][2] = T(1) - T(2) * (qxx + qyy); - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tmat4x4<T, P> mat4_cast(tquat<T, P> const & q) - { - return tmat4x4<T, P>(mat3_cast(q)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat3x3<T, P> const & m) - { - T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; - T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; - T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1]; - T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2]; - - int biggestIndex = 0; - T fourBiggestSquaredMinus1 = fourWSquaredMinus1; - if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourXSquaredMinus1; - biggestIndex = 1; - } - if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourYSquaredMinus1; - biggestIndex = 2; - } - if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourZSquaredMinus1; - biggestIndex = 3; - } - - T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); - T mult = static_cast<T>(0.25) / biggestVal; - - tquat<T, P> Result(uninitialize); - switch(biggestIndex) - { - case 0: - Result.w = biggestVal; - Result.x = (m[1][2] - m[2][1]) * mult; - Result.y = (m[2][0] - m[0][2]) * mult; - Result.z = (m[0][1] - m[1][0]) * mult; - break; - case 1: - Result.w = (m[1][2] - m[2][1]) * mult; - Result.x = biggestVal; - Result.y = (m[0][1] + m[1][0]) * mult; - Result.z = (m[2][0] + m[0][2]) * mult; - break; - case 2: - Result.w = (m[2][0] - m[0][2]) * mult; - Result.x = (m[0][1] + m[1][0]) * mult; - Result.y = biggestVal; - Result.z = (m[1][2] + m[2][1]) * mult; - break; - case 3: - Result.w = (m[0][1] - m[1][0]) * mult; - Result.x = (m[2][0] + m[0][2]) * mult; - Result.y = (m[1][2] + m[2][1]) * mult; - Result.z = biggestVal; - break; - - default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. - assert(false); - break; - } - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat4x4<T, P> const & m4) - { - return quat_cast(tmat3x3<T, P>(m4)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x) - { - return acos(x.w) * T(2); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec3<T, P> axis(tquat<T, P> const & x) - { - T tmp1 = static_cast<T>(1) - x.w * x.w; - if(tmp1 <= static_cast<T>(0)) - return tvec3<T, P>(0, 0, 1); - T tmp2 = static_cast<T>(1) / sqrt(tmp1); - return tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & v) - { - tquat<T, P> Result(uninitialize); - - T const a(angle); - T const s = glm::sin(a * static_cast<T>(0.5)); - - Result.w = glm::cos(a * static_cast<T>(0.5)); - Result.x = v.x * s; - Result.y = v.y * s; - Result.z = v.z * s; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y) - { - tvec4<bool, P> Result(uninitialize); - for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] < y[i]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) - { - tvec4<bool, P> Result(uninitialize); - for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] <= y[i]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y) - { - tvec4<bool, P> Result(uninitialize); - for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] > y[i]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y) - { - tvec4<bool, P> Result(uninitialize); - for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] >= y[i]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y) - { - tvec4<bool, P> Result(uninitialize); - for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] == y[i]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y) - { - tvec4<bool, P> Result(uninitialize); - for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] != y[i]; - return Result; - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> isnan(tquat<T, P> const& q) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs"); - - return tvec4<bool, P>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); - } - - template <typename T, precision P> - GLM_FUNC_QUALIFIER tvec4<bool, P> isinf(tquat<T, P> const& q) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs"); - - return tvec4<bool, P>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); - } -}//namespace glm - -#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_ALIGNED_TYPE -# include "quaternion_simd.inl" -#endif - diff --git a/depedencies/include/glm/gtc/quaternion_simd.inl b/depedencies/include/glm/gtc/quaternion_simd.inl deleted file mode 100644 index cca874b..0000000 --- a/depedencies/include/glm/gtc/quaternion_simd.inl +++ /dev/null @@ -1,198 +0,0 @@ -/// @ref core -/// @file glm/gtc/quaternion_simd.inl - -#if GLM_ARCH & GLM_ARCH_SSE2_BIT - -namespace glm{ -namespace detail -{ -/* - template <precision P> - struct compute_quat_mul<float, P, true> - { - static tquat<float, P> call(tquat<float, P> const& q1, tquat<float, P> const& q2) - { - // SSE2 STATS: 11 shuffle, 8 mul, 8 add - // SSE4 STATS: 3 shuffle, 4 mul, 4 dpps - - __m128 const mul0 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(0, 1, 2, 3))); - __m128 const mul1 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(1, 0, 3, 2))); - __m128 const mul2 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(2, 3, 0, 1))); - __m128 const mul3 = _mm_mul_ps(q1.Data, q2.Data); - -# if GLM_ARCH & GLM_ARCH_SSE41_BIT - __m128 const add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f), 0xff); - __m128 const add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f), 0xff); - __m128 const add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f), 0xff); - __m128 const add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff); -# else - __m128 const mul4 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f)); - __m128 const add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul4, mul4)); - __m128 const add4 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1)); - - __m128 const mul5 = _mm_mul_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f)); - __m128 const add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul5, mul5)); - __m128 const add5 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1)); - - __m128 const mul6 = _mm_mul_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f)); - __m128 const add2 = _mm_add_ps(mul6, _mm_movehl_ps(mul6, mul6)); - __m128 const add6 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1)); - - __m128 const mul7 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f)); - __m128 const add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul7, mul7)); - __m128 const add7 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1)); - #endif - - // This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than - // the final code below. I'll keep this here for reference - maybe somebody else can do something better... - // - //__m128 xxyy = _mm_shuffle_ps(add4, add5, _MM_SHUFFLE(0, 0, 0, 0)); - //__m128 zzww = _mm_shuffle_ps(add6, add7, _MM_SHUFFLE(0, 0, 0, 0)); - // - //return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0)); - - tquat<float, P> Result(uninitialize); - _mm_store_ss(&Result.x, add4); - _mm_store_ss(&Result.y, add5); - _mm_store_ss(&Result.z, add6); - _mm_store_ss(&Result.w, add7); - return Result; - } - }; -*/ - - template <precision P> - struct compute_dot<tquat, float, P, true> - { - static GLM_FUNC_QUALIFIER float call(tquat<float, P> const& x, tquat<float, P> const& y) - { - return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); - } - }; - - template <precision P> - struct compute_quat_add<float, P, true> - { - static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) - { - tquat<float, P> Result(uninitialize); - Result.data = _mm_add_ps(q.data, p.data); - return Result; - } - }; - -# if GLM_ARCH & GLM_ARCH_AVX_BIT - template <precision P> - struct compute_quat_add<double, P, true> - { - static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) - { - tquat<double, P> Result(uninitialize); - Result.data = _mm256_add_pd(a.data, b.data); - return Result; - } - }; -# endif - - template <precision P> - struct compute_quat_sub<float, P, true> - { - static tquat<float, P> call(tquat<float, P> const& q, tquat<float, P> const& p) - { - tvec4<float, P> Result(uninitialize); - Result.data = _mm_sub_ps(q.data, p.data); - return Result; - } - }; - -# if GLM_ARCH & GLM_ARCH_AVX_BIT - template <precision P> - struct compute_quat_sub<double, P, true> - { - static tquat<double, P> call(tquat<double, P> const & a, tquat<double, P> const & b) - { - tquat<double, P> Result(uninitialize); - Result.data = _mm256_sub_pd(a.data, b.data); - return Result; - } - }; -# endif - - template <precision P> - struct compute_quat_mul_scalar<float, P, true> - { - static tquat<float, P> call(tquat<float, P> const& q, float s) - { - tvec4<float, P> Result(uninitialize); - Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s)); - return Result; - } - }; - -# if GLM_ARCH & GLM_ARCH_AVX_BIT - template <precision P> - struct compute_quat_mul_scalar<double, P, true> - { - static tquat<double, P> call(tquat<double, P> const& q, double s) - { - tquat<double, P> Result(uninitialize); - Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s)); - return Result; - } - }; -# endif - - template <precision P> - struct compute_quat_div_scalar<float, P, true> - { - static tquat<float, P> call(tquat<float, P> const& q, float s) - { - tvec4<float, P> Result(uninitialize); - Result.data = _mm_div_ps(q.data, _mm_set_ps1(s)); - return Result; - } - }; - -# if GLM_ARCH & GLM_ARCH_AVX_BIT - template <precision P> - struct compute_quat_div_scalar<double, P, true> - { - static tquat<double, P> call(tquat<double, P> const& q, double s) - { - tquat<double, P> Result(uninitialize); - Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s)); - return Result; - } - }; -# endif - - template <precision P> - struct compute_quat_mul_vec4<float, P, true> - { - static tvec4<float, P> call(tquat<float, P> const& q, tvec4<float, P> const& v) - { - __m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3)); - __m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1)); - __m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2)); - __m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1)); - __m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2)); - - __m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0)); - __m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1)); - __m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2)); - __m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0)); - - __m128 const two = _mm_set1_ps(2.0f); - uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two)); - uuv = _mm_mul_ps(uuv, two); - - tvec4<float, P> Result(uninitialize); - Result.data = _mm_add_ps(v.Data, _mm_add_ps(uv, uuv)); - return Result; - } - }; -}//namespace detail -}//namespace glm - -#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT - diff --git a/depedencies/include/glm/gtc/random.hpp b/depedencies/include/glm/gtc/random.hpp deleted file mode 100644 index fa3956e..0000000 --- a/depedencies/include/glm/gtc/random.hpp +++ /dev/null @@ -1,98 +0,0 @@ -/// @ref gtc_random -/// @file glm/gtc/random.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// @see gtx_random (extended) -/// -/// @defgroup gtc_random GLM_GTC_random -/// @ingroup gtc -/// -/// @brief Generate random number from various distribution methods. -/// -/// <glm/gtc/random.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependency: -#include "../vec2.hpp" -#include "../vec3.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_random extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_random - /// @{ - - /// Generate random numbers in the interval [Min, Max], according a linear distribution - /// - /// @param Min - /// @param Max - /// @tparam genType Value type. Currently supported: float or double scalars. - /// @see gtc_random - template <typename genTYpe> - GLM_FUNC_DECL genTYpe linearRand( - genTYpe Min, - genTYpe Max); - - /// Generate random numbers in the interval [Min, Max], according a linear distribution - /// - /// @param Min - /// @param Max - /// @tparam T Value type. Currently supported: float or double. - /// @tparam vecType A vertor type: tvec1, tvec2, tvec3, tvec4 or compatible - /// @see gtc_random - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> linearRand( - vecType<T, P> const & Min, - vecType<T, P> const & Max); - - /// Generate random numbers in the interval [Min, Max], according a gaussian distribution - /// - /// @param Mean - /// @param Deviation - /// @see gtc_random - template <typename genType> - GLM_FUNC_DECL genType gaussRand( - genType Mean, - genType Deviation); - - /// Generate a random 2D vector which coordinates are regulary distributed on a circle of a given radius - /// - /// @param Radius - /// @see gtc_random - template <typename T> - GLM_FUNC_DECL tvec2<T, defaultp> circularRand( - T Radius); - - /// Generate a random 3D vector which coordinates are regulary distributed on a sphere of a given radius - /// - /// @param Radius - /// @see gtc_random - template <typename T> - GLM_FUNC_DECL tvec3<T, defaultp> sphericalRand( - T Radius); - - /// Generate a random 2D vector which coordinates are regulary distributed within the area of a disk of a given radius - /// - /// @param Radius - /// @see gtc_random - template <typename T> - GLM_FUNC_DECL tvec2<T, defaultp> diskRand( - T Radius); - - /// Generate a random 3D vector which coordinates are regulary distributed within the volume of a ball of a given radius - /// - /// @param Radius - /// @see gtc_random - template <typename T> - GLM_FUNC_DECL tvec3<T, defaultp> ballRand( - T Radius); - - /// @} -}//namespace glm - -#include "random.inl" diff --git a/depedencies/include/glm/gtc/random.inl b/depedencies/include/glm/gtc/random.inl deleted file mode 100644 index ad5926e..0000000 --- a/depedencies/include/glm/gtc/random.inl +++ /dev/null @@ -1,350 +0,0 @@ -/// @ref gtc_random -/// @file glm/gtc/random.inl - -#include "../geometric.hpp" -#include "../exponential.hpp" -#include <cstdlib> -#include <ctime> -#include <cassert> - -namespace glm{ -namespace detail -{ - template <typename T, precision P, template <class, precision> class vecType> - struct compute_rand - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(); - }; - - template <precision P> - struct compute_rand<uint8, P, tvec1> - { - GLM_FUNC_QUALIFIER static tvec1<uint8, P> call() - { - return tvec1<uint8, P>( - std::rand() % std::numeric_limits<uint8>::max()); - } - }; - - template <precision P> - struct compute_rand<uint8, P, tvec2> - { - GLM_FUNC_QUALIFIER static tvec2<uint8, P> call() - { - return tvec2<uint8, P>( - std::rand() % std::numeric_limits<uint8>::max(), - std::rand() % std::numeric_limits<uint8>::max()); - } - }; - - template <precision P> - struct compute_rand<uint8, P, tvec3> - { - GLM_FUNC_QUALIFIER static tvec3<uint8, P> call() - { - return tvec3<uint8, P>( - std::rand() % std::numeric_limits<uint8>::max(), - std::rand() % std::numeric_limits<uint8>::max(), - std::rand() % std::numeric_limits<uint8>::max()); - } - }; - - template <precision P> - struct compute_rand<uint8, P, tvec4> - { - GLM_FUNC_QUALIFIER static tvec4<uint8, P> call() - { - return tvec4<uint8, P>( - std::rand() % std::numeric_limits<uint8>::max(), - std::rand() % std::numeric_limits<uint8>::max(), - std::rand() % std::numeric_limits<uint8>::max(), - std::rand() % std::numeric_limits<uint8>::max()); - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_rand<uint16, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<uint16, P> call() - { - return - (vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(8)) | - (vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(0)); - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_rand<uint32, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<uint32, P> call() - { - return - (vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(16)) | - (vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(0)); - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_rand<uint64, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<uint64, P> call() - { - return - (vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(32)) | - (vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(0)); - } - }; - - template <typename T, precision P, template <class, precision> class vecType> - struct compute_linearRand - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & Min, vecType<T, P> const & Max); - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<int8, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<int8, P> call(vecType<int8, P> const & Min, vecType<int8, P> const & Max) - { - return (vecType<int8, P>(compute_rand<uint8, P, vecType>::call() % vecType<uint8, P>(Max + static_cast<int8>(1) - Min))) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<uint8, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<uint8, P> call(vecType<uint8, P> const & Min, vecType<uint8, P> const & Max) - { - return (compute_rand<uint8, P, vecType>::call() % (Max + static_cast<uint8>(1) - Min)) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<int16, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<int16, P> call(vecType<int16, P> const & Min, vecType<int16, P> const & Max) - { - return (vecType<int16, P>(compute_rand<uint16, P, vecType>::call() % vecType<uint16, P>(Max + static_cast<int16>(1) - Min))) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<uint16, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<uint16, P> call(vecType<uint16, P> const & Min, vecType<uint16, P> const & Max) - { - return (compute_rand<uint16, P, vecType>::call() % (Max + static_cast<uint16>(1) - Min)) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<int32, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<int32, P> call(vecType<int32, P> const & Min, vecType<int32, P> const & Max) - { - return (vecType<int32, P>(compute_rand<uint32, P, vecType>::call() % vecType<uint32, P>(Max + static_cast<int32>(1) - Min))) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<uint32, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<uint32, P> call(vecType<uint32, P> const & Min, vecType<uint32, P> const & Max) - { - return (compute_rand<uint32, P, vecType>::call() % (Max + static_cast<uint32>(1) - Min)) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<int64, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<int64, P> call(vecType<int64, P> const & Min, vecType<int64, P> const & Max) - { - return (vecType<int64, P>(compute_rand<uint64, P, vecType>::call() % vecType<uint64, P>(Max + static_cast<int64>(1) - Min))) + Min; - } - }; - - template <precision P, template <class, precision> class vecType> - struct compute_linearRand<uint64, P, vecType> - { - GLM_FUNC_QUALIFIER static vecType<uint64, P> call(vecType<uint64, P> const & Min, vecType<uint64, P> const & Max) - { - return (compute_rand<uint64, P, vecType>::call() % (Max + static_cast<uint64>(1) - Min)) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<float, lowp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<float, lowp> call(vecType<float, lowp> const & Min, vecType<float, lowp> const & Max) - { - return vecType<float, lowp>(compute_rand<uint8, lowp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint8>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<float, mediump, vecType> - { - GLM_FUNC_QUALIFIER static vecType<float, mediump> call(vecType<float, mediump> const & Min, vecType<float, mediump> const & Max) - { - return vecType<float, mediump>(compute_rand<uint16, mediump, vecType>::call()) / static_cast<float>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<float, highp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<float, highp> call(vecType<float, highp> const & Min, vecType<float, highp> const & Max) - { - return vecType<float, highp>(compute_rand<uint32, highp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<double, lowp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<double, lowp> call(vecType<double, lowp> const & Min, vecType<double, lowp> const & Max) - { - return vecType<double, lowp>(compute_rand<uint16, lowp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<double, mediump, vecType> - { - GLM_FUNC_QUALIFIER static vecType<double, mediump> call(vecType<double, mediump> const & Min, vecType<double, mediump> const & Max) - { - return vecType<double, mediump>(compute_rand<uint32, mediump, vecType>::call()) / static_cast<double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<double, highp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<double, highp> call(vecType<double, highp> const & Min, vecType<double, highp> const & Max) - { - return vecType<double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<long double, lowp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<long double, lowp> call(vecType<long double, lowp> const & Min, vecType<long double, lowp> const & Max) - { - return vecType<long double, lowp>(compute_rand<uint32, lowp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<long double, mediump, vecType> - { - GLM_FUNC_QUALIFIER static vecType<long double, mediump> call(vecType<long double, mediump> const & Min, vecType<long double, mediump> const & Max) - { - return vecType<long double, mediump>(compute_rand<uint64, mediump, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; - } - }; - - template <template <class, precision> class vecType> - struct compute_linearRand<long double, highp, vecType> - { - GLM_FUNC_QUALIFIER static vecType<long double, highp> call(vecType<long double, highp> const & Min, vecType<long double, highp> const & Max) - { - return vecType<long double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min; - } - }; -}//namespace detail - - template <typename genType> - GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max) - { - return detail::compute_linearRand<genType, highp, tvec1>::call( - tvec1<genType, highp>(Min), - tvec1<genType, highp>(Max)).x; - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> linearRand(vecType<T, P> const & Min, vecType<T, P> const & Max) - { - return detail::compute_linearRand<T, P, vecType>::call(Min, Max); - } - - template <typename genType> - GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation) - { - genType w, x1, x2; - - do - { - x1 = linearRand(genType(-1), genType(1)); - x2 = linearRand(genType(-1), genType(1)); - - w = x1 * x1 + x2 * x2; - } while(w > genType(1)); - - return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean; - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> gaussRand(vecType<T, P> const & Mean, vecType<T, P> const & Deviation) - { - return detail::functor2<T, P, vecType>::call(gaussRand, Mean, Deviation); - } - - template <typename T> - GLM_FUNC_QUALIFIER tvec2<T, defaultp> diskRand(T Radius) - { - tvec2<T, defaultp> Result(T(0)); - T LenRadius(T(0)); - - do - { - Result = linearRand( - tvec2<T, defaultp>(-Radius), - tvec2<T, defaultp>(Radius)); - LenRadius = length(Result); - } - while(LenRadius > Radius); - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tvec3<T, defaultp> ballRand(T Radius) - { - tvec3<T, defaultp> Result(T(0)); - T LenRadius(T(0)); - - do - { - Result = linearRand( - tvec3<T, defaultp>(-Radius), - tvec3<T, defaultp>(Radius)); - LenRadius = length(Result); - } - while(LenRadius > Radius); - - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER tvec2<T, defaultp> circularRand(T Radius) - { - T a = linearRand(T(0), T(6.283185307179586476925286766559f)); - return tvec2<T, defaultp>(cos(a), sin(a)) * Radius; - } - - template <typename T> - GLM_FUNC_QUALIFIER tvec3<T, defaultp> sphericalRand(T Radius) - { - T z = linearRand(T(-1), T(1)); - T a = linearRand(T(0), T(6.283185307179586476925286766559f)); - - T r = sqrt(T(1) - z * z); - - T x = r * cos(a); - T y = r * sin(a); - - return tvec3<T, defaultp>(x, y, z) * Radius; - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/reciprocal.hpp b/depedencies/include/glm/gtc/reciprocal.hpp deleted file mode 100644 index c14a4fe..0000000 --- a/depedencies/include/glm/gtc/reciprocal.hpp +++ /dev/null @@ -1,135 +0,0 @@ -/// @ref gtc_reciprocal -/// @file glm/gtc/reciprocal.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_reciprocal GLM_GTC_reciprocal -/// @ingroup gtc -/// -/// @brief Define secant, cosecant and cotangent functions. -/// -/// <glm/gtc/reciprocal.hpp> need to be included to use these features. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_reciprocal extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_reciprocal - /// @{ - - /// Secant function. - /// hypotenuse / adjacent or 1 / cos(x) - /// - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType sec(genType angle); - - /// Cosecant function. - /// hypotenuse / opposite or 1 / sin(x) - /// - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType csc(genType angle); - - /// Cotangent function. - /// adjacent / opposite or 1 / tan(x) - /// - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType cot(genType angle); - - /// Inverse secant function. - /// - /// @return Return an angle expressed in radians. - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType asec(genType x); - - /// Inverse cosecant function. - /// - /// @return Return an angle expressed in radians. - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType acsc(genType x); - - /// Inverse cotangent function. - /// - /// @return Return an angle expressed in radians. - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType acot(genType x); - - /// Secant hyperbolic function. - /// - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType sech(genType angle); - - /// Cosecant hyperbolic function. - /// - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType csch(genType angle); - - /// Cotangent hyperbolic function. - /// - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType coth(genType angle); - - /// Inverse secant hyperbolic function. - /// - /// @return Return an angle expressed in radians. - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType asech(genType x); - - /// Inverse cosecant hyperbolic function. - /// - /// @return Return an angle expressed in radians. - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType acsch(genType x); - - /// Inverse cotangent hyperbolic function. - /// - /// @return Return an angle expressed in radians. - /// @tparam genType Floating-point scalar or vector types. - /// - /// @see gtc_reciprocal - template <typename genType> - GLM_FUNC_DECL genType acoth(genType x); - - /// @} -}//namespace glm - -#include "reciprocal.inl" diff --git a/depedencies/include/glm/gtc/reciprocal.inl b/depedencies/include/glm/gtc/reciprocal.inl deleted file mode 100644 index c625ac9..0000000 --- a/depedencies/include/glm/gtc/reciprocal.inl +++ /dev/null @@ -1,192 +0,0 @@ -/// @ref gtc_reciprocal -/// @file glm/gtc/reciprocal.inl - -#include "../trigonometric.hpp" -#include <limits> - -namespace glm -{ - // sec - template <typename genType> - GLM_FUNC_QUALIFIER genType sec(genType angle) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sec' only accept floating-point values"); - return genType(1) / glm::cos(angle); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> sec(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sec' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(sec, x); - } - - // csc - template <typename genType> - GLM_FUNC_QUALIFIER genType csc(genType angle) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csc' only accept floating-point values"); - return genType(1) / glm::sin(angle); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> csc(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csc' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(csc, x); - } - - // cot - template <typename genType> - GLM_FUNC_QUALIFIER genType cot(genType angle) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cot' only accept floating-point values"); - - genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); - return glm::tan(pi_over_2 - angle); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> cot(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cot' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(cot, x); - } - - // asec - template <typename genType> - GLM_FUNC_QUALIFIER genType asec(genType x) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asec' only accept floating-point values"); - return acos(genType(1) / x); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> asec(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asec' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(asec, x); - } - - // acsc - template <typename genType> - GLM_FUNC_QUALIFIER genType acsc(genType x) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsc' only accept floating-point values"); - return asin(genType(1) / x); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> acsc(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsc' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(acsc, x); - } - - // acot - template <typename genType> - GLM_FUNC_QUALIFIER genType acot(genType x) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acot' only accept floating-point values"); - - genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); - return pi_over_2 - atan(x); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> acot(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acot' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(acot, x); - } - - // sech - template <typename genType> - GLM_FUNC_QUALIFIER genType sech(genType angle) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sech' only accept floating-point values"); - return genType(1) / glm::cosh(angle); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> sech(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sech' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(sech, x); - } - - // csch - template <typename genType> - GLM_FUNC_QUALIFIER genType csch(genType angle) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csch' only accept floating-point values"); - return genType(1) / glm::sinh(angle); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> csch(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csch' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(csch, x); - } - - // coth - template <typename genType> - GLM_FUNC_QUALIFIER genType coth(genType angle) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'coth' only accept floating-point values"); - return glm::cosh(angle) / glm::sinh(angle); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> coth(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'coth' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(coth, x); - } - - // asech - template <typename genType> - GLM_FUNC_QUALIFIER genType asech(genType x) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asech' only accept floating-point values"); - return acosh(genType(1) / x); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> asech(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asech' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(asech, x); - } - - // acsch - template <typename genType> - GLM_FUNC_QUALIFIER genType acsch(genType x) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsch' only accept floating-point values"); - return acsch(genType(1) / x); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> acsch(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsch' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(acsch, x); - } - - // acoth - template <typename genType> - GLM_FUNC_QUALIFIER genType acoth(genType x) - { - GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acoth' only accept floating-point values"); - return atanh(genType(1) / x); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> acoth(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acoth' only accept floating-point inputs"); - return detail::functor1<T, T, P, vecType>::call(acoth, x); - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/round.hpp b/depedencies/include/glm/gtc/round.hpp deleted file mode 100644 index a583592..0000000 --- a/depedencies/include/glm/gtc/round.hpp +++ /dev/null @@ -1,174 +0,0 @@ -/// @ref gtc_round -/// @file glm/gtc/round.hpp -/// -/// @see core (dependence) -/// @see gtc_round (dependence) -/// -/// @defgroup gtc_round GLM_GTC_round -/// @ingroup gtc -/// -/// @brief rounding value to specific boundings -/// -/// <glm/gtc/round.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/_vectorize.hpp" -#include "../vector_relational.hpp" -#include "../common.hpp" -#include <limits> - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_integer extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_round - /// @{ - - /// Return true if the value is a power of two number. - /// - /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL bool isPowerOfTwo(genIUType Value); - - /// Return true if the value is a power of two number. - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<bool, P> isPowerOfTwo(vecType<T, P> const & value); - - /// Return the power of two number which value is just higher the input value, - /// round up to a power of two. - /// - /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType Value); - - /// Return the power of two number which value is just higher the input value, - /// round up to a power of two. - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & value); - - /// Return the power of two number which value is just lower the input value, - /// round down to a power of two. - /// - /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType Value); - - /// Return the power of two number which value is just lower the input value, - /// round down to a power of two. - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> floorPowerOfTwo(vecType<T, P> const & value); - - /// Return the power of two number which value is the closet to the input value. - /// - /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType Value); - - /// Return the power of two number which value is the closet to the input value. - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> roundPowerOfTwo(vecType<T, P> const & value); - - /// Return true if the 'Value' is a multiple of 'Multiple'. - /// - /// @see gtc_round - template <typename genIUType> - GLM_FUNC_DECL bool isMultiple(genIUType Value, genIUType Multiple); - - /// Return true if the 'Value' is a multiple of 'Multiple'. - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple); - - /// Return true if the 'Value' is a multiple of 'Multiple'. - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple); - - /// Higher multiple number of Source. - /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source - /// @param Multiple Must be a null or positive value - /// - /// @see gtc_round - template <typename genType> - GLM_FUNC_DECL genType ceilMultiple(genType Source, genType Multiple); - - /// Higher multiple number of Source. - /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source - /// @param Multiple Must be a null or positive value - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple); - - /// Lower multiple number of Source. - /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source - /// @param Multiple Must be a null or positive value - /// - /// @see gtc_round - template <typename genType> - GLM_FUNC_DECL genType floorMultiple( - genType Source, - genType Multiple); - - /// Lower multiple number of Source. - /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source - /// @param Multiple Must be a null or positive value - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> floorMultiple( - vecType<T, P> const & Source, - vecType<T, P> const & Multiple); - - /// Lower multiple number of Source. - /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source - /// @param Multiple Must be a null or positive value - /// - /// @see gtc_round - template <typename genType> - GLM_FUNC_DECL genType roundMultiple( - genType Source, - genType Multiple); - - /// Lower multiple number of Source. - /// - /// @tparam genType Floating-point or integer scalar or vector types. - /// @param Source - /// @param Multiple Must be a null or positive value - /// - /// @see gtc_round - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_DECL vecType<T, P> roundMultiple( - vecType<T, P> const & Source, - vecType<T, P> const & Multiple); - - /// @} -} //namespace glm - -#include "round.inl" diff --git a/depedencies/include/glm/gtc/round.inl b/depedencies/include/glm/gtc/round.inl deleted file mode 100644 index f583c40..0000000 --- a/depedencies/include/glm/gtc/round.inl +++ /dev/null @@ -1,344 +0,0 @@ -/// @ref gtc_round -/// @file glm/gtc/round.inl - -#include "../detail/func_integer.hpp" - -namespace glm{ -namespace detail -{ - template <typename T, precision P, template <typename, precision> class vecType, bool compute = false> - struct compute_ceilShift - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T) - { - return v; - } - }; - - template <typename T, precision P, template <typename, precision> class vecType> - struct compute_ceilShift<T, P, vecType, true> - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Shift) - { - return v | (v >> Shift); - } - }; - - template <typename T, precision P, template <typename, precision> class vecType, bool isSigned = true> - struct compute_ceilPowerOfTwo - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); - - vecType<T, P> const Sign(sign(x)); - - vecType<T, P> v(abs(x)); - - v = v - static_cast<T>(1); - v = v | (v >> static_cast<T>(1)); - v = v | (v >> static_cast<T>(2)); - v = v | (v >> static_cast<T>(4)); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32); - return (v + static_cast<T>(1)) * Sign; - } - }; - - template <typename T, precision P, template <typename, precision> class vecType> - struct compute_ceilPowerOfTwo<T, P, vecType, false> - { - GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x) - { - GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); - - vecType<T, P> v(x); - - v = v - static_cast<T>(1); - v = v | (v >> static_cast<T>(1)); - v = v | (v >> static_cast<T>(2)); - v = v | (v >> static_cast<T>(4)); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16); - v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32); - return v + static_cast<T>(1); - } - }; - - template <bool is_float, bool is_signed> - struct compute_ceilMultiple{}; - - template <> - struct compute_ceilMultiple<true, true> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - if(Source > genType(0)) - return Source + (Multiple - std::fmod(Source, Multiple)); - else - return Source + std::fmod(-Source, Multiple); - } - }; - - template <> - struct compute_ceilMultiple<false, false> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - genType Tmp = Source - genType(1); - return Tmp + (Multiple - (Tmp % Multiple)); - } - }; - - template <> - struct compute_ceilMultiple<false, true> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - if(Source > genType(0)) - { - genType Tmp = Source - genType(1); - return Tmp + (Multiple - (Tmp % Multiple)); - } - else - return Source + (-Source % Multiple); - } - }; - - template <bool is_float, bool is_signed> - struct compute_floorMultiple{}; - - template <> - struct compute_floorMultiple<true, true> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - if(Source >= genType(0)) - return Source - std::fmod(Source, Multiple); - else - return Source - std::fmod(Source, Multiple) - Multiple; - } - }; - - template <> - struct compute_floorMultiple<false, false> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - if(Source >= genType(0)) - return Source - Source % Multiple; - else - { - genType Tmp = Source + genType(1); - return Tmp - Tmp % Multiple - Multiple; - } - } - }; - - template <> - struct compute_floorMultiple<false, true> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - if(Source >= genType(0)) - return Source - Source % Multiple; - else - { - genType Tmp = Source + genType(1); - return Tmp - Tmp % Multiple - Multiple; - } - } - }; - - template <bool is_float, bool is_signed> - struct compute_roundMultiple{}; - - template <> - struct compute_roundMultiple<true, true> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - if(Source >= genType(0)) - return Source - std::fmod(Source, Multiple); - else - { - genType Tmp = Source + genType(1); - return Tmp - std::fmod(Tmp, Multiple) - Multiple; - } - } - }; - - template <> - struct compute_roundMultiple<false, false> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - if(Source >= genType(0)) - return Source - Source % Multiple; - else - { - genType Tmp = Source + genType(1); - return Tmp - Tmp % Multiple - Multiple; - } - } - }; - - template <> - struct compute_roundMultiple<false, true> - { - template <typename genType> - GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) - { - if(Source >= genType(0)) - return Source - Source % Multiple; - else - { - genType Tmp = Source + genType(1); - return Tmp - Tmp % Multiple - Multiple; - } - } - }; -}//namespace detail - - //////////////// - // isPowerOfTwo - - template <typename genType> - GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value) - { - genType const Result = glm::abs(Value); - return !(Result & (Result - 1)); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> isPowerOfTwo(vecType<T, P> const & Value) - { - vecType<T, P> const Result(abs(Value)); - return equal(Result & (Result - 1), vecType<T, P>(0)); - } - - ////////////////// - // ceilPowerOfTwo - - template <typename genType> - GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value) - { - return detail::compute_ceilPowerOfTwo<genType, defaultp, tvec1, std::numeric_limits<genType>::is_signed>::call(tvec1<genType, defaultp>(value)).x; - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & v) - { - return detail::compute_ceilPowerOfTwo<T, P, vecType, std::numeric_limits<T>::is_signed>::call(v); - } - - /////////////////// - // floorPowerOfTwo - - template <typename genType> - GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value) - { - return isPowerOfTwo(value) ? value : static_cast<genType>(1) << findMSB(value); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> floorPowerOfTwo(vecType<T, P> const & v) - { - return detail::functor1<T, T, P, vecType>::call(floorPowerOfTwo, v); - } - - /////////////////// - // roundPowerOfTwo - - template <typename genIUType> - GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value) - { - if(isPowerOfTwo(value)) - return value; - - genIUType const prev = static_cast<genIUType>(1) << findMSB(value); - genIUType const next = prev << static_cast<genIUType>(1); - return (next - value) < (value - prev) ? next : prev; - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> roundPowerOfTwo(vecType<T, P> const & v) - { - return detail::functor1<T, T, P, vecType>::call(roundPowerOfTwo, v); - } - - //////////////// - // isMultiple - - template <typename genType> - GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple) - { - return isMultiple(tvec1<genType>(Value), tvec1<genType>(Multiple)).x; - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple) - { - return (Value % Multiple) == vecType<T, P>(0); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple) - { - return (Value % Multiple) == vecType<T, P>(0); - } - - ////////////////////// - // ceilMultiple - - template <typename genType> - GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple) - { - return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) - { - return detail::functor2<T, P, vecType>::call(ceilMultiple, Source, Multiple); - } - - ////////////////////// - // floorMultiple - - template <typename genType> - GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple) - { - return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> floorMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) - { - return detail::functor2<T, P, vecType>::call(floorMultiple, Source, Multiple); - } - - ////////////////////// - // roundMultiple - - template <typename genType> - GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple) - { - return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple); - } - - template <typename T, precision P, template <typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> roundMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple) - { - return detail::functor2<T, P, vecType>::call(roundMultiple, Source, Multiple); - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/type_aligned.hpp b/depedencies/include/glm/gtc/type_aligned.hpp deleted file mode 100644 index 2e4503c..0000000 --- a/depedencies/include/glm/gtc/type_aligned.hpp +++ /dev/null @@ -1,362 +0,0 @@ -/// @ref gtc_type_aligned -/// @file glm/gtc/type_aligned.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_type_aligned GLM_GTC_type_aligned -/// @ingroup gtc -/// -/// @brief Aligned types. -/// <glm/gtc/type_aligned.hpp> need to be included to use these features. - -#pragma once - -#if !GLM_HAS_ALIGNED_TYPE -# error "GLM: Aligned types are not supported on this platform" -#endif -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_type_aligned extension included") -#endif - -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" -#include "../gtc/vec1.hpp" - -namespace glm -{ - template <typename T, precision P> struct tvec1; - template <typename T, precision P> struct tvec2; - template <typename T, precision P> struct tvec3; - template <typename T, precision P> struct tvec4; - /// @addtogroup gtc_type_aligned - /// @{ - - // -- *vec1 -- - - typedef tvec1<float, aligned_highp> aligned_highp_vec1; - typedef tvec1<float, aligned_mediump> aligned_mediump_vec1; - typedef tvec1<float, aligned_lowp> aligned_lowp_vec1; - typedef tvec1<double, aligned_highp> aligned_highp_dvec1; - typedef tvec1<double, aligned_mediump> aligned_mediump_dvec1; - typedef tvec1<double, aligned_lowp> aligned_lowp_dvec1; - typedef tvec1<int, aligned_highp> aligned_highp_ivec1; - typedef tvec1<int, aligned_mediump> aligned_mediump_ivec1; - typedef tvec1<int, aligned_lowp> aligned_lowp_ivec1; - typedef tvec1<uint, aligned_highp> aligned_highp_uvec1; - typedef tvec1<uint, aligned_mediump> aligned_mediump_uvec1; - typedef tvec1<uint, aligned_lowp> aligned_lowp_uvec1; - typedef tvec1<bool, aligned_highp> aligned_highp_bvec1; - typedef tvec1<bool, aligned_mediump> aligned_mediump_bvec1; - typedef tvec1<bool, aligned_lowp> aligned_lowp_bvec1; - - typedef tvec1<float, packed_highp> packed_highp_vec1; - typedef tvec1<float, packed_mediump> packed_mediump_vec1; - typedef tvec1<float, packed_lowp> packed_lowp_vec1; - typedef tvec1<double, packed_highp> packed_highp_dvec1; - typedef tvec1<double, packed_mediump> packed_mediump_dvec1; - typedef tvec1<double, packed_lowp> packed_lowp_dvec1; - typedef tvec1<int, packed_highp> packed_highp_ivec1; - typedef tvec1<int, packed_mediump> packed_mediump_ivec1; - typedef tvec1<int, packed_lowp> packed_lowp_ivec1; - typedef tvec1<uint, packed_highp> packed_highp_uvec1; - typedef tvec1<uint, packed_mediump> packed_mediump_uvec1; - typedef tvec1<uint, packed_lowp> packed_lowp_uvec1; - typedef tvec1<bool, packed_highp> packed_highp_bvec1; - typedef tvec1<bool, packed_mediump> packed_mediump_bvec1; - typedef tvec1<bool, packed_lowp> packed_lowp_bvec1; - - // -- *vec2 -- - - /// 2 components vector of high single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<float, aligned_highp> aligned_highp_vec2; - - /// 2 components vector of medium single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<float, aligned_mediump> aligned_mediump_vec2; - - /// 2 components vector of low single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<float, aligned_lowp> aligned_lowp_vec2; - - /// 2 components vector of high double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<double, aligned_highp> aligned_highp_dvec2; - - /// 2 components vector of medium double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<double, aligned_mediump> aligned_mediump_dvec2; - - /// 2 components vector of low double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<double, aligned_lowp> aligned_lowp_dvec2; - - /// 2 components vector of high precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<int, aligned_highp> aligned_highp_ivec2; - - /// 2 components vector of medium precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<int, aligned_mediump> aligned_mediump_ivec2; - - /// 2 components vector of low precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<int, aligned_lowp> aligned_lowp_ivec2; - - /// 2 components vector of high precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<uint, aligned_highp> aligned_highp_uvec2; - - /// 2 components vector of medium precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<uint, aligned_mediump> aligned_mediump_uvec2; - - /// 2 components vector of low precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<uint, aligned_lowp> aligned_lowp_uvec2; - - /// 2 components vector of high precision bool numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<bool, aligned_highp> aligned_highp_bvec2; - - /// 2 components vector of medium precision bool numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<bool, aligned_mediump> aligned_mediump_bvec2; - - /// 2 components vector of low precision bool numbers. - /// There is no guarantee on the actual precision. - typedef tvec2<bool, aligned_lowp> aligned_lowp_bvec2; - - // -- *vec3 -- - - /// 3 components vector of high single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<float, aligned_highp> aligned_highp_vec3; - - /// 3 components vector of medium single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<float, aligned_mediump> aligned_mediump_vec3; - - /// 3 components vector of low single-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<float, aligned_lowp> aligned_lowp_vec3; - - /// 3 components vector of high double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<double, aligned_highp> aligned_highp_dvec3; - - /// 3 components vector of medium double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<double, aligned_mediump> aligned_mediump_dvec3; - - /// 3 components vector of low double-precision floating-point numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<double, aligned_lowp> aligned_lowp_dvec3; - - /// 3 components vector of high precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<int, aligned_highp> aligned_highp_ivec3; - - /// 3 components vector of medium precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<int, aligned_mediump> aligned_mediump_ivec3; - - /// 3 components vector of low precision signed integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<int, aligned_lowp> aligned_lowp_ivec3; - - /// 3 components vector of high precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<uint, aligned_highp> aligned_highp_uvec3; - - /// 3 components vector of medium precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<uint, aligned_mediump> aligned_mediump_uvec3; - - /// 3 components vector of low precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - typedef tvec3<uint, aligned_lowp> aligned_lowp_uvec3; - - /// 3 components vector of high precision bool numbers. - typedef tvec3<bool, aligned_highp> aligned_highp_bvec3; - - /// 3 components vector of medium precision bool numbers. - typedef tvec3<bool, aligned_mediump> aligned_mediump_bvec3; - - /// 3 components vector of low precision bool numbers. - typedef tvec3<bool, aligned_lowp> aligned_lowp_bvec3; - - // -- *vec4 -- - - /// 4 components vector of high single-precision floating-point numbers. - typedef tvec4<float, aligned_highp> aligned_highp_vec4; - - /// 4 components vector of medium single-precision floating-point numbers. - typedef tvec4<float, aligned_mediump> aligned_mediump_vec4; - - /// 4 components vector of low single-precision floating-point numbers. - typedef tvec4<float, aligned_lowp> aligned_lowp_vec4; - - /// 4 components vector of high double-precision floating-point numbers. - typedef tvec4<double, aligned_highp> aligned_highp_dvec4; - - /// 4 components vector of medium double-precision floating-point numbers. - typedef tvec4<double, aligned_mediump> aligned_mediump_dvec4; - - /// 4 components vector of low double-precision floating-point numbers. - typedef tvec4<double, aligned_lowp> aligned_lowp_dvec4; - - /// 4 components vector of high precision signed integer numbers. - typedef tvec4<int, aligned_highp> aligned_highp_ivec4; - - /// 4 components vector of medium precision signed integer numbers. - typedef tvec4<int, aligned_mediump> aligned_mediump_ivec4; - - /// 4 components vector of low precision signed integer numbers. - typedef tvec4<int, aligned_lowp> aligned_lowp_ivec4; - - /// 4 components vector of high precision unsigned integer numbers. - typedef tvec4<uint, aligned_highp> aligned_highp_uvec4; - - /// 4 components vector of medium precision unsigned integer numbers. - typedef tvec4<uint, aligned_mediump> aligned_mediump_uvec4; - - /// 4 components vector of low precision unsigned integer numbers. - typedef tvec4<uint, aligned_lowp> aligned_lowp_uvec4; - - /// 4 components vector of high precision bool numbers. - typedef tvec4<bool, aligned_highp> aligned_highp_bvec4; - - /// 4 components vector of medium precision bool numbers. - typedef tvec4<bool, aligned_mediump> aligned_mediump_bvec4; - - /// 4 components vector of low precision bool numbers. - typedef tvec4<bool, aligned_lowp> aligned_lowp_bvec4; - - // -- default -- - -#if(defined(GLM_PRECISION_LOWP_FLOAT)) - typedef aligned_lowp_vec1 aligned_vec1; - typedef aligned_lowp_vec2 aligned_vec2; - typedef aligned_lowp_vec3 aligned_vec3; - typedef aligned_lowp_vec4 aligned_vec4; -#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) - typedef aligned_mediump_vec1 aligned_vec1; - typedef aligned_mediump_vec2 aligned_vec2; - typedef aligned_mediump_vec3 aligned_vec3; - typedef aligned_mediump_vec4 aligned_vec4; -#else //defined(GLM_PRECISION_HIGHP_FLOAT) - /// 1 component vector of floating-point numbers. - typedef aligned_highp_vec1 aligned_vec1; - - /// 2 components vector of floating-point numbers. - typedef aligned_highp_vec2 aligned_vec2; - - /// 3 components vector of floating-point numbers. - typedef aligned_highp_vec3 aligned_vec3; - - /// 4 components vector of floating-point numbers. - typedef aligned_highp_vec4 aligned_vec4; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_LOWP_DOUBLE)) - typedef aligned_lowp_dvec1 aligned_dvec1; - typedef aligned_lowp_dvec2 aligned_dvec2; - typedef aligned_lowp_dvec3 aligned_dvec3; - typedef aligned_lowp_dvec4 aligned_dvec4; -#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) - typedef aligned_mediump_dvec1 aligned_dvec1; - typedef aligned_mediump_dvec2 aligned_dvec2; - typedef aligned_mediump_dvec3 aligned_dvec3; - typedef aligned_mediump_dvec4 aligned_dvec4; -#else //defined(GLM_PRECISION_HIGHP_DOUBLE) - /// 1 component vector of double-precision floating-point numbers. - typedef aligned_highp_dvec1 aligned_dvec1; - - /// 2 components vector of double-precision floating-point numbers. - typedef aligned_highp_dvec2 aligned_dvec2; - - /// 3 components vector of double-precision floating-point numbers. - typedef aligned_highp_dvec3 aligned_dvec3; - - /// 4 components vector of double-precision floating-point numbers. - typedef aligned_highp_dvec4 aligned_dvec4; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_LOWP_INT)) - typedef aligned_lowp_ivec1 aligned_ivec1; - typedef aligned_lowp_ivec2 aligned_ivec2; - typedef aligned_lowp_ivec3 aligned_ivec3; - typedef aligned_lowp_ivec4 aligned_ivec4; -#elif(defined(GLM_PRECISION_MEDIUMP_INT)) - typedef aligned_mediump_ivec1 aligned_ivec1; - typedef aligned_mediump_ivec2 aligned_ivec2; - typedef aligned_mediump_ivec3 aligned_ivec3; - typedef aligned_mediump_ivec4 aligned_ivec4; -#else //defined(GLM_PRECISION_HIGHP_INT) - /// 1 component vector of signed integer numbers. - typedef aligned_highp_ivec1 aligned_ivec1; - - /// 2 components vector of signed integer numbers. - typedef aligned_highp_ivec2 aligned_ivec2; - - /// 3 components vector of signed integer numbers. - typedef aligned_highp_ivec3 aligned_ivec3; - - /// 4 components vector of signed integer numbers. - typedef aligned_highp_ivec4 aligned_ivec4; -#endif//GLM_PRECISION - - // -- Unsigned integer definition -- - -#if(defined(GLM_PRECISION_LOWP_UINT)) - typedef aligned_lowp_uvec1 aligned_uvec1; - typedef aligned_lowp_uvec2 aligned_uvec2; - typedef aligned_lowp_uvec3 aligned_uvec3; - typedef aligned_lowp_uvec4 aligned_uvec4; -#elif(defined(GLM_PRECISION_MEDIUMP_UINT)) - typedef aligned_mediump_uvec1 aligned_uvec1; - typedef aligned_mediump_uvec2 aligned_uvec2; - typedef aligned_mediump_uvec3 aligned_uvec3; - typedef aligned_mediump_uvec4 aligned_uvec4; -#else //defined(GLM_PRECISION_HIGHP_UINT) - /// 1 component vector of unsigned integer numbers. - typedef aligned_highp_uvec1 aligned_uvec1; - - /// 2 components vector of unsigned integer numbers. - typedef aligned_highp_uvec2 aligned_uvec2; - - /// 3 components vector of unsigned integer numbers. - typedef aligned_highp_uvec3 aligned_uvec3; - - /// 4 components vector of unsigned integer numbers. - typedef aligned_highp_uvec4 aligned_uvec4; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_LOWP_BOOL)) - typedef aligned_lowp_bvec1 aligned_bvec1; - typedef aligned_lowp_bvec2 aligned_bvec2; - typedef aligned_lowp_bvec3 aligned_bvec3; - typedef aligned_lowp_bvec4 aligned_bvec4; -#elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) - typedef aligned_mediump_bvec1 aligned_bvec1; - typedef aligned_mediump_bvec2 aligned_bvec2; - typedef aligned_mediump_bvec3 aligned_bvec3; - typedef aligned_mediump_bvec4 aligned_bvec4; -#else //defined(GLM_PRECISION_HIGHP_BOOL) - /// 1 component vector of boolean. - typedef aligned_highp_bvec1 aligned_bvec1; - - /// 2 components vector of boolean. - typedef aligned_highp_bvec2 aligned_bvec2; - - /// 3 components vector of boolean. - typedef aligned_highp_bvec3 aligned_bvec3; - - /// 4 components vector of boolean. - typedef aligned_highp_bvec4 aligned_bvec4; -#endif//GLM_PRECISION - - /// @} -}//namespace glm diff --git a/depedencies/include/glm/gtc/type_precision.hpp b/depedencies/include/glm/gtc/type_precision.hpp deleted file mode 100644 index a2dbb66..0000000 --- a/depedencies/include/glm/gtc/type_precision.hpp +++ /dev/null @@ -1,861 +0,0 @@ -/// @ref gtc_type_precision -/// @file glm/gtc/type_precision.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// @see gtc_quaternion (dependence) -/// -/// @defgroup gtc_type_precision GLM_GTC_type_precision -/// @ingroup gtc -/// -/// @brief Defines specific C++-based precision types. -/// -/// @ref core_precision defines types based on GLSL's precision qualifiers. This -/// extension defines types based on explicitly-sized C++ data types. -/// -/// <glm/gtc/type_precision.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependency: -#include "../gtc/quaternion.hpp" -#include "../gtc/vec1.hpp" -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" -#include "../mat2x2.hpp" -#include "../mat2x3.hpp" -#include "../mat2x4.hpp" -#include "../mat3x2.hpp" -#include "../mat3x3.hpp" -#include "../mat3x4.hpp" -#include "../mat4x2.hpp" -#include "../mat4x3.hpp" -#include "../mat4x4.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_type_precision extension included") -#endif - -namespace glm -{ - /////////////////////////// - // Signed int vector types - - /// @addtogroup gtc_type_precision - /// @{ - - /// Low precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 lowp_int8; - - /// Low precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 lowp_int16; - - /// Low precision 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 lowp_int32; - - /// Low precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 lowp_int64; - - /// Low precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 lowp_int8_t; - - /// Low precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 lowp_int16_t; - - /// Low precision 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 lowp_int32_t; - - /// Low precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 lowp_int64_t; - - /// Low precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 lowp_i8; - - /// Low precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 lowp_i16; - - /// Low precision 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 lowp_i32; - - /// Low precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 lowp_i64; - - /// Medium precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 mediump_int8; - - /// Medium precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 mediump_int16; - - /// Medium precision 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 mediump_int32; - - /// Medium precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 mediump_int64; - - /// Medium precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 mediump_int8_t; - - /// Medium precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 mediump_int16_t; - - /// Medium precision 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 mediump_int32_t; - - /// Medium precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 mediump_int64_t; - - /// Medium precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 mediump_i8; - - /// Medium precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 mediump_i16; - - /// Medium precision 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 mediump_i32; - - /// Medium precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 mediump_i64; - - /// High precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 highp_int8; - - /// High precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 highp_int16; - - /// High precision 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 highp_int32; - - /// High precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 highp_int64; - - /// High precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 highp_int8_t; - - /// High precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 highp_int16_t; - - /// 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 highp_int32_t; - - /// High precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 highp_int64_t; - - /// High precision 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 highp_i8; - - /// High precision 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 highp_i16; - - /// High precision 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 highp_i32; - - /// High precision 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 highp_i64; - - - /// 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 int8; - - /// 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 int16; - - /// 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 int32; - - /// 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 int64; - -#if GLM_HAS_EXTENDED_INTEGER_TYPE - using std::int8_t; - using std::int16_t; - using std::int32_t; - using std::int64_t; -#else - /// 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 int8_t; - - /// 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 int16_t; - - /// 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 int32_t; - - /// 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 int64_t; -#endif - - /// 8 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int8 i8; - - /// 16 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int16 i16; - - /// 32 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int32 i32; - - /// 64 bit signed integer type. - /// @see gtc_type_precision - typedef detail::int64 i64; - - - /// 8 bit signed integer scalar type. - /// @see gtc_type_precision - typedef tvec1<i8, defaultp> i8vec1; - - /// 8 bit signed integer vector of 2 components type. - /// @see gtc_type_precision - typedef tvec2<i8, defaultp> i8vec2; - - /// 8 bit signed integer vector of 3 components type. - /// @see gtc_type_precision - typedef tvec3<i8, defaultp> i8vec3; - - /// 8 bit signed integer vector of 4 components type. - /// @see gtc_type_precision - typedef tvec4<i8, defaultp> i8vec4; - - - /// 16 bit signed integer scalar type. - /// @see gtc_type_precision - typedef tvec1<i16, defaultp> i16vec1; - - /// 16 bit signed integer vector of 2 components type. - /// @see gtc_type_precision - typedef tvec2<i16, defaultp> i16vec2; - - /// 16 bit signed integer vector of 3 components type. - /// @see gtc_type_precision - typedef tvec3<i16, defaultp> i16vec3; - - /// 16 bit signed integer vector of 4 components type. - /// @see gtc_type_precision - typedef tvec4<i16, defaultp> i16vec4; - - - /// 32 bit signed integer scalar type. - /// @see gtc_type_precision - typedef tvec1<i32, defaultp> i32vec1; - - /// 32 bit signed integer vector of 2 components type. - /// @see gtc_type_precision - typedef tvec2<i32, defaultp> i32vec2; - - /// 32 bit signed integer vector of 3 components type. - /// @see gtc_type_precision - typedef tvec3<i32, defaultp> i32vec3; - - /// 32 bit signed integer vector of 4 components type. - /// @see gtc_type_precision - typedef tvec4<i32, defaultp> i32vec4; - - - /// 64 bit signed integer scalar type. - /// @see gtc_type_precision - typedef tvec1<i64, defaultp> i64vec1; - - /// 64 bit signed integer vector of 2 components type. - /// @see gtc_type_precision - typedef tvec2<i64, defaultp> i64vec2; - - /// 64 bit signed integer vector of 3 components type. - /// @see gtc_type_precision - typedef tvec3<i64, defaultp> i64vec3; - - /// 64 bit signed integer vector of 4 components type. - /// @see gtc_type_precision - typedef tvec4<i64, defaultp> i64vec4; - - - ///////////////////////////// - // Unsigned int vector types - - /// Low precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 lowp_uint8; - - /// Low precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 lowp_uint16; - - /// Low precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 lowp_uint32; - - /// Low precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 lowp_uint64; - - /// Low precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 lowp_uint8_t; - - /// Low precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 lowp_uint16_t; - - /// Low precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 lowp_uint32_t; - - /// Low precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 lowp_uint64_t; - - /// Low precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 lowp_u8; - - /// Low precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 lowp_u16; - - /// Low precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 lowp_u32; - - /// Low precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 lowp_u64; - - /// Medium precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 mediump_uint8; - - /// Medium precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 mediump_uint16; - - /// Medium precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 mediump_uint32; - - /// Medium precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 mediump_uint64; - - /// Medium precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 mediump_uint8_t; - - /// Medium precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 mediump_uint16_t; - - /// Medium precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 mediump_uint32_t; - - /// Medium precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 mediump_uint64_t; - - /// Medium precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 mediump_u8; - - /// Medium precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 mediump_u16; - - /// Medium precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 mediump_u32; - - /// Medium precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 mediump_u64; - - /// High precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 highp_uint8; - - /// High precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 highp_uint16; - - /// High precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 highp_uint32; - - /// High precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 highp_uint64; - - /// High precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 highp_uint8_t; - - /// High precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 highp_uint16_t; - - /// High precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 highp_uint32_t; - - /// High precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 highp_uint64_t; - - /// High precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 highp_u8; - - /// High precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 highp_u16; - - /// High precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 highp_u32; - - /// High precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 highp_u64; - - /// Default precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 uint8; - - /// Default precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 uint16; - - /// Default precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 uint32; - - /// Default precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 uint64; - -#if GLM_HAS_EXTENDED_INTEGER_TYPE - using std::uint8_t; - using std::uint16_t; - using std::uint32_t; - using std::uint64_t; -#else - /// Default precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 uint8_t; - - /// Default precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 uint16_t; - - /// Default precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 uint32_t; - - /// Default precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 uint64_t; -#endif - - /// Default precision 8 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint8 u8; - - /// Default precision 16 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint16 u16; - - /// Default precision 32 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint32 u32; - - /// Default precision 64 bit unsigned integer type. - /// @see gtc_type_precision - typedef detail::uint64 u64; - - - - /// Default precision 8 bit unsigned integer scalar type. - /// @see gtc_type_precision - typedef tvec1<u8, defaultp> u8vec1; - - /// Default precision 8 bit unsigned integer vector of 2 components type. - /// @see gtc_type_precision - typedef tvec2<u8, defaultp> u8vec2; - - /// Default precision 8 bit unsigned integer vector of 3 components type. - /// @see gtc_type_precision - typedef tvec3<u8, defaultp> u8vec3; - - /// Default precision 8 bit unsigned integer vector of 4 components type. - /// @see gtc_type_precision - typedef tvec4<u8, defaultp> u8vec4; - - - /// Default precision 16 bit unsigned integer scalar type. - /// @see gtc_type_precision - typedef tvec1<u16, defaultp> u16vec1; - - /// Default precision 16 bit unsigned integer vector of 2 components type. - /// @see gtc_type_precision - typedef tvec2<u16, defaultp> u16vec2; - - /// Default precision 16 bit unsigned integer vector of 3 components type. - /// @see gtc_type_precision - typedef tvec3<u16, defaultp> u16vec3; - - /// Default precision 16 bit unsigned integer vector of 4 components type. - /// @see gtc_type_precision - typedef tvec4<u16, defaultp> u16vec4; - - - /// Default precision 32 bit unsigned integer scalar type. - /// @see gtc_type_precision - typedef tvec1<u32, defaultp> u32vec1; - - /// Default precision 32 bit unsigned integer vector of 2 components type. - /// @see gtc_type_precision - typedef tvec2<u32, defaultp> u32vec2; - - /// Default precision 32 bit unsigned integer vector of 3 components type. - /// @see gtc_type_precision - typedef tvec3<u32, defaultp> u32vec3; - - /// Default precision 32 bit unsigned integer vector of 4 components type. - /// @see gtc_type_precision - typedef tvec4<u32, defaultp> u32vec4; - - - /// Default precision 64 bit unsigned integer scalar type. - /// @see gtc_type_precision - typedef tvec1<u64, defaultp> u64vec1; - - /// Default precision 64 bit unsigned integer vector of 2 components type. - /// @see gtc_type_precision - typedef tvec2<u64, defaultp> u64vec2; - - /// Default precision 64 bit unsigned integer vector of 3 components type. - /// @see gtc_type_precision - typedef tvec3<u64, defaultp> u64vec3; - - /// Default precision 64 bit unsigned integer vector of 4 components type. - /// @see gtc_type_precision - typedef tvec4<u64, defaultp> u64vec4; - - - ////////////////////// - // Float vector types - - /// 32 bit single-precision floating-point scalar. - /// @see gtc_type_precision - typedef detail::float32 float32; - - /// 64 bit double-precision floating-point scalar. - /// @see gtc_type_precision - typedef detail::float64 float64; - - - /// 32 bit single-precision floating-point scalar. - /// @see gtc_type_precision - typedef detail::float32 float32_t; - - /// 64 bit double-precision floating-point scalar. - /// @see gtc_type_precision - typedef detail::float64 float64_t; - - - /// 32 bit single-precision floating-point scalar. - /// @see gtc_type_precision - typedef float32 f32; - - /// 64 bit double-precision floating-point scalar. - /// @see gtc_type_precision - typedef float64 f64; - - - /// Single-precision floating-point vector of 1 component. - /// @see gtc_type_precision - typedef tvec1<float, defaultp> fvec1; - - /// Single-precision floating-point vector of 2 components. - /// @see gtc_type_precision - typedef tvec2<float, defaultp> fvec2; - - /// Single-precision floating-point vector of 3 components. - /// @see gtc_type_precision - typedef tvec3<float, defaultp> fvec3; - - /// Single-precision floating-point vector of 4 components. - /// @see gtc_type_precision - typedef tvec4<float, defaultp> fvec4; - - - /// Single-precision floating-point vector of 1 component. - /// @see gtc_type_precision - typedef tvec1<f32, defaultp> f32vec1; - - /// Single-precision floating-point vector of 2 components. - /// @see gtc_type_precision - typedef tvec2<f32, defaultp> f32vec2; - - /// Single-precision floating-point vector of 3 components. - /// @see gtc_type_precision - typedef tvec3<f32, defaultp> f32vec3; - - /// Single-precision floating-point vector of 4 components. - /// @see gtc_type_precision - typedef tvec4<f32, defaultp> f32vec4; - - - /// Double-precision floating-point vector of 1 component. - /// @see gtc_type_precision - typedef tvec1<f64, defaultp> f64vec1; - - /// Double-precision floating-point vector of 2 components. - /// @see gtc_type_precision - typedef tvec2<f64, defaultp> f64vec2; - - /// Double-precision floating-point vector of 3 components. - /// @see gtc_type_precision - typedef tvec3<f64, defaultp> f64vec3; - - /// Double-precision floating-point vector of 4 components. - /// @see gtc_type_precision - typedef tvec4<f64, defaultp> f64vec4; - - - ////////////////////// - // Float matrix types - - /// Single-precision floating-point 1x1 matrix. - /// @see gtc_type_precision - //typedef detail::tmat1x1<f32> fmat1; - - /// Single-precision floating-point 2x2 matrix. - /// @see gtc_type_precision - typedef tmat2x2<f32, defaultp> fmat2; - - /// Single-precision floating-point 3x3 matrix. - /// @see gtc_type_precision - typedef tmat3x3<f32, defaultp> fmat3; - - /// Single-precision floating-point 4x4 matrix. - /// @see gtc_type_precision - typedef tmat4x4<f32, defaultp> fmat4; - - - /// Single-precision floating-point 1x1 matrix. - /// @see gtc_type_precision - //typedef f32 fmat1x1; - - /// Single-precision floating-point 2x2 matrix. - /// @see gtc_type_precision - typedef tmat2x2<f32, defaultp> fmat2x2; - - /// Single-precision floating-point 2x3 matrix. - /// @see gtc_type_precision - typedef tmat2x3<f32, defaultp> fmat2x3; - - /// Single-precision floating-point 2x4 matrix. - /// @see gtc_type_precision - typedef tmat2x4<f32, defaultp> fmat2x4; - - /// Single-precision floating-point 3x2 matrix. - /// @see gtc_type_precision - typedef tmat3x2<f32, defaultp> fmat3x2; - - /// Single-precision floating-point 3x3 matrix. - /// @see gtc_type_precision - typedef tmat3x3<f32, defaultp> fmat3x3; - - /// Single-precision floating-point 3x4 matrix. - /// @see gtc_type_precision - typedef tmat3x4<f32, defaultp> fmat3x4; - - /// Single-precision floating-point 4x2 matrix. - /// @see gtc_type_precision - typedef tmat4x2<f32, defaultp> fmat4x2; - - /// Single-precision floating-point 4x3 matrix. - /// @see gtc_type_precision - typedef tmat4x3<f32, defaultp> fmat4x3; - - /// Single-precision floating-point 4x4 matrix. - /// @see gtc_type_precision - typedef tmat4x4<f32, defaultp> fmat4x4; - - - /// Single-precision floating-point 1x1 matrix. - /// @see gtc_type_precision - //typedef detail::tmat1x1<f32, defaultp> f32mat1; - - /// Single-precision floating-point 2x2 matrix. - /// @see gtc_type_precision - typedef tmat2x2<f32, defaultp> f32mat2; - - /// Single-precision floating-point 3x3 matrix. - /// @see gtc_type_precision - typedef tmat3x3<f32, defaultp> f32mat3; - - /// Single-precision floating-point 4x4 matrix. - /// @see gtc_type_precision - typedef tmat4x4<f32, defaultp> f32mat4; - - - /// Single-precision floating-point 1x1 matrix. - /// @see gtc_type_precision - //typedef f32 f32mat1x1; - - /// Single-precision floating-point 2x2 matrix. - /// @see gtc_type_precision - typedef tmat2x2<f32, defaultp> f32mat2x2; - - /// Single-precision floating-point 2x3 matrix. - /// @see gtc_type_precision - typedef tmat2x3<f32, defaultp> f32mat2x3; - - /// Single-precision floating-point 2x4 matrix. - /// @see gtc_type_precision - typedef tmat2x4<f32, defaultp> f32mat2x4; - - /// Single-precision floating-point 3x2 matrix. - /// @see gtc_type_precision - typedef tmat3x2<f32, defaultp> f32mat3x2; - - /// Single-precision floating-point 3x3 matrix. - /// @see gtc_type_precision - typedef tmat3x3<f32, defaultp> f32mat3x3; - - /// Single-precision floating-point 3x4 matrix. - /// @see gtc_type_precision - typedef tmat3x4<f32, defaultp> f32mat3x4; - - /// Single-precision floating-point 4x2 matrix. - /// @see gtc_type_precision - typedef tmat4x2<f32, defaultp> f32mat4x2; - - /// Single-precision floating-point 4x3 matrix. - /// @see gtc_type_precision - typedef tmat4x3<f32, defaultp> f32mat4x3; - - /// Single-precision floating-point 4x4 matrix. - /// @see gtc_type_precision - typedef tmat4x4<f32, defaultp> f32mat4x4; - - - /// Double-precision floating-point 1x1 matrix. - /// @see gtc_type_precision - //typedef detail::tmat1x1<f64, defaultp> f64mat1; - - /// Double-precision floating-point 2x2 matrix. - /// @see gtc_type_precision - typedef tmat2x2<f64, defaultp> f64mat2; - - /// Double-precision floating-point 3x3 matrix. - /// @see gtc_type_precision - typedef tmat3x3<f64, defaultp> f64mat3; - - /// Double-precision floating-point 4x4 matrix. - /// @see gtc_type_precision - typedef tmat4x4<f64, defaultp> f64mat4; - - - /// Double-precision floating-point 1x1 matrix. - /// @see gtc_type_precision - //typedef f64 f64mat1x1; - - /// Double-precision floating-point 2x2 matrix. - /// @see gtc_type_precision - typedef tmat2x2<f64, defaultp> f64mat2x2; - - /// Double-precision floating-point 2x3 matrix. - /// @see gtc_type_precision - typedef tmat2x3<f64, defaultp> f64mat2x3; - - /// Double-precision floating-point 2x4 matrix. - /// @see gtc_type_precision - typedef tmat2x4<f64, defaultp> f64mat2x4; - - /// Double-precision floating-point 3x2 matrix. - /// @see gtc_type_precision - typedef tmat3x2<f64, defaultp> f64mat3x2; - - /// Double-precision floating-point 3x3 matrix. - /// @see gtc_type_precision - typedef tmat3x3<f64, defaultp> f64mat3x3; - - /// Double-precision floating-point 3x4 matrix. - /// @see gtc_type_precision - typedef tmat3x4<f64, defaultp> f64mat3x4; - - /// Double-precision floating-point 4x2 matrix. - /// @see gtc_type_precision - typedef tmat4x2<f64, defaultp> f64mat4x2; - - /// Double-precision floating-point 4x3 matrix. - /// @see gtc_type_precision - typedef tmat4x3<f64, defaultp> f64mat4x3; - - /// Double-precision floating-point 4x4 matrix. - /// @see gtc_type_precision - typedef tmat4x4<f64, defaultp> f64mat4x4; - - - ////////////////////////// - // Quaternion types - - /// Single-precision floating-point quaternion. - /// @see gtc_type_precision - typedef tquat<f32, defaultp> f32quat; - - /// Double-precision floating-point quaternion. - /// @see gtc_type_precision - typedef tquat<f64, defaultp> f64quat; - - /// @} -}//namespace glm - -#include "type_precision.inl" diff --git a/depedencies/include/glm/gtc/type_precision.inl b/depedencies/include/glm/gtc/type_precision.inl deleted file mode 100644 index cbfd4d8..0000000 --- a/depedencies/include/glm/gtc/type_precision.inl +++ /dev/null @@ -1,7 +0,0 @@ -/// @ref gtc_swizzle -/// @file glm/gtc/swizzle.inl - -namespace glm -{ - -} diff --git a/depedencies/include/glm/gtc/type_ptr.hpp b/depedencies/include/glm/gtc/type_ptr.hpp deleted file mode 100644 index 008665e..0000000 --- a/depedencies/include/glm/gtc/type_ptr.hpp +++ /dev/null @@ -1,149 +0,0 @@ -/// @ref gtc_type_ptr -/// @file glm/gtc/type_ptr.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// @see gtc_quaternion (dependence) -/// -/// @defgroup gtc_type_ptr GLM_GTC_type_ptr -/// @ingroup gtc -/// -/// @brief Handles the interaction between pointers and vector, matrix types. -/// -/// This extension defines an overloaded function, glm::value_ptr, which -/// takes any of the \ref core_template "core template types". It returns -/// a pointer to the memory layout of the object. Matrix types store their values -/// in column-major order. -/// -/// This is useful for uploading data to matrices or copying data to buffer objects. -/// -/// Example: -/// @code -/// #include <glm/glm.hpp> -/// #include <glm/gtc/type_ptr.hpp> -/// -/// glm::vec3 aVector(3); -/// glm::mat4 someMatrix(1.0); -/// -/// glUniform3fv(uniformLoc, 1, glm::value_ptr(aVector)); -/// glUniformMatrix4fv(uniformMatrixLoc, 1, GL_FALSE, glm::value_ptr(someMatrix)); -/// @endcode -/// -/// <glm/gtc/type_ptr.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependency: -#include "../gtc/quaternion.hpp" -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" -#include "../mat2x2.hpp" -#include "../mat2x3.hpp" -#include "../mat2x4.hpp" -#include "../mat3x2.hpp" -#include "../mat3x3.hpp" -#include "../mat3x4.hpp" -#include "../mat4x2.hpp" -#include "../mat4x3.hpp" -#include "../mat4x4.hpp" -#include <cstring> - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_type_ptr extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_type_ptr - /// @{ - - /// Return the constant address to the data of the input parameter. - /// @see gtc_type_ptr - template<typename genType> - GLM_FUNC_DECL typename genType::value_type const * value_ptr(genType const & vec); - - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tvec2<T, defaultp> make_vec2(T const * const ptr); - - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tvec3<T, defaultp> make_vec3(T const * const ptr); - - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tvec4<T, defaultp> make_vec4(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2x2(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat2x3<T, defaultp> make_mat2x3(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat2x4<T, defaultp> make_mat2x4(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat3x2<T, defaultp> make_mat3x2(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3x3(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat3x4<T, defaultp> make_mat3x4(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat4x2<T, defaultp> make_mat4x2(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat4x3<T, defaultp> make_mat4x3(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4x4(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat2x2<T, defaultp> make_mat2(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat3x3<T, defaultp> make_mat3(T const * const ptr); - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tmat4x4<T, defaultp> make_mat4(T const * const ptr); - - /// Build a quaternion from a pointer. - /// @see gtc_type_ptr - template<typename T> - GLM_FUNC_DECL tquat<T, defaultp> make_quat(T const * const ptr); - - /// @} -}//namespace glm - -#include "type_ptr.inl" diff --git a/depedencies/include/glm/gtc/type_ptr.inl b/depedencies/include/glm/gtc/type_ptr.inl deleted file mode 100644 index 3aa6ae6..0000000 --- a/depedencies/include/glm/gtc/type_ptr.inl +++ /dev/null @@ -1,450 +0,0 @@ -/// @ref gtc_type_ptr -/// @file glm/gtc/type_ptr.inl - -#include <cstring> - -namespace glm -{ - /// @addtogroup gtc_type_ptr - /// @{ - - /// Return the constant address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tvec2<T, P> const & vec - ) - { - return &(vec.x); - } - - //! Return the address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tvec2<T, P> & vec - ) - { - return &(vec.x); - } - - /// Return the constant address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tvec3<T, P> const & vec - ) - { - return &(vec.x); - } - - //! Return the address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tvec3<T, P> & vec - ) - { - return &(vec.x); - } - - /// Return the constant address to the data of the vector input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tvec4<T, P> const & vec - ) - { - return &(vec.x); - } - - //! Return the address to the data of the vector input. - //! From GLM_GTC_type_ptr extension. - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tvec4<T, P> & vec - ) - { - return &(vec.x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat2x2<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat2x2<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat3x3<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat3x3<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat4x4<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - //! From GLM_GTC_type_ptr extension. - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat4x4<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat2x3<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat2x3<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat3x2<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat3x2<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat2x4<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat2x4<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat4x2<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat4x2<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat3x4<T, P> const & mat - ) - { - return &(mat[0].x); - } - - //! Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tmat3x4<T, P> & mat - ) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tmat4x3<T, P> const & mat - ) - { - return &(mat[0].x); - } - - /// Return the address to the data of the matrix input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr(tmat4x3<T, P> & mat) - { - return &(mat[0].x); - } - - /// Return the constant address to the data of the input parameter. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T const * value_ptr - ( - tquat<T, P> const & q - ) - { - return &(q[0]); - } - - /// Return the address to the data of the quaternion input. - /// @see gtc_type_ptr - template<typename T, precision P> - GLM_FUNC_QUALIFIER T * value_ptr - ( - tquat<T, P> & q - ) - { - return &(q[0]); - } - - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tvec2<T, defaultp> make_vec2(T const * const ptr) - { - tvec2<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tvec2<T, defaultp>)); - return Result; - } - - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tvec3<T, defaultp> make_vec3(T const * const ptr) - { - tvec3<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tvec3<T, defaultp>)); - return Result; - } - - /// Build a vector from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tvec4<T, defaultp> make_vec4(T const * const ptr) - { - tvec4<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tvec4<T, defaultp>)); - return Result; - } - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2x2(T const * const ptr) - { - tmat2x2<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat2x2<T, defaultp>)); - return Result; - } - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat2x3<T, defaultp> make_mat2x3(T const * const ptr) - { - tmat2x3<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat2x3<T, defaultp>)); - return Result; - } - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat2x4<T, defaultp> make_mat2x4(T const * const ptr) - { - tmat2x4<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat2x4<T, defaultp>)); - return Result; - } - - /// Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat3x2<T, defaultp> make_mat3x2(T const * const ptr) - { - tmat3x2<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat3x2<T, defaultp>)); - return Result; - } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3x3(T const * const ptr) - { - tmat3x3<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat3x3<T, defaultp>)); - return Result; - } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat3x4<T, defaultp> make_mat3x4(T const * const ptr) - { - tmat3x4<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat3x4<T, defaultp>)); - return Result; - } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat4x2<T, defaultp> make_mat4x2(T const * const ptr) - { - tmat4x2<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat4x2<T, defaultp>)); - return Result; - } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat4x3<T, defaultp> make_mat4x3(T const * const ptr) - { - tmat4x3<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat4x3<T, defaultp>)); - return Result; - } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4x4(T const * const ptr) - { - tmat4x4<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tmat4x4<T, defaultp>)); - return Result; - } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat2x2<T, defaultp> make_mat2(T const * const ptr) - { - return make_mat2x2(ptr); - } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat3x3<T, defaultp> make_mat3(T const * const ptr) - { - return make_mat3x3(ptr); - } - - //! Build a matrix from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> make_mat4(T const * const ptr) - { - return make_mat4x4(ptr); - } - - //! Build a quaternion from a pointer. - /// @see gtc_type_ptr - template <typename T> - GLM_FUNC_QUALIFIER tquat<T, defaultp> make_quat(T const * const ptr) - { - tquat<T, defaultp> Result; - memcpy(value_ptr(Result), ptr, sizeof(tquat<T, defaultp>)); - return Result; - } - - /// @} -}//namespace glm - diff --git a/depedencies/include/glm/gtc/ulp.hpp b/depedencies/include/glm/gtc/ulp.hpp deleted file mode 100644 index a82fa4e..0000000 --- a/depedencies/include/glm/gtc/ulp.hpp +++ /dev/null @@ -1,63 +0,0 @@ -/// @ref gtc_ulp -/// @file glm/gtc/ulp.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_ulp GLM_GTC_ulp -/// @ingroup gtc -/// -/// @brief Allow the measurement of the accuracy of a function against a reference -/// implementation. This extension works on floating-point data and provide results -/// in ULP. -/// <glm/gtc/ulp.hpp> need to be included to use these features. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/type_int.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_ulp extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_ulp - /// @{ - - /// Return the next ULP value(s) after the input value(s). - /// @see gtc_ulp - template <typename genType> - GLM_FUNC_DECL genType next_float(genType const & x); - - /// Return the previous ULP value(s) before the input value(s). - /// @see gtc_ulp - template <typename genType> - GLM_FUNC_DECL genType prev_float(genType const & x); - - /// Return the value(s) ULP distance after the input value(s). - /// @see gtc_ulp - template <typename genType> - GLM_FUNC_DECL genType next_float(genType const & x, uint const & Distance); - - /// Return the value(s) ULP distance before the input value(s). - /// @see gtc_ulp - template <typename genType> - GLM_FUNC_DECL genType prev_float(genType const & x, uint const & Distance); - - /// Return the distance in the number of ULP between 2 scalars. - /// @see gtc_ulp - template <typename T> - GLM_FUNC_DECL uint float_distance(T const & x, T const & y); - - /// Return the distance in the number of ULP between 2 vectors. - /// @see gtc_ulp - template<typename T, template<typename> class vecType> - GLM_FUNC_DECL vecType<uint> float_distance(vecType<T> const & x, vecType<T> const & y); - - /// @} -}// namespace glm - -#include "ulp.inl" diff --git a/depedencies/include/glm/gtc/ulp.inl b/depedencies/include/glm/gtc/ulp.inl deleted file mode 100644 index 54c914a..0000000 --- a/depedencies/include/glm/gtc/ulp.inl +++ /dev/null @@ -1,321 +0,0 @@ -/// @ref gtc_ulp -/// @file glm/gtc/ulp.inl -/// -/// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. -/// -/// Developed at SunPro, a Sun Microsystems, Inc. business. -/// Permission to use, copy, modify, and distribute this -/// software is freely granted, provided that this notice -/// is preserved. - -#include "../detail/type_int.hpp" -#include <cmath> -#include <cfloat> -#include <limits> - -#if(GLM_COMPILER & GLM_COMPILER_VC) -# pragma warning(push) -# pragma warning(disable : 4127) -#endif - -typedef union -{ - float value; - /* FIXME: Assumes 32 bit int. */ - unsigned int word; -} ieee_float_shape_type; - -typedef union -{ - double value; - struct - { - glm::detail::int32 lsw; - glm::detail::int32 msw; - } parts; -} ieee_double_shape_type; - -#define GLM_EXTRACT_WORDS(ix0,ix1,d) \ - do { \ - ieee_double_shape_type ew_u; \ - ew_u.value = (d); \ - (ix0) = ew_u.parts.msw; \ - (ix1) = ew_u.parts.lsw; \ - } while (0) - -#define GLM_GET_FLOAT_WORD(i,d) \ - do { \ - ieee_float_shape_type gf_u; \ - gf_u.value = (d); \ - (i) = gf_u.word; \ - } while (0) - -#define GLM_SET_FLOAT_WORD(d,i) \ - do { \ - ieee_float_shape_type sf_u; \ - sf_u.word = (i); \ - (d) = sf_u.value; \ - } while (0) - -#define GLM_INSERT_WORDS(d,ix0,ix1) \ - do { \ - ieee_double_shape_type iw_u; \ - iw_u.parts.msw = (ix0); \ - iw_u.parts.lsw = (ix1); \ - (d) = iw_u.value; \ - } while (0) - -namespace glm{ -namespace detail -{ - GLM_FUNC_QUALIFIER float nextafterf(float x, float y) - { - volatile float t; - glm::detail::int32 hx, hy, ix, iy; - - GLM_GET_FLOAT_WORD(hx, x); - GLM_GET_FLOAT_WORD(hy, y); - ix = hx&0x7fffffff; // |x| - iy = hy&0x7fffffff; // |y| - - if((ix>0x7f800000) || // x is nan - (iy>0x7f800000)) // y is nan - return x+y; - if(x==y) return y; // x=y, return y - if(ix==0) { // x == 0 - GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal - t = x*x; - if(t==x) return t; else return x; // raise underflow flag - } - if(hx>=0) { // x > 0 - if(hx>hy) { // x > y, x -= ulp - hx -= 1; - } else { // x < y, x += ulp - hx += 1; - } - } else { // x < 0 - if(hy>=0||hx>hy){ // x < y, x -= ulp - hx -= 1; - } else { // x > y, x += ulp - hx += 1; - } - } - hy = hx&0x7f800000; - if(hy>=0x7f800000) return x+x; // overflow - if(hy<0x00800000) { // underflow - t = x*x; - if(t!=x) { // raise underflow flag - GLM_SET_FLOAT_WORD(y,hx); - return y; - } - } - GLM_SET_FLOAT_WORD(x,hx); - return x; - } - - GLM_FUNC_QUALIFIER double nextafter(double x, double y) - { - volatile double t; - glm::detail::int32 hx, hy, ix, iy; - glm::detail::uint32 lx, ly; - - GLM_EXTRACT_WORDS(hx, lx, x); - GLM_EXTRACT_WORDS(hy, ly, y); - ix = hx & 0x7fffffff; // |x| - iy = hy & 0x7fffffff; // |y| - - if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan - ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan - return x+y; - if(x==y) return y; // x=y, return y - if((ix|lx)==0) { // x == 0 - GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal - t = x*x; - if(t==x) return t; else return x; // raise underflow flag - } - if(hx>=0) { // x > 0 - if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp - if(lx==0) hx -= 1; - lx -= 1; - } else { // x < y, x += ulp - lx += 1; - if(lx==0) hx += 1; - } - } else { // x < 0 - if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp - if(lx==0) hx -= 1; - lx -= 1; - } else { // x > y, x += ulp - lx += 1; - if(lx==0) hx += 1; - } - } - hy = hx&0x7ff00000; - if(hy>=0x7ff00000) return x+x; // overflow - if(hy<0x00100000) { // underflow - t = x*x; - if(t!=x) { // raise underflow flag - GLM_INSERT_WORDS(y,hx,lx); - return y; - } - } - GLM_INSERT_WORDS(x,hx,lx); - return x; - } -}//namespace detail -}//namespace glm - -#if(GLM_COMPILER & GLM_COMPILER_VC) -# pragma warning(pop) -#endif - -namespace glm -{ - template <> - GLM_FUNC_QUALIFIER float next_float(float const & x) - { -# if GLM_HAS_CXX11_STL - return std::nextafter(x, std::numeric_limits<float>::max()); -# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) - return detail::nextafterf(x, FLT_MAX); -# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) - return __builtin_nextafterf(x, FLT_MAX); -# else - return nextafterf(x, FLT_MAX); -# endif - } - - template <> - GLM_FUNC_QUALIFIER double next_float(double const & x) - { -# if GLM_HAS_CXX11_STL - return std::nextafter(x, std::numeric_limits<double>::max()); -# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) - return detail::nextafter(x, std::numeric_limits<double>::max()); -# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) - return __builtin_nextafter(x, FLT_MAX); -# else - return nextafter(x, DBL_MAX); -# endif - } - - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x) - { - vecType<T, P> Result(uninitialize); - for(length_t i = 0, n = Result.length(); i < n; ++i) - Result[i] = next_float(x[i]); - return Result; - } - - GLM_FUNC_QUALIFIER float prev_float(float const & x) - { -# if GLM_HAS_CXX11_STL - return std::nextafter(x, std::numeric_limits<float>::min()); -# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) - return detail::nextafterf(x, FLT_MIN); -# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) - return __builtin_nextafterf(x, FLT_MIN); -# else - return nextafterf(x, FLT_MIN); -# endif - } - - GLM_FUNC_QUALIFIER double prev_float(double const & x) - { -# if GLM_HAS_CXX11_STL - return std::nextafter(x, std::numeric_limits<double>::min()); -# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) - return _nextafter(x, DBL_MIN); -# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) - return __builtin_nextafter(x, DBL_MIN); -# else - return nextafter(x, DBL_MIN); -# endif - } - - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x) - { - vecType<T, P> Result(uninitialize); - for(length_t i = 0, n = Result.length(); i < n; ++i) - Result[i] = prev_float(x[i]); - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps) - { - T temp = x; - for(uint i = 0; i < ulps; ++i) - temp = next_float(temp); - return temp; - } - - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) - { - vecType<T, P> Result(uninitialize); - for(length_t i = 0, n = Result.length(); i < n; ++i) - Result[i] = next_float(x[i], ulps[i]); - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps) - { - T temp = x; - for(uint i = 0; i < ulps; ++i) - temp = prev_float(temp); - return temp; - } - - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) - { - vecType<T, P> Result(uninitialize); - for(length_t i = 0, n = Result.length(); i < n; ++i) - Result[i] = prev_float(x[i], ulps[i]); - return Result; - } - - template <typename T> - GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y) - { - uint ulp = 0; - - if(x < y) - { - T temp = x; - while(temp != y)// && ulp < std::numeric_limits<std::size_t>::max()) - { - ++ulp; - temp = next_float(temp); - } - } - else if(y < x) - { - T temp = y; - while(temp != x)// && ulp < std::numeric_limits<std::size_t>::max()) - { - ++ulp; - temp = next_float(temp); - } - } - else // == - { - - } - - return ulp; - } - - template<typename T, precision P, template<typename, precision> class vecType> - GLM_FUNC_QUALIFIER vecType<uint, P> float_distance(vecType<T, P> const & x, vecType<T, P> const & y) - { - vecType<uint, P> Result(uninitialize); - for(length_t i = 0, n = Result.length(); i < n; ++i) - Result[i] = float_distance(x[i], y[i]); - return Result; - } -}//namespace glm diff --git a/depedencies/include/glm/gtc/vec1.hpp b/depedencies/include/glm/gtc/vec1.hpp deleted file mode 100644 index f84ff97..0000000 --- a/depedencies/include/glm/gtc/vec1.hpp +++ /dev/null @@ -1,164 +0,0 @@ -/// @ref gtc_vec1 -/// @file glm/gtc/vec1.hpp -/// -/// @see core (dependence) -/// -/// @defgroup gtc_vec1 GLM_GTC_vec1 -/// @ingroup gtc -/// -/// @brief Add vec1, ivec1, uvec1 and bvec1 types. -/// <glm/gtc/vec1.hpp> need to be included to use these functionalities. - -#pragma once - -// Dependency: -#include "../glm.hpp" -#include "../detail/type_vec1.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_vec1 extension included") -#endif - -namespace glm -{ - /// 1 component vector of high precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_vec1_t highp_vec1; - - /// 1 component vector of medium precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_vec1_t mediump_vec1; - - /// 1 component vector of low precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_vec1_t lowp_vec1; - - /// 1 component vector of high precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_dvec1_t highp_dvec1; - - /// 1 component vector of medium precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_dvec1_t mediump_dvec1; - - /// 1 component vector of low precision floating-point numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_dvec1_t lowp_dvec1; - - /// 1 component vector of high precision signed integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_ivec1_t highp_ivec1; - - /// 1 component vector of medium precision signed integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_ivec1_t mediump_ivec1; - - /// 1 component vector of low precision signed integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_ivec1_t lowp_ivec1; - - /// 1 component vector of high precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_uvec1_t highp_uvec1; - - /// 1 component vector of medium precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_uvec1_t mediump_uvec1; - - /// 1 component vector of low precision unsigned integer numbers. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_uvec1_t lowp_uvec1; - - /// 1 component vector of high precision boolean. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef highp_bvec1_t highp_bvec1; - - /// 1 component vector of medium precision boolean. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef mediump_bvec1_t mediump_bvec1; - - /// 1 component vector of low precision boolean. - /// There is no guarantee on the actual precision. - /// @see gtc_vec1 extension. - typedef lowp_bvec1_t lowp_bvec1; - - ////////////////////////// - // vec1 definition - -#if(defined(GLM_PRECISION_HIGHP_BOOL)) - typedef highp_bvec1 bvec1; -#elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) - typedef mediump_bvec1 bvec1; -#elif(defined(GLM_PRECISION_LOWP_BOOL)) - typedef lowp_bvec1 bvec1; -#else - /// 1 component vector of boolean. - /// @see gtc_vec1 extension. - typedef highp_bvec1 bvec1; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_FLOAT)) - typedef highp_vec1 vec1; -#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) - typedef mediump_vec1 vec1; -#elif(defined(GLM_PRECISION_LOWP_FLOAT)) - typedef lowp_vec1 vec1; -#else - /// 1 component vector of floating-point numbers. - /// @see gtc_vec1 extension. - typedef highp_vec1 vec1; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_DOUBLE)) - typedef highp_dvec1 dvec1; -#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) - typedef mediump_dvec1 dvec1; -#elif(defined(GLM_PRECISION_LOWP_DOUBLE)) - typedef lowp_dvec1 dvec1; -#else - /// 1 component vector of floating-point numbers. - /// @see gtc_vec1 extension. - typedef highp_dvec1 dvec1; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_INT)) - typedef highp_ivec1 ivec1; -#elif(defined(GLM_PRECISION_MEDIUMP_INT)) - typedef mediump_ivec1 ivec1; -#elif(defined(GLM_PRECISION_LOWP_INT)) - typedef lowp_ivec1 ivec1; -#else - /// 1 component vector of signed integer numbers. - /// @see gtc_vec1 extension. - typedef highp_ivec1 ivec1; -#endif//GLM_PRECISION - -#if(defined(GLM_PRECISION_HIGHP_UINT)) - typedef highp_uvec1 uvec1; -#elif(defined(GLM_PRECISION_MEDIUMP_UINT)) - typedef mediump_uvec1 uvec1; -#elif(defined(GLM_PRECISION_LOWP_UINT)) - typedef lowp_uvec1 uvec1; -#else - /// 1 component vector of unsigned integer numbers. - /// @see gtc_vec1 extension. - typedef highp_uvec1 uvec1; -#endif//GLM_PRECISION - -}// namespace glm - -#include "vec1.inl" diff --git a/depedencies/include/glm/gtc/vec1.inl b/depedencies/include/glm/gtc/vec1.inl deleted file mode 100644 index 5a6627c..0000000 --- a/depedencies/include/glm/gtc/vec1.inl +++ /dev/null @@ -1,2 +0,0 @@ -/// @ref gtc_vec1 -/// @file glm/gtc/vec1.inl |