diff options
Diffstat (limited to '')
-rw-r--r-- | external/include/sol.hpp | 22180 |
1 files changed, 22180 insertions, 0 deletions
diff --git a/external/include/sol.hpp b/external/include/sol.hpp new file mode 100644 index 0000000..d582bb8 --- /dev/null +++ b/external/include/sol.hpp @@ -0,0 +1,22180 @@ +// The MIT License (MIT) + +// Copyright (c) 2013-2018 Rapptz, ThePhD and contributors + +// Permission is hereby granted, free of charge, to any person obtaining a copy of +// this software and associated documentation files (the "Software"), to deal in +// the Software without restriction, including without limitation the rights to +// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software is furnished to do so, +// subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +// This file was generated with a script. +// Generated 2018-11-28 08:50:22.534324 UTC +// This header was generated with sol v2.20.6 (revision 9b782ff) +// https://github.com/ThePhD/sol2 + +#ifndef SOL_SINGLE_INCLUDE_HPP +#define SOL_SINGLE_INCLUDE_HPP + +// beginning of sol.hpp + +#ifndef SOL_HPP +#define SOL_HPP + +#if defined(UE_BUILD_DEBUG) || defined(UE_BUILD_DEVELOPMENT) || defined(UE_BUILD_TEST) || defined(UE_BUILD_SHIPPING) || defined(UE_SERVER) +#define SOL_INSIDE_UNREAL 1 +#endif // Unreal Engine 4 bullshit + +#if defined(SOL_INSIDE_UNREAL) && SOL_INSIDE_UNREAL +#ifdef check +#define SOL_INSIDE_UNREAL_REMOVED_CHECK 1 +#undef check +#endif +#endif // Unreal Engine 4 Bullshit + +#if defined(__GNUC__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wshadow" +#pragma GCC diagnostic ignored "-Wconversion" +#if __GNUC__ > 6 +#pragma GCC diagnostic ignored "-Wnoexcept-type" +#endif +#elif defined(__clang__) +#elif defined _MSC_VER +#pragma warning( push ) +#pragma warning( disable : 4324 ) // structure was padded due to alignment specifier +#pragma warning( disable : 4503 ) // decorated name horse shit +#pragma warning( disable : 4702 ) // unreachable code +#pragma warning( disable: 4127 ) // 'conditional expression is constant' yeah that's the point your old compilers don't have `if constexpr` you jerk +#pragma warning( disable: 4505 ) // some other nonsense warning +#endif // clang++ vs. g++ vs. VC++ + +// beginning of sol/forward.hpp + +// beginning of sol/feature_test.hpp + +#if (defined(__cplusplus) && __cplusplus == 201703L) || (defined(_MSC_VER) && _MSC_VER > 1900 && ((defined(_HAS_CXX17) && _HAS_CXX17 == 1) || (defined(_MSVC_LANG) && (_MSVC_LANG > 201402L)))) +#ifndef SOL_CXX17_FEATURES +#define SOL_CXX17_FEATURES 1 +#endif // C++17 features macro +#endif // C++17 features check + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#if defined(__cpp_noexcept_function_type) || ((defined(_MSC_VER) && _MSC_VER > 1911) && (defined(_MSVC_LANG) && ((_MSVC_LANG >= 201403L)))) +#ifndef SOL_NOEXCEPT_FUNCTION_TYPE +#define SOL_NOEXCEPT_FUNCTION_TYPE 1 +#endif // noexcept is part of a function's type +#endif // compiler-specific checks +#if defined(__clang__) && defined(__APPLE__) +#if defined(__has_include) +#if __has_include(<variant>) +#define SOL_STD_VARIANT 1 +#endif // has include nonsense +#endif // __has_include +#else +#define SOL_STD_VARIANT 1 +#endif // Clang screws up variant +#endif // C++17 only + +// beginning of sol/config.hpp + +#ifdef _MSC_VER + #if defined(_DEBUG) && !defined(NDEBUG) + + #ifndef SOL_IN_DEBUG_DETECTED + #define SOL_IN_DEBUG_DETECTED 1 + #endif + + #endif // VC++ Debug macros + + #ifndef _CPPUNWIND + #ifndef SOL_NO_EXCEPTIONS + #define SOL_NO_EXCEPTIONS 1 + #endif + #endif // Automatic Exceptions + + #ifndef _CPPRTTI + #ifndef SOL_NO_RTTI + #define SOL_NO_RTTI 1 + #endif + #endif // Automatic RTTI +#elif defined(__GNUC__) || defined(__clang__) + + #if !defined(NDEBUG) && !defined(__OPTIMIZE__) + + #ifndef SOL_IN_DEBUG_DETECTED + #define SOL_IN_DEBUG_DETECTED 1 + #endif + + #endif // Not Debug && g++ optimizer flag + + #ifndef __EXCEPTIONS + #ifndef SOL_NO_EXCEPTIONS + #define SOL_NO_EXCEPTIONS 1 + #endif + #endif // No Exceptions + + #ifndef __GXX_RTTI + #ifndef SOL_NO_RTII + #define SOL_NO_RTTI 1 + #endif + #endif // No RTTI + +#endif // vc++ || clang++/g++ + +#if defined(SOL_CHECK_ARGUMENTS) && SOL_CHECK_ARGUMENTS + + // Checks low-level getter function + // (and thusly, affects nearly entire framework) + #if !defined(SOL_SAFE_GETTER) + #define SOL_SAFE_GETTER 1 + #endif + + // Checks access on usertype functions + // local my_obj = my_type.new() + // my_obj.my_member_function() + // -- bad syntax and crash + #if !defined(SOL_SAFE_USERTYPE) + #define SOL_SAFE_USERTYPE 1 + #endif + + // Checks sol::reference derived boundaries + // sol::function ref(L, 1); + // sol::userdata sref(L, 2); + #if !defined(SOL_SAFE_REFERENCES) + #define SOL_SAFE_REFERENCES 1 + #endif + + // Changes all typedefs of sol::function to point to the + // protected_function version, instead of unsafe_function + #if !defined(SOL_SAFE_FUNCTION) + #define SOL_SAFE_FUNCTION 1 + #endif + + // Checks function parameters and + // returns upon call into/from Lua + // local a = 1 + // local b = "woof" + // my_c_function(a, b) + #if !defined(SOL_SAFE_FUNCTION_CALLS) + #define SOL_SAFE_FUNCTION_CALLS 1 + #endif + + // Checks conversions + // int v = lua["bark"]; + // int v2 = my_sol_function(); + #if !defined(SOL_SAFE_PROXIES) + #define SOL_SAFE_PROXIES 1 + #endif + + // Check overflowing number conversions + // for things like 64 bit integers that don't fit in a typical lua_Number + // for Lua 5.1 and 5.2 + #if !defined(SOL_SAFE_NUMERICS) + #define SOL_SAFE_NUMERICS 1 + #endif + + // Turn off Number Precision Checks + // if this is defined, we do not do range + // checks on integers / unsigned integers that might + // be bigger than what Lua can represent + #if !defined(SOL_NO_CHECK_NUMBER_PRECISION) + // off by default + #define SOL_NO_CHECK_NUMBER_PRECISION 0 + #endif + +#endif // Turn on Safety for all if top-level macro is defined + +#if defined(SOL_IN_DEBUG_DETECTED) && SOL_IN_DEBUG_DETECTED + + #if !defined(SOL_SAFE_REFERENCES) + // Ensure that references are forcefully type-checked upon construction + #define SOL_SAFE_REFERENCES 1 + #endif + + // Safe usertypes checks for errors such as + // obj = my_type.new() + // obj.f() -- note the '.' instead of ':' + // usertypes should be safe no matter what + #if !defined(SOL_SAFE_USERTYPE) + #define SOL_SAFE_USERTYPE 1 + #endif + + #if !defined(SOL_SAFE_FUNCTION_CALLS) + // Function calls from Lua should be automatically safe in debug mode + #define SOL_SAFE_FUNCTION_CALLS 1 + #endif + + // Print any exceptions / errors that occur + // in debug mode to the default error stream / console + #if !defined(SOL_PRINT_ERRORS) + #define SOL_PRINT_ERRORS 1 + #endif + +#endif // DEBUG: Turn on all debug safety features for VC++ / g++ / clang++ and similar + +#if !defined(SOL_PRINT_ERRORS) +#define SOL_PRINT_ERRORS 0 +#endif + +#if !defined(SOL_DEFAULT_PASS_ON_ERROR) +#define SOL_DEFAULT_PASS_ON_ERROR 0 +#endif + +#if !defined(SOL_ENABLE_INTEROP) +#define SOL_ENABLE_INTEROP 0 +#endif + +#if defined(__MAC_OS_X_VERSION_MAX_ALLOWED) || defined(__OBJC__) || defined(nil) +#if !defined(SOL_NO_NIL) +#define SOL_NO_NIL 1 +#endif +#endif // avoiding nil defines / keywords + +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST +#ifndef SOL_UNORDERED_MAP_COMPATIBLE_HASH +#define SOL_UNORDERED_MAP_COMPATIBLE_HASH 1 +#endif // SOL_UNORDERED_MAP_COMPATIBLE_HASH +#endif + +#ifndef SOL_STACK_STRING_OPTIMIZATION_SIZE +#define SOL_STACK_STRING_OPTIMIZATION_SIZE 1024 +#endif // Optimized conversion routines using a KB or so off the stack + +// end of sol/config.hpp + +// beginning of sol/config_setup.hpp + +// end of sol/config_setup.hpp + +// end of sol/feature_test.hpp + +namespace sol { + + template <bool b> + class basic_reference; + using reference = basic_reference<false>; + using main_reference = basic_reference<true>; + class stack_reference; + + struct proxy_base_tag; + template <typename Super> + struct proxy_base; + template <typename Table, typename Key> + struct proxy; + + template <typename T> + class usertype; + template <typename T> + class simple_usertype; + template <bool, typename T> + class basic_table_core; + template <bool b> + using table_core = basic_table_core<b, reference>; + template <bool b> + using main_table_core = basic_table_core<b, main_reference>; + template <bool b> + using stack_table_core = basic_table_core<b, stack_reference>; + template <typename T> + using basic_table = basic_table_core<false, T>; + typedef table_core<false> table; + typedef table_core<true> global_table; + typedef main_table_core<false> main_table; + typedef main_table_core<true> main_global_table; + typedef stack_table_core<false> stack_table; + typedef stack_table_core<true> stack_global_table; + template <typename base_t> + struct basic_environment; + using environment = basic_environment<reference>; + using main_environment = basic_environment<main_reference>; + using stack_environment = basic_environment<stack_reference>; + template <typename T, bool> + class basic_function; + template <typename T, bool, typename H> + class basic_protected_function; + using unsafe_function = basic_function<reference, false>; + using safe_function = basic_protected_function<reference, false, reference>; + using main_unsafe_function = basic_function<main_reference, false>; + using main_safe_function = basic_protected_function<main_reference, false, reference>; + using stack_unsafe_function = basic_function<stack_reference, false>; + using stack_safe_function = basic_protected_function<stack_reference, false, reference>; + using stack_aligned_unsafe_function = basic_function<stack_reference, true>; + using stack_aligned_safe_function = basic_protected_function<stack_reference, true, reference>; + using protected_function = safe_function; + using main_protected_function = main_safe_function; + using stack_protected_function = stack_safe_function; + using stack_aligned_protected_function = stack_aligned_safe_function; +#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION + using function = protected_function; + using main_function = main_protected_function; + using stack_function = stack_protected_function; +#else + using function = unsafe_function; + using main_function = main_unsafe_function; + using stack_function = stack_unsafe_function; +#endif + using stack_aligned_function = stack_aligned_unsafe_function; + using stack_aligned_stack_handler_function = basic_protected_function<stack_reference, true, stack_reference>; + + struct unsafe_function_result; + struct protected_function_result; + using safe_function_result = protected_function_result; +#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION + using function_result = safe_function_result; +#else + using function_result = unsafe_function_result; +#endif + + template <typename base_t> + class basic_object; + template <typename base_t> + class basic_userdata; + template <typename base_t> + class basic_lightuserdata; + template <typename base_t> + class basic_coroutine; + template <typename base_t> + class basic_thread; + + using object = basic_object<reference>; + using userdata = basic_userdata<reference>; + using lightuserdata = basic_lightuserdata<reference>; + using thread = basic_thread<reference>; + using coroutine = basic_coroutine<reference>; + using main_object = basic_object<main_reference>; + using main_userdata = basic_userdata<main_reference>; + using main_lightuserdata = basic_lightuserdata<main_reference>; + using main_coroutine = basic_coroutine<main_reference>; + using stack_object = basic_object<stack_reference>; + using stack_userdata = basic_userdata<stack_reference>; + using stack_lightuserdata = basic_lightuserdata<stack_reference>; + using stack_thread = basic_thread<stack_reference>; + using stack_coroutine = basic_coroutine<stack_reference>; + + struct stack_proxy_base; + struct stack_proxy; + struct variadic_args; + struct variadic_results; + struct stack_count; + struct this_state; + struct this_main_state; + struct this_environment; + + template <typename T> + struct as_table_t; + template <typename T> + struct as_container_t; + template <typename T> + struct nested; + template <typename T> + struct light; + template <typename T> + struct user; + template <typename T> + struct as_args_t; + template <typename T> + struct protect_t; + template <typename F, typename... Filters> + struct filter_wrapper; + + template <typename T> + struct usertype_traits; + template <typename T> + struct unique_usertype_traits; +} // namespace sol + +// end of sol/forward.hpp + +// beginning of sol/state.hpp + +// beginning of sol/state_view.hpp + +// beginning of sol/error.hpp + +#include <stdexcept> +#include <string> + +namespace sol { + namespace detail { + struct direct_error_tag {}; + const auto direct_error = direct_error_tag{}; + } // namespace detail + + class error : public std::runtime_error { + private: + // Because VC++ is upsetting, most of the time! + std::string w; + + public: + error(const std::string& str) + : error(detail::direct_error, "lua: error: " + str) { + } + error(std::string&& str) + : error(detail::direct_error, "lua: error: " + std::move(str)) { + } + error(detail::direct_error_tag, const std::string& str) + : std::runtime_error(""), w(str) { + } + error(detail::direct_error_tag, std::string&& str) + : std::runtime_error(""), w(std::move(str)) { + } + + error(const error& e) = default; + error(error&& e) = default; + error& operator=(const error& e) = default; + error& operator=(error&& e) = default; + + virtual const char* what() const noexcept override { + return w.c_str(); + } + }; + +} // namespace sol + +// end of sol/error.hpp + +// beginning of sol/table.hpp + +// beginning of sol/table_core.hpp + +// beginning of sol/proxy.hpp + +// beginning of sol/traits.hpp + +// beginning of sol/tuple.hpp + +#include <tuple> +#include <cstddef> + +namespace sol { + namespace detail { + using swallow = std::initializer_list<int>; + } // namespace detail + + template <typename... Args> + struct types { + typedef std::make_index_sequence<sizeof...(Args)> indices; + static constexpr std::size_t size() { + return sizeof...(Args); + } + }; + namespace meta { + namespace detail { + template <typename... Args> + struct tuple_types_ { typedef types<Args...> type; }; + + template <typename... Args> + struct tuple_types_<std::tuple<Args...>> { typedef types<Args...> type; }; + } // namespace detail + + template <typename T> + using unqualified = std::remove_cv<std::remove_reference_t<T>>; + + template <typename T> + using unqualified_t = typename unqualified<T>::type; + + template <typename... Args> + using tuple_types = typename detail::tuple_types_<Args...>::type; + + template <typename Arg> + struct pop_front_type; + + template <typename Arg> + using pop_front_type_t = typename pop_front_type<Arg>::type; + + template <typename... Args> + struct pop_front_type<types<Args...>> { + typedef void front_type; + typedef types<Args...> type; + }; + + template <typename Arg, typename... Args> + struct pop_front_type<types<Arg, Args...>> { + typedef Arg front_type; + typedef types<Args...> type; + }; + + template <std::size_t N, typename Tuple> + using tuple_element = std::tuple_element<N, std::remove_reference_t<Tuple>>; + + template <std::size_t N, typename Tuple> + using tuple_element_t = std::tuple_element_t<N, std::remove_reference_t<Tuple>>; + + template <std::size_t N, typename Tuple> + using unqualified_tuple_element = unqualified<tuple_element_t<N, Tuple>>; + + template <std::size_t N, typename Tuple> + using unqualified_tuple_element_t = unqualified_t<tuple_element_t<N, Tuple>>; + + } // namespace meta +} // namespace sol + +// end of sol/tuple.hpp + +// beginning of sol/bind_traits.hpp + +namespace sol { +namespace meta { + namespace meta_detail { + + template <class F> + struct check_deducible_signature { + struct nat {}; + template <class G> + static auto test(int) -> decltype(&G::operator(), void()); + template <class> + static auto test(...) -> nat; + + using type = std::is_void<decltype(test<F>(0))>; + }; + } // namespace meta_detail + + template <class F> + struct has_deducible_signature : meta_detail::check_deducible_signature<F>::type {}; + + namespace meta_detail { + + template <std::size_t I, typename T> + struct void_tuple_element : meta::tuple_element<I, T> {}; + + template <std::size_t I> + struct void_tuple_element<I, std::tuple<>> { typedef void type; }; + + template <std::size_t I, typename T> + using void_tuple_element_t = typename void_tuple_element<I, T>::type; + + template <bool it_is_noexcept, bool has_c_variadic, typename T, typename R, typename... Args> + struct basic_traits { + private: + typedef std::conditional_t<std::is_void<T>::value, int, T>& first_type; + + public: + static const bool is_noexcept = it_is_noexcept; + static const bool is_member_function = std::is_void<T>::value; + static const bool has_c_var_arg = has_c_variadic; + static const std::size_t arity = sizeof...(Args); + static const std::size_t free_arity = sizeof...(Args) + static_cast<std::size_t>(!std::is_void<T>::value); + typedef types<Args...> args_list; + typedef std::tuple<Args...> args_tuple; + typedef T object_type; + typedef R return_type; + typedef tuple_types<R> returns_list; + typedef R(function_type)(Args...); + typedef std::conditional_t<std::is_void<T>::value, args_list, types<first_type, Args...>> free_args_list; + typedef std::conditional_t<std::is_void<T>::value, R(Args...), R(first_type, Args...)> free_function_type; + typedef std::conditional_t<std::is_void<T>::value, R (*)(Args...), R (*)(first_type, Args...)> free_function_pointer_type; + typedef std::remove_pointer_t<free_function_pointer_type> signature_type; + template <std::size_t i> + using arg_at = void_tuple_element_t<i, args_tuple>; + }; + + template <typename Signature, bool b = has_deducible_signature<Signature>::value> + struct fx_traits : basic_traits<false, false, void, void> {}; + + // Free Functions + template <typename R, typename... Args> + struct fx_traits<R(Args...), false> : basic_traits<false, false, void, R, Args...> { + typedef R (*function_pointer_type)(Args...); + }; + + template <typename R, typename... Args> + struct fx_traits<R (*)(Args...), false> : basic_traits<false, false, void, R, Args...> { + typedef R (*function_pointer_type)(Args...); + }; + + template <typename R, typename... Args> + struct fx_traits<R(Args..., ...), false> : basic_traits<false, true, void, R, Args...> { + typedef R (*function_pointer_type)(Args..., ...); + }; + + template <typename R, typename... Args> + struct fx_traits<R (*)(Args..., ...), false> : basic_traits<false, true, void, R, Args...> { + typedef R (*function_pointer_type)(Args..., ...); + }; + + // Member Functions + /* C-Style Variadics */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...); + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...), false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...); + }; + + /* Const Volatile */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile; + }; + + /* Member Function Qualifiers */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) &; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...)&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) &; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) &&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...)&&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) &&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const&&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const&&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const&&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile&&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile&&, false> : basic_traits<false, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile&&; + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + + template <typename R, typename... Args> + struct fx_traits<R(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { + typedef R (*function_pointer_type)(Args...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R (*)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { + typedef R (*function_pointer_type)(Args...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { + typedef R (*function_pointer_type)(Args..., ...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R (*)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { + typedef R (*function_pointer_type)(Args..., ...) noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) noexcept; + }; + + /* Const Volatile */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) & noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) & noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) && noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) && noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const&& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const&& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args...) const volatile&& noexcept; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (T::*function_pointer_type)(Args..., ...) const volatile&& noexcept; + }; + +#endif // noexcept is part of a function's type + +#if defined(_MSC_VER) && defined(_M_IX86) + template <typename R, typename... Args> + struct fx_traits<R __stdcall(Args...), false> : basic_traits<false, false, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args...); + }; + + template <typename R, typename... Args> + struct fx_traits<R(__stdcall*)(Args...), false> : basic_traits<false, false, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args...); + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...), false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...); + }; + + /* Const Volatile */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile; + }; + + /* Member Function Qualifiers */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...)&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) &; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...)&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) &&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const&&; + }; + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile&&, false> : basic_traits<false, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&&; + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + + template <typename R, typename... Args> + struct fx_traits<R __stdcall(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R (__stdcall *)(Args...) noexcept, false> : basic_traits<true, false, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args...) noexcept; + }; + + /* __stdcall cannot be applied to functions with varargs*/ + /*template <typename R, typename... Args> + struct fx_traits<__stdcall R(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept; + }; + + template <typename R, typename... Args> + struct fx_traits<R (__stdcall *)(Args..., ...) noexcept, false> : basic_traits<true, true, void, R, Args...> { + typedef R(__stdcall* function_pointer_type)(Args..., ...) noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) noexcept; + };*/ + + /* Const Volatile */ + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) & noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) & noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) & noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) & noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const& noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const& noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile& noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile& noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) && noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) && noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) && noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) && noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const&& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const&& noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const&& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const&& noexcept; + };*/ + + template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args...) const volatile&& noexcept, false> : basic_traits<true, false, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args...) const volatile&& noexcept; + }; + + /* __stdcall does not work with varargs */ + /*template <typename T, typename R, typename... Args> + struct fx_traits<R (__stdcall T::*)(Args..., ...) const volatile&& noexcept, false> : basic_traits<true, true, T, R, Args...> { + typedef R (__stdcall T::*function_pointer_type)(Args..., ...) const volatile&& noexcept; + };*/ +#endif // noexcept is part of a function's type +#endif // __stdcall x86 VC++ bug + + template <typename Signature> + struct fx_traits<Signature, true> : fx_traits<typename fx_traits<decltype(&Signature::operator())>::function_type, false> {}; + + template <typename Signature, bool b = std::is_member_object_pointer<Signature>::value> + struct callable_traits : fx_traits<std::decay_t<Signature>> { + }; + + template <typename R, typename T> + struct callable_traits<R(T::*), true> { + typedef std::conditional_t<std::is_array<R>::value, std::add_lvalue_reference_t<T>, R> return_type; + typedef return_type Arg; + typedef T object_type; + using signature_type = R(T::*); + static const bool is_noexcept = false; + static const bool is_member_function = false; + static const std::size_t arity = 1; + static const std::size_t free_arity = 2; + typedef std::tuple<Arg> args_tuple; + typedef types<Arg> args_list; + typedef types<T, Arg> free_args_list; + typedef meta::tuple_types<return_type> returns_list; + typedef return_type(function_type)(T&, return_type); + typedef return_type(*function_pointer_type)(T&, Arg); + typedef return_type(*free_function_pointer_type)(T&, Arg); + template <std::size_t i> + using arg_at = void_tuple_element_t<i, args_tuple>; + }; + + } // namespace meta_detail + + template <typename Signature> + struct bind_traits : meta_detail::callable_traits<Signature> {}; + + template <typename Signature> + using function_args_t = typename bind_traits<Signature>::args_list; + + template <typename Signature> + using function_signature_t = typename bind_traits<Signature>::signature_type; + + template <typename Signature> + using function_return_t = typename bind_traits<Signature>::return_type; +} +} // namespace sol::meta + +// end of sol/bind_traits.hpp + +// beginning of sol/string_view.hpp + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <string_view> +#endif // C++17 features +#include <functional> +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST +#include <boost/functional/hash.hpp> +#endif + +namespace sol { +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename C, typename T = std::char_traits<C>> + using basic_string_view = std::basic_string_view<C, T>; + typedef std::string_view string_view; + typedef std::wstring_view wstring_view; + typedef std::u16string_view u16string_view; + typedef std::u32string_view u32string_view; + typedef std::hash<std::string_view> string_view_hash; +#else + template <typename Char, typename Traits = std::char_traits<Char>> + struct basic_string_view { + std::size_t s; + const Char* p; + + basic_string_view(const std::string& r) + : basic_string_view(r.data(), r.size()) { + } + basic_string_view(const Char* ptr) + : basic_string_view(ptr, Traits::length(ptr)) { + } + basic_string_view(const Char* ptr, std::size_t sz) + : s(sz), p(ptr) { + } + + static int compare(const Char* lhs_p, std::size_t lhs_sz, const Char* rhs_p, std::size_t rhs_sz) { + int result = Traits::compare(lhs_p, rhs_p, lhs_sz < rhs_sz ? lhs_sz : rhs_sz); + if (result != 0) + return result; + if (lhs_sz < rhs_sz) + return -1; + if (lhs_sz > rhs_sz) + return 1; + return 0; + } + + const Char* begin() const { + return p; + } + + const Char* end() const { + return p + s; + } + + const Char* cbegin() const { + return p; + } + + const Char* cend() const { + return p + s; + } + + const Char* data() const { + return p; + } + + std::size_t size() const { + return s; + } + + std::size_t length() const { + return size(); + } + + operator std::basic_string<Char, Traits>() const { + return std::basic_string<Char, Traits>(data(), size()); + } + + bool operator==(const basic_string_view& r) const { + return compare(p, s, r.data(), r.size()) == 0; + } + + bool operator==(const Char* r) const { + return compare(r, Traits::length(r), p, s) == 0; + } + + bool operator==(const std::basic_string<Char, Traits>& r) const { + return compare(r.data(), r.size(), p, s) == 0; + } + + bool operator!=(const basic_string_view& r) const { + return !(*this == r); + } + + bool operator!=(const char* r) const { + return !(*this == r); + } + + bool operator!=(const std::basic_string<Char, Traits>& r) const { + return !(*this == r); + } + }; + + template <typename Ch, typename Tr = std::char_traits<Ch>> + struct basic_string_view_hash { + typedef basic_string_view<Ch, Tr> argument_type; + typedef std::size_t result_type; + + template <typename Al> + result_type operator()(const std::basic_string<Ch, Tr, Al>& r) const { + return (*this)(argument_type(r.c_str(), r.size())); + } + + result_type operator()(const argument_type& r) const { +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST + return boost::hash_range(r.begin(), r.end()); +#else + // Modified, from libstdc++ + // An implementation attempt at Fowler No Voll, 1a. + // Supposedly, used in MSVC, + // GCC (libstdc++) uses MurmurHash of some sort for 64-bit though...? + // But, well. Can't win them all, right? + // This should normally only apply when NOT using boost, + // so this should almost never be tapped into... + std::size_t hash = 0; + const unsigned char* cptr = reinterpret_cast<const unsigned char*>(r.data()); + for (std::size_t sz = r.size(); sz != 0; --sz) { + hash ^= static_cast<size_t>(*cptr++); + hash *= static_cast<size_t>(1099511628211ULL); + } + return hash; +#endif + } + }; +} // namespace sol + +namespace std { + template <typename Ch, typename Tr> + struct hash< ::sol::basic_string_view<Ch, Tr> > : ::sol::basic_string_view_hash<Ch, Tr> {}; +} // namespace std + +namespace sol { + using string_view = basic_string_view<char>; + using wstring_view = basic_string_view<wchar_t>; + using u16string_view = basic_string_view<char16_t>; + using u32string_view = basic_string_view<char32_t>; + using string_view_hash = std::hash<string_view>; +#endif // C++17 Support +} // namespace sol + +// end of sol/string_view.hpp + +#include <type_traits> +#include <cstdint> +#include <memory> +#include <array> +#include <iterator> +#include <iosfwd> + +namespace sol { + template <std::size_t I> + using index_value = std::integral_constant<std::size_t, I>; + + namespace meta { + typedef std::array<char, 1> sfinae_yes_t; + typedef std::array<char, 2> sfinae_no_t; + + template <typename T> + struct identity { typedef T type; }; + + template <typename T> + using identity_t = typename identity<T>::type; + + template <typename... Args> + struct is_tuple : std::false_type {}; + + template <typename... Args> + struct is_tuple<std::tuple<Args...>> : std::true_type {}; + + template <typename T> + struct is_builtin_type : std::integral_constant<bool, std::is_arithmetic<T>::value || std::is_pointer<T>::value || std::is_array<T>::value> {}; + + template <typename T> + struct unwrapped { + typedef T type; + }; + + template <typename T> + struct unwrapped<std::reference_wrapper<T>> { + typedef T type; + }; + + template <typename T> + using unwrapped_t = typename unwrapped<T>::type; + + template <typename T> + struct unwrap_unqualified : unwrapped<unqualified_t<T>> {}; + + template <typename T> + using unwrap_unqualified_t = typename unwrap_unqualified<T>::type; + + template <typename T> + struct remove_member_pointer; + + template <typename R, typename T> + struct remove_member_pointer<R T::*> { + typedef R type; + }; + + template <typename R, typename T> + struct remove_member_pointer<R T::*const> { + typedef R type; + }; + + template <typename T> + using remove_member_pointer_t = remove_member_pointer<T>; + + namespace meta_detail { + template <typename T, template <typename...> class Templ> + struct is_specialization_of : std::false_type {}; + template <typename... T, template <typename...> class Templ> + struct is_specialization_of<Templ<T...>, Templ> : std::true_type {}; + } + + template <typename T, template <typename...> class Templ> + using is_specialization_of = meta_detail::is_specialization_of<std::remove_cv_t<T>, Templ>; + + template <class T, class...> + struct all_same : std::true_type {}; + + template <class T, class U, class... Args> + struct all_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value && all_same<T, Args...>::value> {}; + + template <class T, class...> + struct any_same : std::false_type {}; + + template <class T, class U, class... Args> + struct any_same<T, U, Args...> : std::integral_constant<bool, std::is_same<T, U>::value || any_same<T, Args...>::value> {}; + + template <bool B> + using boolean = std::integral_constant<bool, B>; + + template <typename T> + using invoke_t = typename T::type; + + template <typename T> + using invoke_b = boolean<T::value>; + + template <typename T> + using neg = boolean<!T::value>; + + template <typename Condition, typename Then, typename Else> + using condition = std::conditional_t<Condition::value, Then, Else>; + + template <typename... Args> + struct all : boolean<true> {}; + + template <typename T, typename... Args> + struct all<T, Args...> : condition<T, all<Args...>, boolean<false>> {}; + + template <typename... Args> + struct any : boolean<false> {}; + + template <typename T, typename... Args> + struct any<T, Args...> : condition<T, boolean<true>, any<Args...>> {}; + + enum class enable_t { + _ + }; + + constexpr const auto enabler = enable_t::_; + + template <bool value, typename T = void> + using disable_if_t = std::enable_if_t<!value, T>; + + template <typename... Args> + using enable = std::enable_if_t<all<Args...>::value, enable_t>; + + template <typename... Args> + using disable = std::enable_if_t<neg<all<Args...>>::value, enable_t>; + + template <typename... Args> + using enable_any = std::enable_if_t<any<Args...>::value, enable_t>; + + template <typename... Args> + using disable_any = std::enable_if_t<neg<any<Args...>>::value, enable_t>; + + template <typename V, typename... Vs> + struct find_in_pack_v : boolean<false> {}; + + template <typename V, typename Vs1, typename... Vs> + struct find_in_pack_v<V, Vs1, Vs...> : any<boolean<(V::value == Vs1::value)>, find_in_pack_v<V, Vs...>> {}; + + namespace meta_detail { + template <std::size_t I, typename T, typename... Args> + struct index_in_pack : std::integral_constant<std::size_t, SIZE_MAX> {}; + + template <std::size_t I, typename T, typename T1, typename... Args> + struct index_in_pack<I, T, T1, Args...> : std::conditional_t<std::is_same<T, T1>::value, std::integral_constant<std::ptrdiff_t, I>, index_in_pack<I + 1, T, Args...>> {}; + } // namespace meta_detail + + template <typename T, typename... Args> + struct index_in_pack : meta_detail::index_in_pack<0, T, Args...> {}; + + template <typename T, typename List> + struct index_in : meta_detail::index_in_pack<0, T, List> {}; + + template <typename T, typename... Args> + struct index_in<T, types<Args...>> : meta_detail::index_in_pack<0, T, Args...> {}; + + template <std::size_t I, typename... Args> + struct at_in_pack {}; + + template <std::size_t I, typename... Args> + using at_in_pack_t = typename at_in_pack<I, Args...>::type; + + template <std::size_t I, typename Arg, typename... Args> + struct at_in_pack<I, Arg, Args...> : std::conditional<I == 0, Arg, at_in_pack_t<I - 1, Args...>> {}; + + template <typename Arg, typename... Args> + struct at_in_pack<0, Arg, Args...> { typedef Arg type; }; + + namespace meta_detail { + template <std::size_t Limit, std::size_t I, template <typename...> class Pred, typename... Ts> + struct count_for_pack : std::integral_constant<std::size_t, 0> {}; + template <std::size_t Limit, std::size_t I, template <typename...> class Pred, typename T, typename... Ts> + struct count_for_pack<Limit, I, Pred, T, Ts...> : std::conditional_t < sizeof...(Ts) + == 0 + || Limit<2, + std::integral_constant<std::size_t, I + static_cast<std::size_t>(Limit != 0 && Pred<T>::value)>, + count_for_pack<Limit - 1, I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>> {}; + template <std::size_t I, template <typename...> class Pred, typename... Ts> + struct count_2_for_pack : std::integral_constant<std::size_t, 0> {}; + template <std::size_t I, template <typename...> class Pred, typename T, typename U, typename... Ts> + struct count_2_for_pack<I, Pred, T, U, Ts...> : std::conditional_t<sizeof...(Ts) == 0, + std::integral_constant<std::size_t, I + static_cast<std::size_t>(Pred<T>::value)>, + count_2_for_pack<I + static_cast<std::size_t>(Pred<T>::value), Pred, Ts...>> {}; + } // namespace meta_detail + + template <template <typename...> class Pred, typename... Ts> + struct count_for_pack : meta_detail::count_for_pack<sizeof...(Ts), 0, Pred, Ts...> {}; + + template <template <typename...> class Pred, typename List> + struct count_for; + + template <template <typename...> class Pred, typename... Args> + struct count_for<Pred, types<Args...>> : count_for_pack<Pred, Args...> {}; + + template <std::size_t Limit, template <typename...> class Pred, typename... Ts> + struct count_for_to_pack : meta_detail::count_for_pack<Limit, 0, Pred, Ts...> {}; + + template <template <typename...> class Pred, typename... Ts> + struct count_2_for_pack : meta_detail::count_2_for_pack<0, Pred, Ts...> {}; + + template <typename... Args> + struct return_type { + typedef std::tuple<Args...> type; + }; + + template <typename T> + struct return_type<T> { + typedef T type; + }; + + template <> + struct return_type<> { + typedef void type; + }; + + template <typename... Args> + using return_type_t = typename return_type<Args...>::type; + + namespace meta_detail { + template <typename> + struct always_true : std::true_type {}; + struct is_invokable_tester { + template <typename Fun, typename... Args> + static always_true<decltype(std::declval<Fun>()(std::declval<Args>()...))> test(int); + template <typename...> + static std::false_type test(...); + }; + } // namespace meta_detail + + template <typename T> + struct is_invokable; + template <typename Fun, typename... Args> + struct is_invokable<Fun(Args...)> : decltype(meta_detail::is_invokable_tester::test<Fun, Args...>(0)) {}; + + namespace meta_detail { + + template <typename T, typename = void> + struct is_callable : std::is_function<std::remove_pointer_t<T>> {}; + + template <typename T> + struct is_callable<T, std::enable_if_t<std::is_final<unqualified_t<T>>::value + && std::is_class<unqualified_t<T>>::value + && std::is_same<decltype(void(&T::operator())), void>::value>> { + + }; + + template <typename T> + struct is_callable<T, std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && std::is_destructible<unqualified_t<T>>::value>> { + using yes = char; + using no = struct { char s[2]; }; + + struct F { + void operator()(); + }; + struct Derived : T, F {}; + template <typename U, U> + struct Check; + + template <typename V> + static no test(Check<void (F::*)(), &V::operator()>*); + + template <typename> + static yes test(...); + + static const bool value = sizeof(test<Derived>(0)) == sizeof(yes); + }; + + template <typename T> + struct is_callable<T, std::enable_if_t<!std::is_final<unqualified_t<T>>::value && std::is_class<unqualified_t<T>>::value && !std::is_destructible<unqualified_t<T>>::value>> { + using yes = char; + using no = struct { char s[2]; }; + + struct F { + void operator()(); + }; + struct Derived : T, F { + ~Derived() = delete; + }; + template <typename U, U> + struct Check; + + template <typename V> + static no test(Check<void (F::*)(), &V::operator()>*); + + template <typename> + static yes test(...); + + static const bool value = sizeof(test<Derived>(0)) == sizeof(yes); + }; + + struct has_begin_end_impl { + template <typename T, typename U = unqualified_t<T>, + typename B = decltype(std::declval<U&>().begin()), + typename E = decltype(std::declval<U&>().end())> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_key_type_impl { + template <typename T, typename U = unqualified_t<T>, + typename V = typename U::key_type> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_mapped_type_impl { + template <typename T, typename U = unqualified_t<T>, + typename V = typename U::mapped_type> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_value_type_impl { + template <typename T, typename U = unqualified_t<T>, + typename V = typename U::value_type> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_iterator_impl { + template <typename T, typename U = unqualified_t<T>, + typename V = typename U::iterator> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + struct has_key_value_pair_impl { + template <typename T, typename U = unqualified_t<T>, + typename V = typename U::value_type, + typename F = decltype(std::declval<V&>().first), + typename S = decltype(std::declval<V&>().second)> + static std::true_type test(int); + + template <typename...> + static std::false_type test(...); + }; + + template <typename T> + struct has_push_back_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().push_back(std::declval<std::add_rvalue_reference_t<typename C::value_type>>())) *); + template <typename C> + static sfinae_no_t test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(sfinae_yes_t); + }; + + template <typename T> + struct has_insert_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().insert(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); + template <typename C> + static sfinae_no_t test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(sfinae_yes_t); + }; + + template <typename T> + struct has_insert_after_test { + private: + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().insert_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>(), std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); + template <typename C> + static sfinae_no_t test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(sfinae_yes_t); + }; + + template <typename T> + struct has_size_test { + private: + typedef std::array<char, 1> sfinae_yes_t; + typedef std::array<char, 2> sfinae_no_t; + + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().size())*); + template <typename C> + static sfinae_no_t test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(sfinae_yes_t); + }; + + template <typename T> + struct has_max_size_test { + private: + typedef std::array<char, 1> sfinae_yes_t; + typedef std::array<char, 2> sfinae_no_t; + + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().max_size())*); + template <typename C> + static sfinae_no_t test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(sfinae_yes_t); + }; + + template <typename T> + struct has_to_string_test { + private: + typedef std::array<char, 1> sfinae_yes_t; + typedef std::array<char, 2> sfinae_no_t; + + template <typename C> + static sfinae_yes_t test(decltype(std::declval<C>().to_string())*); + template <typename C> + static sfinae_no_t test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(sfinae_yes_t); + }; +#if defined(_MSC_VER) && _MSC_VER <= 1910 + template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())> + std::true_type supports_op_less_test(std::reference_wrapper<T>, std::reference_wrapper<U>); + std::false_type supports_op_less_test(...); + template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())> + std::true_type supports_op_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>); + std::false_type supports_op_equal_test(...); + template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())> + std::true_type supports_op_less_equal_test(std::reference_wrapper<T>, std::reference_wrapper<U>); + std::false_type supports_op_less_equal_test(...); + template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())> + std::true_type supports_ostream_op(std::reference_wrapper<T>, std::reference_wrapper<OS>); + std::false_type supports_ostream_op(...); + template <typename T, typename = decltype(to_string(std::declval<T&>()))> + std::true_type supports_adl_to_string(std::reference_wrapper<T>); + std::false_type supports_adl_to_string(...); +#else + template <typename T, typename U, typename = decltype(std::declval<T&>() < std::declval<U&>())> + std::true_type supports_op_less_test(const T&, const U&); + std::false_type supports_op_less_test(...); + template <typename T, typename U, typename = decltype(std::declval<T&>() == std::declval<U&>())> + std::true_type supports_op_equal_test(const T&, const U&); + std::false_type supports_op_equal_test(...); + template <typename T, typename U, typename = decltype(std::declval<T&>() <= std::declval<U&>())> + std::true_type supports_op_less_equal_test(const T&, const U&); + std::false_type supports_op_less_equal_test(...); + template <typename T, typename OS, typename = decltype(std::declval<OS&>() << std::declval<T&>())> + std::true_type supports_ostream_op(const T&, const OS&); + std::false_type supports_ostream_op(...); + template <typename T, typename = decltype(to_string(std::declval<T&>()))> + std::true_type supports_adl_to_string(const T&); + std::false_type supports_adl_to_string(...); +#endif + + template <typename T, bool b> + struct is_matched_lookup_impl : std::false_type {}; + template <typename T> + struct is_matched_lookup_impl<T, true> : std::is_same<typename T::key_type, typename T::value_type> {}; + } // namespace meta_detail + +#if defined(_MSC_VER) && _MSC_VER <= 1910 + template <typename T, typename U = T> + using supports_op_less = decltype(meta_detail::supports_op_less_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>()))); + template <typename T, typename U = T> + using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>()))); + template <typename T, typename U = T> + using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::ref(std::declval<T&>()), std::ref(std::declval<U&>()))); + template <typename T, typename U = std::ostream> + using supports_ostream_op = decltype(meta_detail::supports_ostream_op(std::ref(std::declval<T&>()), std::ref(std::declval<U&>()))); + template <typename T> + using supports_adl_to_string = decltype(meta_detail::supports_adl_to_string(std::ref(std::declval<T&>()))); +#else + template <typename T, typename U = T> + using supports_op_less = decltype(meta_detail::supports_op_less_test(std::declval<T&>(), std::declval<U&>())); + template <typename T, typename U = T> + using supports_op_equal = decltype(meta_detail::supports_op_equal_test(std::declval<T&>(), std::declval<U&>())); + template <typename T, typename U = T> + using supports_op_less_equal = decltype(meta_detail::supports_op_less_equal_test(std::declval<T&>(), std::declval<U&>())); + template <typename T, typename U = std::ostream> + using supports_ostream_op = decltype(meta_detail::supports_ostream_op(std::declval<T&>(), std::declval<U&>())); + template <typename T> + using supports_adl_to_string = decltype(meta_detail::supports_adl_to_string(std::declval<T&>())); +#endif + template <typename T> + using supports_to_string_member = meta::boolean<meta_detail::has_to_string_test<T>::value>; + + template <typename T> + struct is_callable : boolean<meta_detail::is_callable<T>::value> {}; + + template <typename T> + struct has_begin_end : decltype(meta_detail::has_begin_end_impl::test<T>(0)) {}; + + template <typename T> + struct has_key_value_pair : decltype(meta_detail::has_key_value_pair_impl::test<T>(0)) {}; + + template <typename T> + struct has_key_type : decltype(meta_detail::has_key_type_impl::test<T>(0)) {}; + + template <typename T> + struct has_mapped_type : decltype(meta_detail::has_mapped_type_impl::test<T>(0)) {}; + + template <typename T> + struct has_iterator : decltype(meta_detail::has_iterator_impl::test<T>(0)) {}; + + template <typename T> + struct has_value_type : decltype(meta_detail::has_value_type_impl::test<T>(0)) {}; + + template <typename T> + using has_push_back = meta::boolean<meta_detail::has_push_back_test<T>::value>; + + template <typename T> + using has_max_size = meta::boolean<meta_detail::has_max_size_test<T>::value>; + + template <typename T> + using has_insert = meta::boolean<meta_detail::has_insert_test<T>::value>; + + template <typename T> + using has_insert_after = meta::boolean<meta_detail::has_insert_after_test<T>::value>; + + template <typename T> + using has_size = meta::boolean<meta_detail::has_size_test<T>::value || meta_detail::has_size_test<const T>::value>; + + template <typename T> + struct is_associative : meta::all<has_key_type<T>, has_key_value_pair<T>, has_mapped_type<T>> {}; + + template <typename T> + struct is_lookup : meta::all<has_key_type<T>, has_value_type<T>> {}; + + template <typename T> + struct is_matched_lookup : meta_detail::is_matched_lookup_impl<T, is_lookup<T>::value> {}; + + template <typename T> + using is_string_like = any< + is_specialization_of<meta::unqualified_t<T>, std::basic_string>, +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + is_specialization_of<meta::unqualified_t<T>, std::basic_string_view>, +#else + is_specialization_of<meta::unqualified_t<T>, basic_string_view>, +#endif + meta::all<std::is_array<unqualified_t<T>>, meta::any_same<meta::unqualified_t<std::remove_all_extents_t<meta::unqualified_t<T>>>, char, char16_t, char32_t, wchar_t>> + >; + + template <typename T> + using is_string_constructible = any< + meta::all<std::is_array<unqualified_t<T>>, std::is_same<meta::unqualified_t<std::remove_all_extents_t<meta::unqualified_t<T>>>, char>>, + std::is_same<unqualified_t<T>, const char*>, + std::is_same<unqualified_t<T>, char>, std::is_same<unqualified_t<T>, std::string>, std::is_same<unqualified_t<T>, std::initializer_list<char>> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + , std::is_same<unqualified_t<T>, std::string_view> +#endif + >; + + template <typename T> + struct is_pair : std::false_type {}; + + template <typename T1, typename T2> + struct is_pair<std::pair<T1, T2>> : std::true_type {}; + + template <typename T> + using is_c_str = any< + std::is_same<std::decay_t<unqualified_t<T>>, const char*>, + std::is_same<std::decay_t<unqualified_t<T>>, char*>, + std::is_same<unqualified_t<T>, std::string>>; + + template <typename T> + struct is_move_only : all< + neg<std::is_reference<T>>, + neg<std::is_copy_constructible<unqualified_t<T>>>, + std::is_move_constructible<unqualified_t<T>>> {}; + + template <typename T> + using is_not_move_only = neg<is_move_only<T>>; + + namespace meta_detail { + template <typename T, meta::disable<meta::is_specialization_of<meta::unqualified_t<T>, std::tuple>> = meta::enabler> + decltype(auto) force_tuple(T&& x) { + return std::tuple<std::decay_t<T>>(std::forward<T>(x)); + } + + template <typename T, meta::enable<meta::is_specialization_of<meta::unqualified_t<T>, std::tuple>> = meta::enabler> + decltype(auto) force_tuple(T&& x) { + return std::forward<T>(x); + } + } // namespace meta_detail + + template <typename... X> + decltype(auto) tuplefy(X&&... x) { + return std::tuple_cat(meta_detail::force_tuple(std::forward<X>(x))...); + } + + template <typename T, typename = void> + struct iterator_tag { + using type = std::input_iterator_tag; + }; + + template <typename T> + struct iterator_tag<T, std::conditional_t<false, typename T::iterator_category, void>> { + using type = typename T::iterator_category; + }; + + } // namespace meta + + namespace detail { + template <typename T> + struct is_pointer_like : std::is_pointer<T> {}; + template <typename T, typename D> + struct is_pointer_like<std::unique_ptr<T, D>> : std::true_type {}; + template <typename T> + struct is_pointer_like<std::shared_ptr<T>> : std::true_type {}; + + template <std::size_t I, typename Tuple> + decltype(auto) forward_get(Tuple&& tuple) { + return std::forward<meta::tuple_element_t<I, Tuple>>(std::get<I>(tuple)); + } + + template <std::size_t... I, typename Tuple> + auto forward_tuple_impl(std::index_sequence<I...>, Tuple&& tuple) -> decltype(std::tuple<decltype(forward_get<I>(tuple))...>(forward_get<I>(tuple)...)) { + return std::tuple<decltype(forward_get<I>(tuple))...>(std::move(std::get<I>(tuple))...); + } + + template <typename Tuple> + auto forward_tuple(Tuple&& tuple) { + auto x = forward_tuple_impl(std::make_index_sequence<std::tuple_size<meta::unqualified_t<Tuple>>::value>(), std::forward<Tuple>(tuple)); + return x; + } + + template <typename T> + auto unwrap(T&& item) -> decltype(std::forward<T>(item)) { + return std::forward<T>(item); + } + + template <typename T> + T& unwrap(std::reference_wrapper<T> arg) { + return arg.get(); + } + + template <typename T, meta::enable<meta::neg<is_pointer_like<meta::unqualified_t<T>>>> = meta::enabler> + auto deref(T&& item) -> decltype(std::forward<T>(item)) { + return std::forward<T>(item); + } + + template <typename T, meta::enable<is_pointer_like<meta::unqualified_t<T>>> = meta::enabler> + inline auto deref(T&& item) -> decltype(*std::forward<T>(item)) { + return *std::forward<T>(item); + } + + template <typename T, meta::disable<is_pointer_like<meta::unqualified_t<T>>, meta::neg<std::is_pointer<meta::unqualified_t<T>>>> = meta::enabler> + auto deref_non_pointer(T&& item) -> decltype(std::forward<T>(item)) { + return std::forward<T>(item); + } + + template <typename T, meta::enable<is_pointer_like<meta::unqualified_t<T>>, meta::neg<std::is_pointer<meta::unqualified_t<T>>>> = meta::enabler> + inline auto deref_non_pointer(T&& item) -> decltype(*std::forward<T>(item)) { + return *std::forward<T>(item); + } + + template <typename T> + inline T* ptr(T& val) { + return std::addressof(val); + } + + template <typename T> + inline T* ptr(std::reference_wrapper<T> val) { + return std::addressof(val.get()); + } + + template <typename T> + inline T* ptr(T* val) { + return val; + } + } // namespace detail +} // namespace sol + +// end of sol/traits.hpp + +// beginning of sol/function.hpp + +// beginning of sol/stack.hpp + +// beginning of sol/trampoline.hpp + +// beginning of sol/types.hpp + +// beginning of sol/optional.hpp + +// beginning of sol/compatibility.hpp + +// beginning of sol/compatibility/version.hpp + +#if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA +#include <lua.h> +#include <lualib.h> +#include <lauxlib.h> +#if defined(SOL_USING_CXX_LUAJIT) && SOL_USING_CXX_LUAJIT +#include <luajit.h> +#endif // C++ LuaJIT ... whatever that means +#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !(SOL_EXCEPTIONS_SAFE_PROPAGATION)) && (!defined(SOL_EXCEPTIONS_ALWAYS_UNSAFE) || !(SOL_EXCEPTIONS_ALWAYS_UNSAFE)) +#define SOL_EXCEPTIONS_SAFE_PROPAGATION 1 +#endif // Exceptions can be propagated safely using C++-compiled Lua +#else +#include <lua.hpp> +#endif // C++ Mangling for Lua + +#ifdef LUAJIT_VERSION +#ifndef SOL_LUAJIT +#define SOL_LUAJIT 1 +#ifndef SOL_LUAJIT_VERSION +#define SOL_LUAJIT_VERSION LUAJIT_VERSION_NUM +#endif // SOL_LUAJIT_VERSION definition, if not present +#endif // sol luajit +#endif // luajit + +#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM >= 502 +#define SOL_LUA_VERSION LUA_VERSION_NUM +#elif defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501 +#define SOL_LUA_VERSION LUA_VERSION_NUM +#elif !defined(LUA_VERSION_NUM) || !(LUA_VERSION_NUM) +#define SOL_LUA_VERSION 500 +#else +#define SOL_LUA_VERSION 502 +#endif // Lua Version 502, 501 || luajit, 500 + +// end of sol/compatibility/version.hpp + +#if !defined(SOL_NO_COMPAT) || !(SOL_NO_COMPAT) + +#if defined(SOL_USING_CXX_LUA) && SOL_USING_CXX_LUA +#ifndef COMPAT53_LUA_CPP +#define COMPAT53_LUA_CPP 1 +#endif // Build Lua Compat layer as C++ +#endif +#ifndef COMPAT53_INCLUDE_SOURCE +#define COMPAT53_INCLUDE_SOURCE 1 +#endif // Build Compat Layer Inline +// beginning of sol/compatibility/compat-5.3.h + +#ifndef KEPLER_PROJECT_COMPAT53_H_ +#define KEPLER_PROJECT_COMPAT53_H_ + +#include <stddef.h> +#include <limits.h> +#include <string.h> +#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP) +extern "C" { +#endif +#if defined(__cplusplus) && !defined(COMPAT53_LUA_CPP) +} +#endif + +#ifndef COMPAT53_PREFIX +/* we chose this name because many other lua bindings / libs have +* their own compatibility layer, and that use the compat53 declaration +* frequently, causing all kinds of linker / compiler issues +*/ +# define COMPAT53_PREFIX kp_compat53 +#endif // COMPAT53_PREFIX + +#ifndef COMPAT53_API +# if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE +# if defined(__GNUC__) || defined(__clang__) +# define COMPAT53_API __attribute__((__unused__)) static +# else +# define COMPAT53_API static +# endif /* Clang/GCC */ +# else /* COMPAT53_INCLUDE_SOURCE */ +/* we are not including source, so everything is extern */ +# define COMPAT53_API extern +# endif /* COMPAT53_INCLUDE_SOURCE */ +#endif /* COMPAT53_PREFIX */ + +#define COMPAT53_CONCAT_HELPER(a, b) a##b +#define COMPAT53_CONCAT(a, b) COMPAT53_CONCAT_HELPER(a, b) + +/* declarations for Lua 5.1 */ +#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501 + +/* XXX not implemented: +* lua_arith (new operators) +* lua_upvalueid +* lua_upvaluejoin +* lua_version +* lua_yieldk +*/ + +#ifndef LUA_OK +# define LUA_OK 0 +#endif +#ifndef LUA_OPADD +# define LUA_OPADD 0 +#endif +#ifndef LUA_OPSUB +# define LUA_OPSUB 1 +#endif +#ifndef LUA_OPMUL +# define LUA_OPMUL 2 +#endif +#ifndef LUA_OPDIV +# define LUA_OPDIV 3 +#endif +#ifndef LUA_OPMOD +# define LUA_OPMOD 4 +#endif +#ifndef LUA_OPPOW +# define LUA_OPPOW 5 +#endif +#ifndef LUA_OPUNM +# define LUA_OPUNM 6 +#endif +#ifndef LUA_OPEQ +# define LUA_OPEQ 0 +#endif +#ifndef LUA_OPLT +# define LUA_OPLT 1 +#endif +#ifndef LUA_OPLE +# define LUA_OPLE 2 +#endif + +/* LuaJIT/Lua 5.1 does not have the updated +* error codes for thread status/function returns (but some patched versions do) +* define it only if it's not found +*/ +#if !defined(LUA_ERRGCMM) +/* Use + 2 because in some versions of Lua (Lua 5.1) +* LUA_ERRFILE is defined as (LUA_ERRERR+1) +* so we need to avoid it (LuaJIT might have something at this +* integer value too) +*/ +# define LUA_ERRGCMM (LUA_ERRERR + 2) +#endif /* LUA_ERRGCMM define */ + +typedef size_t lua_Unsigned; + +typedef struct luaL_Buffer_53 { + luaL_Buffer b; /* make incorrect code crash! */ + char *ptr; + size_t nelems; + size_t capacity; + lua_State *L2; +} luaL_Buffer_53; +#define luaL_Buffer luaL_Buffer_53 + +/* In PUC-Rio 5.1, userdata is a simple FILE* +* In LuaJIT, it's a struct where the first member is a FILE* +* We can't support the `closef` member +*/ +typedef struct luaL_Stream { + FILE *f; +} luaL_Stream; + +#define lua_absindex COMPAT53_CONCAT(COMPAT53_PREFIX, _absindex) +COMPAT53_API int lua_absindex(lua_State *L, int i); + +#define lua_arith COMPAT53_CONCAT(COMPAT53_PREFIX, _arith) +COMPAT53_API void lua_arith(lua_State *L, int op); + +#define lua_compare COMPAT53_CONCAT(COMPAT53_PREFIX, _compare) +COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op); + +#define lua_copy COMPAT53_CONCAT(COMPAT53_PREFIX, _copy) +COMPAT53_API void lua_copy(lua_State *L, int from, int to); + +#define lua_getuservalue(L, i) \ + (lua_getfenv((L), (i)), lua_type((L), -1)) +#define lua_setuservalue(L, i) \ + (luaL_checktype((L), -1, LUA_TTABLE), lua_setfenv((L), (i))) + +#define lua_len COMPAT53_CONCAT(COMPAT53_PREFIX, _len) +COMPAT53_API void lua_len(lua_State *L, int i); + +#define lua_pushstring(L, s) \ + (lua_pushstring((L), (s)), lua_tostring((L), -1)) + +#define lua_pushlstring(L, s, len) \ + ((((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))), lua_tostring((L), -1)) + +#ifndef luaL_newlibtable +# define luaL_newlibtable(L, l) \ + (lua_createtable((L), 0, sizeof((l))/sizeof(*(l))-1)) +#endif +#ifndef luaL_newlib +# define luaL_newlib(L, l) \ + (luaL_newlibtable((L), (l)), luaL_register((L), NULL, (l))) +#endif + +#define lua_pushglobaltable(L) \ + lua_pushvalue((L), LUA_GLOBALSINDEX) + +#define lua_rawgetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawgetp) +COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p); + +#define lua_rawsetp COMPAT53_CONCAT(COMPAT53_PREFIX, _rawsetp) +COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p); + +#define lua_rawlen(L, i) lua_objlen((L), (i)) + +#define lua_tointeger(L, i) lua_tointegerx((L), (i), NULL) + +#define lua_tonumberx COMPAT53_CONCAT(COMPAT53_PREFIX, _tonumberx) +COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum); + +#define luaL_checkversion COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkversion) +COMPAT53_API void luaL_checkversion(lua_State *L); + +#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53) +COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char* source, const char* mode); + +#define luaL_loadfilex COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadfilex) +COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode); + +#define luaL_loadbufferx COMPAT53_CONCAT(COMPAT53_PREFIX, L_loadbufferx) +COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode); + +#define luaL_checkstack COMPAT53_CONCAT(COMPAT53_PREFIX, L_checkstack_53) +COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg); + +#define luaL_getsubtable COMPAT53_CONCAT(COMPAT53_PREFIX, L_getsubtable) +COMPAT53_API int luaL_getsubtable(lua_State* L, int i, const char *name); + +#define luaL_len COMPAT53_CONCAT(COMPAT53_PREFIX, L_len) +COMPAT53_API lua_Integer luaL_len(lua_State *L, int i); + +#define luaL_setfuncs COMPAT53_CONCAT(COMPAT53_PREFIX, L_setfuncs) +COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup); + +#define luaL_setmetatable COMPAT53_CONCAT(COMPAT53_PREFIX, L_setmetatable) +COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname); + +#define luaL_testudata COMPAT53_CONCAT(COMPAT53_PREFIX, L_testudata) +COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname); + +#define luaL_traceback COMPAT53_CONCAT(COMPAT53_PREFIX, L_traceback) +COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, const char *msg, int level); + +#define luaL_fileresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_fileresult) +COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname); + +#define luaL_execresult COMPAT53_CONCAT(COMPAT53_PREFIX, L_execresult) +COMPAT53_API int luaL_execresult(lua_State *L, int stat); + +#define lua_callk(L, na, nr, ctx, cont) \ + ((void)(ctx), (void)(cont), lua_call((L), (na), (nr))) +#define lua_pcallk(L, na, nr, err, ctx, cont) \ + ((void)(ctx), (void)(cont), lua_pcall((L), (na), (nr), (err))) + +#define lua_resume(L, from, nargs) \ + ((void)(from), lua_resume((L), (nargs))) + +#define luaL_buffinit COMPAT53_CONCAT(COMPAT53_PREFIX, _buffinit_53) +COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B); + +#define luaL_prepbuffsize COMPAT53_CONCAT(COMPAT53_PREFIX, _prepbufsize_53) +COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s); + +#define luaL_addlstring COMPAT53_CONCAT(COMPAT53_PREFIX, _addlstring_53) +COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l); + +#define luaL_addvalue COMPAT53_CONCAT(COMPAT53_PREFIX, _addvalue_53) +COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B); + +#define luaL_pushresult COMPAT53_CONCAT(COMPAT53_PREFIX, _pushresult_53) +COMPAT53_API void luaL_pushresult(luaL_Buffer_53 *B); + +#undef luaL_buffinitsize +#define luaL_buffinitsize(L, B, s) \ + (luaL_buffinit((L), (B)), luaL_prepbuffsize((B), (s))) + +#undef luaL_prepbuffer +#define luaL_prepbuffer(B) \ + luaL_prepbuffsize((B), LUAL_BUFFERSIZE) + +#undef luaL_addchar +#define luaL_addchar(B, c) \ + ((void)((B)->nelems < (B)->capacity || luaL_prepbuffsize((B), 1)), \ + ((B)->ptr[(B)->nelems++] = (c))) + +#undef luaL_addsize +#define luaL_addsize(B, s) \ + ((B)->nelems += (s)) + +#undef luaL_addstring +#define luaL_addstring(B, s) \ + luaL_addlstring((B), (s), strlen((s))) + +#undef luaL_pushresultsize +#define luaL_pushresultsize(B, s) \ + (luaL_addsize((B), (s)), luaL_pushresult((B))) + +#if defined(LUA_COMPAT_APIINTCASTS) +#define lua_pushunsigned(L, n) \ + lua_pushinteger((L), (lua_Integer)(n)) +#define lua_tounsignedx(L, i, is) \ + ((lua_Unsigned)lua_tointegerx((L), (i), (is))) +#define lua_tounsigned(L, i) \ + lua_tounsignedx((L), (i), NULL) +#define luaL_checkunsigned(L, a) \ + ((lua_Unsigned)luaL_checkinteger((L), (a))) +#define luaL_optunsigned(L, a, d) \ + ((lua_Unsigned)luaL_optinteger((L), (a), (lua_Integer)(d))) +#endif + +#endif /* Lua 5.1 only */ + +/* declarations for Lua 5.1 and 5.2 */ +#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM <= 502 + +typedef int lua_KContext; + +typedef int(*lua_KFunction)(lua_State *L, int status, lua_KContext ctx); + +#define lua_dump(L, w, d, s) \ + ((void)(s), lua_dump((L), (w), (d))) + +#define lua_getfield(L, i, k) \ + (lua_getfield((L), (i), (k)), lua_type((L), -1)) + +#define lua_gettable(L, i) \ + (lua_gettable((L), (i)), lua_type((L), -1)) + +#define lua_geti COMPAT53_CONCAT(COMPAT53_PREFIX, _geti) +COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i); + +#define lua_isinteger COMPAT53_CONCAT(COMPAT53_PREFIX, _isinteger) +COMPAT53_API int lua_isinteger(lua_State *L, int index); + +#define lua_tointegerx COMPAT53_CONCAT(COMPAT53_PREFIX, _tointegerx_53) +COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum); + +#define lua_numbertointeger(n, p) \ + ((*(p) = (lua_Integer)(n)), 1) + +#define lua_rawget(L, i) \ + (lua_rawget((L), (i)), lua_type((L), -1)) + +#define lua_rawgeti(L, i, n) \ + (lua_rawgeti((L), (i), (n)), lua_type((L), -1)) + +#define lua_rotate COMPAT53_CONCAT(COMPAT53_PREFIX, _rotate) +COMPAT53_API void lua_rotate(lua_State *L, int idx, int n); + +#define lua_seti COMPAT53_CONCAT(COMPAT53_PREFIX, _seti) +COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i); + +#define lua_stringtonumber COMPAT53_CONCAT(COMPAT53_PREFIX, _stringtonumber) +COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s); + +#define luaL_tolstring COMPAT53_CONCAT(COMPAT53_PREFIX, L_tolstring) +COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len); + +#define luaL_getmetafield(L, o, e) \ + (luaL_getmetafield((L), (o), (e)) ? lua_type((L), -1) : LUA_TNIL) + +#define luaL_newmetatable(L, tn) \ + (luaL_newmetatable((L), (tn)) ? (lua_pushstring((L), (tn)), lua_setfield((L), -2, "__name"), 1) : 0) + +#define luaL_requiref COMPAT53_CONCAT(COMPAT53_PREFIX, L_requiref_53) +COMPAT53_API void luaL_requiref(lua_State *L, const char *modname, + lua_CFunction openf, int glb); + +#endif /* Lua 5.1 and Lua 5.2 */ + +/* declarations for Lua 5.2 */ +#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 502 + +/* XXX not implemented: +* lua_isyieldable +* lua_getextraspace +* lua_arith (new operators) +* lua_pushfstring (new formats) +*/ + +#define lua_getglobal(L, n) \ + (lua_getglobal((L), (n)), lua_type((L), -1)) + +#define lua_getuservalue(L, i) \ + (lua_getuservalue((L), (i)), lua_type((L), -1)) + +#define lua_pushlstring(L, s, len) \ + (((len) == 0) ? lua_pushlstring((L), "", 0) : lua_pushlstring((L), (s), (len))) + +#define lua_rawgetp(L, i, p) \ + (lua_rawgetp((L), (i), (p)), lua_type((L), -1)) + +#define LUA_KFUNCTION(_name) \ + static int (_name)(lua_State *L, int status, lua_KContext ctx); \ + static int (_name ## _52)(lua_State *L) { \ + lua_KContext ctx; \ + int status = lua_getctx(L, &ctx); \ + return (_name)(L, status, ctx); \ + } \ + static int (_name)(lua_State *L, int status, lua_KContext ctx) + +#define lua_pcallk(L, na, nr, err, ctx, cont) \ + lua_pcallk((L), (na), (nr), (err), (ctx), cont ## _52) + +#define lua_callk(L, na, nr, ctx, cont) \ + lua_callk((L), (na), (nr), (ctx), cont ## _52) + +#define lua_yieldk(L, nr, ctx, cont) \ + lua_yieldk((L), (nr), (ctx), cont ## _52) + +#ifdef lua_call +# undef lua_call +# define lua_call(L, na, nr) \ + (lua_callk)((L), (na), (nr), 0, NULL) +#endif + +#ifdef lua_pcall +# undef lua_pcall +# define lua_pcall(L, na, nr, err) \ + (lua_pcallk)((L), (na), (nr), (err), 0, NULL) +#endif + +#ifdef lua_yield +# undef lua_yield +# define lua_yield(L, nr) \ + (lua_yieldk)((L), (nr), 0, NULL) +#endif + +#endif /* Lua 5.2 only */ + +/* other Lua versions */ +#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 501 || LUA_VERSION_NUM > 504 + +# error "unsupported Lua version (i.e. not Lua 5.1, 5.2, or 5.3)" + +#endif /* other Lua versions except 5.1, 5.2, and 5.3 */ + +/* helper macro for defining continuation functions (for every version +* *except* Lua 5.2) */ +#ifndef LUA_KFUNCTION +#define LUA_KFUNCTION(_name) \ + static int (_name)(lua_State *L, int status, lua_KContext ctx) +#endif + +#if defined(COMPAT53_INCLUDE_SOURCE) && COMPAT53_INCLUDE_SOURCE == 1 +// beginning of sol/compatibility/compat-5.3.c + +#include <stdlib.h> +#include <ctype.h> +#include <errno.h> +#include <stdio.h> + +/* don't compile it again if it already is included via compat53.h */ +#ifndef KEPLER_PROJECT_COMPAT53_C_ +#define KEPLER_PROJECT_COMPAT53_C_ + +/* definitions for Lua 5.1 only */ +#if defined(LUA_VERSION_NUM) && LUA_VERSION_NUM == 501 + +#ifndef COMPAT53_FOPEN_NO_LOCK +# if defined(_MSC_VER) +# define COMPAT53_FOPEN_NO_LOCK 1 +# else /* otherwise */ +# define COMPAT53_FOPEN_NO_LOCK 0 +# endif /* VC++ only so far */ +#endif /* No-lock fopen_s usage if possible */ + +#if defined(_MSC_VER) && COMPAT53_FOPEN_NO_LOCK +# include <share.h> +#endif /* VC++ _fsopen for share-allowed file read */ + +#ifndef COMPAT53_HAVE_STRERROR_R +# if defined(__GLIBC__) || defined(_POSIX_VERSION) || defined(__APPLE__) || \ + (!defined (__MINGW32__) && defined(__GNUC__) && (__GNUC__ < 6)) +# define COMPAT53_HAVE_STRERROR_R 1 +# else /* none of the defines matched: define to 0 */ +# define COMPAT53_HAVE_STRERROR_R 0 +# endif /* have strerror_r of some form */ +#endif /* strerror_r */ + +#ifndef COMPAT53_HAVE_STRERROR_S +# if defined(_MSC_VER) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || \ + (defined(__STDC_LIB_EXT1__) && __STDC_LIB_EXT1__) +# define COMPAT53_HAVE_STRERROR_S 1 +# else /* not VC++ or C11 */ +# define COMPAT53_HAVE_STRERROR_S 0 +# endif /* strerror_s from VC++ or C11 */ +#endif /* strerror_s */ + +#ifndef COMPAT53_LUA_FILE_BUFFER_SIZE +# define COMPAT53_LUA_FILE_BUFFER_SIZE 4096 +#endif /* Lua File Buffer Size */ + +static char* compat53_strerror(int en, char* buff, size_t sz) { +#if COMPAT53_HAVE_STRERROR_R + /* use strerror_r here, because it's available on these specific platforms */ + if (sz > 0) { + buff[0] = '\0'; + /* we don't care whether the GNU version or the XSI version is used: */ + if (strerror_r(en, buff, sz)) { + /* Yes, we really DO want to ignore the return value! + * GCC makes that extra hard, not even a (void) cast will do. */ + } + if (buff[0] == '\0') { + /* Buffer is unchanged, so we probably have called GNU strerror_r which + * returned a static constant string. Chances are that strerror will + * return the same static constant string and therefore be thread-safe. */ + return strerror(en); + } + } + return buff; /* sz is 0 *or* strerror_r wrote into the buffer */ +#elif COMPAT53_HAVE_STRERROR_S + /* for MSVC and other C11 implementations, use strerror_s since it's + * provided by default by the libraries */ + strerror_s(buff, sz, en); + return buff; +#else + /* fallback, but strerror is not guaranteed to be threadsafe due to modifying + * errno itself and some impls not locking a static buffer for it ... but most + * known systems have threadsafe errno: this might only change if the locale + * is changed out from under someone while this function is being called */ + (void)buff; + (void)sz; + return strerror(en); +#endif +} + +COMPAT53_API int lua_absindex(lua_State *L, int i) { + if (i < 0 && i > LUA_REGISTRYINDEX) + i += lua_gettop(L) + 1; + return i; +} + +static void compat53_call_lua(lua_State *L, char const code[], size_t len, + int nargs, int nret) { + lua_rawgetp(L, LUA_REGISTRYINDEX, (void*)code); + if (lua_type(L, -1) != LUA_TFUNCTION) { + lua_pop(L, 1); + if (luaL_loadbuffer(L, code, len, "=none")) + lua_error(L); + lua_pushvalue(L, -1); + lua_rawsetp(L, LUA_REGISTRYINDEX, (void*)code); + } + lua_insert(L, -nargs - 1); + lua_call(L, nargs, nret); +} + +static const char compat53_arith_code[] = +"local op,a,b=...\n" +"if op==0 then return a+b\n" +"elseif op==1 then return a-b\n" +"elseif op==2 then return a*b\n" +"elseif op==3 then return a/b\n" +"elseif op==4 then return a%b\n" +"elseif op==5 then return a^b\n" +"elseif op==6 then return -a\n" +"end\n"; + +COMPAT53_API void lua_arith(lua_State *L, int op) { + if (op < LUA_OPADD || op > LUA_OPUNM) + luaL_error(L, "invalid 'op' argument for lua_arith"); + luaL_checkstack(L, 5, "not enough stack slots"); + if (op == LUA_OPUNM) + lua_pushvalue(L, -1); + lua_pushnumber(L, op); + lua_insert(L, -3); + compat53_call_lua(L, compat53_arith_code, + sizeof(compat53_arith_code) - 1, 3, 1); +} + +static const char compat53_compare_code[] = +"local a,b=...\n" +"return a<=b\n"; + +COMPAT53_API int lua_compare(lua_State *L, int idx1, int idx2, int op) { + int result = 0; + switch (op) { + case LUA_OPEQ: + return lua_equal(L, idx1, idx2); + case LUA_OPLT: + return lua_lessthan(L, idx1, idx2); + case LUA_OPLE: + luaL_checkstack(L, 5, "not enough stack slots"); + idx1 = lua_absindex(L, idx1); + idx2 = lua_absindex(L, idx2); + lua_pushvalue(L, idx1); + lua_pushvalue(L, idx2); + compat53_call_lua(L, compat53_compare_code, + sizeof(compat53_compare_code) - 1, 2, 1); + result = lua_toboolean(L, -1); + lua_pop(L, 1); + return result; + default: + luaL_error(L, "invalid 'op' argument for lua_compare"); + } + return 0; +} + +COMPAT53_API void lua_copy(lua_State *L, int from, int to) { + int abs_to = lua_absindex(L, to); + luaL_checkstack(L, 1, "not enough stack slots"); + lua_pushvalue(L, from); + lua_replace(L, abs_to); +} + +COMPAT53_API void lua_len(lua_State *L, int i) { + switch (lua_type(L, i)) { + case LUA_TSTRING: + lua_pushnumber(L, (lua_Number)lua_objlen(L, i)); + break; + case LUA_TTABLE: + if (!luaL_callmeta(L, i, "__len")) + lua_pushnumber(L, (lua_Number)lua_objlen(L, i)); + break; + case LUA_TUSERDATA: + if (luaL_callmeta(L, i, "__len")) + break; + /* FALLTHROUGH */ + default: + luaL_error(L, "attempt to get length of a %s value", + lua_typename(L, lua_type(L, i))); + } +} + +COMPAT53_API int lua_rawgetp(lua_State *L, int i, const void *p) { + int abs_i = lua_absindex(L, i); + lua_pushlightuserdata(L, (void*)p); + lua_rawget(L, abs_i); + return lua_type(L, -1); +} + +COMPAT53_API void lua_rawsetp(lua_State *L, int i, const void *p) { + int abs_i = lua_absindex(L, i); + luaL_checkstack(L, 1, "not enough stack slots"); + lua_pushlightuserdata(L, (void*)p); + lua_insert(L, -2); + lua_rawset(L, abs_i); +} + +COMPAT53_API lua_Number lua_tonumberx(lua_State *L, int i, int *isnum) { + lua_Number n = lua_tonumber(L, i); + if (isnum != NULL) { + *isnum = (n != 0 || lua_isnumber(L, i)); + } + return n; +} + +COMPAT53_API void luaL_checkversion(lua_State *L) { + (void)L; +} + +COMPAT53_API void luaL_checkstack(lua_State *L, int sp, const char *msg) { + if (!lua_checkstack(L, sp + LUA_MINSTACK)) { + if (msg != NULL) + luaL_error(L, "stack overflow (%s)", msg); + else { + lua_pushliteral(L, "stack overflow"); + lua_error(L); + } + } +} + +COMPAT53_API int luaL_getsubtable(lua_State *L, int i, const char *name) { + int abs_i = lua_absindex(L, i); + luaL_checkstack(L, 3, "not enough stack slots"); + lua_pushstring(L, name); + lua_gettable(L, abs_i); + if (lua_istable(L, -1)) + return 1; + lua_pop(L, 1); + lua_newtable(L); + lua_pushstring(L, name); + lua_pushvalue(L, -2); + lua_settable(L, abs_i); + return 0; +} + +COMPAT53_API lua_Integer luaL_len(lua_State *L, int i) { + lua_Integer res = 0; + int isnum = 0; + luaL_checkstack(L, 1, "not enough stack slots"); + lua_len(L, i); + res = lua_tointegerx(L, -1, &isnum); + lua_pop(L, 1); + if (!isnum) + luaL_error(L, "object length is not an integer"); + return res; +} + +COMPAT53_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup) { + luaL_checkstack(L, nup + 1, "too many upvalues"); + for (; l->name != NULL; l++) { /* fill the table with given functions */ + int i; + lua_pushstring(L, l->name); + for (i = 0; i < nup; i++) /* copy upvalues to the top */ + lua_pushvalue(L, -(nup + 1)); + lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */ + lua_settable(L, -(nup + 3)); /* table must be below the upvalues, the name and the closure */ + } + lua_pop(L, nup); /* remove upvalues */ +} + +COMPAT53_API void luaL_setmetatable(lua_State *L, const char *tname) { + luaL_checkstack(L, 1, "not enough stack slots"); + luaL_getmetatable(L, tname); + lua_setmetatable(L, -2); +} + +COMPAT53_API void *luaL_testudata(lua_State *L, int i, const char *tname) { + void *p = lua_touserdata(L, i); + luaL_checkstack(L, 2, "not enough stack slots"); + if (p == NULL || !lua_getmetatable(L, i)) + return NULL; + else { + int res = 0; + luaL_getmetatable(L, tname); + res = lua_rawequal(L, -1, -2); + lua_pop(L, 2); + if (!res) + p = NULL; + } + return p; +} + +static int compat53_countlevels(lua_State *L) { + lua_Debug ar; + int li = 1, le = 1; + /* find an upper bound */ + while (lua_getstack(L, le, &ar)) { li = le; le *= 2; } + /* do a binary search */ + while (li < le) { + int m = (li + le) / 2; + if (lua_getstack(L, m, &ar)) li = m + 1; + else le = m; + } + return le - 1; +} + +static int compat53_findfield(lua_State *L, int objidx, int level) { + if (level == 0 || !lua_istable(L, -1)) + return 0; /* not found */ + lua_pushnil(L); /* start 'next' loop */ + while (lua_next(L, -2)) { /* for each pair in table */ + if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */ + if (lua_rawequal(L, objidx, -1)) { /* found object? */ + lua_pop(L, 1); /* remove value (but keep name) */ + return 1; + } + else if (compat53_findfield(L, objidx, level - 1)) { /* try recursively */ + lua_remove(L, -2); /* remove table (but keep name) */ + lua_pushliteral(L, "."); + lua_insert(L, -2); /* place '.' between the two names */ + lua_concat(L, 3); + return 1; + } + } + lua_pop(L, 1); /* remove value */ + } + return 0; /* not found */ +} + +static int compat53_pushglobalfuncname(lua_State *L, lua_Debug *ar) { + int top = lua_gettop(L); + lua_getinfo(L, "f", ar); /* push function */ + lua_pushvalue(L, LUA_GLOBALSINDEX); + if (compat53_findfield(L, top + 1, 2)) { + lua_copy(L, -1, top + 1); /* move name to proper place */ + lua_pop(L, 2); /* remove pushed values */ + return 1; + } + else { + lua_settop(L, top); /* remove function and global table */ + return 0; + } +} + +static void compat53_pushfuncname(lua_State *L, lua_Debug *ar) { + if (*ar->namewhat != '\0') /* is there a name? */ + lua_pushfstring(L, "function " LUA_QS, ar->name); + else if (*ar->what == 'm') /* main? */ + lua_pushliteral(L, "main chunk"); + else if (*ar->what == 'C') { + if (compat53_pushglobalfuncname(L, ar)) { + lua_pushfstring(L, "function " LUA_QS, lua_tostring(L, -1)); + lua_remove(L, -2); /* remove name */ + } + else + lua_pushliteral(L, "?"); + } + else + lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined); +} + +#define COMPAT53_LEVELS1 12 /* size of the first part of the stack */ +#define COMPAT53_LEVELS2 10 /* size of the second part of the stack */ + +COMPAT53_API void luaL_traceback(lua_State *L, lua_State *L1, + const char *msg, int level) { + lua_Debug ar; + int top = lua_gettop(L); + int numlevels = compat53_countlevels(L1); + int mark = (numlevels > COMPAT53_LEVELS1 + COMPAT53_LEVELS2) ? COMPAT53_LEVELS1 : 0; + if (msg) lua_pushfstring(L, "%s\n", msg); + lua_pushliteral(L, "stack traceback:"); + while (lua_getstack(L1, level++, &ar)) { + if (level == mark) { /* too many levels? */ + lua_pushliteral(L, "\n\t..."); /* add a '...' */ + level = numlevels - COMPAT53_LEVELS2; /* and skip to last ones */ + } + else { + lua_getinfo(L1, "Slnt", &ar); + lua_pushfstring(L, "\n\t%s:", ar.short_src); + if (ar.currentline > 0) + lua_pushfstring(L, "%d:", ar.currentline); + lua_pushliteral(L, " in "); + compat53_pushfuncname(L, &ar); + lua_concat(L, lua_gettop(L) - top); + } + } + lua_concat(L, lua_gettop(L) - top); +} + +COMPAT53_API int luaL_fileresult(lua_State *L, int stat, const char *fname) { + const char *serr = NULL; + int en = errno; /* calls to Lua API may change this value */ + char buf[512] = { 0 }; + if (stat) { + lua_pushboolean(L, 1); + return 1; + } + else { + lua_pushnil(L); + serr = compat53_strerror(en, buf, sizeof(buf)); + if (fname) + lua_pushfstring(L, "%s: %s", fname, serr); + else + lua_pushstring(L, serr); + lua_pushnumber(L, (lua_Number)en); + return 3; + } +} + +static int compat53_checkmode(lua_State *L, const char *mode, const char *modename, int err) { + if (mode && strchr(mode, modename[0]) == NULL) { + lua_pushfstring(L, "attempt to load a %s chunk (mode is '%s')", modename, mode); + return err; + } + return LUA_OK; +} + +typedef struct { + lua_Reader reader; + void *ud; + int has_peeked_data; + const char *peeked_data; + size_t peeked_data_size; +} compat53_reader_data; + +static const char *compat53_reader(lua_State *L, void *ud, size_t *size) { + compat53_reader_data *data = (compat53_reader_data *)ud; + if (data->has_peeked_data) { + data->has_peeked_data = 0; + *size = data->peeked_data_size; + return data->peeked_data; + } + else + return data->reader(L, data->ud, size); +} + +COMPAT53_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char *source, const char *mode) { + int status = LUA_OK; + compat53_reader_data compat53_data = { reader, data, 1, 0, 0 }; + compat53_data.peeked_data = reader(L, data, &(compat53_data.peeked_data_size)); + if (compat53_data.peeked_data && compat53_data.peeked_data_size && + compat53_data.peeked_data[0] == LUA_SIGNATURE[0]) /* binary file? */ + status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX); + else + status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX); + if (status != LUA_OK) + return status; + /* we need to call the original 5.1 version of lua_load! */ +#undef lua_load + return lua_load(L, compat53_reader, &compat53_data, source); +#define lua_load COMPAT53_CONCAT(COMPAT53_PREFIX, _load_53) +} + +typedef struct { + int n; /* number of pre-read characters */ + FILE *f; /* file being read */ + char buff[COMPAT53_LUA_FILE_BUFFER_SIZE]; /* area for reading file */ +} compat53_LoadF; + +static const char *compat53_getF(lua_State *L, void *ud, size_t *size) { + compat53_LoadF *lf = (compat53_LoadF *)ud; + (void)L; /* not used */ + if (lf->n > 0) { /* are there pre-read characters to be read? */ + *size = lf->n; /* return them (chars already in buffer) */ + lf->n = 0; /* no more pre-read characters */ + } + else { /* read a block from file */ + /* 'fread' can return > 0 *and* set the EOF flag. If next call to + 'compat53_getF' called 'fread', it might still wait for user input. + The next check avoids this problem. */ + if (feof(lf->f)) return NULL; + *size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */ + } + return lf->buff; +} + +static int compat53_errfile(lua_State *L, const char *what, int fnameindex) { + char buf[512] = { 0 }; + const char *serr = compat53_strerror(errno, buf, sizeof(buf)); + const char *filename = lua_tostring(L, fnameindex) + 1; + lua_pushfstring(L, "cannot %s %s: %s", what, filename, serr); + lua_remove(L, fnameindex); + return LUA_ERRFILE; +} + +static int compat53_skipBOM(compat53_LoadF *lf) { + const char *p = "\xEF\xBB\xBF"; /* UTF-8 BOM mark */ + int c; + lf->n = 0; + do { + c = getc(lf->f); + if (c == EOF || c != *(const unsigned char *)p++) return c; + lf->buff[lf->n++] = (char)c; /* to be read by the parser */ + } while (*p != '\0'); + lf->n = 0; /* prefix matched; discard it */ + return getc(lf->f); /* return next character */ +} + +/* +** reads the first character of file 'f' and skips an optional BOM mark +** in its beginning plus its first line if it starts with '#'. Returns +** true if it skipped the first line. In any case, '*cp' has the +** first "valid" character of the file (after the optional BOM and +** a first-line comment). +*/ +static int compat53_skipcomment(compat53_LoadF *lf, int *cp) { + int c = *cp = compat53_skipBOM(lf); + if (c == '#') { /* first line is a comment (Unix exec. file)? */ + do { /* skip first line */ + c = getc(lf->f); + } while (c != EOF && c != '\n'); + *cp = getc(lf->f); /* skip end-of-line, if present */ + return 1; /* there was a comment */ + } + else return 0; /* no comment */ +} + +COMPAT53_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode) { + compat53_LoadF lf; + int status, readstatus; + int c; + int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */ + if (filename == NULL) { + lua_pushliteral(L, "=stdin"); + lf.f = stdin; + } + else { + lua_pushfstring(L, "@%s", filename); +#if defined(_MSC_VER) + /* This code is here to stop a deprecation error that stops builds + * if a certain macro is defined. While normally not caring would + * be best, some header-only libraries and builds can't afford to + * dictate this to the user. A quick check shows that fopen_s this + * goes back to VS 2005, and _fsopen goes back to VS 2003 .NET, + * possibly even before that so we don't need to do any version + * number checks, since this has been there since forever. */ + + /* TO USER: if you want the behavior of typical fopen_s/fopen, + * which does lock the file on VC++, define the macro used below to 0 */ +#if COMPAT53_FOPEN_NO_LOCK + lf.f = _fsopen(filename, "r", _SH_DENYNO); /* do not lock the file in any way */ + if (lf.f == NULL) + return compat53_errfile(L, "open", fnameindex); +#else /* use default locking version */ + if (fopen_s(&lf.f, filename, "r") != 0) + return compat53_errfile(L, "open", fnameindex); +#endif /* Locking vs. No-locking fopen variants */ +#else + lf.f = fopen(filename, "r"); /* default stdlib doesn't forcefully lock files here */ + if (lf.f == NULL) return compat53_errfile(L, "open", fnameindex); +#endif + } + if (compat53_skipcomment(&lf, &c)) /* read initial portion */ + lf.buff[lf.n++] = '\n'; /* add line to correct line numbers */ + if (c == LUA_SIGNATURE[0] && filename) { /* binary file? */ +#if defined(_MSC_VER) + if (freopen_s(&lf.f, filename, "rb", lf.f) != 0) + return compat53_errfile(L, "reopen", fnameindex); +#else + lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */ + if (lf.f == NULL) return compat53_errfile(L, "reopen", fnameindex); +#endif + compat53_skipcomment(&lf, &c); /* re-read initial portion */ + } + if (c != EOF) + lf.buff[lf.n++] = (char)c; /* 'c' is the first character of the stream */ + status = lua_load(L, &compat53_getF, &lf, lua_tostring(L, -1), mode); + readstatus = ferror(lf.f); + if (filename) fclose(lf.f); /* close file (even in case of errors) */ + if (readstatus) { + lua_settop(L, fnameindex); /* ignore results from 'lua_load' */ + return compat53_errfile(L, "read", fnameindex); + } + lua_remove(L, fnameindex); + return status; +} + +COMPAT53_API int luaL_loadbufferx(lua_State *L, const char *buff, size_t sz, const char *name, const char *mode) { + int status = LUA_OK; + if (sz > 0 && buff[0] == LUA_SIGNATURE[0]) { + status = compat53_checkmode(L, mode, "binary", LUA_ERRSYNTAX); + } + else { + status = compat53_checkmode(L, mode, "text", LUA_ERRSYNTAX); + } + if (status != LUA_OK) + return status; + return luaL_loadbuffer(L, buff, sz, name); +} + +#if !defined(l_inspectstat) && \ + (defined(unix) || defined(__unix) || defined(__unix__) || \ + defined(__TOS_AIX__) || defined(_SYSTYPE_BSD) || \ + (defined(__APPLE__) && defined(__MACH__))) +/* some form of unix; check feature macros in unistd.h for details */ +# include <unistd.h> +/* check posix version; the relevant include files and macros probably +* were available before 2001, but I'm not sure */ +# if defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L +# include <sys/wait.h> +# define l_inspectstat(stat,what) \ + if (WIFEXITED(stat)) { stat = WEXITSTATUS(stat); } \ + else if (WIFSIGNALED(stat)) { stat = WTERMSIG(stat); what = "signal"; } +# endif +#endif + +/* provide default (no-op) version */ +#if !defined(l_inspectstat) +# define l_inspectstat(stat,what) ((void)0) +#endif + +COMPAT53_API int luaL_execresult(lua_State *L, int stat) { + const char *what = "exit"; + if (stat == -1) + return luaL_fileresult(L, 0, NULL); + else { + l_inspectstat(stat, what); + if (*what == 'e' && stat == 0) + lua_pushboolean(L, 1); + else + lua_pushnil(L); + lua_pushstring(L, what); + lua_pushinteger(L, stat); + return 3; + } +} + +COMPAT53_API void luaL_buffinit(lua_State *L, luaL_Buffer_53 *B) { + /* make it crash if used via pointer to a 5.1-style luaL_Buffer */ + B->b.p = NULL; + B->b.L = NULL; + B->b.lvl = 0; + /* reuse the buffer from the 5.1-style luaL_Buffer though! */ + B->ptr = B->b.buffer; + B->capacity = LUAL_BUFFERSIZE; + B->nelems = 0; + B->L2 = L; +} + +COMPAT53_API char *luaL_prepbuffsize(luaL_Buffer_53 *B, size_t s) { + if (B->capacity - B->nelems < s) { /* needs to grow */ + char* newptr = NULL; + size_t newcap = B->capacity * 2; + if (newcap - B->nelems < s) + newcap = B->nelems + s; + if (newcap < B->capacity) /* overflow */ + luaL_error(B->L2, "buffer too large"); + newptr = (char*)lua_newuserdata(B->L2, newcap); + memcpy(newptr, B->ptr, B->nelems); + if (B->ptr != B->b.buffer) + lua_replace(B->L2, -2); /* remove old buffer */ + B->ptr = newptr; + B->capacity = newcap; + } + return B->ptr + B->nelems; +} + +COMPAT53_API void luaL_addlstring(luaL_Buffer_53 *B, const char *s, size_t l) { + memcpy(luaL_prepbuffsize(B, l), s, l); + luaL_addsize(B, l); +} + +COMPAT53_API void luaL_addvalue(luaL_Buffer_53 *B) { + size_t len = 0; + const char *s = lua_tolstring(B->L2, -1, &len); + if (!s) + luaL_error(B->L2, "cannot convert value to string"); + if (B->ptr != B->b.buffer) + lua_insert(B->L2, -2); /* userdata buffer must be at stack top */ + luaL_addlstring(B, s, len); + lua_remove(B->L2, B->ptr != B->b.buffer ? -2 : -1); +} + +void luaL_pushresult(luaL_Buffer_53 *B) { + lua_pushlstring(B->L2, B->ptr, B->nelems); + if (B->ptr != B->b.buffer) + lua_replace(B->L2, -2); /* remove userdata buffer */ +} + +#endif /* Lua 5.1 */ + +/* definitions for Lua 5.1 and Lua 5.2 */ +#if defined( LUA_VERSION_NUM ) && LUA_VERSION_NUM <= 502 + +COMPAT53_API int lua_geti(lua_State *L, int index, lua_Integer i) { + index = lua_absindex(L, index); + lua_pushinteger(L, i); + lua_gettable(L, index); + return lua_type(L, -1); +} + +COMPAT53_API int lua_isinteger(lua_State *L, int index) { + if (lua_type(L, index) == LUA_TNUMBER) { + lua_Number n = lua_tonumber(L, index); + lua_Integer i = lua_tointeger(L, index); + if (i == n) + return 1; + } + return 0; +} + +COMPAT53_API lua_Integer lua_tointegerx(lua_State *L, int i, int *isnum) { + int ok = 0; + lua_Number n = lua_tonumberx(L, i, &ok); + if (ok) { + if (n == (lua_Integer)n) { + if (isnum) + *isnum = 1; + return (lua_Integer)n; + } + } + if (isnum) + *isnum = 0; + return 0; +} + +static void compat53_reverse(lua_State *L, int a, int b) { + for (; a < b; ++a, --b) { + lua_pushvalue(L, a); + lua_pushvalue(L, b); + lua_replace(L, a); + lua_replace(L, b); + } +} + +COMPAT53_API void lua_rotate(lua_State *L, int idx, int n) { + int n_elems = 0; + idx = lua_absindex(L, idx); + n_elems = lua_gettop(L) - idx + 1; + if (n < 0) + n += n_elems; + if (n > 0 && n < n_elems) { + luaL_checkstack(L, 2, "not enough stack slots available"); + n = n_elems - n; + compat53_reverse(L, idx, idx + n - 1); + compat53_reverse(L, idx + n, idx + n_elems - 1); + compat53_reverse(L, idx, idx + n_elems - 1); + } +} + +COMPAT53_API void lua_seti(lua_State *L, int index, lua_Integer i) { + luaL_checkstack(L, 1, "not enough stack slots available"); + index = lua_absindex(L, index); + lua_pushinteger(L, i); + lua_insert(L, -2); + lua_settable(L, index); +} + +#if !defined(lua_str2number) +# define lua_str2number(s, p) strtod((s), (p)) +#endif + +COMPAT53_API size_t lua_stringtonumber(lua_State *L, const char *s) { + char* endptr; + lua_Number n = lua_str2number(s, &endptr); + if (endptr != s) { + while (*endptr != '\0' && isspace((unsigned char)*endptr)) + ++endptr; + if (*endptr == '\0') { + lua_pushnumber(L, n); + return endptr - s + 1; + } + } + return 0; +} + +COMPAT53_API const char *luaL_tolstring(lua_State *L, int idx, size_t *len) { + if (!luaL_callmeta(L, idx, "__tostring")) { + int t = lua_type(L, idx), tt = 0; + char const* name = NULL; + switch (t) { + case LUA_TNIL: + lua_pushliteral(L, "nil"); + break; + case LUA_TSTRING: + case LUA_TNUMBER: + lua_pushvalue(L, idx); + break; + case LUA_TBOOLEAN: + if (lua_toboolean(L, idx)) + lua_pushliteral(L, "true"); + else + lua_pushliteral(L, "false"); + break; + default: + tt = luaL_getmetafield(L, idx, "__name"); + name = (tt == LUA_TSTRING) ? lua_tostring(L, -1) : lua_typename(L, t); + lua_pushfstring(L, "%s: %p", name, lua_topointer(L, idx)); + if (tt != LUA_TNIL) + lua_replace(L, -2); + break; + } + } + else { + if (!lua_isstring(L, -1)) + luaL_error(L, "'__tostring' must return a string"); + } + return lua_tolstring(L, -1, len); +} + +COMPAT53_API void luaL_requiref(lua_State *L, const char *modname, + lua_CFunction openf, int glb) { + luaL_checkstack(L, 3, "not enough stack slots available"); + luaL_getsubtable(L, LUA_REGISTRYINDEX, "_LOADED"); + if (lua_getfield(L, -1, modname) == LUA_TNIL) { + lua_pop(L, 1); + lua_pushcfunction(L, openf); + lua_pushstring(L, modname); + lua_call(L, 1, 1); + lua_pushvalue(L, -1); + lua_setfield(L, -3, modname); + } + if (glb) { + lua_pushvalue(L, -1); + lua_setglobal(L, modname); + } + lua_replace(L, -2); +} + +#endif /* Lua 5.1 and 5.2 */ + +#endif /* KEPLER_PROJECT_COMPAT53_C_ */ + +/********************************************************************* +* This file contains parts of Lua 5.2's and Lua 5.3's source code: +* +* Copyright (C) 1994-2014 Lua.org, PUC-Rio. +* +* Permission is hereby granted, free of charge, to any person obtaining +* a copy of this software and associated documentation files (the +* "Software"), to deal in the Software without restriction, including +* without limitation the rights to use, copy, modify, merge, publish, +* distribute, sublicense, and/or sell copies of the Software, and to +* permit persons to whom the Software is furnished to do so, subject to +* the following conditions: +* +* The above copyright notice and this permission notice shall be +* included in all copies or substantial portions of the Software. +* +* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE +* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +*********************************************************************/ + +// end of sol/compatibility/compat-5.3.c + +#endif + +#endif /* KEPLER_PROJECT_COMPAT53_H_ */ + +// end of sol/compatibility/compat-5.3.h + + +#endif // SOL_NO_COMPAT + +// end of sol/compatibility.hpp + +// beginning of sol/in_place.hpp + +#include <utility> + +namespace sol { + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + using in_place_t = std::in_place_t; + constexpr std::in_place_t in_place{}; + constexpr std::in_place_t in_place_of{}; + + template <typename T> + using in_place_type_t = std::in_place_type_t<T>; + template <typename T> + constexpr std::in_place_type_t<T> in_place_type{}; + + template <size_t I> + using in_place_index_t = std::in_place_index_t<I>; + template <size_t I> + constexpr in_place_index_t<I> in_place_index{}; +#else + namespace detail { + struct in_place_of_tag {}; + template <std::size_t I> + struct in_place_of_i {}; + template <typename T> + struct in_place_of_t {}; + } // namespace detail + + struct in_place_tag { + constexpr in_place_tag() = default; + }; + + constexpr inline in_place_tag in_place(detail::in_place_of_tag) { + return in_place_tag(); + } + template <typename T> + constexpr inline in_place_tag in_place(detail::in_place_of_t<T>) { + return in_place_tag(); + } + template <std::size_t I> + constexpr inline in_place_tag in_place(detail::in_place_of_i<I>) { + return in_place_tag(); + } + + constexpr inline in_place_tag in_place_of(detail::in_place_of_tag) { + return in_place_tag(); + } + template <typename T> + constexpr inline in_place_tag in_place_type(detail::in_place_of_t<T>) { + return in_place_tag(); + } + template <std::size_t I> + constexpr inline in_place_tag in_place_index(detail::in_place_of_i<I>) { + return in_place_tag(); + } + + using in_place_t = in_place_tag (&)(detail::in_place_of_tag); + template <typename T> + using in_place_type_t = in_place_tag (&)(detail::in_place_of_t<T>); + template <std::size_t I> + using in_place_index_t = in_place_tag (&)(detail::in_place_of_i<I>); +#endif + +} // namespace sol + +// end of sol/in_place.hpp + +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST +#include <boost/optional.hpp> +#else +// beginning of sol/optional_implementation.hpp + +#include <initializer_list> +#include <cassert> +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS +#include <cstdlib> +#endif // Exceptions + +#define TR2_OPTIONAL_REQUIRES(...) typename ::std::enable_if<__VA_ARGS__::value, bool>::type = false + +#if defined __GNUC__ // NOTE: GNUC is also defined for Clang +#if (__GNUC__ >= 5) +#define TR2_OPTIONAL_GCC_5_0_AND_HIGHER___ +#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___ +#elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 8) +#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___ +#elif (__GNUC__ > 4) +#define TR2_OPTIONAL_GCC_4_8_AND_HIGHER___ +#endif +# +#if (__GNUC__ == 4) && (__GNUC_MINOR__ >= 7) +#define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___ +#elif (__GNUC__ > 4) +#define TR2_OPTIONAL_GCC_4_7_AND_HIGHER___ +#endif +# +#if (__GNUC__ == 4) && (__GNUC_MINOR__ == 8) && (__GNUC_PATCHLEVEL__ >= 1) +#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ +#elif (__GNUC__ == 4) && (__GNUC_MINOR__ >= 9) +#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ +#elif (__GNUC__ > 4) +#define TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ +#endif +#endif +# +#if defined __clang_major__ +#if (__clang_major__ == 3 && __clang_minor__ >= 5) +#define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ +#elif (__clang_major__ > 3) +#define TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ +#endif +#if defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ +#define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_ +#elif (__clang_major__ == 3 && __clang_minor__ == 4 && __clang_patchlevel__ >= 2) +#define TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_ +#endif +#endif +# +#if defined _MSC_VER +#if (_MSC_VER >= 1900) +#define TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ +#endif +#endif + +#if defined __clang__ +#if (__clang_major__ > 2) || (__clang_major__ == 2) && (__clang_minor__ >= 9) +#define OPTIONAL_HAS_THIS_RVALUE_REFS 1 +#else +#define OPTIONAL_HAS_THIS_RVALUE_REFS 0 +#endif +#elif defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ +#define OPTIONAL_HAS_THIS_RVALUE_REFS 1 +#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ +#define OPTIONAL_HAS_THIS_RVALUE_REFS 1 +#else +#define OPTIONAL_HAS_THIS_RVALUE_REFS 0 +#endif + +#if defined TR2_OPTIONAL_GCC_4_8_1_AND_HIGHER___ +#define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 1 +#define OPTIONAL_CONSTEXPR_INIT_LIST constexpr +#else +#define OPTIONAL_HAS_CONSTEXPR_INIT_LIST 0 +#define OPTIONAL_CONSTEXPR_INIT_LIST +#endif + +#if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || (defined TR2_OPTIONAL_CLANG_3_5_AND_HIGHTER_ && (defined __cplusplus) && (__cplusplus != 201103L)) +#define OPTIONAL_HAS_MOVE_ACCESSORS 1 +#else +#define OPTIONAL_HAS_MOVE_ACCESSORS 0 +#endif + +#// In C++11 constexpr implies const, so we need to make non-const members also non-constexpr +#if defined(TR2_OPTIONAL_MSVC_2015_AND_HIGHER___) || ((defined __cplusplus) && (__cplusplus == 201103L)) +#define OPTIONAL_MUTABLE_CONSTEXPR +#else +#define OPTIONAL_MUTABLE_CONSTEXPR constexpr +#endif + +#if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ +#pragma warning(push) +#pragma warning(disable : 4814) +#endif + +namespace sol { + + // BEGIN workaround for missing is_trivially_destructible +#if defined TR2_OPTIONAL_GCC_4_8_AND_HIGHER___ + // leave it: it is already there +#elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_ + // leave it: it is already there +#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ + // leave it: it is already there +#elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS + // leave it: the user doesn't want it +#else + template <typename T> + using is_trivially_destructible = ::std::has_trivial_destructor<T>; +#endif + // END workaround for missing is_trivially_destructible + +#if (defined TR2_OPTIONAL_GCC_4_7_AND_HIGHER___) + // leave it; our metafunctions are already defined. +#elif defined TR2_OPTIONAL_CLANG_3_4_2_AND_HIGHER_ + // leave it; our metafunctions are already defined. +#elif defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ + // leave it: it is already there +#elif defined TR2_OPTIONAL_DISABLE_EMULATION_OF_TYPE_TRAITS + // leave it: the user doesn't want it +#else + + // workaround for missing traits in GCC and CLANG + template <class T> + struct is_nothrow_move_constructible { + static constexprbool value = ::std::is_nothrow_constructible<T, T&&>::value; + }; + + template <class T, class U> + struct is_assignable { + template <class X, class Y> + static constexprbool has_assign(...) { + return false; + } + + template <class X, class Y, size_t S = sizeof((::std::declval<X>() = ::std::declval<Y>(), true))> + // the comma operator is necessary for the cases where operator= returns void + static constexprbool has_assign(bool) { + return true; + } + + static constexprbool value = has_assign<T, U>(true); + }; + + template <class T> + struct is_nothrow_move_assignable { + template <class X, bool has_any_move_assign> + struct has_nothrow_move_assign { + static constexprbool value = false; + }; + + template <class X> + struct has_nothrow_move_assign<X, true> { + static constexprbool value = noexcept(::std::declval<X&>() = ::std::declval<X&&>()); + }; + + static constexprbool value = has_nothrow_move_assign<T, is_assignable<T&, T&&>::value>::value; + }; + // end workaround + +#endif + + // 20.5.4, optional for object types + template <class T> + class optional; + + // 20.5.5, optional for lvalue reference types + template <class T> + class optional<T&>; + + // workaround: std utility functions aren't constexpr yet + template <class T> + inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type& t) noexcept { + return static_cast<T&&>(t); + } + + template <class T> + inline constexpr T&& constexpr_forward(typename ::std::remove_reference<T>::type&& t) noexcept { + static_assert(!::std::is_lvalue_reference<T>::value, "!!"); + return static_cast<T&&>(t); + } + + template <class T> + inline constexpr typename ::std::remove_reference<T>::type&& constexpr_move(T&& t) noexcept { + return static_cast<typename ::std::remove_reference<T>::type&&>(t); + } + +#if defined NDEBUG +#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR) +#else +#define TR2_OPTIONAL_ASSERTED_EXPRESSION(CHECK, EXPR) ((CHECK) ? (EXPR) : ([] { assert(!#CHECK); }(), (EXPR))) +#endif + + namespace detail_ { + + // static_addressof: a constexpr version of addressof + template <typename T> + struct has_overloaded_addressof { + template <class X> + static constexpr bool has_overload(...) { + return false; + } + + template <class X, size_t S = sizeof(::std::declval<X&>().operator&())> + static constexpr bool has_overload(bool) { + return true; + } + + static constexpr bool value = has_overload<T>(true); + }; + + template <typename T, TR2_OPTIONAL_REQUIRES(!has_overloaded_addressof<T>)> + constexpr T* static_addressof(T& ref) { + return &ref; + } + + template <typename T, TR2_OPTIONAL_REQUIRES(has_overloaded_addressof<T>)> + T* static_addressof(T& ref) { + return ::std::addressof(ref); + } + + // the call to convert<A>(b) has return type A and converts b to type A iff b decltype(b) is implicitly convertible to A + template <class U> + constexpr U convert(U v) { + return v; + } + + } // namespace detail_ + + constexpr struct trivial_init_t { + } trivial_init{}; + + // 20.5.7, Disengaged state indicator + struct nullopt_t { + struct init {}; + constexpr explicit nullopt_t(init) { + } + }; + constexpr nullopt_t nullopt{nullopt_t::init()}; + + // 20.5.8, class bad_optional_access + class bad_optional_access : public ::std::logic_error { + public: + explicit bad_optional_access(const ::std::string& what_arg) + : ::std::logic_error{what_arg} { + } + explicit bad_optional_access(const char* what_arg) + : ::std::logic_error{what_arg} { + } + }; + + template <class T> + struct alignas(T) optional_base { + char storage_[sizeof(T)]; + bool init_; + + constexpr optional_base() noexcept + : storage_(), init_(false){}; + + explicit optional_base(const T& v) + : storage_(), init_(true) { + new (&storage()) T(v); + } + + explicit optional_base(T&& v) + : storage_(), init_(true) { + new (&storage()) T(constexpr_move(v)); + } + + template <class... Args> + explicit optional_base(in_place_t, Args&&... args) + : init_(true), storage_() { + new (&storage()) T(constexpr_forward<Args>(args)...); + } + + template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)> + explicit optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args) + : init_(true), storage_() { + new (&storage()) T(il, constexpr_forward<Args>(args)...); + } +#if defined __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wstrict-aliasing" +#endif + T& storage() { + return *reinterpret_cast<T*>(&storage_[0]); + } + + constexpr const T& storage() const { + return *reinterpret_cast<T const*>(&storage_[0]); + } +#if defined __GNUC__ +#pragma GCC diagnostic pop +#endif + + ~optional_base() { + if (init_) { + storage().T::~T(); + } + } + }; + +#if defined __GNUC__ && !defined TR2_OPTIONAL_GCC_5_0_AND_HIGHER___ + // Sorry, GCC 4.x; you're just a piece of shit + template <typename T> + using constexpr_optional_base = optional_base<T>; +#else + template <class T> + struct alignas(T) constexpr_optional_base { + char storage_[sizeof(T)]; + bool init_; + constexpr constexpr_optional_base() noexcept + : storage_(), init_(false) { + } + + explicit constexpr constexpr_optional_base(const T& v) + : storage_(), init_(true) { + new (&storage()) T(v); + } + + explicit constexpr constexpr_optional_base(T&& v) + : storage_(), init_(true) { + new (&storage()) T(constexpr_move(v)); + } + + template <class... Args> + explicit constexpr constexpr_optional_base(in_place_t, Args&&... args) + : init_(true), storage_() { + new (&storage()) T(constexpr_forward<Args>(args)...); + } + + template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)> + OPTIONAL_CONSTEXPR_INIT_LIST explicit constexpr_optional_base(in_place_t, ::std::initializer_list<U> il, Args&&... args) + : init_(true), storage_() { + new (&storage()) T(il, constexpr_forward<Args>(args)...); + } + +#if defined __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wstrict-aliasing" +#endif + T& storage() { + return (*reinterpret_cast<T*>(&storage_[0])); + } + + constexpr const T& storage() const { + return (*reinterpret_cast<T const*>(&storage_[0])); + } +#if defined __GNUC__ +#pragma GCC diagnostic pop +#endif + + ~constexpr_optional_base() = default; + }; +#endif + + template <class T> + using OptionalBase = typename ::std::conditional< + ::std::is_trivially_destructible<T>::value, + constexpr_optional_base<typename ::std::remove_const<T>::type>, + optional_base<typename ::std::remove_const<T>::type>>::type; + + template <class T> + class optional : private OptionalBase<T> { + static_assert(!::std::is_same<typename ::std::decay<T>::type, nullopt_t>::value, "bad T"); + static_assert(!::std::is_same<typename ::std::decay<T>::type, in_place_t>::value, "bad T"); + + constexpr bool initialized() const noexcept { + return OptionalBase<T>::init_; + } + typename ::std::remove_const<T>::type* dataptr() { + return ::std::addressof(OptionalBase<T>::storage()); + } + constexpr const T* dataptr() const { + return detail_::static_addressof(OptionalBase<T>::storage()); + } + +#if OPTIONAL_HAS_THIS_RVALUE_REFS == 1 + constexpr const T& contained_val() const& { + return OptionalBase<T>::storage(); + } +#if OPTIONAL_HAS_MOVE_ACCESSORS == 1 + OPTIONAL_MUTABLE_CONSTEXPR T&& contained_val() && { + return ::std::move(OptionalBase<T>::storage()); + } + OPTIONAL_MUTABLE_CONSTEXPR T& contained_val() & { + return OptionalBase<T>::storage(); + } +#else + T& contained_val() & { + return OptionalBase<T>::storage(); + } + T&& contained_val() && { + return ::std::move(OptionalBase<T>::storage()); + } +#endif +#else + constexpr const T& contained_val() const { + return OptionalBase<T>::storage(); + } + T& contained_val() { + return OptionalBase<T>::storage(); + } +#endif + + void clear() noexcept { + if (initialized()) + dataptr()->T::~T(); + OptionalBase<T>::init_ = false; + } + + template <class... Args> + void initialize(Args&&... args) noexcept(noexcept(T(::std::forward<Args>(args)...))) { + assert(!OptionalBase<T>::init_); + ::new (static_cast<void*>(dataptr())) T(::std::forward<Args>(args)...); + OptionalBase<T>::init_ = true; + } + + template <class U, class... Args> + void initialize(::std::initializer_list<U> il, Args&&... args) noexcept(noexcept(T(il, ::std::forward<Args>(args)...))) { + assert(!OptionalBase<T>::init_); + ::new (static_cast<void*>(dataptr())) T(il, ::std::forward<Args>(args)...); + OptionalBase<T>::init_ = true; + } + + public: + typedef T value_type; + + // 20.5.5.1, constructors + constexpr optional() noexcept + : OptionalBase<T>(){}; + constexpr optional(nullopt_t) noexcept + : OptionalBase<T>(){}; + + optional(const optional& rhs) + : OptionalBase<T>() { + if (rhs.initialized()) { + ::new (static_cast<void*>(dataptr())) T(*rhs); + OptionalBase<T>::init_ = true; + } + } + + optional(const optional<T&>& rhs) + : optional() { + if (rhs) { + ::new (static_cast<void*>(dataptr())) T(*rhs); + OptionalBase<T>::init_ = true; + } + } + + optional(optional&& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value) + : OptionalBase<T>() { + if (rhs.initialized()) { + ::new (static_cast<void*>(dataptr())) T(::std::move(*rhs)); + OptionalBase<T>::init_ = true; + } + } + + constexpr optional(const T& v) + : OptionalBase<T>(v) { + } + + constexpr optional(T&& v) + : OptionalBase<T>(constexpr_move(v)) { + } + + template <class... Args> + explicit constexpr optional(in_place_t, Args&&... args) + : OptionalBase<T>(in_place, constexpr_forward<Args>(args)...) { + } + + template <class U, class... Args, TR2_OPTIONAL_REQUIRES(::std::is_constructible<T, ::std::initializer_list<U>>)> + OPTIONAL_CONSTEXPR_INIT_LIST explicit optional(in_place_t, ::std::initializer_list<U> il, Args&&... args) + : OptionalBase<T>(in_place, il, constexpr_forward<Args>(args)...) { + } + + // 20.5.4.2, Destructor + ~optional() = default; + + // 20.5.4.3, assignment + optional& operator=(nullopt_t) noexcept { + clear(); + return *this; + } + + optional& operator=(const optional& rhs) { + if (initialized() == true && rhs.initialized() == false) + clear(); + else if (initialized() == false && rhs.initialized() == true) + initialize(*rhs); + else if (initialized() == true && rhs.initialized() == true) + contained_val() = *rhs; + return *this; + } + + optional& operator=(optional&& rhs) noexcept(::std::is_nothrow_move_assignable<T>::value&& ::std::is_nothrow_move_constructible<T>::value) { + if (initialized() == true && rhs.initialized() == false) + clear(); + else if (initialized() == false && rhs.initialized() == true) + initialize(::std::move(*rhs)); + else if (initialized() == true && rhs.initialized() == true) + contained_val() = ::std::move(*rhs); + return *this; + } + + template <class U> + auto operator=(U&& v) + -> typename ::std::enable_if< + ::std::is_same<typename ::std::decay<U>::type, T>::value, + optional&>::type { + if (initialized()) { + contained_val() = ::std::forward<U>(v); + } + else { + initialize(::std::forward<U>(v)); + } + return *this; + } + + template <class... Args> + void emplace(Args&&... args) { + clear(); + initialize(::std::forward<Args>(args)...); + } + + template <class U, class... Args> + void emplace(::std::initializer_list<U> il, Args&&... args) { + clear(); + initialize<U, Args...>(il, ::std::forward<Args>(args)...); + } + + // 20.5.4.4, Swap + void swap(optional<T>& rhs) noexcept(::std::is_nothrow_move_constructible<T>::value&& noexcept(swap(::std::declval<T&>(), ::std::declval<T&>()))) { + if (initialized() == true && rhs.initialized() == false) { + rhs.initialize(::std::move(**this)); + clear(); + } + else if (initialized() == false && rhs.initialized() == true) { + initialize(::std::move(*rhs)); + rhs.clear(); + } + else if (initialized() == true && rhs.initialized() == true) { + using ::std::swap; + swap(**this, *rhs); + } + } + + // 20.5.4.5, Observers + + explicit constexpr operator bool() const noexcept { + return initialized(); + } + + constexpr T const* operator->() const { + return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), dataptr()); + } + +#if OPTIONAL_HAS_MOVE_ACCESSORS == 1 + + OPTIONAL_MUTABLE_CONSTEXPR T* operator->() { + assert(initialized()); + return dataptr(); + } + + constexpr T const& operator*() const& { + return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val()); + } + + OPTIONAL_MUTABLE_CONSTEXPR T& operator*() & { + assert(initialized()); + return contained_val(); + } + + OPTIONAL_MUTABLE_CONSTEXPR T&& operator*() && { + assert(initialized()); + return constexpr_move(contained_val()); + } + + constexpr T const& value() const& { + return initialized() ? contained_val() +#ifdef SOL_NO_EXCEPTIONS + // we can't abort here + // because there's no constexpr abort + : *static_cast<T*>(nullptr); +#else + : (throw bad_optional_access("bad optional access"), contained_val()); +#endif + } + + OPTIONAL_MUTABLE_CONSTEXPR T& value() & { + return initialized() ? contained_val() +#ifdef SOL_NO_EXCEPTIONS + : *static_cast<T*>(nullptr); +#else + : (throw bad_optional_access("bad optional access"), contained_val()); +#endif + } + + OPTIONAL_MUTABLE_CONSTEXPR T&& value() && { + return initialized() ? contained_val() +#ifdef SOL_NO_EXCEPTIONS + // we can't abort here + // because there's no constexpr abort + : std::move(*static_cast<T*>(nullptr)); +#else + : (throw bad_optional_access("bad optional access"), contained_val()); +#endif + } + +#else + + T* operator->() { + assert(initialized()); + return dataptr(); + } + + constexpr T const& operator*() const { + return TR2_OPTIONAL_ASSERTED_EXPRESSION(initialized(), contained_val()); + } + + T& operator*() { + assert(initialized()); + return contained_val(); + } + + constexpr T const& value() const { + return initialized() ? contained_val() +#ifdef SOL_NO_EXCEPTIONS + // we can't abort here + // because there's no constexpr abort + : *static_cast<T*>(nullptr); +#else + : (throw bad_optional_access("bad optional access"), contained_val()); +#endif + } + + T& value() { + return initialized() ? contained_val() +#ifdef SOL_NO_EXCEPTIONS + // we can abort here + // but the others are constexpr, so we can't... + : (std::abort(), *static_cast<T*>(nullptr)); +#else + : (throw bad_optional_access("bad optional access"), contained_val()); +#endif + } + +#endif + +#if OPTIONAL_HAS_THIS_RVALUE_REFS == 1 + + template <class V> + constexpr T value_or(V&& v) const& { + return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v)); + } + +#if OPTIONAL_HAS_MOVE_ACCESSORS == 1 + + template <class V> + OPTIONAL_MUTABLE_CONSTEXPR T value_or(V&& v) && { + return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v)); + } + +#else + + template <class V> + T value_or(V&& v) && { + return *this ? constexpr_move(const_cast<optional<T>&>(*this).contained_val()) : detail_::convert<T>(constexpr_forward<V>(v)); + } + +#endif + +#else + + template <class V> + constexpr T value_or(V&& v) const { + return *this ? **this : detail_::convert<T>(constexpr_forward<V>(v)); + } + +#endif + }; + + template <class T> + class optional<T&> { + static_assert(!::std::is_same<T, nullopt_t>::value, "bad T"); + static_assert(!::std::is_same<T, in_place_t>::value, "bad T"); + T* ref; + + public: + // 20.5.5.1, construction/destruction + constexpr optional() noexcept + : ref(nullptr) { + } + + constexpr optional(nullopt_t) noexcept + : ref(nullptr) { + } + + constexpr optional(T& v) noexcept + : ref(detail_::static_addressof(v)) { + } + + optional(T&&) = delete; + + constexpr optional(const optional& rhs) noexcept + : ref(rhs.ref) { + } + + explicit constexpr optional(in_place_t, T& v) noexcept + : ref(detail_::static_addressof(v)) { + } + + explicit optional(in_place_t, T&&) = delete; + + ~optional() = default; + + // 20.5.5.2, mutation + optional& operator=(nullopt_t) noexcept { + ref = nullptr; + return *this; + } + + // optional& operator=(const optional& rhs) noexcept { + // ref = rhs.ref; + // return *this; + // } + + // optional& operator=(optional&& rhs) noexcept { + // ref = rhs.ref; + // return *this; + // } + + template <typename U> + auto operator=(U&& rhs) noexcept + -> typename ::std::enable_if< + ::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value, + optional&>::type { + ref = rhs.ref; + return *this; + } + + template <typename U> + auto operator=(U&& rhs) noexcept + -> typename ::std::enable_if< + !::std::is_same<typename ::std::decay<U>::type, optional<T&>>::value, + optional&>::type = delete; + + void emplace(T& v) noexcept { + ref = detail_::static_addressof(v); + } + + void emplace(T&&) = delete; + + void swap(optional<T&>& rhs) noexcept { + ::std::swap(ref, rhs.ref); + } + + // 20.5.5.3, observers + constexpr T* operator->() const { + return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, ref); + } + + constexpr T& operator*() const { + return TR2_OPTIONAL_ASSERTED_EXPRESSION(ref, *ref); + } + + constexpr T& value() const { +#ifdef SOL_NO_EXCEPTIONS + return *ref; +#else + return ref ? *ref + : (throw bad_optional_access("bad optional access"), *ref); +#endif // Exceptions + } + + explicit constexpr operator bool() const noexcept { + return ref != nullptr; + } + + template <typename V> + constexpr T& value_or(V&& v) const { + return *this ? **this : detail_::convert<T&>(constexpr_forward<V>(v)); + } + }; + + template <class T> + class optional<T&&> { + static_assert(sizeof(T) == 0, "optional rvalue references disallowed"); + }; + + // 20.5.8, Relational operators + template <class T> + constexpr bool operator==(const optional<T>& x, const optional<T>& y) { + return bool(x) != bool(y) ? false : bool(x) == false ? true : *x == *y; + } + + template <class T> + constexpr bool operator!=(const optional<T>& x, const optional<T>& y) { + return !(x == y); + } + + template <class T> + constexpr bool operator<(const optional<T>& x, const optional<T>& y) { + return (!y) ? false : (!x) ? true : *x < *y; + } + + template <class T> + constexpr bool operator>(const optional<T>& x, const optional<T>& y) { + return (y < x); + } + + template <class T> + constexpr bool operator<=(const optional<T>& x, const optional<T>& y) { + return !(y < x); + } + + template <class T> + constexpr bool operator>=(const optional<T>& x, const optional<T>& y) { + return !(x < y); + } + + // 20.5.9, Comparison with nullopt + template <class T> + constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept { + return (!x); + } + + template <class T> + constexpr bool operator==(nullopt_t, const optional<T>& x) noexcept { + return (!x); + } + + template <class T> + constexpr bool operator!=(const optional<T>& x, nullopt_t) noexcept { + return bool(x); + } + + template <class T> + constexpr bool operator!=(nullopt_t, const optional<T>& x) noexcept { + return bool(x); + } + + template <class T> + constexpr bool operator<(const optional<T>&, nullopt_t) noexcept { + return false; + } + + template <class T> + constexpr bool operator<(nullopt_t, const optional<T>& x) noexcept { + return bool(x); + } + + template <class T> + constexpr bool operator<=(const optional<T>& x, nullopt_t) noexcept { + return (!x); + } + + template <class T> + constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept { + return true; + } + + template <class T> + constexpr bool operator>(const optional<T>& x, nullopt_t) noexcept { + return bool(x); + } + + template <class T> + constexpr bool operator>(nullopt_t, const optional<T>&) noexcept { + return false; + } + + template <class T> + constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept { + return true; + } + + template <class T> + constexpr bool operator>=(nullopt_t, const optional<T>& x) noexcept { + return (!x); + } + + // 20.5.10, Comparison with T + template <class T> + constexpr bool operator==(const optional<T>& x, const T& v) { + return bool(x) ? *x == v : false; + } + + template <class T> + constexpr bool operator==(const T& v, const optional<T>& x) { + return bool(x) ? v == *x : false; + } + + template <class T> + constexpr bool operator!=(const optional<T>& x, const T& v) { + return bool(x) ? *x != v : true; + } + + template <class T> + constexpr bool operator!=(const T& v, const optional<T>& x) { + return bool(x) ? v != *x : true; + } + + template <class T> + constexpr bool operator<(const optional<T>& x, const T& v) { + return bool(x) ? *x < v : true; + } + + template <class T> + constexpr bool operator>(const T& v, const optional<T>& x) { + return bool(x) ? v > *x : true; + } + + template <class T> + constexpr bool operator>(const optional<T>& x, const T& v) { + return bool(x) ? *x > v : false; + } + + template <class T> + constexpr bool operator<(const T& v, const optional<T>& x) { + return bool(x) ? v < *x : false; + } + + template <class T> + constexpr bool operator>=(const optional<T>& x, const T& v) { + return bool(x) ? *x >= v : false; + } + + template <class T> + constexpr bool operator<=(const T& v, const optional<T>& x) { + return bool(x) ? v <= *x : false; + } + + template <class T> + constexpr bool operator<=(const optional<T>& x, const T& v) { + return bool(x) ? *x <= v : true; + } + + template <class T> + constexpr bool operator>=(const T& v, const optional<T>& x) { + return bool(x) ? v >= *x : true; + } + + // Comparison of optional<T&> with T + template <class T> + constexpr bool operator==(const optional<T&>& x, const T& v) { + return bool(x) ? *x == v : false; + } + + template <class T> + constexpr bool operator==(const T& v, const optional<T&>& x) { + return bool(x) ? v == *x : false; + } + + template <class T> + constexpr bool operator!=(const optional<T&>& x, const T& v) { + return bool(x) ? *x != v : true; + } + + template <class T> + constexpr bool operator!=(const T& v, const optional<T&>& x) { + return bool(x) ? v != *x : true; + } + + template <class T> + constexpr bool operator<(const optional<T&>& x, const T& v) { + return bool(x) ? *x < v : true; + } + + template <class T> + constexpr bool operator>(const T& v, const optional<T&>& x) { + return bool(x) ? v > *x : true; + } + + template <class T> + constexpr bool operator>(const optional<T&>& x, const T& v) { + return bool(x) ? *x > v : false; + } + + template <class T> + constexpr bool operator<(const T& v, const optional<T&>& x) { + return bool(x) ? v < *x : false; + } + + template <class T> + constexpr bool operator>=(const optional<T&>& x, const T& v) { + return bool(x) ? *x >= v : false; + } + + template <class T> + constexpr bool operator<=(const T& v, const optional<T&>& x) { + return bool(x) ? v <= *x : false; + } + + template <class T> + constexpr bool operator<=(const optional<T&>& x, const T& v) { + return bool(x) ? *x <= v : true; + } + + template <class T> + constexpr bool operator>=(const T& v, const optional<T&>& x) { + return bool(x) ? v >= *x : true; + } + + // Comparison of optional<T const&> with T + template <class T> + constexpr bool operator==(const optional<const T&>& x, const T& v) { + return bool(x) ? *x == v : false; + } + + template <class T> + constexpr bool operator==(const T& v, const optional<const T&>& x) { + return bool(x) ? v == *x : false; + } + + template <class T> + constexpr bool operator!=(const optional<const T&>& x, const T& v) { + return bool(x) ? *x != v : true; + } + + template <class T> + constexpr bool operator!=(const T& v, const optional<const T&>& x) { + return bool(x) ? v != *x : true; + } + + template <class T> + constexpr bool operator<(const optional<const T&>& x, const T& v) { + return bool(x) ? *x < v : true; + } + + template <class T> + constexpr bool operator>(const T& v, const optional<const T&>& x) { + return bool(x) ? v > *x : true; + } + + template <class T> + constexpr bool operator>(const optional<const T&>& x, const T& v) { + return bool(x) ? *x > v : false; + } + + template <class T> + constexpr bool operator<(const T& v, const optional<const T&>& x) { + return bool(x) ? v < *x : false; + } + + template <class T> + constexpr bool operator>=(const optional<const T&>& x, const T& v) { + return bool(x) ? *x >= v : false; + } + + template <class T> + constexpr bool operator<=(const T& v, const optional<const T&>& x) { + return bool(x) ? v <= *x : false; + } + + template <class T> + constexpr bool operator<=(const optional<const T&>& x, const T& v) { + return bool(x) ? *x <= v : true; + } + + template <class T> + constexpr bool operator>=(const T& v, const optional<const T&>& x) { + return bool(x) ? v >= *x : true; + } + + // 20.5.12, Specialized algorithms + template <class T> + void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y))) { + x.swap(y); + } + + template <class T> + constexpr optional<typename ::std::decay<T>::type> make_optional(T&& v) { + return optional<typename ::std::decay<T>::type>(constexpr_forward<T>(v)); + } + + template <class X> + constexpr optional<X&> make_optional(::std::reference_wrapper<X> v) { + return optional<X&>(v.get()); + } + +} // namespace sol + +namespace std { + template <typename T> + struct hash<sol::optional<T>> { + typedef typename hash<T>::result_type result_type; + typedef sol::optional<T> argument_type; + + constexpr result_type operator()(argument_type const& arg) const { + return arg ? ::std::hash<T>{}(*arg) : result_type{}; + } + }; + + template <typename T> + struct hash<sol::optional<T&>> { + typedef typename hash<T>::result_type result_type; + typedef sol::optional<T&> argument_type; + + constexpr result_type operator()(argument_type const& arg) const { + return arg ? ::std::hash<T>{}(*arg) : result_type{}; + } + }; +} // namespace std + +#if defined TR2_OPTIONAL_MSVC_2015_AND_HIGHER___ +#pragma warning(pop) +#endif + +#undef TR2_OPTIONAL_REQUIRES +#undef TR2_OPTIONAL_ASSERTED_EXPRESSION + +// end of sol/optional_implementation.hpp + +#endif // Boost vs. Better optional + +namespace sol { + +#if defined(SOL_USE_BOOST) && SOL_USE_BOOST + template <typename T> + using optional = boost::optional<T>; + using nullopt_t = boost::none_t; + const nullopt_t nullopt = boost::none; +#endif // Boost vs. Better optional + + namespace meta { + template <typename T> + struct is_optional : std::false_type {}; + template <typename T> + struct is_optional<optional<T>> : std::true_type {}; + } // namespace meta +} // namespace sol + +// end of sol/optional.hpp + +// beginning of sol/forward_detail.hpp + +namespace sol { + namespace detail { + const bool default_safe_function_calls = +#if defined(SOL_SAFE_FUNCTION_CALLS) && SOL_SAFE_FUNCTION_CALLS + true; +#else + false; +#endif + } // namespace detail + + namespace meta { + namespace meta_detail { + } + } // namespace meta::meta_detail + + namespace stack { + namespace stack_detail { + template <typename T> + struct undefined_metatable; + } + } // namespace stack::stack_detail + + namespace usertype_detail { + template <typename T, typename Regs, typename Fx> + void insert_default_registrations(Regs& l, int& index, Fx&& fx); + + template <typename T, typename Regs, meta::enable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> = meta::enabler> + void make_destructor(Regs& l, int& index); + template <typename T, typename Regs, meta::disable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> = meta::enabler> + void make_destructor(Regs& l, int& index); + } // namespace usertype_detail +} // namespace sol + +// end of sol/forward_detail.hpp + +// beginning of sol/raii.hpp + +namespace sol { + namespace detail { + struct default_construct { + template <typename T, typename... Args> + static void construct(T&& obj, Args&&... args) { + typedef meta::unqualified_t<T> Tu; + std::allocator<Tu> alloc{}; + std::allocator_traits<std::allocator<Tu>>::construct(alloc, std::forward<T>(obj), std::forward<Args>(args)...); + } + + template <typename T, typename... Args> + void operator()(T&& obj, Args&&... args) const { + construct(std::forward<T>(obj), std::forward<Args>(args)...); + } + }; + + struct default_destruct { + template <typename T> + static void destroy(T&& obj) { + std::allocator<meta::unqualified_t<T>> alloc{}; + alloc.destroy(obj); + } + + template <typename T> + void operator()(T&& obj) const { + destroy(std::forward<T>(obj)); + } + }; + + struct deleter { + template <typename T> + void operator()(T* p) const { + delete p; + } + }; + + struct state_deleter { + void operator()(lua_State* L) const { + lua_close(L); + } + }; + + template <typename T, typename Dx, typename... Args> + inline std::unique_ptr<T, Dx> make_unique_deleter(Args&&... args) { + return std::unique_ptr<T, Dx>(new T(std::forward<Args>(args)...)); + } + + template <typename Tag, typename T> + struct tagged { + T value; + template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, tagged>> = meta::enabler> + tagged(Arg&& arg, Args&&... args) + : value(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + }; + } // namespace detail + + template <typename... Args> + struct constructor_list {}; + + template <typename... Args> + using constructors = constructor_list<Args...>; + + const auto default_constructor = constructors<types<>>{}; + + struct no_construction {}; + const auto no_constructor = no_construction{}; + + struct call_construction {}; + const auto call_constructor = call_construction{}; + + template <typename... Functions> + struct constructor_wrapper { + std::tuple<Functions...> functions; + template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler> + constructor_wrapper(Arg&& arg, Args&&... args) + : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + }; + + template <typename... Functions> + inline auto initializers(Functions&&... functions) { + return constructor_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...); + } + + template <typename... Functions> + struct factory_wrapper { + std::tuple<Functions...> functions; + template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, factory_wrapper>> = meta::enabler> + factory_wrapper(Arg&& arg, Args&&... args) + : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + }; + + template <typename... Functions> + inline auto factories(Functions&&... functions) { + return factory_wrapper<std::decay_t<Functions>...>(std::forward<Functions>(functions)...); + } + + template <typename Function> + struct destructor_wrapper { + Function fx; + destructor_wrapper(Function f) + : fx(std::move(f)) { + } + }; + + template <> + struct destructor_wrapper<void> {}; + + const destructor_wrapper<void> default_destructor{}; + + template <typename Fx> + inline auto destructor(Fx&& fx) { + return destructor_wrapper<std::decay_t<Fx>>(std::forward<Fx>(fx)); + } + +} // namespace sol + +// end of sol/raii.hpp + +// beginning of sol/filters.hpp + +namespace sol { + namespace detail { + struct filter_base_tag {}; + } // namespace detail + + template <int Target, int... In> + struct static_stack_dependencies : detail::filter_base_tag {}; + typedef static_stack_dependencies<-1, 1> self_dependency; + template <int... In> + struct returns_self_with : detail::filter_base_tag {}; + typedef returns_self_with<> returns_self; + + struct stack_dependencies : detail::filter_base_tag { + int target; + std::array<int, 64> stack_indices; + std::size_t len; + + template <typename... Args> + stack_dependencies(int stack_target, Args&&... args) + : target(stack_target), stack_indices(), len(sizeof...(Args)) { + std::size_t i = 0; + (void)detail::swallow{int(), (stack_indices[i++] = static_cast<int>(std::forward<Args>(args)), int())...}; + } + + int& operator[](std::size_t i) { + return stack_indices[i]; + } + + const int& operator[](std::size_t i) const { + return stack_indices[i]; + } + + std::size_t size() const { + return len; + } + }; + + template <typename F, typename... Filters> + struct filter_wrapper { + typedef std::index_sequence_for<Filters...> indices; + + F value; + std::tuple<Filters...> filters; + + template <typename Fx, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Fx>, filter_wrapper>>> = meta::enabler> + filter_wrapper(Fx&& fx, Args&&... args) + : value(std::forward<Fx>(fx)), filters(std::forward<Args>(args)...) { + } + + filter_wrapper(const filter_wrapper&) = default; + filter_wrapper& operator=(const filter_wrapper&) = default; + filter_wrapper(filter_wrapper&&) = default; + filter_wrapper& operator=(filter_wrapper&&) = default; + }; + + template <typename F, typename... Args> + auto filters(F&& f, Args&&... args) { + return filter_wrapper<std::decay_t<F>, std::decay_t<Args>...>(std::forward<F>(f), std::forward<Args>(args)...); + } +} // namespace sol + +// end of sol/filters.hpp + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#include <optional> +#ifdef SOL_STD_VARIANT +#include <variant> +#endif +#endif // C++17 +#ifdef SOL_USE_BOOST +#include <boost/unordered_map.hpp> +#else +#include <unordered_map> +#endif // Using Boost + +namespace sol { + namespace usertype_detail { +#if defined(SOL_USE_BOOST) +#if defined(SOL_CXX17_FEATURES) + template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>> + using map_t = boost::unordered_map<K, V, H, E>; +#else + template <typename K, typename V, typename H = boost::hash<K>, typename E = std::equal_to<>> + using map_t = boost::unordered_map<K, V, H, E>; +#endif // C++17 or not, WITH boost +#else + template <typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<>> + using map_t = std::unordered_map<K, V, H, E>; +#endif // Boost map target + } // namespace usertype_detail + + namespace detail { +#ifdef SOL_NOEXCEPT_FUNCTION_TYPE + typedef int (*lua_CFunction_noexcept)(lua_State* L) noexcept; +#else + typedef int (*lua_CFunction_noexcept)(lua_State* L); +#endif // noexcept function type for lua_CFunction + + template <typename T> + struct unique_usertype {}; + + template <typename T> + struct implicit_wrapper { + T& item; + implicit_wrapper(T* item) + : item(*item) { + } + implicit_wrapper(T& item) + : item(item) { + } + operator T&() { + return item; + } + operator T*() { + return std::addressof(item); + } + }; + + struct unchecked_t {}; + const unchecked_t unchecked = unchecked_t{}; + + struct yield_tag_t {}; + const yield_tag_t yield_tag = yield_tag_t{}; + } // namespace detail + + struct lua_nil_t {}; + const lua_nil_t lua_nil{}; + inline bool operator==(lua_nil_t, lua_nil_t) { + return true; + } + inline bool operator!=(lua_nil_t, lua_nil_t) { + return false; + } + typedef lua_nil_t nil_t; +#if !defined(SOL_NO_NIL) || (SOL_NO_NIL == 0) + const nil_t nil{}; +#endif + + namespace detail { + struct non_lua_nil_t {}; + } // namespace detail + + struct metatable_t {}; + const metatable_t metatable_key = {}; + + struct env_t {}; + const env_t env_key = {}; + + struct no_metatable_t {}; + const no_metatable_t no_metatable = {}; + + template <typename T> + struct yielding_t { + T func; + + yielding_t() = default; + yielding_t(const yielding_t&) = default; + yielding_t(yielding_t&&) = default; + yielding_t& operator=(const yielding_t&) = default; + yielding_t& operator=(yielding_t&&) = default; + template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, yielding_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> + yielding_t(Arg&& arg) + : func(std::forward<Arg>(arg)) { + } + template <typename Arg0, typename Arg1, typename... Args> + yielding_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) + : func(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { + } + }; + + template <typename F> + inline yielding_t<std::decay_t<F>> yielding(F&& f) { + return yielding_t<std::decay_t<F>>(std::forward<F>(f)); + } + + typedef std::remove_pointer_t<lua_CFunction> lua_CFunction_ref; + + template <typename T> + struct unique_usertype_traits { + typedef T type; + typedef T actual_type; + template <typename X> + using rebind_base = void; + + static const bool value = false; + + template <typename U> + static bool is_null(U&&) { + return false; + } + + template <typename U> + static auto get(U&& value) { + return std::addressof(detail::deref(value)); + } + }; + + template <typename T> + struct unique_usertype_traits<std::shared_ptr<T>> { + typedef T type; + typedef std::shared_ptr<T> actual_type; + // rebind is non-void + // if and only if unique usertype + // is cast-capable + template <typename X> + using rebind_base = std::shared_ptr<X>; + + static const bool value = true; + + static bool is_null(const actual_type& p) { + return p == nullptr; + } + + static type* get(const actual_type& p) { + return p.get(); + } + }; + + template <typename T, typename D> + struct unique_usertype_traits<std::unique_ptr<T, D>> { + typedef T type; + typedef std::unique_ptr<T, D> actual_type; + template <typename X> + using rebind_base = void; + + static const bool value = true; + + static bool is_null(const actual_type& p) { + return p == nullptr; + } + + static type* get(const actual_type& p) { + return p.get(); + } + }; + + template <typename T> + struct non_null {}; + + template <typename... Args> + struct function_sig {}; + + struct upvalue_index { + int index; + upvalue_index(int idx) + : index(lua_upvalueindex(idx)) { + } + + operator int() const { + return index; + } + }; + + struct raw_index { + int index; + raw_index(int i) + : index(i) { + } + + operator int() const { + return index; + } + }; + + struct absolute_index { + int index; + absolute_index(lua_State* L, int idx) + : index(lua_absindex(L, idx)) { + } + + operator int() const { + return index; + } + }; + + struct ref_index { + int index; + ref_index(int idx) + : index(idx) { + } + + operator int() const { + return index; + } + }; + + struct stack_count { + int count; + + stack_count(int cnt) + : count(cnt) { + } + }; + + struct lightuserdata_value { + void* value; + lightuserdata_value(void* data) + : value(data) { + } + operator void*() const { + return value; + } + }; + + struct userdata_value { + void* value; + userdata_value(void* data) + : value(data) { + } + operator void*() const { + return value; + } + }; + + template <typename L> + struct light { + L* value; + + light(L& x) + : value(std::addressof(x)) { + } + light(L* x) + : value(x) { + } + light(void* x) + : value(static_cast<L*>(x)) { + } + operator L*() const { + return value; + } + operator L&() const { + return *value; + } + }; + + template <typename T> + auto make_light(T& l) { + typedef meta::unwrapped_t<std::remove_pointer_t<std::remove_pointer_t<T>>> L; + return light<L>(l); + } + + template <typename U> + struct user { + U value; + + user(U&& x) + : value(std::forward<U>(x)) { + } + operator std::add_pointer_t<std::remove_reference_t<U>>() { + return std::addressof(value); + } + operator std::add_lvalue_reference_t<U>() { + return value; + } + operator std::add_const_t<std::add_lvalue_reference_t<U>>&() const { + return value; + } + }; + + template <typename T> + auto make_user(T&& u) { + typedef meta::unwrapped_t<meta::unqualified_t<T>> U; + return user<U>(std::forward<T>(u)); + } + + template <typename T> + struct metatable_registry_key { + T key; + + metatable_registry_key(T key) + : key(std::forward<T>(key)) { + } + }; + + template <typename T> + auto meta_registry_key(T&& key) { + typedef meta::unqualified_t<T> K; + return metatable_registry_key<K>(std::forward<T>(key)); + } + + template <typename... Upvalues> + struct closure { + lua_CFunction c_function; + std::tuple<Upvalues...> upvalues; + closure(lua_CFunction f, Upvalues... targetupvalues) + : c_function(f), upvalues(std::forward<Upvalues>(targetupvalues)...) { + } + }; + + template <> + struct closure<> { + lua_CFunction c_function; + int upvalues; + closure(lua_CFunction f, int upvalue_count = 0) + : c_function(f), upvalues(upvalue_count) { + } + }; + + typedef closure<> c_closure; + + template <typename... Args> + closure<Args...> make_closure(lua_CFunction f, Args&&... args) { + return closure<Args...>(f, std::forward<Args>(args)...); + } + + template <typename Sig, typename... Ps> + struct function_arguments { + std::tuple<Ps...> arguments; + template <typename Arg, typename... Args, meta::disable<std::is_same<meta::unqualified_t<Arg>, function_arguments>> = meta::enabler> + function_arguments(Arg&& arg, Args&&... args) + : arguments(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + }; + + template <typename Sig = function_sig<>, typename... Args> + auto as_function(Args&&... args) { + return function_arguments<Sig, std::decay_t<Args>...>(std::forward<Args>(args)...); + } + + template <typename Sig = function_sig<>, typename... Args> + auto as_function_reference(Args&&... args) { + return function_arguments<Sig, Args...>(std::forward<Args>(args)...); + } + + template <typename T> + struct as_table_t { + T source; + + as_table_t() = default; + as_table_t(const as_table_t&) = default; + as_table_t(as_table_t&&) = default; + as_table_t& operator=(const as_table_t&) = default; + as_table_t& operator=(as_table_t&&) = default; + template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, as_table_t>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> + as_table_t(Arg&& arg) + : source(std::forward<Arg>(arg)) { + } + template <typename Arg0, typename Arg1, typename... Args> + as_table_t(Arg0&& arg0, Arg1&& arg1, Args&&... args) + : source(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { + } + + operator std::add_lvalue_reference_t<T>() { + return source; + } + }; + + template <typename T> + struct nested { + T source; + + nested() = default; + nested(const nested&) = default; + nested(nested&&) = default; + nested& operator=(const nested&) = default; + nested& operator=(nested&&) = default; + template <typename Arg, meta::enable<meta::neg<std::is_same<meta::unqualified_t<Arg>, nested>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<Arg>>>> = meta::enabler> + nested(Arg&& arg) + : source(std::forward<Arg>(arg)) { + } + template <typename Arg0, typename Arg1, typename... Args> + nested(Arg0&& arg0, Arg1&& arg1, Args&&... args) + : source(std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...) { + } + + operator std::add_lvalue_reference_t<T>() { + return source; + } + }; + + template <typename T> + as_table_t<T> as_table_ref(T&& container) { + return as_table_t<T>(std::forward<T>(container)); + } + + template <typename T> + as_table_t<meta::unqualified_t<T>> as_table(T&& container) { + return as_table_t<meta::unqualified_t<T>>(std::forward<T>(container)); + } + + template <typename T> + nested<T> as_nested_ref(T&& container) { + return nested<T>(std::forward<T>(container)); + } + + template <typename T> + nested<meta::unqualified_t<T>> as_nested(T&& container) { + return nested<meta::unqualified_t<T>>(std::forward<T>(container)); + } + + struct this_state { + lua_State* L; + + this_state(lua_State* Ls) + : L(Ls) { + } + + operator lua_State*() const noexcept { + return lua_state(); + } + + lua_State* operator->() const noexcept { + return lua_state(); + } + + lua_State* lua_state() const noexcept { + return L; + } + }; + + struct this_main_state { + lua_State* L; + + this_main_state(lua_State* Ls) + : L(Ls) { + } + + operator lua_State*() const noexcept { + return lua_state(); + } + + lua_State* operator->() const noexcept { + return lua_state(); + } + + lua_State* lua_state() const noexcept { + return L; + } + }; + + struct new_table { + int sequence_hint = 0; + int map_hint = 0; + + new_table() = default; + new_table(const new_table&) = default; + new_table(new_table&&) = default; + new_table& operator=(const new_table&) = default; + new_table& operator=(new_table&&) = default; + + new_table(int sequence_hint, int map_hint = 0) + : sequence_hint(sequence_hint), map_hint(map_hint) { + } + }; + + enum class lib : char { + // print, assert, and other base functions + base, + // require and other package functions + package, + // coroutine functions and utilities + coroutine, + // string library + string, + // functionality from the OS + os, + // all things math + math, + // the table manipulator and observer functions + table, + // the debug library + debug, + // the bit library: different based on which you're using + bit32, + // input/output library + io, + // LuaJIT only + ffi, + // LuaJIT only + jit, + // library for handling utf8: new to Lua + utf8, + // do not use + count + }; + + enum class call_syntax { + dot = 0, + colon = 1 + }; + + enum class load_mode { + any = 0, + text = 1, + binary = 2, + }; + + enum class call_status : int { + ok = LUA_OK, + yielded = LUA_YIELD, + runtime = LUA_ERRRUN, + memory = LUA_ERRMEM, + handler = LUA_ERRERR, + gc = LUA_ERRGCMM, + syntax = LUA_ERRSYNTAX, + file = LUA_ERRFILE, + }; + + enum class thread_status : int { + ok = LUA_OK, + yielded = LUA_YIELD, + runtime = LUA_ERRRUN, + memory = LUA_ERRMEM, + gc = LUA_ERRGCMM, + handler = LUA_ERRERR, + dead = -1, + }; + + enum class load_status : int { + ok = LUA_OK, + syntax = LUA_ERRSYNTAX, + memory = LUA_ERRMEM, + gc = LUA_ERRGCMM, + file = LUA_ERRFILE, + }; + + enum class type : int { + none = LUA_TNONE, + lua_nil = LUA_TNIL, +#if !defined(SOL_NO_NIL) + nil = lua_nil, +#endif // Objective C/C++ Keyword that's found in OSX SDK and OBJC -- check for all forms to protect + string = LUA_TSTRING, + number = LUA_TNUMBER, + thread = LUA_TTHREAD, + boolean = LUA_TBOOLEAN, + function = LUA_TFUNCTION, + userdata = LUA_TUSERDATA, + lightuserdata = LUA_TLIGHTUSERDATA, + table = LUA_TTABLE, + poly = -0xFFFF + }; + + inline const std::string& to_string(call_status c) { + static const std::array<std::string, 10> names{ { "ok", + "yielded", + "runtime", + "memory", + "handler", + "gc", + "syntax", + "file", + "CRITICAL_EXCEPTION_FAILURE", + "CRITICAL_INDETERMINATE_STATE_FAILURE" } }; + switch (c) { + case call_status::ok: + return names[0]; + case call_status::yielded: + return names[1]; + case call_status::runtime: + return names[2]; + case call_status::memory: + return names[3]; + case call_status::handler: + return names[4]; + case call_status::gc: + return names[5]; + case call_status::syntax: + return names[6]; + case call_status::file: + return names[7]; + } + if (static_cast<std::ptrdiff_t>(c) == -1) { + // One of the many cases where a critical exception error has occurred + return names[8]; + } + return names[9]; + } + + inline bool is_indeterminate_call_failure(call_status c) { + switch (c) { + case call_status::ok: + case call_status::yielded: + case call_status::runtime: + case call_status::memory: + case call_status::handler: + case call_status::gc: + case call_status::syntax: + case call_status::file: + return false; + } + return true; + } + + inline const std::string& to_string(load_status c) { + static const std::array<std::string, 7> names{ { "ok", + "memory", + "gc", + "syntax", + "file", + "CRITICAL_EXCEPTION_FAILURE", + "CRITICAL_INDETERMINATE_STATE_FAILURE" } }; + switch (c) { + case load_status::ok: + return names[0]; + case load_status::memory: + return names[1]; + case load_status::gc: + return names[2]; + case load_status::syntax: + return names[3]; + case load_status::file: + return names[4]; + } + if (static_cast<int>(c) == -1) { + // One of the many cases where a critical exception error has occurred + return names[5]; + } + return names[6]; + } + + inline const std::string& to_string(load_mode c) { + static const std::array<std::string, 3> names{ { + "bt", + "t", + "b", + } }; + return names[static_cast<std::size_t>(c)]; + } + + enum class meta_function { + construct, + index, + new_index, + mode, + call, + call_function = call, + metatable, + to_string, + length, + unary_minus, + addition, + subtraction, + multiplication, + division, + modulus, + power_of, + involution = power_of, + concatenation, + equal_to, + less_than, + less_than_or_equal_to, + garbage_collect, + floor_division, + bitwise_left_shift, + bitwise_right_shift, + bitwise_not, + bitwise_and, + bitwise_or, + bitwise_xor, + pairs, + ipairs, + next, + type, + type_info, + }; + + typedef meta_function meta_method; + + inline const std::array<std::string, 32>& meta_function_names() { + static const std::array<std::string, 32> names = { { "new", + "__index", + "__newindex", + "__mode", + "__call", + "__mt", + "__tostring", + "__len", + "__unm", + "__add", + "__sub", + "__mul", + "__div", + "__mod", + "__pow", + "__concat", + "__eq", + "__lt", + "__le", + "__gc", + + "__idiv", + "__shl", + "__shr", + "__bnot", + "__band", + "__bor", + "__bxor", + + "__pairs", + "__ipairs", + "next", + "__type", + "__typeinfo" } }; + return names; + } + + inline const std::string& to_string(meta_function mf) { + return meta_function_names()[static_cast<int>(mf)]; + } + + inline type type_of(lua_State* L, int index) { + return static_cast<type>(lua_type(L, index)); + } + + inline std::string type_name(lua_State* L, type t) { + return lua_typename(L, static_cast<int>(t)); + } + + template <typename T> + struct is_lua_reference : std::integral_constant<bool, + std::is_base_of<reference, meta::unqualified_t<T>>::value + || std::is_base_of<main_reference, meta::unqualified_t<T>>::value + || std::is_base_of<stack_reference, meta::unqualified_t<T>>::value> {}; + + template <typename T> + struct is_lua_reference_or_proxy : std::integral_constant<bool, + is_lua_reference<meta::unqualified_t<T>>::value + || meta::is_specialization_of<meta::unqualified_t<T>, proxy>::value> {}; + + template <typename T> + struct is_transparent_argument : std::false_type {}; + template <> + struct is_transparent_argument<this_state> : std::true_type {}; + template <> + struct is_transparent_argument<this_main_state> : std::true_type {}; + template <> + struct is_transparent_argument<this_environment> : std::true_type {}; + template <> + struct is_transparent_argument<variadic_args> : std::true_type {}; + template <typename T> + struct is_variadic_arguments : std::is_same<meta::unqualified_t<T>, variadic_args> {}; + + namespace detail { + template <typename T> + struct is_initializer_list : std::false_type {}; + + template <typename T> + struct is_initializer_list<std::initializer_list<T>> : std::true_type {}; + + template <typename T, typename C = void> + struct is_container : std::false_type {}; + + template <typename T> + struct is_container<std::initializer_list<T>> : std::false_type {}; + + template <typename T> + struct is_container<T, std::enable_if_t<meta::is_string_like<meta::unqualified_t<T>>::value>> : std::false_type {}; + + template <typename T> + struct is_container<T, std::enable_if_t<meta::all<std::is_array<meta::unqualified_t<T>>, meta::neg<meta::any_same<std::remove_all_extents_t<meta::unqualified_t<T>>, char, wchar_t, char16_t, char32_t>>>::value>> : std::true_type {}; + + template <typename T> + struct is_container<T, std::enable_if_t<meta::all<meta::has_begin_end<meta::unqualified_t<T>>, meta::neg<is_initializer_list<meta::unqualified_t<T>>>, meta::neg<meta::is_string_like<meta::unqualified_t<T>>>>::value>> : std::true_type {}; + } // namespace detail + + template <typename T> + struct is_container : detail::is_container<T> {}; + + template <typename T> + struct is_to_stringable : meta::any<meta::supports_to_string_member<meta::unqualified_t<T>>, meta::supports_adl_to_string<meta::unqualified_t<T>>, meta::supports_ostream_op<meta::unqualified_t<T>>> {}; + + namespace detail { + template <typename T, typename = void> + struct lua_type_of : std::integral_constant<type, type::userdata> {}; + + template <typename C, typename T, typename A> + struct lua_type_of<std::basic_string<C, T, A>> : std::integral_constant<type, type::string> {}; + + template <typename C, typename T> + struct lua_type_of<basic_string_view<C, T>> : std::integral_constant<type, type::string> {}; + + template <std::size_t N> + struct lua_type_of<char[N]> : std::integral_constant<type, type::string> {}; + + template <std::size_t N> + struct lua_type_of<wchar_t[N]> : std::integral_constant<type, type::string> {}; + + template <std::size_t N> + struct lua_type_of<char16_t[N]> : std::integral_constant<type, type::string> {}; + + template <std::size_t N> + struct lua_type_of<char32_t[N]> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<char> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<wchar_t> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<char16_t> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<char32_t> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<const char*> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<const char16_t*> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<const char32_t*> : std::integral_constant<type, type::string> {}; + + template <> + struct lua_type_of<bool> : std::integral_constant<type, type::boolean> {}; + + template <> + struct lua_type_of<lua_nil_t> : std::integral_constant<type, type::lua_nil> {}; + + template <> + struct lua_type_of<nullopt_t> : std::integral_constant<type, type::lua_nil> {}; + + template <> + struct lua_type_of<detail::non_lua_nil_t> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<std::nullptr_t> : std::integral_constant<type, type::lua_nil> {}; + + template <> + struct lua_type_of<error> : std::integral_constant<type, type::string> {}; + + template <bool b, typename Base> + struct lua_type_of<basic_table_core<b, Base>> : std::integral_constant<type, type::table> {}; + + template <> + struct lua_type_of<metatable_t> : std::integral_constant<type, type::table> {}; + + template <typename B> + struct lua_type_of<basic_environment<B>> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<env_t> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<new_table> : std::integral_constant<type, type::table> {}; + + template <typename T> + struct lua_type_of<as_table_t<T>> : std::integral_constant<type, type::table> {}; + + template <typename T> + struct lua_type_of<std::initializer_list<T>> : std::integral_constant<type, type::table> {}; + + template <bool b> + struct lua_type_of<basic_reference<b>> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<stack_reference> : std::integral_constant<type, type::poly> {}; + + template <typename Base> + struct lua_type_of<basic_object<Base>> : std::integral_constant<type, type::poly> {}; + + template <typename... Args> + struct lua_type_of<std::tuple<Args...>> : std::integral_constant<type, type::poly> {}; + + template <typename A, typename B> + struct lua_type_of<std::pair<A, B>> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<void*> : std::integral_constant<type, type::lightuserdata> {}; + + template <> + struct lua_type_of<const void*> : std::integral_constant<type, type::lightuserdata> {}; + + template <> + struct lua_type_of<lightuserdata_value> : std::integral_constant<type, type::lightuserdata> {}; + + template <> + struct lua_type_of<userdata_value> : std::integral_constant<type, type::userdata> {}; + + template <typename T> + struct lua_type_of<light<T>> : std::integral_constant<type, type::lightuserdata> {}; + + template <typename T> + struct lua_type_of<user<T>> : std::integral_constant<type, type::userdata> {}; + + template <typename Base> + struct lua_type_of<basic_lightuserdata<Base>> : std::integral_constant<type, type::lightuserdata> {}; + + template <typename Base> + struct lua_type_of<basic_userdata<Base>> : std::integral_constant<type, type::userdata> {}; + + template <> + struct lua_type_of<lua_CFunction> : std::integral_constant<type, type::function> {}; + + template <> + struct lua_type_of<std::remove_pointer_t<lua_CFunction>> : std::integral_constant<type, type::function> {}; + + template <typename Base, bool aligned> + struct lua_type_of<basic_function<Base, aligned>> : std::integral_constant<type, type::function> {}; + + template <typename Base, bool aligned, typename Handler> + struct lua_type_of<basic_protected_function<Base, aligned, Handler>> : std::integral_constant<type, type::function> {}; + + template <typename Base> + struct lua_type_of<basic_coroutine<Base>> : std::integral_constant<type, type::function> {}; + + template <typename Base> + struct lua_type_of<basic_thread<Base>> : std::integral_constant<type, type::thread> {}; + + template <typename Signature> + struct lua_type_of<std::function<Signature>> : std::integral_constant<type, type::function> {}; + + template <typename T> + struct lua_type_of<optional<T>> : std::integral_constant<type, type::poly> {}; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + struct lua_type_of<std::optional<T>> : std::integral_constant<type, type::poly> {}; +#endif // std::optional + + template <> + struct lua_type_of<variadic_args> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<variadic_results> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<stack_count> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<this_state> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<this_main_state> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<this_environment> : std::integral_constant<type, type::poly> {}; + + template <> + struct lua_type_of<type> : std::integral_constant<type, type::poly> {}; + + template <typename T> + struct lua_type_of<T*> : std::integral_constant<type, type::userdata> {}; + + template <typename T> + struct lua_type_of<T, std::enable_if_t<std::is_arithmetic<T>::value>> : std::integral_constant<type, type::number> {}; + + template <typename T> + struct lua_type_of<T, std::enable_if_t<std::is_enum<T>::value>> : std::integral_constant<type, type::number> {}; + + template <> + struct lua_type_of<meta_function> : std::integral_constant<type, type::string> {}; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#ifdef SOL_STD_VARIANT + template <typename... Tn> + struct lua_type_of<std::variant<Tn...>> : std::integral_constant<type, type::poly> {}; +#endif // SOL_STD_VARIANT +#endif // SOL_CXX17_FEATURES + + template <typename T> + struct lua_type_of<nested<T>, std::enable_if_t<::sol::is_container<T>::value>> : std::integral_constant<type, type::table> {}; + + template <typename T> + struct lua_type_of<nested<T>, std::enable_if_t<!::sol::is_container<T>::value>> : lua_type_of<T> {}; + + template <typename C, C v, template <typename...> class V, typename... Args> + struct accumulate : std::integral_constant<C, v> {}; + + template <typename C, C v, template <typename...> class V, typename T, typename... Args> + struct accumulate<C, v, V, T, Args...> : accumulate<C, v + V<T>::value, V, Args...> {}; + + template <typename C, C v, template <typename...> class V, typename List> + struct accumulate_list; + + template <typename C, C v, template <typename...> class V, typename... Args> + struct accumulate_list<C, v, V, types<Args...>> : accumulate<C, v, V, Args...> {}; + } // namespace detail + + template <typename T> + struct is_unique_usertype : std::integral_constant<bool, unique_usertype_traits<T>::value> {}; + + template <typename T> + struct lua_type_of : detail::lua_type_of<T> { + typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_; + }; + + template <typename T> + struct lua_size : std::integral_constant<int, 1> { + typedef int SOL_INTERNAL_UNSPECIALIZED_MARKER_; + }; + + template <typename A, typename B> + struct lua_size<std::pair<A, B>> : std::integral_constant<int, lua_size<A>::value + lua_size<B>::value> {}; + + template <typename... Args> + struct lua_size<std::tuple<Args...>> : std::integral_constant<int, detail::accumulate<int, 0, lua_size, Args...>::value> {}; + + namespace detail { + template <typename...> + struct void_ { typedef void type; }; + template <typename T, typename = void> + struct has_internal_marker_impl : std::false_type {}; + template <typename T> + struct has_internal_marker_impl<T, typename void_<typename T::SOL_INTERNAL_UNSPECIALIZED_MARKER_>::type> : std::true_type {}; + + template <typename T> + struct has_internal_marker : has_internal_marker_impl<T> {}; + } // namespace detail + + template <typename T> + struct is_lua_primitive : std::integral_constant<bool, + type::userdata != lua_type_of<meta::unqualified_t<T>>::value + || ((type::userdata == lua_type_of<meta::unqualified_t<T>>::value) + && detail::has_internal_marker<lua_type_of<meta::unqualified_t<T>>>::value + && !detail::has_internal_marker<lua_size<meta::unqualified_t<T>>>::value) + || is_lua_reference<meta::unqualified_t<T>>::value + || meta::is_specialization_of<meta::unqualified_t<T>, std::tuple>::value + || meta::is_specialization_of<meta::unqualified_t<T>, std::pair>::value> {}; + + template <typename T> + struct is_main_threaded : std::is_base_of<main_reference, T> {}; + + template <typename T> + struct is_stack_based : std::is_base_of<stack_reference, T> {}; + template <> + struct is_stack_based<variadic_args> : std::true_type {}; + template <> + struct is_stack_based<unsafe_function_result> : std::true_type {}; + template <> + struct is_stack_based<protected_function_result> : std::true_type {}; + template <> + struct is_stack_based<stack_proxy> : std::true_type {}; + template <> + struct is_stack_based<stack_proxy_base> : std::true_type {}; + + template <typename T> + struct is_lua_primitive<T*> : std::true_type {}; + template <> + struct is_lua_primitive<unsafe_function_result> : std::true_type {}; + template <> + struct is_lua_primitive<protected_function_result> : std::true_type {}; + template <typename T> + struct is_lua_primitive<std::reference_wrapper<T>> : std::true_type {}; + template <typename T> + struct is_lua_primitive<user<T>> : std::true_type {}; + template <typename T> + struct is_lua_primitive<light<T>> : is_lua_primitive<T*> {}; + template <typename T> + struct is_lua_primitive<optional<T>> : std::true_type {}; +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + struct is_lua_primitive<std::optional<T>> : std::true_type {}; +#endif + template <typename T> + struct is_lua_primitive<as_table_t<T>> : std::true_type {}; + template <typename T> + struct is_lua_primitive<nested<T>> : std::true_type {}; + template <> + struct is_lua_primitive<userdata_value> : std::true_type {}; + template <> + struct is_lua_primitive<lightuserdata_value> : std::true_type {}; + template <typename T> + struct is_lua_primitive<non_null<T>> : is_lua_primitive<T*> {}; + + template <typename T> + struct is_proxy_primitive : is_lua_primitive<T> {}; + + template <typename T> + struct is_lua_index : std::is_integral<T> {}; + template <> + struct is_lua_index<raw_index> : std::true_type {}; + template <> + struct is_lua_index<absolute_index> : std::true_type {}; + template <> + struct is_lua_index<ref_index> : std::true_type {}; + template <> + struct is_lua_index<upvalue_index> : std::true_type {}; + + template <typename Signature> + struct lua_bind_traits : meta::bind_traits<Signature> { + private: + typedef meta::bind_traits<Signature> base_t; + + public: + typedef std::integral_constant<bool, meta::count_for<is_variadic_arguments, typename base_t::args_list>::value != 0> runtime_variadics_t; + static const std::size_t true_arity = base_t::arity; + static const std::size_t arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::args_list>::value - meta::count_for<is_transparent_argument, typename base_t::args_list>::value; + static const std::size_t true_free_arity = base_t::free_arity; + static const std::size_t free_arity = detail::accumulate_list<std::size_t, 0, lua_size, typename base_t::free_args_list>::value - meta::count_for<is_transparent_argument, typename base_t::args_list>::value; + }; + + template <typename T> + struct is_table : std::false_type {}; + template <bool x, typename T> + struct is_table<basic_table_core<x, T>> : std::true_type {}; + + template <typename T> + struct is_function : std::false_type {}; + template <typename T, bool aligned> + struct is_function<basic_function<T, aligned>> : std::true_type {}; + template <typename T, bool aligned, typename Handler> + struct is_function<basic_protected_function<T, aligned, Handler>> : std::true_type {}; + + template <typename T> + struct is_lightuserdata : std::false_type {}; + template <typename T> + struct is_lightuserdata<basic_lightuserdata<T>> : std::true_type {}; + + template <typename T> + struct is_userdata : std::false_type {}; + template <typename T> + struct is_userdata<basic_userdata<T>> : std::true_type {}; + + template <typename T> + struct is_environment : std::integral_constant<bool, is_userdata<T>::value || is_table<T>::value> {}; + + template <typename T> + struct is_automagical : meta::neg<std::is_array<meta::unqualified_t<T>>> {}; + + template <typename T> + inline type type_of() { + return lua_type_of<meta::unqualified_t<T>>::value; + } + + namespace detail { + template <typename T> + struct is_non_factory_constructor : std::false_type {}; + + template <typename... Args> + struct is_non_factory_constructor<constructors<Args...>> : std::true_type {}; + + template <typename... Args> + struct is_non_factory_constructor<constructor_wrapper<Args...>> : std::true_type {}; + + template <> + struct is_non_factory_constructor<no_construction> : std::true_type {}; + + template <typename T> + struct is_constructor : is_non_factory_constructor<T> {}; + + template <typename... Args> + struct is_constructor<factory_wrapper<Args...>> : std::true_type {}; + + template <typename T> + struct is_constructor<protect_t<T>> : is_constructor<meta::unqualified_t<T>> {}; + + template <typename F, typename... Filters> + struct is_constructor<filter_wrapper<F, Filters...>> : is_constructor<meta::unqualified_t<F>> {}; + + template <typename... Args> + using has_constructor = meta::any<is_constructor<meta::unqualified_t<Args>>...>; + + template <typename T> + struct is_destructor : std::false_type {}; + + template <typename Fx> + struct is_destructor<destructor_wrapper<Fx>> : std::true_type {}; + + template <typename... Args> + using has_destructor = meta::any<is_destructor<meta::unqualified_t<Args>>...>; + + struct add_destructor_tag {}; + struct check_destructor_tag {}; + struct verified_tag { + } const verified{}; + } // namespace detail +} // namespace sol + +// end of sol/types.hpp + +#include <exception> +#include <cstring> + +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS +#include <iostream> +#endif + +namespace sol { + // must push a single object to be the error object + // NOTE: the VAST MAJORITY of all Lua libraries -- C or otherwise -- expect a string for the type of error + // break this convention at your own risk + using exception_handler_function = int(*)(lua_State*, optional<const std::exception&>, string_view); + + namespace detail { + inline const char(&default_exception_handler_name())[11]{ + static const char name[11] = "sol.\xE2\x98\xA2\xE2\x98\xA2"; + return name; + } + + // must push at least 1 object on the stack + inline int default_exception_handler(lua_State* L, optional<const std::exception&>, string_view what) { +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS + std::cerr << "[sol2] An exception occurred: "; + std::cerr.write(what.data(), what.size()); + std::cerr << std::endl; +#endif + lua_pushlstring(L, what.data(), what.size()); + return 1; + } + + inline int call_exception_handler(lua_State* L, optional<const std::exception&> maybe_ex, string_view what) { + lua_getglobal(L, default_exception_handler_name()); + type t = static_cast<type>(lua_type(L, -1)); + if (t != type::lightuserdata) { + lua_pop(L, 1); + return default_exception_handler(L, std::move(maybe_ex), std::move(what)); + } + void* vfunc = lua_touserdata(L, -1); + lua_pop(L, 1); + if (vfunc == nullptr) { + return default_exception_handler(L, std::move(maybe_ex), std::move(what)); + } + exception_handler_function exfunc = reinterpret_cast<exception_handler_function>(vfunc); + return exfunc(L, std::move(maybe_ex), std::move(what)); + } + +#ifdef SOL_NO_EXCEPTIONS + template <lua_CFunction f> + int static_trampoline(lua_State* L) noexcept { + return f(L); + } + +#ifdef SOL_NOEXCEPT_FUNCTION_TYPE + template <lua_CFunction_noexcept f> + int static_trampoline_noexcept(lua_State* L) noexcept { + return f(L); + } +#else + template <lua_CFunction f> + int static_trampoline_noexcept(lua_State* L) noexcept { + return f(L); + } +#endif + + template <typename Fx, typename... Args> + int trampoline(lua_State* L, Fx&& f, Args&&... args) noexcept { + return f(L, std::forward<Args>(args)...); + } + + inline int c_trampoline(lua_State* L, lua_CFunction f) noexcept { + return trampoline(L, f); + } +#else + template <lua_CFunction f> + int static_trampoline(lua_State* L) { +#if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT) + return f(L); + +#else + try { + return f(L); + } + catch (const char* cs) { + call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs)); + } + catch (const std::string& s) { + call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size())); + } + catch (const std::exception& e) { + call_exception_handler(L, optional<const std::exception&>(e), e.what()); + } +#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) + // LuaJIT cannot have the catchall when the safe propagation is on + // but LuaJIT will swallow all C++ errors + // if we don't at least catch std::exception ones + catch (...) { + call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception"); + } +#endif // LuaJIT cannot have the catchall, but we must catch std::exceps for it + return lua_error(L); +#endif // Safe exceptions + } + +#ifdef SOL_NOEXCEPT_FUNCTION_TYPE +#if 0 + // impossible: g++/clang++ choke as they think this function is ambiguous: + // to fix, wait for template <auto X> and then switch on no-exceptness of the function + template <lua_CFunction_noexcept f> + int static_trampoline(lua_State* L) noexcept { + return f(L); + } +#else + template <lua_CFunction_noexcept f> + int static_trampoline_noexcept(lua_State* L) noexcept { + return f(L); + } +#endif // impossible + +#else + template <lua_CFunction f> + int static_trampoline_noexcept(lua_State* L) noexcept { + return f(L); + } +#endif // noexcept lua_CFunction type + + template <typename Fx, typename... Args> + int trampoline(lua_State* L, Fx&& f, Args&&... args) { + if (meta::bind_traits<meta::unqualified_t<Fx>>::is_noexcept) { + return f(L, std::forward<Args>(args)...); + } +#if defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) && !defined(SOL_LUAJIT) + return f(L, std::forward<Args>(args)...); +#else + try { + return f(L, std::forward<Args>(args)...); + } + catch (const char* cs) { + call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(cs)); + } + catch (const std::string& s) { + call_exception_handler(L, optional<const std::exception&>(nullopt), string_view(s.c_str(), s.size())); + } + catch (const std::exception& e) { + call_exception_handler(L, optional<const std::exception&>(e), e.what()); + } +#if !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) + // LuaJIT cannot have the catchall when the safe propagation is on + // but LuaJIT will swallow all C++ errors + // if we don't at least catch std::exception ones + catch (...) { + call_exception_handler(L, optional<const std::exception&>(nullopt), "caught (...) exception"); + } +#endif + return lua_error(L); +#endif + } + + inline int c_trampoline(lua_State* L, lua_CFunction f) { + return trampoline(L, f); + } +#endif // Exceptions vs. No Exceptions + + template <typename F, F fx> + inline int typed_static_trampoline_raw(std::true_type, lua_State* L) { + return static_trampoline_noexcept<fx>(L); + } + + template <typename F, F fx> + inline int typed_static_trampoline_raw(std::false_type, lua_State* L) { + return static_trampoline<fx>(L); + } + + template <typename F, F fx> + inline int typed_static_trampoline(lua_State* L) { + return typed_static_trampoline_raw<F, fx>(std::integral_constant<bool, meta::bind_traits<F>::is_noexcept>(), L); + } + } // namespace detail + + inline void set_default_exception_handler(lua_State* L, exception_handler_function exf = &detail::default_exception_handler) { + static_assert(sizeof(void*) >= sizeof(exception_handler_function), "void* storage is too small to transport the exception handler: please file a bug on the issue tracker"); + void* storage; + std::memcpy(&storage, &exf, sizeof(exception_handler_function)); + lua_pushlightuserdata(L, storage); + lua_setglobal(L, detail::default_exception_handler_name()); + } +} // sol + +// end of sol/trampoline.hpp + +// beginning of sol/stack_core.hpp + +// beginning of sol/inheritance.hpp + +// beginning of sol/usertype_traits.hpp + +// beginning of sol/demangle.hpp + +#include <cctype> +#if defined(__GNUC__) && defined(__MINGW32__) && (__GNUC__ < 6) +extern "C" { +} +#endif // MinGW is on some stuff +#include <locale> + +namespace sol { +namespace detail { +#if defined(__GNUC__) || defined(__clang__) + template <typename T, class seperator_mark = int> + inline std::string ctti_get_type_name() { + // cardinal sins from MINGW + using namespace std; + static const std::array<std::string, 2> removals = {{"{anonymous}", "(anonymous namespace)"}}; + std::string name = __PRETTY_FUNCTION__; + std::size_t start = name.find_first_of('['); + start = name.find_first_of('=', start); + std::size_t end = name.find_last_of(']'); + if (end == std::string::npos) + end = name.size(); + if (start == std::string::npos) + start = 0; + if (start < name.size() - 1) + start += 1; + name = name.substr(start, end - start); + start = name.rfind("seperator_mark"); + if (start != std::string::npos) { + name.erase(start - 2, name.length()); + } + while (!name.empty() && isblank(name.front())) + name.erase(name.begin()); + while (!name.empty() && isblank(name.back())) + name.pop_back(); + + for (std::size_t r = 0; r < removals.size(); ++r) { + auto found = name.find(removals[r]); + while (found != std::string::npos) { + name.erase(found, removals[r].size()); + found = name.find(removals[r]); + } + } + + return name; + } +#elif defined(_MSC_VER) + template <typename T> + inline std::string ctti_get_type_name() { + static const std::array<std::string, 7> removals = {{"public:", "private:", "protected:", "struct ", "class ", "`anonymous-namespace'", "`anonymous namespace'"}}; + std::string name = __FUNCSIG__; + std::size_t start = name.find("get_type_name"); + if (start == std::string::npos) + start = 0; + else + start += 13; + if (start < name.size() - 1) + start += 1; + std::size_t end = name.find_last_of('>'); + if (end == std::string::npos) + end = name.size(); + name = name.substr(start, end - start); + if (name.find("struct", 0) == 0) + name.replace(0, 6, "", 0); + if (name.find("class", 0) == 0) + name.replace(0, 5, "", 0); + while (!name.empty() && isblank(name.front())) + name.erase(name.begin()); + while (!name.empty() && isblank(name.back())) + name.pop_back(); + + for (std::size_t r = 0; r < removals.size(); ++r) { + auto found = name.find(removals[r]); + while (found != std::string::npos) { + name.erase(found, removals[r].size()); + found = name.find(removals[r]); + } + } + + return name; + } +#else +#error Compiler not supported for demangling +#endif // compilers + + template <typename T> + inline std::string demangle_once() { + std::string realname = ctti_get_type_name<T>(); + return realname; + } + + template <typename T> + inline std::string short_demangle_once() { + std::string realname = ctti_get_type_name<T>(); + // This isn't the most complete but it'll do for now...? + static const std::array<std::string, 10> ops = {{"operator<", "operator<<", "operator<<=", "operator<=", "operator>", "operator>>", "operator>>=", "operator>=", "operator->", "operator->*"}}; + int level = 0; + std::ptrdiff_t idx = 0; + for (idx = static_cast<std::ptrdiff_t>(realname.empty() ? 0 : realname.size() - 1); idx > 0; --idx) { + if (level == 0 && realname[idx] == ':') { + break; + } + bool isleft = realname[idx] == '<'; + bool isright = realname[idx] == '>'; + if (!isleft && !isright) + continue; + bool earlybreak = false; + for (const auto& op : ops) { + std::size_t nisop = realname.rfind(op, idx); + if (nisop == std::string::npos) + continue; + std::size_t nisopidx = idx - op.size() + 1; + if (nisop == nisopidx) { + idx = static_cast<std::ptrdiff_t>(nisopidx); + earlybreak = true; + } + break; + } + if (earlybreak) { + continue; + } + level += isleft ? -1 : 1; + } + if (idx > 0) { + realname.erase(0, realname.length() < static_cast<std::size_t>(idx) ? realname.length() : idx + 1); + } + return realname; + } + + template <typename T> + inline const std::string& demangle() { + static const std::string d = demangle_once<T>(); + return d; + } + + template <typename T> + inline const std::string& short_demangle() { + static const std::string d = short_demangle_once<T>(); + return d; + } +} +} // namespace sol::detail + +// end of sol/demangle.hpp + +namespace sol { + + template <typename T> + struct usertype_traits { + static const std::string& name() { + static const std::string& n = detail::short_demangle<T>(); + return n; + } + static const std::string& qualified_name() { + static const std::string& q_n = detail::demangle<T>(); + return q_n; + } + static const std::string& metatable() { + static const std::string m = std::string("sol.").append(detail::demangle<T>()); + return m; + } + static const std::string& user_metatable() { + static const std::string u_m = std::string("sol.").append(detail::demangle<T>()).append(".user"); + return u_m; + } + static const std::string& user_gc_metatable() { + static const std::string u_g_m = std::string("sol.").append(detail::demangle<T>()).append(".user\xE2\x99\xBB"); + return u_g_m; + } + static const std::string& gc_table() { + static const std::string g_t = std::string("sol.").append(detail::demangle<T>()).append(".\xE2\x99\xBB"); + return g_t; + } + }; + +} // namespace sol + +// end of sol/usertype_traits.hpp + +namespace sol { + template <typename... Args> + struct base_list {}; + template <typename... Args> + using bases = base_list<Args...>; + + typedef bases<> base_classes_tag; + const auto base_classes = base_classes_tag(); + + namespace detail { + + template <typename T> + struct has_derived { + static bool value; + }; + + template <typename T> + bool has_derived<T>::value = false; + + inline decltype(auto) base_class_check_key() { + static const auto& key = "class_check"; + return key; + } + + inline decltype(auto) base_class_cast_key() { + static const auto& key = "class_cast"; + return key; + } + + inline decltype(auto) base_class_index_propogation_key() { + static const auto& key = u8"\xF0\x9F\x8C\xB2.index"; + return key; + } + + inline decltype(auto) base_class_new_index_propogation_key() { + static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index"; + return key; + } + + template <typename T, typename... Bases> + struct inheritance { + static bool type_check_bases(types<>, const std::string&) { + return false; + } + + template <typename Base, typename... Args> + static bool type_check_bases(types<Base, Args...>, const std::string& ti) { + return ti == usertype_traits<Base>::qualified_name() || type_check_bases(types<Args...>(), ti); + } + + static bool type_check(const std::string& ti) { + return ti == usertype_traits<T>::qualified_name() || type_check_bases(types<Bases...>(), ti); + } + + static void* type_cast_bases(types<>, T*, const std::string&) { + return nullptr; + } + + template <typename Base, typename... Args> + static void* type_cast_bases(types<Base, Args...>, T* data, const std::string& ti) { + // Make sure to convert to T first, and then dynamic cast to the proper type + return ti != usertype_traits<Base>::qualified_name() ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data)); + } + + static void* type_cast(void* voiddata, const std::string& ti) { + T* data = static_cast<T*>(voiddata); + return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(types<Bases...>(), data, ti) : data); + } + + template <typename U> + static bool type_unique_cast_bases(void*, void*, const string_view&) { + return false; + } + + template <typename U, typename Base, typename... Args> + static bool type_unique_cast_bases(void* source_data, void* target_data, const string_view& ti) { + typedef unique_usertype_traits<U> uu_traits; + typedef typename uu_traits::template rebind_base<Base> base_ptr; + string_view base_ti = usertype_traits<Base>::qualified_name(); + if (base_ti == ti) { + if (target_data != nullptr) { + U* source = static_cast<U*>(source_data); + base_ptr* target = static_cast<base_ptr*>(target_data); + // perform proper derived -> base conversion + *target = *source; + } + return true; + } + return type_unique_cast_bases<U, Args...>(source_data, target_data, ti); + } + + template <typename U> + static bool type_unique_cast(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) { + typedef unique_usertype_traits<U> uu_traits; + typedef typename uu_traits::template rebind_base<T> rebind_t; + string_view this_rebind_ti = usertype_traits<rebind_t>::qualified_name(); + if (rebind_ti != this_rebind_ti) { + // this is not even of the same container type + return false; + } + return type_unique_cast_bases<U, Bases...>(source_data, target_data, ti); + } + }; + + using inheritance_check_function = decltype(&inheritance<void>::type_check); + using inheritance_cast_function = decltype(&inheritance<void>::type_cast); + using inheritance_unique_cast_function = decltype(&inheritance<void>::type_unique_cast<void>); + } // namespace detail +} // namespace sol + +// end of sol/inheritance.hpp + +// beginning of sol/error_handler.hpp + +namespace sol { + + inline std::string associated_type_name(lua_State* L, int index, type t) { + switch (t) { + case type::poly: + return "anything"; + case type::userdata: + { + if (lua_getmetatable(L, index) == 0) { + break; + } + lua_pushlstring(L, "__name", 6); + lua_rawget(L, -2); + size_t sz; + const char* name = lua_tolstring(L, -1, &sz); + std::string tn(name, static_cast<std::string::size_type>(sz)); + lua_pop(L, 2); + return name; + } + default: + break; + } + return lua_typename(L, static_cast<int>(t)); + } + + inline int type_panic_string(lua_State* L, int index, type expected, type actual, const std::string& message = "") noexcept(false) { + const char* err = message.empty() ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s"; + std::string actualname = associated_type_name(L, index, actual); + return luaL_error(L, err, index, + expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)), + actualname.c_str(), + message.c_str()); + } + + inline int type_panic_c_str(lua_State* L, int index, type expected, type actual, const char* message = nullptr) noexcept(false) { + const char* err = message == nullptr || (std::char_traits<char>::length(message) == 0) ? "stack index %d, expected %s, received %s" : "stack index %d, expected %s, received %s: %s"; + std::string actualname = associated_type_name(L, index, actual); + return luaL_error(L, err, index, + expected == type::poly ? "anything" : lua_typename(L, static_cast<int>(expected)), + actualname.c_str(), + message); + } + + struct type_panic_t { + int operator()(lua_State* L, int index, type expected, type actual) const noexcept(false) { + return type_panic_c_str(L, index, expected, actual, nullptr); + } + int operator()(lua_State* L, int index, type expected, type actual, const char* message) const noexcept(false) { + return type_panic_c_str(L, index, expected, actual, message); + } + int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { + return type_panic_string(L, index, expected, actual, message); + } + }; + + const type_panic_t type_panic = {}; + + struct constructor_handler { + int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { + std::string str = "(type check failed in constructor)"; + return type_panic_string(L, index, expected, actual, message.empty() ? str : message + " " + str); + } + }; + + template <typename F = void> + struct argument_handler { + int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { + std::string str = "(bad argument to variable or function call)"; + return type_panic_string(L, index, expected, actual, message.empty() ? str : message + " " + str ); + } + }; + + template <typename R, typename... Args> + struct argument_handler<types<R, Args...>> { + int operator()(lua_State* L, int index, type expected, type actual, const std::string& message) const noexcept(false) { + std::string addendum = "(bad argument into '"; + addendum += detail::demangle<R>(); + addendum += "("; + int marker = 0; + auto action = [&addendum, &marker](const std::string& n) { + if (marker > 0) { + addendum += ", "; + } + addendum += n; + ++marker; + }; + (void)detail::swallow{int(), (action(detail::demangle<Args>()), int())...}; + addendum += ")')"; + return type_panic_string(L, index, expected, actual, message.empty() ? addendum : message + " " + addendum); + } + }; + + // Specify this function as the handler for lua::check if you know there's nothing wrong + inline int no_panic(lua_State*, int, type, type, const char* = nullptr) noexcept { + return 0; + } + + inline void type_error(lua_State* L, int expected, int actual) noexcept(false) { + luaL_error(L, "expected %s, received %s", lua_typename(L, expected), lua_typename(L, actual)); + } + + inline void type_error(lua_State* L, type expected, type actual) noexcept(false) { + type_error(L, static_cast<int>(expected), static_cast<int>(actual)); + } + + inline void type_assert(lua_State* L, int index, type expected, type actual) noexcept(false) { + if (expected != type::poly && expected != actual) { + type_panic_c_str(L, index, expected, actual, nullptr); + } + } + + inline void type_assert(lua_State* L, int index, type expected) { + type actual = type_of(L, index); + type_assert(L, index, expected, actual); + } + +} // namespace sol + +// end of sol/error_handler.hpp + +// beginning of sol/reference.hpp + +// beginning of sol/stack_reference.hpp + +namespace sol { + namespace detail { + inline bool xmovable(lua_State* leftL, lua_State* rightL) { + if (rightL == nullptr || leftL == nullptr || leftL == rightL) { + return false; + } + const void* leftregistry = lua_topointer(leftL, LUA_REGISTRYINDEX); + const void* rightregistry = lua_topointer(rightL, LUA_REGISTRYINDEX); + return leftregistry == rightregistry; + } + } // namespace detail + + class stack_reference { + private: + lua_State* luastate = nullptr; + int index = 0; + + protected: + int registry_index() const noexcept { + return LUA_NOREF; + } + + public: + stack_reference() noexcept = default; + stack_reference(lua_nil_t) noexcept + : stack_reference(){}; + stack_reference(lua_State* L, lua_nil_t) noexcept + : luastate(L), index(0) { + } + stack_reference(lua_State* L, int i) noexcept + : stack_reference(L, absolute_index(L, i)) { + } + stack_reference(lua_State* L, absolute_index i) noexcept + : luastate(L), index(i) { + } + stack_reference(lua_State* L, raw_index i) noexcept + : luastate(L), index(i) { + } + stack_reference(lua_State* L, ref_index i) noexcept = delete; + stack_reference(lua_State* L, const reference& r) noexcept = delete; + stack_reference(lua_State* L, const stack_reference& r) noexcept + : luastate(L) { + if (!r.valid()) { + index = 0; + return; + } + int i = r.stack_index(); + if (detail::xmovable(lua_state(), r.lua_state())) { + lua_pushvalue(r.lua_state(), r.index); + lua_xmove(r.lua_state(), luastate, 1); + i = absolute_index(luastate, -1); + } + index = i; + } + stack_reference(stack_reference&& o) noexcept = default; + stack_reference& operator=(stack_reference&&) noexcept = default; + stack_reference(const stack_reference&) noexcept = default; + stack_reference& operator=(const stack_reference&) noexcept = default; + + int push() const noexcept { + return push(lua_state()); + } + + int push(lua_State* Ls) const noexcept { + if (lua_state() == nullptr) { + lua_pushnil(Ls); + return 1; + } + lua_pushvalue(lua_state(), index); + if (Ls != lua_state()) { + lua_xmove(lua_state(), Ls, 1); + } + return 1; + } + + void pop() const noexcept { + pop(lua_state()); + } + + void pop(lua_State* Ls, int n = 1) const noexcept { + lua_pop(Ls, n); + } + + int stack_index() const noexcept { + return index; + } + + const void* pointer() const noexcept { + const void* vp = lua_topointer(lua_state(), stack_index()); + return vp; + } + + type get_type() const noexcept { + int result = lua_type(lua_state(), index); + return static_cast<type>(result); + } + + lua_State* lua_state() const noexcept { + return luastate; + } + + bool valid() const noexcept { + type t = get_type(); + return t != type::lua_nil && t != type::none; + } + }; + + inline bool operator==(const stack_reference& l, const stack_reference& r) { + return lua_compare(l.lua_state(), l.stack_index(), r.stack_index(), LUA_OPEQ) == 0; + } + + inline bool operator!=(const stack_reference& l, const stack_reference& r) { + return !operator==(l, r); + } + + inline bool operator==(const stack_reference& lhs, const lua_nil_t&) { + return !lhs.valid(); + } + + inline bool operator==(const lua_nil_t&, const stack_reference& rhs) { + return !rhs.valid(); + } + + inline bool operator!=(const stack_reference& lhs, const lua_nil_t&) { + return lhs.valid(); + } + + inline bool operator!=(const lua_nil_t&, const stack_reference& rhs) { + return rhs.valid(); + } +} // namespace sol + +// end of sol/stack_reference.hpp + +namespace sol { + namespace detail { + inline const char (&default_main_thread_name())[9] { + static const char name[9] = "sol.\xF0\x9F\x93\x8C"; + return name; + } + } // namespace detail + + namespace stack { + inline void remove(lua_State* L, int rawindex, int count) { + if (count < 1) + return; + int top = lua_gettop(L); + if (top < 1) { + return; + } + if (rawindex == -count || top == rawindex) { + // Slice them right off the top + lua_pop(L, static_cast<int>(count)); + return; + } + + // Remove each item one at a time using stack operations + // Probably slower, maybe, haven't benchmarked, + // but necessary + int index = lua_absindex(L, rawindex); + if (index < 0) { + index = lua_gettop(L) + (index + 1); + } + int last = index + count; + for (int i = index; i < last; ++i) { + lua_remove(L, index); + } + } + + struct push_popper_at { + lua_State* L; + int index; + int count; + push_popper_at(lua_State* luastate, int index = -1, int count = 1) + : L(luastate), index(index), count(count) { + } + ~push_popper_at() { + remove(L, index, count); + } + }; + + template <bool top_level> + struct push_popper_n { + lua_State* L; + int t; + push_popper_n(lua_State* luastate, int x) + : L(luastate), t(x) { + } + push_popper_n(const push_popper_n&) = delete; + push_popper_n(push_popper_n&&) = default; + push_popper_n& operator=(const push_popper_n&) = delete; + push_popper_n& operator=(push_popper_n&&) = default; + ~push_popper_n() { + lua_pop(L, t); + } + }; + template <> + struct push_popper_n<true> { + push_popper_n(lua_State*, int) { + } + }; + template <bool, typename T, typename = void> + struct push_popper { + T t; + push_popper(T x) + : t(x) { + t.push(); + } + ~push_popper() { + t.pop(); + } + }; + template <typename T, typename C> + struct push_popper<true, T, C> { + push_popper(T) { + } + ~push_popper() { + } + }; + template <typename T> + struct push_popper<false, T, std::enable_if_t<std::is_base_of<stack_reference, meta::unqualified_t<T>>::value>> { + push_popper(T) { + } + ~push_popper() { + } + }; + + template <bool top_level = false, typename T> + push_popper<top_level, T> push_pop(T&& x) { + return push_popper<top_level, T>(std::forward<T>(x)); + } + template <typename T> + push_popper_at push_pop_at(T&& x) { + int c = x.push(); + lua_State* L = x.lua_state(); + return push_popper_at(L, lua_absindex(L, -c), c); + } + template <bool top_level = false> + push_popper_n<top_level> pop_n(lua_State* L, int x) { + return push_popper_n<top_level>(L, x); + } + } // namespace stack + + inline lua_State* main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) { +#if SOL_LUA_VERSION < 502 + if (L == nullptr) + return backup_if_unsupported; + lua_getglobal(L, detail::default_main_thread_name()); + auto pp = stack::pop_n(L, 1); + if (type_of(L, -1) == type::thread) { + return lua_tothread(L, -1); + } + return backup_if_unsupported; +#else + if (L == nullptr) + return backup_if_unsupported; + lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_MAINTHREAD); + lua_State* Lmain = lua_tothread(L, -1); + lua_pop(L, 1); + return Lmain; +#endif // Lua 5.2+ has the main thread getter + } + + namespace detail { + struct global_tag { + } const global_{}; + struct no_safety_tag { + } const no_safety{}; + + template <bool b> + inline lua_State* pick_main_thread(lua_State* L, lua_State* backup_if_unsupported = nullptr) { + (void)L; + (void)backup_if_unsupported; + if (b) { + return main_thread(L, backup_if_unsupported); + } + return L; + } + } // namespace detail + + template <bool main_only = false> + class basic_reference { + private: + template <bool o_main_only> + friend class basic_reference; + lua_State* luastate = nullptr; // non-owning + int ref = LUA_NOREF; + + int copy() const noexcept { + if (ref == LUA_NOREF) + return LUA_NOREF; + push(); + return luaL_ref(lua_state(), LUA_REGISTRYINDEX); + } + + template <bool r_main_only> + void copy_assign(const basic_reference<r_main_only>& r) { + if (valid()) { + deref(); + } + if (r.ref == LUA_REFNIL) { + luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF) { + luastate = r.luastate; + ref = LUA_NOREF; + return; + } + if (detail::xmovable(lua_state(), r.lua_state())) { + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + return; + } + luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); + ref = r.copy(); + } + + template <bool r_main_only> + void move_assign(basic_reference<r_main_only>&& r) { + if (valid()) { + deref(); + } + if (r.ref == LUA_REFNIL) { + luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF) { + luastate = r.luastate; + ref = LUA_NOREF; + return; + } + if (detail::xmovable(lua_state(), r.lua_state())) { + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + return; + } + + luastate = detail::pick_main_thread < main_only && !r_main_only > (r.lua_state(), r.lua_state()); + ref = r.ref; + r.ref = LUA_NOREF; + r.luastate = nullptr; + } + + protected: + basic_reference(lua_State* L, detail::global_tag) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + lua_pushglobaltable(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + } + + int stack_index() const noexcept { + return -1; + } + + void deref() const noexcept { + luaL_unref(lua_state(), LUA_REGISTRYINDEX, ref); + } + + public: + basic_reference() noexcept = default; + basic_reference(lua_nil_t) noexcept + : basic_reference() { + } + basic_reference(const stack_reference& r) noexcept + : basic_reference(r.lua_state(), r.stack_index()) { + } + basic_reference(stack_reference&& r) noexcept + : basic_reference(r.lua_state(), r.stack_index()) { + } + template <bool r_main_only> + basic_reference(lua_State* L, const basic_reference<r_main_only>& r) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + if (r.ref == LUA_REFNIL) { + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF || lua_state() == nullptr) { + ref = LUA_NOREF; + return; + } + if (detail::xmovable(lua_state(), r.lua_state())) { + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + return; + } + ref = r.copy(); + } + + template <bool r_main_only> + basic_reference(lua_State* L, basic_reference<r_main_only>&& r) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + if (r.ref == LUA_REFNIL) { + ref = LUA_REFNIL; + return; + } + if (r.ref == LUA_NOREF || lua_state() == nullptr) { + ref = LUA_NOREF; + return; + } + if (detail::xmovable(lua_state(), r.lua_state())) { + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + return; + } + ref = r.ref; + r.ref = LUA_NOREF; + r.luastate = nullptr; + } + + basic_reference(lua_State* L, const stack_reference& r) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + if (lua_state() == nullptr || r.lua_state() == nullptr || r.get_type() == type::none) { + ref = LUA_NOREF; + return; + } + if (r.get_type() == type::lua_nil) { + ref = LUA_REFNIL; + return; + } + if (lua_state() != r.lua_state() && !detail::xmovable(lua_state(), r.lua_state())) { + return; + } + r.push(lua_state()); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + } + basic_reference(lua_State* L, int index = -1) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + // use L to stick with that state's execution stack + lua_pushvalue(L, index); + ref = luaL_ref(L, LUA_REGISTRYINDEX); + } + basic_reference(lua_State* L, ref_index index) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, index.index); + ref = luaL_ref(lua_state(), LUA_REGISTRYINDEX); + } + basic_reference(lua_State* L, lua_nil_t) noexcept + : luastate(detail::pick_main_thread<main_only>(L, L)) { + } + + ~basic_reference() noexcept { + if (lua_state() == nullptr || ref == LUA_NOREF) + return; + deref(); + } + + basic_reference(const basic_reference& o) noexcept + : luastate(o.lua_state()), ref(o.copy()) { + } + + basic_reference(basic_reference&& o) noexcept + : luastate(o.lua_state()), ref(o.ref) { + o.luastate = nullptr; + o.ref = LUA_NOREF; + } + + basic_reference(const basic_reference<!main_only>& o) noexcept + : luastate(detail::pick_main_thread < main_only && !main_only > (o.lua_state(), o.lua_state())), ref(o.copy()) { + } + + basic_reference(basic_reference<!main_only>&& o) noexcept + : luastate(detail::pick_main_thread < main_only && !main_only > (o.lua_state(), o.lua_state())), ref(o.ref) { + o.luastate = nullptr; + o.ref = LUA_NOREF; + } + + basic_reference& operator=(basic_reference&& r) noexcept { + move_assign(std::move(r)); + return *this; + } + + basic_reference& operator=(const basic_reference& r) noexcept { + copy_assign(r); + return *this; + } + + basic_reference& operator=(basic_reference<!main_only>&& r) noexcept { + move_assign(std::move(r)); + return *this; + } + + basic_reference& operator=(const basic_reference<!main_only>& r) noexcept { + copy_assign(r); + return *this; + } + + basic_reference& operator=(const lua_nil_t&) noexcept { + if (valid()) { + deref(); + } + luastate = nullptr; + ref = LUA_NOREF; + return *this; + } + + template <typename Super> + basic_reference& operator=(proxy_base<Super>&& r); + + template <typename Super> + basic_reference& operator=(const proxy_base<Super>& r); + + int push() const noexcept { + return push(lua_state()); + } + + int push(lua_State* Ls) const noexcept { + if (lua_state() == nullptr) { + lua_pushnil(Ls); + return 1; + } + lua_rawgeti(lua_state(), LUA_REGISTRYINDEX, ref); + if (Ls != lua_state()) { + lua_xmove(lua_state(), Ls, 1); + } + return 1; + } + + void pop() const noexcept { + pop(lua_state()); + } + + void pop(lua_State* Ls, int n = 1) const noexcept { + lua_pop(Ls, n); + } + + int registry_index() const noexcept { + return ref; + } + + bool valid() const noexcept { + return !(ref == LUA_NOREF || ref == LUA_REFNIL); + } + + const void* pointer() const noexcept { + int si = push(); + const void* vp = lua_topointer(lua_state(), -si); + lua_pop(this->lua_state(), si); + return vp; + } + + explicit operator bool() const noexcept { + return valid(); + } + + type get_type() const noexcept { + auto pp = stack::push_pop(*this); + int result = lua_type(lua_state(), -1); + return static_cast<type>(result); + } + + lua_State* lua_state() const noexcept { + return luastate; + } + }; + + template <bool lb, bool rb> + inline bool operator==(const basic_reference<lb>& l, const basic_reference<rb>& r) { + auto ppl = stack::push_pop(l); + auto ppr = stack::push_pop(r); + return lua_compare(l.lua_state(), -1, -2, LUA_OPEQ) == 1; + } + + template <bool lb, bool rb> + inline bool operator!=(const basic_reference<lb>& l, const basic_reference<rb>& r) { + return !operator==(l, r); + } + + template <bool lb> + inline bool operator==(const basic_reference<lb>& lhs, const lua_nil_t&) { + return !lhs.valid(); + } + + template <bool rb> + inline bool operator==(const lua_nil_t&, const basic_reference<rb>& rhs) { + return !rhs.valid(); + } + + template <bool lb> + inline bool operator!=(const basic_reference<lb>& lhs, const lua_nil_t&) { + return lhs.valid(); + } + + template <bool rb> + inline bool operator!=(const lua_nil_t&, const basic_reference<rb>& rhs) { + return rhs.valid(); + } +} // namespace sol + +// end of sol/reference.hpp + +// beginning of sol/tie.hpp + +namespace sol { + + namespace detail { + template <typename T> + struct is_speshul : std::false_type {}; + } // namespace detail + + template <typename T> + struct tie_size : std::tuple_size<T> {}; + + template <typename T> + struct is_tieable : std::integral_constant<bool, (::sol::tie_size<T>::value > 0)> {}; + + template <typename... Tn> + struct tie_t : public std::tuple<std::add_lvalue_reference_t<Tn>...> { + private: + typedef std::tuple<std::add_lvalue_reference_t<Tn>...> base_t; + + template <typename T> + void set(std::false_type, T&& target) { + std::get<0>(*this) = std::forward<T>(target); + } + + template <typename T> + void set(std::true_type, T&& target) { + typedef tie_size<meta::unqualified_t<T>> value_size; + typedef tie_size<std::tuple<Tn...>> tie_size; + typedef std::conditional_t<(value_size::value < tie_size::value), value_size, tie_size> indices_size; + typedef std::make_index_sequence<indices_size::value> indices; + set_extra(detail::is_speshul<meta::unqualified_t<T>>(), indices(), std::forward<T>(target)); + } + + template <std::size_t... I, typename T> + void set_extra(std::true_type, std::index_sequence<I...>, T&& target) { + using std::get; + (void)detail::swallow{0, + (get<I>(static_cast<base_t&>(*this)) = get<I>(types<Tn...>(), target), 0)..., 0}; + } + + template <std::size_t... I, typename T> + void set_extra(std::false_type, std::index_sequence<I...>, T&& target) { + using std::get; + (void)detail::swallow{0, + (get<I>(static_cast<base_t&>(*this)) = get<I>(target), 0)..., 0}; + } + + public: + using base_t::base_t; + + template <typename T> + tie_t& operator=(T&& value) { + typedef is_tieable<meta::unqualified_t<T>> tieable; + set(tieable(), std::forward<T>(value)); + return *this; + } + }; + + template <typename... Tn> + struct tie_size<tie_t<Tn...>> : std::tuple_size<std::tuple<Tn...>> {}; + + namespace adl_barrier_detail { + template <typename... Tn> + inline tie_t<std::remove_reference_t<Tn>...> tie(Tn&&... argn) { + return tie_t<std::remove_reference_t<Tn>...>(std::forward<Tn>(argn)...); + } + } // namespace adl_barrier_detail + + using namespace adl_barrier_detail; + +} // namespace sol + +// end of sol/tie.hpp + +// beginning of sol/stack_guard.hpp + +namespace sol { + namespace detail { + inline void stack_fail(int, int) { +#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS) + throw error(detail::direct_error, "imbalanced stack after operation finish"); +#else + // Lol, what do you want, an error printout? :3c + // There's no sane default here. The right way would be C-style abort(), and that's not acceptable, so + // hopefully someone will register their own stack_fail thing for the `fx` parameter of stack_guard. +#endif // No Exceptions + } + } // namespace detail + + struct stack_guard { + lua_State* L; + int top; + std::function<void(int, int)> on_mismatch; + + stack_guard(lua_State* L) + : stack_guard(L, lua_gettop(L)) { + } + stack_guard(lua_State* L, int top, std::function<void(int, int)> fx = detail::stack_fail) + : L(L), top(top), on_mismatch(std::move(fx)) { + } + bool check_stack(int modification = 0) const { + int bottom = lua_gettop(L) + modification; + if (top == bottom) { + return true; + } + on_mismatch(top, bottom); + return false; + } + ~stack_guard() { + check_stack(); + } + }; +} // namespace sol + +// end of sol/stack_guard.hpp + +#include <vector> +#include <forward_list> +#include <algorithm> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#endif // C++17 + +namespace sol { + namespace detail { + struct as_reference_tag {}; + template <typename T> + struct as_pointer_tag {}; + template <typename T> + struct as_value_tag {}; + template <typename T> + struct as_table_tag {}; + + using unique_destructor = void (*)(void*); +#if 0 + using unique_tag = detail::inheritance_unique_cast_function; +#else + using unique_tag = const char*; +#endif + + inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space, std::size_t& required_space) { + // this handels arbitrary alignments... + // make this into a power-of-2-only? + // actually can't: this is a C++14-compatible framework, + // power of 2 alignment is C++17 + std::uintptr_t initial = reinterpret_cast<std::uintptr_t>(ptr); + std::uintptr_t offby = static_cast<std::uintptr_t>(initial % alignment); + std::uintptr_t padding = (alignment - offby) % alignment; + required_space += size + padding; + if (space < required_space) { + return nullptr; + } + ptr = static_cast<void*>(static_cast<char*>(ptr) + padding); + space -= padding; + return ptr; + } + + inline void* align(std::size_t alignment, std::size_t size, void*& ptr, std::size_t& space) { + std::size_t required_space = 0; + return align(alignment, size, ptr, space, required_space); + } + + template <typename... Args> + inline std::size_t aligned_space_for(void* alignment = nullptr) { + char* start = static_cast<char*>(alignment); + auto specific_align = [&alignment](std::size_t a, std::size_t s) { + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + alignment = align(a, s, alignment, space); + alignment = static_cast<void*>(static_cast<char*>(alignment) + s); + }; + (void)detail::swallow{ int{}, (specific_align(std::alignment_of<Args>::value, sizeof(Args)), int{})... }; + return static_cast<char*>(alignment) - start; + } + + inline void* align_usertype_pointer(void* ptr) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<void*>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + return ptr; + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<void*>::value, sizeof(void*), ptr, space); + } + + template <bool pre_aligned = false> + inline void* align_usertype_unique_destructor(void* ptr) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<unique_destructor>::value > 1) +#endif + > + use_align; + if (!pre_aligned) { + ptr = align_usertype_pointer(ptr); + ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(void*)); + } + if (!use_align::value) { + return static_cast<void*>(static_cast<void**>(ptr) + 1); + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), ptr, space); + } + + template <bool pre_aligned = false> + inline void* align_usertype_unique_tag(void* ptr) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<unique_tag>::value > 1) +#endif + > + use_align; + if (!pre_aligned) { + ptr = align_usertype_unique_destructor(ptr); + ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_destructor)); + } + if (!use_align::value) { + return ptr; + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), ptr, space); + } + template <typename T, bool pre_aligned = false> + inline void* align_usertype_unique(void* ptr) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T>::value > 1) +#endif + > + use_align; + if (!pre_aligned) { + ptr = align_usertype_unique_tag(ptr); + ptr = static_cast<void*>(static_cast<char*>(ptr) + sizeof(unique_tag)); + } + if (!use_align::value) { + return ptr; + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<T>::value, sizeof(T), ptr, space); + } + + template <typename T> + inline void* align_user(void* ptr) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + return ptr; + } + std::size_t space = (std::numeric_limits<std::size_t>::max)(); + return align(std::alignment_of<T>::value, sizeof(T), ptr, space); + } + + template <typename T> + inline T** usertype_allocate_pointer(lua_State* L) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T*>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*))); + return pointerpointer; + } + static const std::size_t initial_size = aligned_space_for<T*>(nullptr); + static const std::size_t misaligned_size = aligned_space_for<T*>(reinterpret_cast<void*>(0x1)); + + std::size_t allocated_size = initial_size; + void* unadjusted = lua_newuserdata(L, initial_size); + void* adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size); + if (adjusted == nullptr) { + lua_pop(L, 1); + // what kind of absolute garbage trash allocator are we dealing with? + // whatever, add some padding in the case of MAXIMAL alignment waste... + allocated_size = misaligned_size; + unadjusted = lua_newuserdata(L, allocated_size); + adjusted = align(std::alignment_of<T*>::value, sizeof(T*), unadjusted, allocated_size); + if (adjusted == nullptr) { + // trash allocator can burn in hell + lua_pop(L, 1); + //luaL_error(L, "if you are the one that wrote this allocator you should feel bad for doing a worse job than malloc/realloc and should go read some books, yeah?"); + luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T*>().data()); + } + } + return static_cast<T**>(adjusted); + } + + template <typename T> + inline T* usertype_allocate(lua_State* L) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T*>::value > 1 || std::alignment_of<T>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + T** pointerpointer = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(T))); + T*& pointerreference = *pointerpointer; + T* allocationtarget = reinterpret_cast<T*>(pointerpointer + 1); + pointerreference = allocationtarget; + return allocationtarget; + } + + /* the assumption is that `lua_newuserdata` -- unless someone + passes a specific lua_Alloc that gives us bogus, un-aligned pointers + -- uses malloc, which tends to hand out more or less aligned pointers to memory + (most of the time, anyhow) + + but it's not guaranteed, so we have to do a post-adjustment check and increase padding + + we do this preliminarily with compile-time stuff, to see + if we strike lucky with the allocator and alignment values + + otherwise, we have to re-allocate the userdata and + over-allocate some space for additional padding because + compilers are optimized for aligned reads/writes + (and clang will barf UBsan errors on us for not being aligned) + */ + static const std::size_t initial_size = aligned_space_for<T*, T>(nullptr); + static const std::size_t misaligned_size = aligned_space_for<T*, T>(reinterpret_cast<void*>(0x1)); + + void* pointer_adjusted; + void* data_adjusted; + auto attempt_alloc = [](lua_State* L, std::size_t allocated_size, void*& pointer_adjusted, void*& data_adjusted) -> bool { + void* adjusted = lua_newuserdata(L, allocated_size); + pointer_adjusted = align(std::alignment_of<T*>::value, sizeof(T*), adjusted, allocated_size); + if (pointer_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + // subtract size of what we're going to allocate there + allocated_size -= sizeof(T*); + adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + sizeof(T*)); + data_adjusted = align(std::alignment_of<T>::value, sizeof(T), adjusted, allocated_size); + if (data_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + return true; + }; + bool result = attempt_alloc(L, initial_size, pointer_adjusted, data_adjusted); + if (!result) { + // we're likely to get something that fails to perform the proper allocation a second time, + // so we use the suggested_new_size bump to help us out here + pointer_adjusted = nullptr; + data_adjusted = nullptr; + result = attempt_alloc(L, misaligned_size, pointer_adjusted, data_adjusted); + if (!result) { + if (pointer_adjusted == nullptr) { + luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str()); + } + else { + luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str()); + } + return nullptr; + } + } + + T** pointerpointer = reinterpret_cast<T**>(pointer_adjusted); + T*& pointerreference = *pointerpointer; + T* allocationtarget = reinterpret_cast<T*>(data_adjusted); + pointerreference = allocationtarget; + return allocationtarget; + } + + template <typename T, typename Real> + inline Real* usertype_unique_allocate(lua_State* L, T**& pref, unique_destructor*& dx, unique_tag*& id) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T*>::value > 1 || std::alignment_of<unique_tag>::value > 1 || std::alignment_of<unique_destructor>::value > 1 || std::alignment_of<Real>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + pref = static_cast<T**>(lua_newuserdata(L, sizeof(T*) + sizeof(detail::unique_destructor) + sizeof(unique_tag) + sizeof(Real))); + dx = static_cast<detail::unique_destructor*>(static_cast<void*>(pref + 1)); + id = static_cast<unique_tag*>(static_cast<void*>(dx + 1)); + Real* mem = static_cast<Real*>(static_cast<void*>(id + 1)); + return mem; + } + + static const std::size_t initial_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(nullptr); + static const std::size_t misaligned_size = aligned_space_for<T*, unique_destructor, unique_tag, Real>(reinterpret_cast<void*>(0x1)); + + void* pointer_adjusted; + void* dx_adjusted; + void* id_adjusted; + void* data_adjusted; + auto attempt_alloc = [](lua_State* L, std::size_t allocated_size, void*& pointer_adjusted, void*& dx_adjusted, void*& id_adjusted, void*& data_adjusted) -> bool { + void* adjusted = lua_newuserdata(L, allocated_size); + pointer_adjusted = align(std::alignment_of<T*>::value, sizeof(T*), adjusted, allocated_size); + if (pointer_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + allocated_size -= sizeof(T*); + + adjusted = static_cast<void*>(static_cast<char*>(pointer_adjusted) + sizeof(T*)); + dx_adjusted = align(std::alignment_of<unique_destructor>::value, sizeof(unique_destructor), adjusted, allocated_size); + if (dx_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + allocated_size -= sizeof(unique_destructor); + + adjusted = static_cast<void*>(static_cast<char*>(dx_adjusted) + sizeof(unique_destructor)); + + id_adjusted = align(std::alignment_of<unique_tag>::value, sizeof(unique_tag), adjusted, allocated_size); + if (id_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + allocated_size -= sizeof(unique_tag); + + adjusted = static_cast<void*>(static_cast<char*>(id_adjusted) + sizeof(unique_tag)); + data_adjusted = align(std::alignment_of<Real>::value, sizeof(Real), adjusted, allocated_size); + if (data_adjusted == nullptr) { + lua_pop(L, 1); + return false; + } + return true; + }; + bool result = attempt_alloc(L, initial_size, pointer_adjusted, dx_adjusted, id_adjusted, data_adjusted); + if (!result) { + // we're likely to get something that fails to perform the proper allocation a second time, + // so we use the suggested_new_size bump to help us out here + pointer_adjusted = nullptr; + dx_adjusted = nullptr; + id_adjusted = nullptr; + data_adjusted = nullptr; + result = attempt_alloc(L, misaligned_size, pointer_adjusted, dx_adjusted, id_adjusted, data_adjusted); + if (!result) { + if (pointer_adjusted == nullptr) { + luaL_error(L, "aligned allocation of userdata block (pointer section) for '%s' failed", detail::demangle<T>().c_str()); + } + else if (dx_adjusted == nullptr) { + luaL_error(L, "aligned allocation of userdata block (deleter section) for '%s' failed", detail::demangle<T>().c_str()); + } + else { + luaL_error(L, "aligned allocation of userdata block (data section) for '%s' failed", detail::demangle<T>().c_str()); + } + return nullptr; + } + } + + pref = static_cast<T**>(pointer_adjusted); + dx = static_cast<detail::unique_destructor*>(dx_adjusted); + id = static_cast<unique_tag*>(id_adjusted); + Real* mem = static_cast<Real*>(data_adjusted); + return mem; + } + + template <typename T> + inline T* user_allocate(lua_State* L) { + typedef std::integral_constant<bool, +#if defined(SOL_NO_MEMORY_ALIGNMENT) && SOL_NO_MEMORY_ALIGNMENT + false +#else + (std::alignment_of<T>::value > 1) +#endif + > + use_align; + if (!use_align::value) { + T* pointer = static_cast<T*>(lua_newuserdata(L, sizeof(T))); + return pointer; + } + + static const std::size_t initial_size = aligned_space_for<T>(nullptr); + static const std::size_t misaligned_size = aligned_space_for<T>(reinterpret_cast<void*>(0x1)); + + std::size_t allocated_size = initial_size; + void* unadjusted = lua_newuserdata(L, allocated_size); + void* adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size); + if (adjusted == nullptr) { + lua_pop(L, 1); + // try again, add extra space for alignment padding + allocated_size = misaligned_size; + unadjusted = lua_newuserdata(L, allocated_size); + adjusted = align(std::alignment_of<T>::value, sizeof(T), unadjusted, allocated_size); + if (adjusted == nullptr) { + lua_pop(L, 1); + luaL_error(L, "cannot properly align memory for '%s'", detail::demangle<T>().data()); + } + } + return static_cast<T*>(adjusted); + } + + template <typename T> + inline int usertype_alloc_destruct(lua_State* L) { + void* memory = lua_touserdata(L, 1); + memory = align_usertype_pointer(memory); + T** pdata = static_cast<T**>(memory); + T* data = *pdata; + std::allocator<T> alloc{}; + std::allocator_traits<std::allocator<T>>::destroy(alloc, data); + return 0; + } + + template <typename T> + inline int unique_destruct(lua_State* L) { + void* memory = lua_touserdata(L, 1); + memory = align_usertype_unique_destructor(memory); + unique_destructor& dx = *static_cast<unique_destructor*>(memory); + memory = static_cast<void*>(static_cast<char*>(memory) + sizeof(unique_destructor)); + memory = align_usertype_unique_tag<true>(memory); + memory = static_cast<void*>(static_cast<char*>(memory) + sizeof(unique_tag)); + (dx)(memory); + return 0; + } + + template <typename T> + inline int user_alloc_destruct(lua_State* L) { + void* memory = lua_touserdata(L, 1); + memory = align_user<T>(memory); + T* data = static_cast<T*>(memory); + std::allocator<T> alloc; + std::allocator_traits<std::allocator<T>>::destroy(alloc, data); + return 0; + } + + template <typename T, typename Real> + inline void usertype_unique_alloc_destroy(void* memory) { + memory = align_usertype_unique<Real, true>(memory); + Real* target = static_cast<Real*>(memory); + std::allocator<Real> alloc; + std::allocator_traits<std::allocator<Real>>::destroy(alloc, target); + } + + template <typename T> + inline int cannot_destruct(lua_State* L) { + return luaL_error(L, "cannot call the destructor for '%s': it is either hidden (protected/private) or removed with '= delete' and thusly this type is being destroyed without properly destructing, invoking undefined behavior: please bind a usertype and specify a custom destructor to define the behavior properly", detail::demangle<T>().data()); + } + + template <typename T> + void reserve(T&, std::size_t) { + } + + template <typename T, typename Al> + void reserve(std::vector<T, Al>& arr, std::size_t hint) { + arr.reserve(hint); + } + + template <typename T, typename Tr, typename Al> + void reserve(std::basic_string<T, Tr, Al>& arr, std::size_t hint) { + arr.reserve(hint); + } + } // namespace detail + + namespace stack { + + template <typename T> + struct extensible {}; + + template <typename T, bool global = false, bool raw = false, typename = void> + struct field_getter; + template <typename T, typename P, bool global = false, bool raw = false, typename = void> + struct probe_field_getter; + template <typename T, bool global = false, bool raw = false, typename = void> + struct field_setter; + template <typename T, typename = void> + struct getter; + template <typename T, typename = void> + struct qualified_getter; + template <typename T, typename = void> + struct userdata_getter; + template <typename T, typename = void> + struct popper; + template <typename T, typename = void> + struct pusher; + template <typename T, type = lua_type_of<T>::value, typename = void> + struct checker; + template <typename T, type = lua_type_of<T>::value, typename = void> + struct qualified_checker; + template <typename T, typename = void> + struct userdata_checker; + template <typename T, typename = void> + struct check_getter; + template <typename T, typename = void> + struct qualified_check_getter; + + struct probe { + bool success; + int levels; + + probe(bool s, int l) + : success(s), levels(l) { + } + + operator bool() const { + return success; + }; + }; + + struct record { + int last; + int used; + + record() + : last(), used() { + } + void use(int count) { + last = count; + used += count; + } + }; + + namespace stack_detail { + template <typename T> + struct strip { + typedef T type; + }; + template <typename T> + struct strip<std::reference_wrapper<T>> { + typedef T& type; + }; + template <typename T> + struct strip<user<T>> { + typedef T& type; + }; + template <typename T> + struct strip<non_null<T>> { + typedef T type; + }; + template <typename T> + using strip_t = typename strip<T>::type; + + template <typename T> + struct strip_extensible { typedef T type; }; + + template <typename T> + struct strip_extensible<extensible<T>> { typedef T type; }; + + template <typename T> + using strip_extensible_t = typename strip_extensible<T>::type; + + template <typename C> + static int get_size_hint(const C& c) { + return static_cast<int>(c.size()); + } + + template <typename V, typename Al> + static int get_size_hint(const std::forward_list<V, Al>&) { + // forward_list makes me sad + return static_cast<int>(32); + } + + template <typename T> + inline decltype(auto) unchecked_unqualified_get(lua_State* L, int index, record& tracking) { + typedef meta::unqualified_t<T> Tu; + getter<Tu> g{}; + (void)g; + return g.get(L, index, tracking); + } + + template <typename T> + inline decltype(auto) unchecked_get(lua_State* L, int index, record& tracking) { + qualified_getter<T> g{}; + (void)g; + return g.get(L, index, tracking); + } + + template <typename T, typename Arg, typename... Args> + inline int push_reference(lua_State* L, Arg&& arg, Args&&... args) { + typedef meta::all< + std::is_lvalue_reference<T>, + meta::neg<std::is_const<T>>, + meta::neg<is_lua_primitive<meta::unqualified_t<T>>>, + meta::neg<is_unique_usertype<meta::unqualified_t<T>>>> + use_reference_tag; + pusher<std::conditional_t<use_reference_tag::value, detail::as_reference_tag, meta::unqualified_t<T>>> p{}; + (void)p; + return p.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + + template <typename T, typename Handler> + bool check_usertype(std::false_type, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { + typedef meta::unqualified_t<T> Tu; + typedef detail::as_value_tag<Tu> detail_t; + return checker<detail_t, type::userdata>{}.check(types<meta::unqualified_t<T>>(), L, index, indextype, std::forward<Handler>(handler), tracking); + } + + template <typename T, typename Handler> + bool check_usertype(std::true_type, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { + typedef meta::unqualified_t<std::remove_pointer_t<meta::unqualified_t<T>>> Tu; + typedef detail::as_pointer_tag<Tu> detail_t; + return checker<detail_t, type::userdata>{}.check(L, index, indextype, std::forward<Handler>(handler), tracking); + } + } // namespace stack_detail + + inline bool maybe_indexable(lua_State* L, int index = -1) { + type t = type_of(L, index); + return t == type::userdata || t == type::table; + } + + inline int top(lua_State* L) { + return lua_gettop(L); + } + + inline bool is_main_thread(lua_State* L) { + int ismainthread = lua_pushthread(L); + lua_pop(L, 1); + return ismainthread == 1; + } + + inline void coroutine_create_guard(lua_State* L) { + if (is_main_thread(L)) { + return; + } + int stacksize = lua_gettop(L); + if (stacksize < 1) { + return; + } + if (type_of(L, 1) != type::function) { + return; + } + // well now we're screwed... + // we can clean the stack and pray it doesn't destroy anything? + lua_pop(L, stacksize); + } + + template <typename T, typename... Args> + inline int push(lua_State* L, T&& t, Args&&... args) { + return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<T>(t), std::forward<Args>(args)...); + } + + // overload allows to use a pusher of a specific type, but pass in any kind of args + template <typename T, typename Arg, typename... Args, typename = std::enable_if_t<!std::is_same<T, Arg>::value>> + inline int push(lua_State* L, Arg&& arg, Args&&... args) { + return pusher<meta::unqualified_t<T>>{}.push(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + + template <typename T, typename... Args> + inline int push_reference(lua_State* L, T&& t, Args&&... args) { + return stack_detail::push_reference<T>(L, std::forward<T>(t), std::forward<Args>(args)...); + } + + template <typename T, typename Arg, typename... Args> + inline int push_reference(lua_State* L, Arg&& arg, Args&&... args) { + return stack_detail::push_reference<T>(L, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + + inline int multi_push(lua_State*) { + // do nothing + return 0; + } + + template <typename T, typename... Args> + inline int multi_push(lua_State* L, T&& t, Args&&... args) { + int pushcount = push(L, std::forward<T>(t)); + void(detail::swallow{ (pushcount += stack::push(L, std::forward<Args>(args)), 0)... }); + return pushcount; + } + + inline int multi_push_reference(lua_State*) { + // do nothing + return 0; + } + + template <typename T, typename... Args> + inline int multi_push_reference(lua_State* L, T&& t, Args&&... args) { + int pushcount = push_reference(L, std::forward<T>(t)); + void(detail::swallow{ (pushcount += stack::push_reference(L, std::forward<Args>(args)), 0)... }); + return pushcount; + } + + template <typename T, typename Handler> + bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + qualified_checker<T> c; + // VC++ has a bad warning here: shut it up + (void)c; + return c.check(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T, typename Handler> + bool check(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return check<T>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T> + bool check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return check<T>(L, index, handler); + } + + template <typename T, typename Handler> + bool unqualified_check(lua_State* L, int index, Handler&& handler, record& tracking) { + typedef meta::unqualified_t<T> Tu; + checker<Tu> c; + // VC++ has a bad warning here: shut it up + (void)c; + return c.check(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T, typename Handler> + bool unqualified_check(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return unqualified_check<T>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T> + bool unqualified_check(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return unqualified_check<T>(L, index, handler); + } + + template <typename T, typename Handler> + bool check_usertype(lua_State* L, int index, Handler&& handler, record& tracking) { + type indextype = type_of(L, index); + return stack_detail::check_usertype<T>(std::is_pointer<T>(), L, index, indextype, std::forward<Handler>(handler), tracking); + } + + template <typename T, typename Handler> + bool check_usertype(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T> + bool check_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return check_usertype<T>(L, index, handler); + } + + template <typename T, typename Handler> + inline decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler, record& tracking) { + typedef meta::unqualified_t<T> Tu; + check_getter<Tu> cg{}; + (void)cg; + return cg.get(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T, typename Handler> + inline decltype(auto) unqualified_check_get(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return unqualified_check_get<T>(L, index, handler, tracking); + } + + template <typename T> + inline decltype(auto) unqualified_check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return unqualified_check_get<T>(L, index, handler); + } + + template <typename T, typename Handler> + inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler, record& tracking) { + qualified_check_getter<T> cg{}; + (void)cg; + return cg.get(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename T, typename Handler> + inline decltype(auto) check_get(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return check_get<T>(L, index, handler, tracking); + } + + template <typename T> + inline decltype(auto) check_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + auto handler = no_panic; + return check_get<T>(L, index, handler); + } + + namespace stack_detail { + +#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER + template <typename T> + inline auto tagged_unqualified_get(types<T>, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_unqualified_get<T>(L, index, tracking)) { + if (is_lua_reference<T>::value) { + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + auto op = unqualified_check_get<T>(L, index, type_panic_c_str, tracking); + return *std::move(op); + } + + template <typename T> + inline decltype(auto) tagged_unqualified_get(types<optional<T>>, lua_State* L, int index, record& tracking) { + return stack_detail::unchecked_unqualified_get<optional<T>>(L, index, tracking); + } + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + inline decltype(auto) tagged_unqualified_get(types<std::optional<T>>, lua_State* L, int index, record& tracking) { + return stack_detail::unchecked_unqualified_get<std::optional<T>>(L, index, tracking); + } +#endif // shitty optional + + template <typename T> + inline auto tagged_get(types<T>, lua_State* L, int index, record& tracking) -> decltype(stack_detail::unchecked_get<T>(L, index, tracking)) { + if (is_lua_reference<T>::value) { + return stack_detail::unchecked_get<T>(L, index, tracking); + } + auto op = check_get<T>(L, index, type_panic_c_str, tracking); + return *std::move(op); + } + + template <typename T> + inline decltype(auto) tagged_get(types<optional<T>>, lua_State* L, int index, record& tracking) { + return stack_detail::unchecked_get<optional<T>>(L, index, tracking); + } + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + inline decltype(auto) tagged_get(types<std::optional<T>>, lua_State* L, int index, record& tracking) { + return stack_detail::unchecked_get<std::optional<T>>(L, index, tracking); + } +#endif // shitty optional + +#else + template <typename T> + inline decltype(auto) tagged_unqualified_get(types<T>, lua_State* L, int index, record& tracking) { + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + + template <typename T> + inline decltype(auto) tagged_get(types<T>, lua_State* L, int index, record& tracking) { + return stack_detail::unchecked_get<T>(L, index, tracking); + } +#endif + + template <bool b> + struct check_types { + template <typename T, typename... Args, typename Handler> + static bool check(types<T, Args...>, lua_State* L, int firstargument, Handler&& handler, record& tracking) { + if (!stack::check<T>(L, firstargument + tracking.used, handler, tracking)) + return false; + return check(types<Args...>(), L, firstargument, std::forward<Handler>(handler), tracking); + } + + template <typename Handler> + static bool check(types<>, lua_State*, int, Handler&&, record&) { + return true; + } + }; + + template <> + struct check_types<false> { + template <typename... Args, typename Handler> + static bool check(types<Args...>, lua_State*, int, Handler&&, record&) { + return true; + } + }; + + } // namespace stack_detail + + template <bool b, typename... Args, typename Handler> + bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack_detail::check_types<b>{}.check(types<meta::unqualified_t<Args>...>(), L, index, std::forward<Handler>(handler), tracking); + } + + template <bool b, typename... Args, typename Handler> + bool multi_check(lua_State* L, int index, Handler&& handler) { + record tracking{}; + return multi_check<b, Args...>(L, index, std::forward<Handler>(handler), tracking); + } + + template <bool b, typename... Args> + bool multi_check(lua_State* L, int index) { + auto handler = no_panic; + return multi_check<b, Args...>(L, index, handler); + } + + template <typename... Args, typename Handler> + bool multi_check(lua_State* L, int index, Handler&& handler, record& tracking) { + return multi_check<true, Args...>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename... Args, typename Handler> + bool multi_check(lua_State* L, int index, Handler&& handler) { + return multi_check<true, Args...>(L, index, std::forward<Handler>(handler)); + } + + template <typename... Args> + bool multi_check(lua_State* L, int index) { + return multi_check<true, Args...>(L, index); + } + + template <typename T> + inline decltype(auto) get_usertype(lua_State* L, int index, record& tracking) { +#if defined(SOL_SAFE_GETTER) && SOL_SAFE_GETTER + return stack_detail::tagged_get(types<std::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>>(), L, index, tracking); +#else + return stack_detail::unchecked_get<std::conditional_t<std::is_pointer<T>::value, detail::as_pointer_tag<std::remove_pointer_t<T>>, detail::as_value_tag<T>>>(L, index, tracking); +#endif + } + + template <typename T> + inline decltype(auto) get_usertype(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + record tracking{}; + return get_usertype<T>(L, index, tracking); + } + + template <typename T> + inline decltype(auto) unqualified_get(lua_State* L, int index, record& tracking) { + return stack_detail::tagged_unqualified_get(types<T>(), L, index, tracking); + } + + template <typename T> + inline decltype(auto) unqualified_get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + record tracking{}; + return unqualified_get<T>(L, index, tracking); + } + + template <typename T> + inline decltype(auto) get(lua_State* L, int index, record& tracking) { + return stack_detail::tagged_get(types<T>(), L, index, tracking); + } + + template <typename T> + inline decltype(auto) get(lua_State* L, int index = -lua_size<meta::unqualified_t<T>>::value) { + record tracking{}; + return get<T>(L, index, tracking); + } + + template <typename T> + inline decltype(auto) pop(lua_State* L) { + return popper<meta::unqualified_t<T>>{}.pop(L); + } + + template <bool global = false, bool raw = false, typename Key> + void get_field(lua_State* L, Key&& key) { + field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key)); + } + + template <bool global = false, bool raw = false, typename Key> + void get_field(lua_State* L, Key&& key, int tableindex) { + field_getter<meta::unqualified_t<Key>, global, raw>{}.get(L, std::forward<Key>(key), tableindex); + } + + template <bool global = false, typename Key> + void raw_get_field(lua_State* L, Key&& key) { + get_field<global, true>(L, std::forward<Key>(key)); + } + + template <bool global = false, typename Key> + void raw_get_field(lua_State* L, Key&& key, int tableindex) { + get_field<global, true>(L, std::forward<Key>(key), tableindex); + } + + template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key> + probe probe_get_field(lua_State* L, Key&& key) { + return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key)); + } + + template <bool global = false, bool raw = false, typename C = detail::non_lua_nil_t, typename Key> + probe probe_get_field(lua_State* L, Key&& key, int tableindex) { + return probe_field_getter<meta::unqualified_t<Key>, C, global, raw>{}.get(L, std::forward<Key>(key), tableindex); + } + + template <bool global = false, typename C = detail::non_lua_nil_t, typename Key> + probe probe_raw_get_field(lua_State* L, Key&& key) { + return probe_get_field<global, true, C>(L, std::forward<Key>(key)); + } + + template <bool global = false, typename C = detail::non_lua_nil_t, typename Key> + probe probe_raw_get_field(lua_State* L, Key&& key, int tableindex) { + return probe_get_field<global, true, C>(L, std::forward<Key>(key), tableindex); + } + + template <bool global = false, bool raw = false, typename Key, typename Value> + void set_field(lua_State* L, Key&& key, Value&& value) { + field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value)); + } + + template <bool global = false, bool raw = false, typename Key, typename Value> + void set_field(lua_State* L, Key&& key, Value&& value, int tableindex) { + field_setter<meta::unqualified_t<Key>, global, raw>{}.set(L, std::forward<Key>(key), std::forward<Value>(value), tableindex); + } + + template <bool global = false, typename Key, typename Value> + void raw_set_field(lua_State* L, Key&& key, Value&& value) { + set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value)); + } + + template <bool global = false, typename Key, typename Value> + void raw_set_field(lua_State* L, Key&& key, Value&& value, int tableindex) { + set_field<global, true>(L, std::forward<Key>(key), std::forward<Value>(value), tableindex); + } + + template <typename T, typename F> + inline void modify_unique_usertype_as(const stack_reference& obj, F&& f) { + typedef unique_usertype_traits<T> u_traits; + void* raw = lua_touserdata(obj.lua_state(), obj.stack_index()); + void* ptr_memory = detail::align_usertype_pointer(raw); + void* uu_memory = detail::align_usertype_unique<T>(raw); + T& uu = *static_cast<T*>(uu_memory); + f(uu); + *static_cast<void**>(ptr_memory) = static_cast<void*>(u_traits::get(uu)); + } + + template <typename F> + inline void modify_unique_usertype(const stack_reference& obj, F&& f) { + typedef meta::bind_traits<meta::unqualified_t<F>> bt; + typedef typename bt::template arg_at<0> T; + modify_unique_usertype_as<meta::unqualified_t<T>>(obj, std::forward<F>(f)); + } + } // namespace stack +} // namespace sol + +// end of sol/stack_core.hpp + +// beginning of sol/stack_check.hpp + +// beginning of sol/stack_check_unqualified.hpp + +#include <cmath> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT +#endif // SOL_STD_VARIANT +#endif // SOL_CXX17_FEATURES + +namespace sol { +namespace stack { + namespace stack_detail { + template <typename T, bool poptable = true> + inline bool check_metatable(lua_State* L, int index = -2) { + const auto& metakey = usertype_traits<T>::metatable(); + luaL_getmetatable(L, &metakey[0]); + const type expectedmetatabletype = static_cast<type>(lua_type(L, -1)); + if (expectedmetatabletype != type::lua_nil) { + if (lua_rawequal(L, -1, index) == 1) { + lua_pop(L, 1 + static_cast<int>(poptable)); + return true; + } + } + lua_pop(L, 1); + return false; + } + + template <type expected, int (*check_func)(lua_State*, int)> + struct basic_check { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + bool success = check_func(L, index) == 1; + if (!success) { + // expected type, actual type + handler(L, index, expected, type_of(L, index), ""); + } + return success; + } + }; + } // namespace stack_detail + + template <typename T, typename> + struct userdata_checker { + template <typename Handler> + static bool check(lua_State*, int, type, Handler&&, record&) { + return false; + } + }; + + template <typename T, type expected, typename> + struct checker { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + const type indextype = type_of(L, index); + bool success = expected == indextype; + if (!success) { + // expected type, actual type, message + handler(L, index, expected, indextype, ""); + } + return success; + } + }; + + template <typename T, type expected, typename C> + struct qualified_checker : checker<meta::unqualified_t<T>, lua_type_of<meta::unqualified_t<T>>::value, C> {}; + + template <typename T> + struct checker<T, type::number, std::enable_if_t<std::is_integral<T>::value>> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); +#if SOL_LUA_VERSION >= 503 +#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS + int isnum = 0; + lua_tointegerx(L, index, &isnum); + const bool success = isnum != 0; + if (!success) { + // expected type, actual type + handler(L, index, type::number, type_of(L, index), "not a numeric type or numeric string"); + } +#elif (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + // this check is precise, does not convert + if (lua_isinteger(L, index) == 1) { + return true; + } + const bool success = false; + if (!success) { + // expected type, actual type + handler(L, index, type::number, type_of(L, index), "not a numeric (integral) type"); + } +#else + type t = type_of(L, index); + const bool success = t == type::number; +#endif // If numbers are enabled, use the imprecise check + if (!success) { + // expected type, actual type + handler(L, index, type::number, type_of(L, index), "not a numeric type"); + } + return success; +#else +#if !defined(SOL_STRINGS_ARE_NUMBERS) || !SOL_STRINGS_ARE_NUMBERS + // must pre-check, because it will convert + type t = type_of(L, index); + if (t != type::number) { + // expected type, actual type + handler(L, index, type::number, t, "not a numeric type"); + return false; + } +#endif // Do not allow strings to be numbers +#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + int isnum = 0; + const lua_Number v = lua_tonumberx(L, index, &isnum); + const bool success = isnum != 0 && static_cast<lua_Number>(llround(v)) == v; +#else + const bool success = true; +#endif // Safe numerics and number precision checking + if (!success) { + // expected type, actual type +#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS + handler(L, index, type::number, type_of(L, index), "not a numeric type or numeric string"); +#else + handler(L, index, type::number, t, "not a numeric type"); +#endif + } + return success; +#endif // Lua Version 5.3 versus others + } + }; + + template <typename T> + struct checker<T, type::number, std::enable_if_t<std::is_floating_point<T>::value>> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); +#if defined(SOL_STRINGS_ARE_NUMBERS) && SOL_STRINGS_ARE_NUMBERS + bool success = lua_isnumber(L, index) == 1; + if (!success) { + // expected type, actual type + handler(L, index, type::number, type_of(L, index), "not a numeric type or numeric string"); + } + return success; +#else + type t = type_of(L, index); + bool success = t == type::number; + if (!success) { + // expected type, actual type + handler(L, index, type::number, t, "not a numeric type"); + } + return success; +#endif // Strings are Numbers + } + }; + + template <type expected, typename C> + struct checker<lua_nil_t, expected, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + bool success = lua_isnil(L, index); + if (success) { + tracking.use(1); + return success; + } + tracking.use(0); + success = lua_isnone(L, index); + if (!success) { + // expected type, actual type + handler(L, index, expected, type_of(L, index), ""); + } + return success; + } + }; + + template <typename C> + struct checker<detail::non_lua_nil_t, type::poly, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return !stack::unqualified_check<lua_nil_t>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <type expected, typename C> + struct checker<nullopt_t, expected, C> : checker<lua_nil_t> {}; + + template <typename C> + struct checker<this_state, type::poly, C> { + template <typename Handler> + static bool check(lua_State*, int, Handler&&, record& tracking) { + tracking.use(0); + return true; + } + }; + + template <typename C> + struct checker<this_main_state, type::poly, C> { + template <typename Handler> + static bool check(lua_State*, int, Handler&&, record& tracking) { + tracking.use(0); + return true; + } + }; + + template <typename C> + struct checker<this_environment, type::poly, C> { + template <typename Handler> + static bool check(lua_State*, int, Handler&&, record& tracking) { + tracking.use(0); + return true; + } + }; + + template <typename C> + struct checker<variadic_args, type::poly, C> { + template <typename Handler> + static bool check(lua_State*, int, Handler&&, record& tracking) { + tracking.use(0); + return true; + } + }; + + template <typename C> + struct checker<type, type::poly, C> { + template <typename Handler> + static bool check(lua_State*, int, Handler&&, record& tracking) { + tracking.use(0); + return true; + } + }; + + template <typename T, typename C> + struct checker<T, type::poly, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + bool success = is_lua_reference<T>::value || !lua_isnone(L, index); + if (!success) { + // expected type, actual type + handler(L, index, type::poly, type_of(L, index), ""); + } + return success; + } + }; + + template <typename T, typename C> + struct checker<T, type::lightuserdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + type t = type_of(L, index); + bool success = t == type::userdata || t == type::lightuserdata; + if (!success) { + // expected type, actual type + handler(L, index, type::lightuserdata, t, ""); + } + return success; + } + }; + + template <typename C> + struct checker<userdata_value, type::userdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + type t = type_of(L, index); + bool success = t == type::userdata; + if (!success) { + // expected type, actual type + handler(L, index, type::userdata, t, ""); + } + return success; + } + }; + + template <typename B, typename C> + struct checker<basic_userdata<B>, type::userdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack::check<userdata_value>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename T, typename C> + struct checker<user<T>, type::userdata, C> : checker<user<T>, type::lightuserdata, C> {}; + + template <typename T, typename C> + struct checker<non_null<T>, type::userdata, C> : checker<T, lua_type_of<T>::value, C> {}; + + template <typename C> + struct checker<lua_CFunction, type::function, C> : stack_detail::basic_check<type::function, lua_iscfunction> {}; + template <typename C> + struct checker<std::remove_pointer_t<lua_CFunction>, type::function, C> : checker<lua_CFunction, type::function, C> {}; + template <typename C> + struct checker<c_closure, type::function, C> : checker<lua_CFunction, type::function, C> {}; + + template <typename T, typename C> + struct checker<T, type::function, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + type t = type_of(L, index); + if (t == type::lua_nil || t == type::none || t == type::function) { + // allow for lua_nil to be returned + return true; + } + if (t != type::userdata && t != type::table) { + handler(L, index, type::function, t, "must be a function or table or a userdata"); + return false; + } + // Do advanced check for call-style userdata? + static const auto& callkey = to_string(meta_function::call); + if (lua_getmetatable(L, index) == 0) { + // No metatable, no __call key possible + handler(L, index, type::function, t, "value is not a function and does not have overriden metatable"); + return false; + } + if (lua_isnoneornil(L, -1)) { + lua_pop(L, 1); + handler(L, index, type::function, t, "value is not a function and does not have valid metatable"); + return false; + } + lua_getfield(L, -1, &callkey[0]); + if (lua_isnoneornil(L, -1)) { + lua_pop(L, 2); + handler(L, index, type::function, t, "value's metatable does not have __call overridden in metatable, cannot call this type"); + return false; + } + // has call, is definitely a function + lua_pop(L, 2); + return true; + } + }; + + template <typename T, typename C> + struct checker<T, type::table, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + type t = type_of(L, index); + if (t == type::table) { + return true; + } + if (t != type::userdata) { + handler(L, index, type::table, t, "value is not a table or a userdata that can behave like one"); + return false; + } + return true; + } + }; + + template <type expected, typename C> + struct checker<metatable_t, expected, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + if (lua_getmetatable(L, index) == 0) { + return true; + } + type t = type_of(L, -1); + if (t == type::table || t == type::none || t == type::lua_nil) { + lua_pop(L, 1); + return true; + } + if (t != type::userdata) { + lua_pop(L, 1); + handler(L, index, expected, t, "value does not have a valid metatable"); + return false; + } + return true; + } + }; + + template <typename C> + struct checker<env_t, type::poly, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + type t = type_of(L, index); + if (t == type::table || t == type::none || t == type::lua_nil || t == type::userdata) { + return true; + } + handler(L, index, type::table, t, "value cannot not have a valid environment"); + return true; + } + }; + + template <typename E, typename C> + struct checker<basic_environment<E>, type::poly, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + tracking.use(1); + if (lua_getmetatable(L, index) == 0) { + return true; + } + type t = type_of(L, -1); + if (t == type::table || t == type::none || t == type::lua_nil) { + lua_pop(L, 1); + return true; + } + if (t != type::userdata) { + lua_pop(L, 1); + handler(L, index, type::table, t, "value does not have a valid metatable"); + return false; + } + return true; + } + }; + + template <typename T, typename C> + struct checker<detail::as_value_tag<T>, type::userdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + const type indextype = type_of(L, index); + return check(types<T>(), L, index, indextype, handler, tracking); + } + + template <typename U, typename Handler> + static bool check(types<U>, lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { +#if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP + userdata_checker<extensible<T>> uc; + (void)uc; + if (uc.check(L, index, indextype, handler, tracking)) { + return true; + } +#endif // interop extensibility + tracking.use(1); + if (indextype != type::userdata) { + handler(L, index, type::userdata, indextype, "value is not a valid userdata"); + return false; + } + if (meta::any<std::is_same<T, lightuserdata_value>, std::is_same<T, userdata_value>, std::is_same<T, userdata>, std::is_same<T, lightuserdata>>::value) + return true; + if (lua_getmetatable(L, index) == 0) { + return true; + } + int metatableindex = lua_gettop(L); + if (stack_detail::check_metatable<U>(L, metatableindex)) + return true; + if (stack_detail::check_metatable<U*>(L, metatableindex)) + return true; + if (stack_detail::check_metatable<detail::unique_usertype<U>>(L, metatableindex)) + return true; + if (stack_detail::check_metatable<as_container_t<U>>(L, metatableindex)) + return true; + bool success = false; + if (detail::has_derived<T>::value) { + auto pn = stack::pop_n(L, 1); + lua_pushstring(L, &detail::base_class_check_key()[0]); + lua_rawget(L, metatableindex); + if (type_of(L, -1) != type::lua_nil) { + void* basecastdata = lua_touserdata(L, -1); + detail::inheritance_check_function ic = reinterpret_cast<detail::inheritance_check_function>(basecastdata); + success = ic(usertype_traits<T>::qualified_name()); + } + } + if (!success) { + lua_pop(L, 1); + handler(L, index, type::userdata, indextype, "value at this index does not properly reflect the desired type"); + return false; + } + lua_pop(L, 1); + return true; + } + }; + + template <typename T, typename C> + struct checker<detail::as_pointer_tag<T>, type::userdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, type indextype, Handler&& handler, record& tracking) { + if (indextype == type::lua_nil) { + tracking.use(1); + return true; + } + return stack_detail::check_usertype<T>(std::false_type(), L, index, indextype, std::forward<Handler>(handler), tracking); + } + + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + const type indextype = type_of(L, index); + return check(L, index, handler, indextype, tracking); + } + }; + + template <typename T, typename C> + struct checker<T, type::userdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return check_usertype<T>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename T, typename C> + struct checker<T*, type::userdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return check_usertype<T*>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename X> + struct checker<X, type::userdata, std::enable_if_t<is_unique_usertype<X>::value>> { + typedef typename unique_usertype_traits<X>::type T; + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + const type indextype = type_of(L, index); + tracking.use(1); + if (indextype != type::userdata) { + handler(L, index, type::userdata, indextype, "value is not a userdata"); + return false; + } + if (lua_getmetatable(L, index) == 0) { + return true; + } + int metatableindex = lua_gettop(L); + if (stack_detail::check_metatable<detail::unique_usertype<T>>(L, metatableindex)) { + void* memory = lua_touserdata(L, index); + memory = detail::align_usertype_unique_destructor(memory); + detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); + bool success = &detail::usertype_unique_alloc_destroy<T, X> == pdx; + if (!success) { + memory = detail::align_usertype_unique_tag<true>(memory); +#if 0 + // New version +#else + const char*& name_tag = *static_cast<const char**>(memory); + success = usertype_traits<X>::qualified_name() == name_tag; +#endif + if (!success) { + handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype"); + } + } + return success; + } + lua_pop(L, 1); + handler(L, index, type::userdata, indextype, "unrecognized userdata (not pushed by sol?)"); + return false; + } + }; + + template <typename T, typename C> + struct checker<std::reference_wrapper<T>, type::userdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack::check<T>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename... Args, typename C> + struct checker<std::tuple<Args...>, type::poly, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack::multi_check<Args...>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename A, typename B, typename C> + struct checker<std::pair<A, B>, type::poly, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack::multi_check<A, B>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename T, typename C> + struct checker<optional<T>, type::poly, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&&, record& tracking) { + type t = type_of(L, index); + if (t == type::none) { + tracking.use(0); + return true; + } + if (t == type::lua_nil) { + tracking.use(1); + return true; + } + return stack::check<T>(L, index, no_panic, tracking); + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + + template <typename T, typename C> + struct checker<std::optional<T>, type::poly, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&&, record& tracking) { + type t = type_of(L, index); + if (t == type::none) { + tracking.use(0); + return true; + } + if (t == type::lua_nil) { + tracking.use(1); + return true; + } + return stack::check<T>(L, index, no_panic, tracking); + } + }; + +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + + template <typename... Tn, typename C> + struct checker<std::variant<Tn...>, type::poly, C> { + typedef std::variant<Tn...> V; + typedef std::variant_size<V> V_size; + typedef std::integral_constant<bool, V_size::value == 0> V_is_empty; + + template <typename Handler> + static bool is_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) { + if (V_is_empty::value && lua_isnone(L, index)) { + return true; + } + tracking.use(1); + handler(L, index, type::poly, type_of(L, index), "value does not fit any type present in the variant"); + return false; + } + + template <std::size_t I, typename Handler> + static bool is_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) { + typedef std::variant_alternative_t<I - 1, V> T; + record temp_tracking = tracking; + if (stack::check<T>(L, index, no_panic, temp_tracking)) { + tracking = temp_tracking; + return true; + } + return is_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking); + } + + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return is_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking); + } + }; + +#endif // SOL_STD_VARIANT + +#endif // SOL_CXX17_FEATURES +} +} // namespace sol::stack + +// end of sol/stack_check_unqualified.hpp + +// beginning of sol/stack_check_qualified.hpp + +namespace sol { +namespace stack { + +#if 0 + template <typename X> + struct qualified_checker<X, type::userdata, std::enable_if_t<is_unique_usertype<X>::value && !std::is_reference<X>::value>> { + typedef unique_usertype_traits<meta::unqualified_t<X>> u_traits; + typedef typename u_traits::type T; + + template <typename Handler> + static bool check(std::false_type, lua_State* L, int index, Handler&& handler, record& tracking) { + return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking); + } + + template <typename Handler> + static bool check(std::true_type, lua_State* L, int index, Handler&& handler, record& tracking) { + // we have a unique pointer type that can be + // rebound to a base/derived type + const type indextype = type_of(L, index); + tracking.use(1); + if (indextype != type::userdata) { + handler(L, index, type::userdata, indextype, "value is not a userdata"); + return false; + } + if (lua_getmetatable(L, index) == 0) { + return true; + } + int metatableindex = lua_gettop(L); + void* basecastdata = lua_touserdata(L, index); + void* memory = detail::align_usertype_unique_destructor(basecastdata); + detail::unique_destructor& pdx = *static_cast<detail::unique_destructor*>(memory); + if (&detail::usertype_unique_alloc_destroy<T, X> == pdx) { + return true; + } + if (detail::has_derived<T>::value) { + memory = detail::align_usertype_unique_cast<true>(memory); + detail::inheritance_unique_cast_function ic = reinterpret_cast<detail::inheritance_unique_cast_function>(memory); + string_view ti = usertype_traits<T>::qualified_name(); + string_view rebind_ti = usertype_traits<base_id>::qualified_name(); + if (ic(nullptr, basecastdata, ti, rebind_ti)) { + lua_pop(L, 1); + } + } + handler(L, index, type::userdata, indextype, "value is a userdata but is not the correct unique usertype"); + return false; + } + + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return check(meta::neg<std::is_void<typename u_traits::base_id>>(), L, index, std::forward<Handler>(handler), tracking); + } + }; + +#endif // Not implemented right now... + + template <typename X> + struct qualified_checker<X, type::userdata, std::enable_if_t<is_container<meta::unqualified_t<X>>::value && !std::is_reference<X>::value>> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + if (type_of(L, index) == type::userdata) { + return stack::unqualified_check<X>(L, index, std::forward<Handler>(handler), tracking); + } + else { + return stack::unqualified_check<nested<X>>(L, index, std::forward<Handler>(handler), tracking); + } + } + }; +} +} // namespace sol::stack + +// end of sol/stack_check_qualified.hpp + +// end of sol/stack_check.hpp + +// beginning of sol/stack_get.hpp + +// beginning of sol/stack_get_unqualified.hpp + +// beginning of sol/overload.hpp + +namespace sol { + template <typename... Functions> + struct overload_set { + std::tuple<Functions...> functions; + template <typename Arg, typename... Args, meta::disable<std::is_same<overload_set, meta::unqualified_t<Arg>>> = meta::enabler> + overload_set(Arg&& arg, Args&&... args) + : functions(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + overload_set(const overload_set&) = default; + overload_set(overload_set&&) = default; + overload_set& operator=(const overload_set&) = default; + overload_set& operator=(overload_set&&) = default; + }; + + template <typename... Args> + decltype(auto) overload(Args&&... args) { + return overload_set<std::decay_t<Args>...>(std::forward<Args>(args)...); + } +} // namespace sol + +// end of sol/overload.hpp + +// beginning of sol/unicode.hpp + +namespace sol { + // Everything here was lifted pretty much straight out of + // ogonek, because fuck figuring it out= + namespace unicode { + enum class error_code { + ok = 0, + invalid_code_point, + invalid_code_unit, + invalid_leading_surrogate, + invalid_trailing_surrogate, + sequence_too_short, + overlong_sequence, + }; + + inline const string_view& to_string(error_code ec) { + static const string_view arr[4] = { + "ok", + "invalid code points", + "invalid code unit", + "overlong sequence" + }; + return arr[static_cast<std::size_t>(ec)]; + } + + template <typename It> + struct decoded_result { + error_code error; + char32_t codepoint; + It next; + }; + + template <typename C> + struct encoded_result { + error_code error; + std::size_t code_units_size; + std::array<C, 4> code_units; + }; + + struct unicode_detail { + // codepoint related + static constexpr char32_t last_code_point = 0x10FFFF; + + static constexpr char32_t first_lead_surrogate = 0xD800; + static constexpr char32_t last_lead_surrogate = 0xDBFF; + + static constexpr char32_t first_trail_surrogate = 0xDC00; + static constexpr char32_t last_trail_surrogate = 0xDFFF; + + static constexpr char32_t first_surrogate = first_lead_surrogate; + static constexpr char32_t last_surrogate = last_trail_surrogate; + + static constexpr bool is_lead_surrogate(char32_t u) { + return u >= first_lead_surrogate && u <= last_lead_surrogate; + } + static constexpr bool is_trail_surrogate(char32_t u) { + return u >= first_trail_surrogate && u <= last_trail_surrogate; + } + static constexpr bool is_surrogate(char32_t u) { + return u >= first_surrogate && u <= last_surrogate; + } + + // utf8 related + static constexpr auto last_1byte_value = 0x7Fu; + static constexpr auto last_2byte_value = 0x7FFu; + static constexpr auto last_3byte_value = 0xFFFFu; + + static constexpr auto start_2byte_mask = 0x80u; + static constexpr auto start_3byte_mask = 0xE0u; + static constexpr auto start_4byte_mask = 0xF0u; + + static constexpr auto continuation_mask = 0xC0u; + static constexpr auto continuation_signature = 0x80u; + + static constexpr int sequence_length(unsigned char b) { + return (b & start_2byte_mask) == 0 ? 1 + : (b & start_3byte_mask) != start_3byte_mask ? 2 + : (b & start_4byte_mask) != start_4byte_mask ? 3 + : 4; + } + + static constexpr char32_t decode(unsigned char b0, unsigned char b1) { + return ((b0 & 0x1F) << 6) | (b1 & 0x3F); + } + static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2) { + return ((b0 & 0x0F) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F); + } + static constexpr char32_t decode(unsigned char b0, unsigned char b1, unsigned char b2, unsigned char b3) { + return ((b0 & 0x07) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F); + } + + // utf16 related + static constexpr char32_t last_bmp_value = 0xFFFF; + static constexpr char32_t normalizing_value = 0x10000; + static constexpr int lead_surrogate_bitmask = 0xFFC00; + static constexpr int trail_surrogate_bitmask = 0x3FF; + static constexpr int lead_shifted_bits = 10; + static constexpr char32_t replacement = 0xFFFD; + + static char32_t combine_surrogates(char16_t lead, char16_t trail) { + auto hi = lead - first_lead_surrogate; + auto lo = trail - first_trail_surrogate; + return normalizing_value + ((hi << lead_shifted_bits) | lo); + } + }; + + inline encoded_result<char> code_point_to_utf8(char32_t codepoint) { + encoded_result<char> er; + er.error = error_code::ok; + if (codepoint <= unicode_detail::last_1byte_value) { + er.code_units_size = 1; + er.code_units = std::array<char, 4>{ { static_cast<char>(codepoint) } }; + } + else if (codepoint <= unicode_detail::last_2byte_value) { + er.code_units_size = 2; + er.code_units = std::array<char, 4>{{ + static_cast<char>(0xC0 | ((codepoint & 0x7C0) >> 6)), + static_cast<char>(0x80 | (codepoint & 0x3F)), + }}; + } + else if (codepoint <= unicode_detail::last_3byte_value) { + er.code_units_size = 3; + er.code_units = std::array<char, 4>{{ + static_cast<char>(0xE0 | ((codepoint & 0xF000) >> 12)), + static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)), + static_cast<char>(0x80 | (codepoint & 0x3F)), + }}; + } + else { + er.code_units_size = 4; + er.code_units = std::array<char, 4>{ { + static_cast<char>(0xF0 | ((codepoint & 0x1C0000) >> 18)), + static_cast<char>(0x80 | ((codepoint & 0x3F000) >> 12)), + static_cast<char>(0x80 | ((codepoint & 0xFC0) >> 6)), + static_cast<char>(0x80 | (codepoint & 0x3F)), + } }; + } + return er; + } + + inline encoded_result<char16_t> code_point_to_utf16(char32_t codepoint) { + encoded_result<char16_t> er; + + if (codepoint <= unicode_detail::last_bmp_value) { + er.code_units_size = 1; + er.code_units = std::array<char16_t, 4>{ { static_cast<char16_t>(codepoint) } }; + er.error = error_code::ok; + } + else { + auto normal = codepoint - unicode_detail::normalizing_value; + auto lead = unicode_detail::first_lead_surrogate + ((normal & unicode_detail::lead_surrogate_bitmask) >> unicode_detail::lead_shifted_bits); + auto trail = unicode_detail::first_trail_surrogate + (normal & unicode_detail::trail_surrogate_bitmask); + er.code_units = std::array<char16_t, 4>{ { + static_cast<char16_t>(lead), + static_cast<char16_t>(trail) + } }; + er.code_units_size = 2; + er.error = error_code::ok; + } + return er; + } + + inline encoded_result<char32_t> code_point_to_utf32(char32_t codepoint) { + encoded_result<char32_t> er; + er.code_units_size = 1; + er.code_units[0] = codepoint; + er.error = error_code::ok; + return er; + } + + template <typename It> + inline decoded_result<It> utf8_to_code_point(It it, It last) { + decoded_result<It> dr; + if (it == last) { + dr.next = it; + dr.error = error_code::sequence_too_short; + return dr; + } + + unsigned char b0 = *it; + std::size_t length = unicode_detail::sequence_length(b0); + + if (length == 1) { + dr.codepoint = static_cast<char32_t>(b0); + dr.error = error_code::ok; + ++it; + dr.next = it; + return dr; + } + + auto is_invalid = [](unsigned char b) { return b == 0xC0 || b == 0xC1 || b > 0xF4; }; + auto is_continuation = [](unsigned char b) { + return (b & unicode_detail::continuation_mask) == unicode_detail::continuation_signature; + }; + + if (is_invalid(b0) || is_continuation(b0)) { + dr.error = error_code::invalid_code_unit; + dr.next = it; + return dr; + } + + ++it; + std::array<unsigned char, 4> b; + b[0] = b0; + for (std::size_t i = 1; i < length; ++i) { + b[i] = *it; + if (!is_continuation(b[i])) { + dr.error = error_code::invalid_code_unit; + dr.next = it; + return dr; + } + ++it; + } + + char32_t decoded; + switch (length) { + case 2: + decoded = unicode_detail::decode(b[0], b[1]); + break; + case 3: + decoded = unicode_detail::decode(b[0], b[1], b[2]); + break; + default: + decoded = unicode_detail::decode(b[0], b[1], b[2], b[3]); + break; + } + + auto is_overlong = [](char32_t u, std::size_t bytes) { + return u <= unicode_detail::last_1byte_value + || (u <= unicode_detail::last_2byte_value && bytes > 2) + || (u <= unicode_detail::last_3byte_value && bytes > 3); + }; + if (is_overlong(decoded, length)) { + dr.error = error_code::overlong_sequence; + return dr; + } + if (unicode_detail::is_surrogate(decoded) || decoded > unicode_detail::last_code_point) { + dr.error = error_code::invalid_code_point; + return dr; + } + + // then everything is fine + dr.codepoint = decoded; + dr.error = error_code::ok; + dr.next = it; + return dr; + } + + template <typename It> + inline decoded_result<It> utf16_to_code_point(It it, It last) { + decoded_result<It> dr; + if (it == last) { + dr.next = it; + dr.error = error_code::sequence_too_short; + return dr; + } + + char16_t lead = static_cast<char16_t>(*it); + + if (!unicode_detail::is_surrogate(lead)) { + ++it; + dr.codepoint = static_cast<char32_t>(lead); + dr.next = it; + dr.error = error_code::ok; + return dr; + } + if (!unicode_detail::is_lead_surrogate(lead)) { + dr.error = error_code::invalid_leading_surrogate; + dr.next = it; + return dr; + } + + ++it; + auto trail = *it; + if (!unicode_detail::is_trail_surrogate(trail)) { + dr.error = error_code::invalid_trailing_surrogate; + dr.next = it; + return dr; + } + + dr.codepoint = unicode_detail::combine_surrogates(lead, trail); + dr.next = ++it; + dr.error = error_code::ok; + return dr; + } + + template <typename It> + inline decoded_result<It> utf32_to_code_point(It it, It last) { + decoded_result<It> dr; + if (it == last) { + dr.next = it; + dr.error = error_code::sequence_too_short; + return dr; + } + dr.codepoint = static_cast<char32_t>(*it); + dr.next = ++it; + dr.error = error_code::ok; + return dr; + } + } +} +// end of sol/unicode.hpp + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT +#endif // Apple clang screwed up +#endif // C++17 + +namespace sol { +namespace stack { + + template <typename U> + struct userdata_getter<U> { + typedef stack_detail::strip_extensible_t<U> T; + + static std::pair<bool, T*> get(lua_State*, int, void*, record&) { + return { false, nullptr }; + } + }; + + template <typename T, typename> + struct getter { + static T& get(lua_State* L, int index, record& tracking) { + return getter<detail::as_value_tag<T>>{}.get(L, index, tracking); + } + }; + + template <typename T, typename C> + struct qualified_getter : getter<meta::unqualified_t<T>, C> {}; + + template <typename T> + struct getter<T, std::enable_if_t<std::is_floating_point<T>::value>> { + static T get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return static_cast<T>(lua_tonumber(L, index)); + } + }; + + template <typename T> + struct getter<T, std::enable_if_t<std::is_integral<T>::value>> { + static T get(lua_State* L, int index, record& tracking) { + tracking.use(1); +#if SOL_LUA_VERSION >= 503 + if (lua_isinteger(L, index) != 0) { + return static_cast<T>(lua_tointeger(L, index)); + } +#endif + return static_cast<T>(llround(lua_tonumber(L, index))); + } + }; + + template <typename T> + struct getter<T, std::enable_if_t<std::is_enum<T>::value>> { + static T get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return static_cast<T>(lua_tointegerx(L, index, nullptr)); + } + }; + + template <typename T> + struct getter<as_table_t<T>> { + typedef meta::unqualified_t<T> Tu; + + template <typename V> + static void push_back_at_end(std::true_type, types<V>, lua_State* L, T& arr, std::size_t) { + arr.push_back(stack::get<V>(L, -lua_size<V>::value)); + } + + template <typename V> + static void push_back_at_end(std::false_type, types<V> t, lua_State* L, T& arr, std::size_t idx) { + insert_at_end(meta::has_insert<Tu>(), t, L, arr, idx); + } + + template <typename V> + static void insert_at_end(std::true_type, types<V>, lua_State* L, T& arr, std::size_t) { + using std::end; + arr.insert(end(arr), stack::get<V>(L, -lua_size<V>::value)); + } + + template <typename V> + static void insert_at_end(std::false_type, types<V>, lua_State* L, T& arr, std::size_t idx) { + arr[idx] = stack::get<V>(L, -lua_size<V>::value); + } + + static bool max_size_check(std::false_type, T&, std::size_t) { + return false; + } + + static bool max_size_check(std::true_type, T& arr, std::size_t idx) { + return idx >= arr.max_size(); + } + + static T get(lua_State* L, int relindex, record& tracking) { + return get(meta::has_key_value_pair<meta::unqualified_t<T>>(), L, relindex, tracking); + } + + static T get(std::false_type, lua_State* L, int relindex, record& tracking) { + typedef typename T::value_type V; + return get(types<V>(), L, relindex, tracking); + } + + template <typename V> + static T get(types<V> t, lua_State* L, int relindex, record& tracking) { + tracking.use(1); + + int index = lua_absindex(L, relindex); + T arr; + std::size_t idx = 0; +#if SOL_LUA_VERSION >= 503 + // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3 + // Questionable in 5.4 + for (lua_Integer i = 0;; i += lua_size<V>::value) { + if (max_size_check(meta::has_max_size<Tu>(), arr, idx)) { + return arr; + } + bool isnil = false; + for (int vi = 0; vi < lua_size<V>::value; ++vi) { +#if defined(LUA_NILINTABLE) && LUA_NILINTABLE + lua_pushinteger(L, static_cast<lua_Integer>(i + vi)); + if (lua_keyin(L, index) == 0) { + // it's time to stop + isnil = true; + } + else { + // we have a key, have to get the value + lua_geti(L, index, i + vi); + } +#else + type vt = static_cast<type>(lua_geti(L, index, i + vi)); + isnil = vt == type::none + || vt == type::lua_nil; +#endif + if (isnil) { + if (i == 0) { + break; + } +#if defined(LUA_NILINTABLE) && LUA_NILINTABLE + lua_pop(L, vi); +#else + lua_pop(L, (vi + 1)); +#endif + return arr; + } + } + if (isnil) { +#if defined(LUA_NILINTABLE) && LUA_NILINTABLE +#else + lua_pop(L, lua_size<V>::value); +#endif + continue; + } + push_back_at_end(meta::has_push_back<Tu>(), t, L, arr, idx); + ++idx; + lua_pop(L, lua_size<V>::value); + } +#else + // Zzzz slower but necessary thanks to the lower version API and missing functions qq + for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { + if (idx >= arr.max_size()) { + return arr; + } + bool isnil = false; + for (int vi = 0; vi < lua_size<V>::value; ++vi) { + lua_pushinteger(L, i); + lua_gettable(L, index); + type vt = type_of(L, -1); + isnil = vt == type::lua_nil; + if (isnil) { + if (i == 0) { + break; + } + lua_pop(L, (vi + 1)); + return arr; + } + } + if (isnil) + continue; + push_back_at_end(meta::has_push_back<Tu>(), t, L, arr, idx); + ++idx; + } +#endif + return arr; + } + + static T get(std::true_type, lua_State* L, int index, record& tracking) { + typedef typename T::value_type P; + typedef typename P::first_type K; + typedef typename P::second_type V; + return get(types<K, V>(), L, index, tracking); + } + + template <typename K, typename V> + static T get(types<K, V>, lua_State* L, int relindex, record& tracking) { + tracking.use(1); + + T associative; + int index = lua_absindex(L, relindex); + lua_pushnil(L); + while (lua_next(L, index) != 0) { + decltype(auto) key = stack::check_get<K>(L, -2); + if (!key) { + lua_pop(L, 1); + continue; + } + associative.emplace(std::forward<decltype(*key)>(*key), stack::get<V>(L, -1)); + lua_pop(L, 1); + } + return associative; + } + }; + + template <typename T, typename Al> + struct getter<as_table_t<std::forward_list<T, Al>>> { + typedef std::forward_list<T, Al> C; + + static C get(lua_State* L, int relindex, record& tracking) { + return get(meta::has_key_value_pair<C>(), L, relindex, tracking); + } + + static C get(std::true_type, lua_State* L, int index, record& tracking) { + typedef typename T::value_type P; + typedef typename P::first_type K; + typedef typename P::second_type V; + return get(types<K, V>(), L, index, tracking); + } + + static C get(std::false_type, lua_State* L, int relindex, record& tracking) { + typedef typename C::value_type V; + return get(types<V>(), L, relindex, tracking); + } + + template <typename V> + static C get(types<V>, lua_State* L, int relindex, record& tracking) { + tracking.use(1); + + int index = lua_absindex(L, relindex); + C arr; + auto at = arr.cbefore_begin(); + std::size_t idx = 0; +#if SOL_LUA_VERSION >= 503 + // This method is HIGHLY performant over regular table iteration thanks to the Lua API changes in 5.3 + for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { + if (idx >= arr.max_size()) { + return arr; + } + bool isnil = false; + for (int vi = 0; vi < lua_size<V>::value; ++vi) { + type t = static_cast<type>(lua_geti(L, index, i + vi)); + isnil = t == type::lua_nil; + if (isnil) { + if (i == 0) { + break; + } + lua_pop(L, (vi + 1)); + return arr; + } + } + if (isnil) + continue; + at = arr.insert_after(at, stack::get<V>(L, -lua_size<V>::value)); + ++idx; + } +#else + // Zzzz slower but necessary thanks to the lower version API and missing functions qq + for (lua_Integer i = 0;; i += lua_size<V>::value, lua_pop(L, lua_size<V>::value)) { + if (idx >= arr.max_size()) { + return arr; + } + bool isnil = false; + for (int vi = 0; vi < lua_size<V>::value; ++vi) { + lua_pushinteger(L, i); + lua_gettable(L, index); + type t = type_of(L, -1); + isnil = t == type::lua_nil; + if (isnil) { + if (i == 0) { + break; + } + lua_pop(L, (vi + 1)); + return arr; + } + } + if (isnil) + continue; + at = arr.insert_after(at, stack::get<V>(L, -lua_size<V>::value)); + ++idx; + } +#endif + return arr; + } + + template <typename K, typename V> + static C get(types<K, V>, lua_State* L, int relindex, record& tracking) { + tracking.use(1); + + C associative; + auto at = associative.cbefore_begin(); + int index = lua_absindex(L, relindex); + lua_pushnil(L); + while (lua_next(L, index) != 0) { + decltype(auto) key = stack::check_get<K>(L, -2); + if (!key) { + lua_pop(L, 1); + continue; + } + at = associative.emplace_after(at, std::forward<decltype(*key)>(*key), stack::get<V>(L, -1)); + lua_pop(L, 1); + } + return associative; + } + }; + + template <typename T> + struct getter<nested<T>, std::enable_if_t<!is_container<T>::value>> { + static T get(lua_State* L, int index, record& tracking) { + getter<T> g; + // VC++ has a bad warning here: shut it up + (void)g; + return g.get(L, index, tracking); + } + }; + + template <typename T> + struct getter<nested<T>, std::enable_if_t<meta::all<is_container<T>, meta::neg<meta::has_key_value_pair<meta::unqualified_t<T>>>>::value>> { + static T get(lua_State* L, int index, record& tracking) { + typedef typename T::value_type V; + getter<as_table_t<T>> g; + // VC++ has a bad warning here: shut it up + (void)g; + return g.get(types<nested<V>>(), L, index, tracking); + } + }; + + template <typename T> + struct getter<nested<T>, std::enable_if_t<meta::all<is_container<T>, meta::has_key_value_pair<meta::unqualified_t<T>>>::value>> { + static T get(lua_State* L, int index, record& tracking) { + typedef typename T::value_type P; + typedef typename P::first_type K; + typedef typename P::second_type V; + getter<as_table_t<T>> g; + // VC++ has a bad warning here: shut it up + (void)g; + return g.get(types<K, nested<V>>(), L, index, tracking); + } + }; + + template <typename T> + struct getter<T, std::enable_if_t<is_lua_reference<T>::value>> { + static T get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return T(L, index); + } + }; + + template <> + struct getter<userdata_value> { + static userdata_value get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return userdata_value(lua_touserdata(L, index)); + } + }; + + template <> + struct getter<lightuserdata_value> { + static lightuserdata_value get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lightuserdata_value(lua_touserdata(L, index)); + } + }; + + template <typename T> + struct getter<light<T>> { + static light<T> get(lua_State* L, int index, record& tracking) { + tracking.use(1); + void* memory = lua_touserdata(L, index); + return light<T>(static_cast<T*>(memory)); + } + }; + + template <typename T> + struct getter<user<T>> { + static std::add_lvalue_reference_t<T> get(lua_State* L, int index, record& tracking) { + tracking.use(1); + void* memory = lua_touserdata(L, index); + memory = detail::align_user<T>(memory); + return *static_cast<std::remove_reference_t<T>*>(memory); + } + }; + + template <typename T> + struct getter<user<T*>> { + static T* get(lua_State* L, int index, record& tracking) { + tracking.use(1); + void* memory = lua_touserdata(L, index); + memory = detail::align_user<T*>(memory); + return static_cast<T*>(memory); + } + }; + + template <> + struct getter<type> { + static type get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return static_cast<type>(lua_type(L, index)); + } + }; + + template <> + struct getter<bool> { + static bool get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lua_toboolean(L, index) != 0; + } + }; + + template <> + struct getter<std::string> { + static std::string get(lua_State* L, int index, record& tracking) { + tracking.use(1); + std::size_t len; + auto str = lua_tolstring(L, index, &len); + return std::string(str, len); + } + }; + + template <> + struct getter<const char*> { + static const char* get(lua_State* L, int index, record& tracking) { + tracking.use(1); + size_t sz; + return lua_tolstring(L, index, &sz); + } + }; + + template <> + struct getter<char> { + static char get(lua_State* L, int index, record& tracking) { + tracking.use(1); + size_t len; + auto str = lua_tolstring(L, index, &len); + return len > 0 ? str[0] : '\0'; + } + }; + + template <typename Traits> + struct getter<basic_string_view<char, Traits>> { + static string_view get(lua_State* L, int index, record& tracking) { + tracking.use(1); + size_t sz; + const char* str = lua_tolstring(L, index, &sz); + return basic_string_view<char, Traits>(str, sz); + } + }; + + template <typename Traits, typename Al> + struct getter<std::basic_string<wchar_t, Traits, Al>> { + typedef std::basic_string<wchar_t, Traits, Al> S; + static S get(lua_State* L, int index, record& tracking) { + typedef std::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch; + typedef typename std::allocator_traits<Al>::template rebind_alloc<Ch> ChAl; + typedef std::char_traits<Ch> ChTraits; + getter<std::basic_string<Ch, ChTraits, ChAl>> g; + (void)g; + return g.template get_into<S>(L, index, tracking); + } + }; + + template <typename Traits, typename Al> + struct getter<std::basic_string<char16_t, Traits, Al>> { + template <typename F> + static void convert(const char* strb, const char* stre, F&& f) { + char32_t cp = 0; + for (const char* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf8_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + ++strtarget; + } + else { + cp = dr.codepoint; + strtarget = dr.next; + } + auto er = unicode::code_point_to_utf16(cp); + f(er); + } + } + + template <typename S> + static S get_into(lua_State* L, int index, record& tracking) { + typedef typename S::value_type Ch; + tracking.use(1); + size_t len; + auto utf8p = lua_tolstring(L, index, &len); + if (len < 1) + return S(); + std::size_t needed_size = 0; + const char* strb = utf8p; + const char* stre = utf8p + len; + auto count_units = [&needed_size](const unicode::encoded_result<char16_t> er) { + needed_size += er.code_units_size; + }; + convert(strb, stre, count_units); + S r(needed_size, static_cast<Ch>(0)); + r.resize(needed_size); + Ch* target = &r[0]; + auto copy_units = [&target](const unicode::encoded_result<char16_t> er) { + std::memcpy(target, er.code_units.data(), er.code_units_size * sizeof(Ch)); + target += er.code_units_size; + }; + convert(strb, stre, copy_units); + return r; + } + + static std::basic_string<char16_t, Traits, Al> get(lua_State* L, int index, record& tracking) { + return get_into<std::basic_string<char16_t, Traits, Al>>(L, index, tracking); + } + }; + + template <typename Traits, typename Al> + struct getter<std::basic_string<char32_t, Traits, Al>> { + template <typename F> + static void convert(const char* strb, const char* stre, F&& f) { + char32_t cp = 0; + for (const char* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf8_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + ++strtarget; + } + else { + cp = dr.codepoint; + strtarget = dr.next; + } + auto er = unicode::code_point_to_utf32(cp); + f(er); + } + } + + template <typename S> + static S get_into(lua_State* L, int index, record& tracking) { + typedef typename S::value_type Ch; + tracking.use(1); + size_t len; + auto utf8p = lua_tolstring(L, index, &len); + if (len < 1) + return S(); + std::size_t needed_size = 0; + const char* strb = utf8p; + const char* stre = utf8p + len; + auto count_units = [&needed_size](const unicode::encoded_result<char32_t> er) { + needed_size += er.code_units_size; + }; + convert(strb, stre, count_units); + S r(needed_size, static_cast<Ch>(0)); + r.resize(needed_size); + Ch* target = &r[0]; + auto copy_units = [&target](const unicode::encoded_result<char32_t> er) { + std::memcpy(target, er.code_units.data(), er.code_units_size * sizeof(Ch)); + target += er.code_units_size; + }; + convert(strb, stre, copy_units); + return r; + } + + static std::basic_string<char32_t, Traits, Al> get(lua_State* L, int index, record& tracking) { + return get_into<std::basic_string<char32_t, Traits, Al>>(L, index, tracking); + } + }; + + template <> + struct getter<char16_t> { + static char16_t get(lua_State* L, int index, record& tracking) { + string_view utf8 = stack::get<string_view>(L, index, tracking); + const char* strb = utf8.data(); + const char* stre = utf8.data() + utf8.size(); + char32_t cp = 0; + auto dr = unicode::utf8_to_code_point(strb, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf16(cp); + return er.code_units[0]; + } + }; + + template <> + struct getter<char32_t> { + static char32_t get(lua_State* L, int index, record& tracking) { + string_view utf8 = stack::get<string_view>(L, index, tracking); + const char* strb = utf8.data(); + const char* stre = utf8.data() + utf8.size(); + char32_t cp = 0; + auto dr = unicode::utf8_to_code_point(strb, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf32(cp); + return er.code_units[0]; + } + }; + + template <> + struct getter<wchar_t> { + static wchar_t get(lua_State* L, int index, record& tracking) { + typedef std::conditional_t<sizeof(wchar_t) == 2, char16_t, char32_t> Ch; + getter<Ch> g; + (void)g; + auto c = g.get(L, index, tracking); + return static_cast<wchar_t>(c); + } + }; + + template <> + struct getter<meta_function> { + static meta_function get(lua_State* L, int index, record& tracking) { + tracking.use(1); + const char* name = getter<const char*>{}.get(L, index, tracking); + const auto& mfnames = meta_function_names(); + for (std::size_t i = 0; i < mfnames.size(); ++i) + if (mfnames[i] == name) + return static_cast<meta_function>(i); + return meta_function::construct; + } + }; + + template <> + struct getter<lua_nil_t> { + static lua_nil_t get(lua_State*, int, record& tracking) { + tracking.use(1); + return lua_nil; + } + }; + + template <> + struct getter<std::nullptr_t> { + static std::nullptr_t get(lua_State*, int, record& tracking) { + tracking.use(1); + return nullptr; + } + }; + + template <> + struct getter<nullopt_t> { + static nullopt_t get(lua_State*, int, record& tracking) { + tracking.use(1); + return nullopt; + } + }; + + template <> + struct getter<this_state> { + static this_state get(lua_State* L, int, record& tracking) { + tracking.use(0); + return this_state(L); + } + }; + + template <> + struct getter<this_main_state> { + static this_main_state get(lua_State* L, int, record& tracking) { + tracking.use(0); + return this_main_state(main_thread(L, L)); + } + }; + + template <> + struct getter<lua_CFunction> { + static lua_CFunction get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lua_tocfunction(L, index); + } + }; + + template <> + struct getter<c_closure> { + static c_closure get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return c_closure(lua_tocfunction(L, index), -1); + } + }; + + template <> + struct getter<error> { + static error get(lua_State* L, int index, record& tracking) { + tracking.use(1); + size_t sz = 0; + const char* err = lua_tolstring(L, index, &sz); + if (err == nullptr) { + return error(detail::direct_error, ""); + } + return error(detail::direct_error, std::string(err, sz)); + } + }; + + template <> + struct getter<void*> { + static void* get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lua_touserdata(L, index); + } + }; + + template <> + struct getter<const void*> { + static const void* get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return lua_touserdata(L, index); + } + }; + + template <typename T> + struct getter<detail::as_value_tag<T>> { + static T* get_no_lua_nil(lua_State* L, int index, record& tracking) { + void* memory = lua_touserdata(L, index); +#if defined(SOL_ENABLE_INTEROP) && SOL_ENABLE_INTEROP + userdata_getter<extensible<T>> ug; + (void)ug; + auto ugr = ug.get(L, index, memory, tracking); + if (ugr.first) { + return ugr.second; + } +#endif // interop extensibility + tracking.use(1); + void* rawdata = detail::align_usertype_pointer(memory); + void** pudata = static_cast<void**>(rawdata); + void* udata = *pudata; + return get_no_lua_nil_from(L, udata, index, tracking); + } + + static T* get_no_lua_nil_from(lua_State* L, void* udata, int index, record&) { + if (detail::has_derived<T>::value && luaL_getmetafield(L, index, &detail::base_class_cast_key()[0]) != 0) { + void* basecastdata = lua_touserdata(L, -1); + detail::inheritance_cast_function ic = reinterpret_cast<detail::inheritance_cast_function>(basecastdata); + // use the casting function to properly adjust the pointer for the desired T + udata = ic(udata, usertype_traits<T>::qualified_name()); + lua_pop(L, 1); + } + T* obj = static_cast<T*>(udata); + return obj; + } + + static T& get(lua_State* L, int index, record& tracking) { + return *get_no_lua_nil(L, index, tracking); + } + }; + + template <typename T> + struct getter<detail::as_pointer_tag<T>> { + static T* get(lua_State* L, int index, record& tracking) { + type t = type_of(L, index); + if (t == type::lua_nil) { + tracking.use(1); + return nullptr; + } + getter<detail::as_value_tag<T>> g; + // Avoid VC++ warning + (void)g; + return g.get_no_lua_nil(L, index, tracking); + } + }; + + template <typename T> + struct getter<non_null<T*>> { + static T* get(lua_State* L, int index, record& tracking) { + getter<detail::as_value_tag<T>> g; + // Avoid VC++ warning + (void)g; + return g.get_no_lua_nil(L, index, tracking); + } + }; + + template <typename T> + struct getter<T&> { + static T& get(lua_State* L, int index, record& tracking) { + getter<detail::as_value_tag<T>> g; + // Avoid VC++ warning + (void)g; + return g.get(L, index, tracking); + } + }; + + template <typename T> + struct getter<std::reference_wrapper<T>> { + static T& get(lua_State* L, int index, record& tracking) { + getter<T&> g; + // Avoid VC++ warning + (void)g; + return g.get(L, index, tracking); + } + }; + + template <typename T> + struct getter<T*> { + static T* get(lua_State* L, int index, record& tracking) { + getter<detail::as_pointer_tag<T>> g; + // Avoid VC++ warning + (void)g; + return g.get(L, index, tracking); + } + }; + + template <typename T> + struct getter<T, std::enable_if_t<is_unique_usertype<T>::value>> { + typedef typename unique_usertype_traits<T>::type P; + typedef typename unique_usertype_traits<T>::actual_type Real; + + static Real& get(lua_State* L, int index, record& tracking) { + tracking.use(1); + void* memory = lua_touserdata(L, index); + memory = detail::align_usertype_unique<Real>(memory); + Real* mem = static_cast<Real*>(memory); + return *mem; + } + }; + + template <typename... Tn> + struct getter<std::tuple<Tn...>> { + typedef std::tuple<decltype(stack::get<Tn>(nullptr, 0))...> R; + + template <typename... Args> + static R apply(std::index_sequence<>, lua_State*, int, record&, Args&&... args) { + // Fuck you too, VC++ + return R{ std::forward<Args>(args)... }; + } + + template <std::size_t I, std::size_t... Ix, typename... Args> + static R apply(std::index_sequence<I, Ix...>, lua_State* L, int index, record& tracking, Args&&... args) { + // Fuck you too, VC++ + typedef std::tuple_element_t<I, std::tuple<Tn...>> T; + return apply(std::index_sequence<Ix...>(), L, index, tracking, std::forward<Args>(args)..., stack::get<T>(L, index + tracking.used, tracking)); + } + + static R get(lua_State* L, int index, record& tracking) { + return apply(std::make_index_sequence<sizeof...(Tn)>(), L, index, tracking); + } + }; + + template <typename A, typename B> + struct getter<std::pair<A, B>> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return std::pair<decltype(stack::get<A>(L, index)), decltype(stack::get<B>(L, index))>{ stack::get<A>(L, index, tracking), stack::get<B>(L, index + tracking.used, tracking) }; + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + template <typename... Tn> + struct getter<std::variant<Tn...>> { + typedef std::variant<Tn...> V; + typedef std::variant_size<V> V_size; + typedef std::integral_constant<bool, V_size::value == 0> V_is_empty; + + static V get_empty(std::true_type, lua_State*, int, record&) { + return V(); + } + + static V get_empty(std::false_type, lua_State* L, int index, record& tracking) { + typedef std::variant_alternative_t<0, V> T; + // This should never be reached... + // please check your code and understand what you did to bring yourself here + std::abort(); + return V(std::in_place_index<0>, stack::get<T>(L, index, tracking)); + } + + static V get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, record& tracking) { + return get_empty(V_is_empty(), L, index, tracking); + } + + template <std::size_t I> + static V get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, record& tracking) { + typedef std::variant_alternative_t<I - 1, V> T; + record temp_tracking = tracking; + if (stack::check<T>(L, index, no_panic, temp_tracking)) { + tracking = temp_tracking; + return V(std::in_place_index<I - 1>, stack::get<T>(L, index)); + } + return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, tracking); + } + + static V get(lua_State* L, int index, record& tracking) { + return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, tracking); + } + }; +#endif // SOL_STD_VARIANT +#endif // SOL_CXX17_FEATURES +} +} // namespace sol::stack + +// end of sol/stack_get_unqualified.hpp + +// beginning of sol/stack_get_qualified.hpp + +namespace sol { +namespace stack { + +#if 0 // need static reflection / DERIVED_CLASS macros... + template <typename X> + struct qualified_getter<X, std::enable_if_t< + !std::is_reference<X>::value && is_unique_usertype<meta::unqualified_t<X>>::value + >> { + typedef typename unique_usertype_traits<meta::unqualified_t<X>>::type P; + typedef typename unique_usertype_traits<meta::unqualified_t<X>>::actual_type Real; + + static Real& get(lua_State* L, int index, record& tracking) { + tracking.use(1); + void* memory = lua_touserdata(L, index); + void* del = detail::align_usertype_unique_destructor(memory); + memory = detail::align_usertype_unique<Real>(memory); + Real* mem = static_cast<Real*>(memory); + return *mem; + } + }; +#endif // need static reflection + + template <typename T> + struct qualified_getter<T, std::enable_if_t< + !std::is_reference<T>::value + && is_container<meta::unqualified_t<T>>::value + && std::is_default_constructible<meta::unqualified_t<T>>::value + && !is_lua_primitive<T>::value + && !is_transparent_argument<T>::value + >> { + static T get(lua_State* L, int index, record& tracking) { + if (type_of(L, index) == type::userdata) { + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + else { + return stack_detail::unchecked_unqualified_get<sol::nested<T>>(L, index, tracking); + } + } + }; +} +} // namespace sol::stack + +// end of sol/stack_get_qualified.hpp + +// end of sol/stack_get.hpp + +// beginning of sol/stack_check_get.hpp + +// beginning of sol/stack_check_get_unqualified.hpp + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#endif // C++17 + +namespace sol { +namespace stack { + template <typename T, typename> + struct check_getter { + typedef decltype(stack_detail::unchecked_unqualified_get<T>(nullptr, 0, std::declval<record&>())) R; + + template <typename Handler> + static optional<R> get(lua_State* L, int index, Handler&& handler, record& tracking) { + if (!unqualified_check<T>(L, index, std::forward<Handler>(handler))) { + tracking.use(static_cast<int>(!lua_isnone(L, index))); + return nullopt; + } + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + }; + + template <typename T> + struct check_getter<T, std::enable_if_t<is_lua_reference<T>::value>> { + template <typename Handler> + static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) { + // actually check if it's none here, otherwise + // we'll have a none object inside an optional! + bool success = lua_isnoneornil(L, index) == 0 && stack::check<T>(L, index, no_panic); + if (!success) { + // expected type, actual type + tracking.use(static_cast<int>(success)); + handler(L, index, type::poly, type_of(L, index), ""); + return nullopt; + } + return stack_detail::unchecked_get<T>(L, index, tracking); + } + }; + + template <typename T> + struct check_getter<T, std::enable_if_t<std::is_integral<T>::value && lua_type_of<T>::value == type::number>> { + template <typename Handler> + static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) { +#if SOL_LUA_VERSION >= 503 + if (lua_isinteger(L, index) != 0) { + tracking.use(1); + return static_cast<T>(lua_tointeger(L, index)); + } +#endif + int isnum = 0; + const lua_Number value = lua_tonumberx(L, index, &isnum); + if (isnum != 0) { +#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + const auto integer_value = llround(value); + if (static_cast<lua_Number>(integer_value) == value) { + tracking.use(1); + return static_cast<T>(integer_value); + } +#else + tracking.use(1); + return static_cast<T>(value); +#endif + } + const type t = type_of(L, index); + tracking.use(static_cast<int>(t != type::none)); + handler(L, index, type::number, t, "not an integer"); + return nullopt; + } + }; + + template <typename T> + struct check_getter<T, std::enable_if_t<std::is_enum<T>::value && !meta::any_same<T, meta_function, type>::value>> { + template <typename Handler> + static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) { + int isnum = 0; + lua_Integer value = lua_tointegerx(L, index, &isnum); + if (isnum == 0) { + type t = type_of(L, index); + tracking.use(static_cast<int>(t != type::none)); + handler(L, index, type::number, t, "not a valid enumeration value"); + return nullopt; + } + tracking.use(1); + return static_cast<T>(value); + } + }; + + template <typename T> + struct check_getter<T, std::enable_if_t<std::is_floating_point<T>::value>> { + template <typename Handler> + static optional<T> get(lua_State* L, int index, Handler&& handler, record& tracking) { + int isnum = 0; + lua_Number value = lua_tonumberx(L, index, &isnum); + if (isnum == 0) { + type t = type_of(L, index); + tracking.use(static_cast<int>(t != type::none)); + handler(L, index, type::number, t, "not a valid floating point number"); + return nullopt; + } + tracking.use(1); + return static_cast<T>(value); + } + }; + + template <typename T> + struct getter<optional<T>> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return check_get<T>(L, index, no_panic, tracking); + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename T> + struct getter<std::optional<T>> { + static std::optional<T> get(lua_State* L, int index, record& tracking) { + if (!unqualified_check<T>(L, index, no_panic)) { + tracking.use(static_cast<int>(!lua_isnone(L, index))); + return std::nullopt; + } + return stack_detail::unchecked_unqualified_get<T>(L, index, tracking); + } + }; + +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + template <typename... Tn> + struct check_getter<std::variant<Tn...>> { + typedef std::variant<Tn...> V; + typedef std::variant_size<V> V_size; + typedef std::integral_constant<bool, V_size::value == 0> V_is_empty; + + template <typename Handler> + static optional<V> get_empty(std::true_type, lua_State*, int, Handler&&, record&) { + return nullopt; + } + + template <typename Handler> + static optional<V> get_empty(std::false_type, lua_State* L, int index, Handler&& handler, record&) { + // This should never be reached... + // please check your code and understand what you did to bring yourself here + // maybe file a bug report, or 5 + handler(L, index, type::poly, type_of(L, index), "this variant code should never be reached: if it has, you have done something so terribly wrong"); + return nullopt; + } + + template <typename Handler> + static optional<V> get_one(std::integral_constant<std::size_t, 0>, lua_State* L, int index, Handler&& handler, record& tracking) { + return get_empty(V_is_empty(), L, index, std::forward<Handler>(handler), tracking); + } + + template <std::size_t I, typename Handler> + static optional<V> get_one(std::integral_constant<std::size_t, I>, lua_State* L, int index, Handler&& handler, record& tracking) { + typedef std::variant_alternative_t<I - 1, V> T; + if (stack::check<T>(L, index, no_panic, tracking)) { + return V(std::in_place_index<I - 1>, stack::get<T>(L, index)); + } + return get_one(std::integral_constant<std::size_t, I - 1>(), L, index, std::forward<Handler>(handler), tracking); + } + + template <typename Handler> + static optional<V> get(lua_State* L, int index, Handler&& handler, record& tracking) { + return get_one(std::integral_constant<std::size_t, V_size::value>(), L, index, std::forward<Handler>(handler), tracking); + } + }; +#endif // SOL_STD_VARIANT +#endif // SOL_CXX17_FEATURES +} +} // namespace sol::stack + +// end of sol/stack_check_get_unqualified.hpp + +// beginning of sol/stack_check_get_qualified.hpp + +namespace sol { +namespace stack { + template <typename T, typename C> + struct qualified_check_getter : check_getter<meta::unqualified_t<T>, C> {}; +} +} // namespace sol::stack + +// end of sol/stack_check_get_qualified.hpp + +// end of sol/stack_check_get.hpp + +// beginning of sol/stack_push.hpp + +#include <limits> +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT +#endif // Can use variant +#endif // C++17 + +namespace sol { +namespace stack { + inline int push_environment_of(lua_State* L, int index = -1) { +#if SOL_LUA_VERSION < 502 + // Use lua_getfenv + lua_getfenv(L, index); + return 1; +#else + // Use upvalues as explained in Lua 5.2 and beyond's manual + if (lua_getupvalue(L, index, 1) == nullptr) { + push(L, lua_nil); + return 1; + } +#endif + return 1; + } + + template <typename T> + int push_environment_of(const T& target) { + target.push(); + return push_environment_of(target.lua_state(), -1) + 1; + } + + template <typename T> + struct pusher<detail::as_value_tag<T>> { + template <typename F, typename... Args> + static int push_fx(lua_State* L, F&& f, Args&&... args) { + // Basically, we store all user-data like this: + // If it's a movable/copyable value (no std::ref(x)), then we store the pointer to the new + // data in the first sizeof(T*) bytes, and then however many bytes it takes to + // do the actual object. Things that are std::ref or plain T* are stored as + // just the sizeof(T*), and nothing else. + T* obj = detail::usertype_allocate<T>(L); + std::allocator<T> alloc{}; + std::allocator_traits<std::allocator<T>>::construct(alloc, obj, std::forward<Args>(args)...); + f(); + return 1; + } + + template <typename K, typename... Args> + static int push_keyed(lua_State* L, K&& k, Args&&... args) { + stack_detail::undefined_metatable<T> fx(L, &k[0]); + return push_fx(L, fx, std::forward<Args>(args)...); + } + + template <typename... Args> + static int push(lua_State* L, Args&&... args) { + return push_keyed(L, usertype_traits<T>::metatable(), std::forward<Args>(args)...); + } + }; + + template <typename T> + struct pusher<detail::as_pointer_tag<T>> { + typedef meta::unqualified_t<T> U; + + template <typename F> + static int push_fx(lua_State* L, F&& f, T* obj) { + if (obj == nullptr) + return stack::push(L, lua_nil); + T** pref = detail::usertype_allocate_pointer<T>(L); + *pref = obj; + f(); + return 1; + } + + template <typename K> + static int push_keyed(lua_State* L, K&& k, T* obj) { + stack_detail::undefined_metatable<U*> fx(L, &k[0]); + return push_fx(L, fx, obj); + } + + static int push(lua_State* L, T* obj) { + return push_keyed(L, usertype_traits<U*>::metatable(), obj); + } + }; + + template <> + struct pusher<detail::as_reference_tag> { + template <typename T> + static int push(lua_State* L, T&& obj) { + return stack::push(L, detail::ptr(obj)); + } + }; + + template <typename T, typename> + struct pusher { + template <typename... Args> + static int push(lua_State* L, Args&&... args) { + return pusher<detail::as_value_tag<T>>{}.push(L, std::forward<Args>(args)...); + } + }; + + template <typename T> + struct pusher<T*, meta::disable_if_t<meta::any<is_container<meta::unqualified_t<T>>, std::is_function<meta::unqualified_t<T>>, is_lua_reference<meta::unqualified_t<T>>>::value>> { + template <typename... Args> + static int push(lua_State* L, Args&&... args) { + return pusher<detail::as_pointer_tag<T>>{}.push(L, std::forward<Args>(args)...); + } + }; + + template <typename T> + struct pusher<T, std::enable_if_t<is_unique_usertype<T>::value>> { + typedef typename unique_usertype_traits<T>::type P; + typedef typename unique_usertype_traits<T>::actual_type Real; + + template <typename Arg, meta::enable<std::is_base_of<Real, meta::unqualified_t<Arg>>> = meta::enabler> + static int push(lua_State* L, Arg&& arg) { + if (unique_usertype_traits<T>::is_null(arg)) { + return stack::push(L, lua_nil); + } + return push_deep(L, std::forward<Arg>(arg)); + } + + template <typename Arg0, typename Arg1, typename... Args> + static int push(lua_State* L, Arg0&& arg0, Arg0&& arg1, Args&&... args) { + return push_deep(L, std::forward<Arg0>(arg0), std::forward<Arg1>(arg1), std::forward<Args>(args)...); + } + + template <typename... Args> + static int push_deep(lua_State* L, Args&&... args) { + P** pref = nullptr; + detail::unique_destructor* fx = nullptr; + detail::unique_tag* id = nullptr; + Real* mem = detail::usertype_unique_allocate<P, Real>(L, pref, fx, id); + *fx = detail::usertype_unique_alloc_destroy<P, Real>; +#if 0 + *id = &detail::inheritance<P>::type_unique_cast_bases<Real>; +#else + *id = &usertype_traits<Real>::qualified_name()[0]; +#endif + detail::default_construct::construct(mem, std::forward<Args>(args)...); + *pref = unique_usertype_traits<T>::get(*mem); + if (luaL_newmetatable(L, &usertype_traits<detail::unique_usertype<std::remove_cv_t<P>>>::metatable()[0]) == 1) { + luaL_Reg l[32]{}; + int index = 0; + auto prop_fx = [](meta_function) { return true; }; + usertype_detail::insert_default_registrations<P>(l, index, prop_fx); + usertype_detail::make_destructor<T>(l, index); + luaL_setfuncs(L, l, 0); + } + lua_setmetatable(L, -2); + return 1; + } + }; + + template <typename T> + struct pusher<std::reference_wrapper<T>> { + static int push(lua_State* L, const std::reference_wrapper<T>& t) { + return stack::push(L, std::addressof(detail::deref(t.get()))); + } + }; + + template <typename T> + struct pusher<T, std::enable_if_t<std::is_floating_point<T>::value>> { + static int push(lua_State* L, const T& value) { + lua_pushnumber(L, value); + return 1; + } + }; + + template <typename T> + struct pusher<T, std::enable_if_t<std::is_integral<T>::value>> { + static int push(lua_State* L, const T& value) { +#if SOL_LUA_VERSION >= 503 + static auto integer_value_fits = [](T const& value) { + if (sizeof(T) < sizeof(lua_Integer) || (std::is_signed<T>::value && sizeof(T) == sizeof(lua_Integer))) { + return true; + } + auto u_min = static_cast<std::intmax_t>((std::numeric_limits<lua_Integer>::min)()); + auto u_max = static_cast<std::uintmax_t>((std::numeric_limits<lua_Integer>::max)()); + auto t_min = static_cast<std::intmax_t>((std::numeric_limits<T>::min)()); + auto t_max = static_cast<std::uintmax_t>((std::numeric_limits<T>::max)()); + return (u_min <= t_min || value >= static_cast<T>(u_min)) && (u_max >= t_max || value <= static_cast<T>(u_max)); + }; + if (integer_value_fits(value)) { + lua_pushinteger(L, static_cast<lua_Integer>(value)); + return 1; + } +#endif // Lua 5.3 and above +#if (defined(SOL_SAFE_NUMERICS) && SOL_SAFE_NUMERICS) && !(defined(SOL_NO_CHECK_NUMBER_PRECISION) && SOL_NO_CHECK_NUMBER_PRECISION) + if (static_cast<T>(llround(static_cast<lua_Number>(value))) != value) { +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + // Is this really worth it? + assert(false && "integer value will be misrepresented in lua"); + lua_pushnumber(L, static_cast<lua_Number>(value)); + return 1; +#else + throw error(detail::direct_error, "integer value will be misrepresented in lua"); +#endif // No Exceptions + } +#endif // Safe Numerics and Number Precision Check + lua_pushnumber(L, static_cast<lua_Number>(value)); + return 1; + } + }; + + template <typename T> + struct pusher<T, std::enable_if_t<std::is_enum<T>::value>> { + static int push(lua_State* L, const T& value) { + if (std::is_same<char, std::underlying_type_t<T>>::value) { + return stack::push(L, static_cast<int>(value)); + } + return stack::push(L, static_cast<std::underlying_type_t<T>>(value)); + } + }; + + template <typename T> + struct pusher<detail::as_table_tag<T>> { + static int push(lua_State* L, const T& tablecont) { + typedef meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>> has_kvp; + return push(has_kvp(), std::false_type(), L, tablecont); + } + + static int push(std::true_type, lua_State* L, const T& tablecont) { + typedef meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>> has_kvp; + return push(has_kvp(), std::true_type(), L, tablecont); + } + + static int push(std::false_type, lua_State* L, const T& tablecont) { + typedef meta::has_key_value_pair<meta::unqualified_t<std::remove_pointer_t<T>>> has_kvp; + return push(has_kvp(), std::false_type(), L, tablecont); + } + + template <bool is_nested> + static int push(std::true_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) { + auto& cont = detail::deref(detail::unwrap(tablecont)); + lua_createtable(L, static_cast<int>(cont.size()), 0); + int tableindex = lua_gettop(L); + for (const auto& pair : cont) { + if (is_nested) { + set_field(L, pair.first, as_nested_ref(pair.second), tableindex); + } + else { + set_field(L, pair.first, pair.second, tableindex); + } + } + return 1; + } + + template <bool is_nested> + static int push(std::false_type, std::integral_constant<bool, is_nested>, lua_State* L, const T& tablecont) { + auto& cont = detail::deref(detail::unwrap(tablecont)); + lua_createtable(L, stack_detail::get_size_hint(cont), 0); + int tableindex = lua_gettop(L); + std::size_t index = 1; + for (const auto& i : cont) { +#if SOL_LUA_VERSION >= 503 + int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); + for (int pi = 0; pi < p; ++pi) { + lua_seti(L, tableindex, static_cast<lua_Integer>(index++)); + } +#else + lua_pushinteger(L, static_cast<lua_Integer>(index)); + int p = is_nested ? stack::push(L, as_nested_ref(i)) : stack::push(L, i); + if (p == 1) { + ++index; + lua_settable(L, tableindex); + } + else { + int firstindex = tableindex + 1 + 1; + for (int pi = 0; pi < p; ++pi) { + stack::push(L, index); + lua_pushvalue(L, firstindex); + lua_settable(L, tableindex); + ++index; + ++firstindex; + } + lua_pop(L, 1 + p); + } +#endif // Lua Version 5.3 and others + } + // TODO: figure out a better way to do this...? + //set_field(L, -1, cont.size()); + return 1; + } + }; + + template <typename T> + struct pusher<as_table_t<T>, std::enable_if_t<is_container<std::remove_pointer_t<meta::unwrap_unqualified_t<T>>>::value>> { + static int push(lua_State* L, const T& tablecont) { + return stack::push<detail::as_table_tag<T>>(L, tablecont); + } + }; + + template <typename T> + struct pusher<as_table_t<T>, std::enable_if_t<!is_container<std::remove_pointer_t<meta::unwrap_unqualified_t<T>>>::value>> { + static int push(lua_State* L, const T& v) { + return stack::push(L, v); + } + }; + + template <typename T> + struct pusher<nested<T>, std::enable_if_t<is_container<std::remove_pointer_t<meta::unwrap_unqualified_t<T>>>::value>> { + static int push(lua_State* L, const T& tablecont) { + pusher<detail::as_table_tag<T>> p{}; + // silence annoying VC++ warning + (void)p; + return p.push(std::true_type(), L, tablecont); + } + }; + + template <typename T> + struct pusher<nested<T>, std::enable_if_t<!is_container<std::remove_pointer_t<meta::unwrap_unqualified_t<T>>>::value>> { + static int push(lua_State* L, const T& tablecont) { + pusher<meta::unqualified_t<T>> p{}; + // silence annoying VC++ warning + (void)p; + return p.push(L, tablecont); + } + }; + + template <typename T> + struct pusher<std::initializer_list<T>> { + static int push(lua_State* L, const std::initializer_list<T>& il) { + pusher<detail::as_table_tag<std::initializer_list<T>>> p{}; + // silence annoying VC++ warning + (void)p; + return p.push(L, il); + } + }; + + template <typename T> + struct pusher<T, std::enable_if_t<is_lua_reference<T>::value>> { + static int push(lua_State* L, const T& ref) { + return ref.push(L); + } + + static int push(lua_State* L, T&& ref) { + return ref.push(L); + } + }; + + template <> + struct pusher<bool> { + static int push(lua_State* L, bool b) { + lua_pushboolean(L, b); + return 1; + } + }; + + template <> + struct pusher<lua_nil_t> { + static int push(lua_State* L, lua_nil_t) { + lua_pushnil(L); + return 1; + } + }; + + template <> + struct pusher<stack_count> { + static int push(lua_State*, stack_count st) { + return st.count; + } + }; + + template <> + struct pusher<metatable_t> { + static int push(lua_State* L, metatable_t) { + lua_pushlstring(L, "__mt", 4); + return 1; + } + }; + + template <> + struct pusher<std::remove_pointer_t<lua_CFunction>> { + static int push(lua_State* L, lua_CFunction func, int n = 0) { + lua_pushcclosure(L, func, n); + return 1; + } + }; + + template <> + struct pusher<lua_CFunction> { + static int push(lua_State* L, lua_CFunction func, int n = 0) { + lua_pushcclosure(L, func, n); + return 1; + } + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + template <> + struct pusher<std::remove_pointer_t<detail::lua_CFunction_noexcept>> { + static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { + lua_pushcclosure(L, func, n); + return 1; + } + }; + + template <> + struct pusher<detail::lua_CFunction_noexcept> { + static int push(lua_State* L, detail::lua_CFunction_noexcept func, int n = 0) { + lua_pushcclosure(L, func, n); + return 1; + } + }; +#endif // noexcept function type + + template <> + struct pusher<c_closure> { + static int push(lua_State* L, c_closure cc) { + lua_pushcclosure(L, cc.c_function, cc.upvalues); + return 1; + } + }; + + template <typename Arg, typename... Args> + struct pusher<closure<Arg, Args...>> { + template <std::size_t... I, typename T> + static int push(std::index_sequence<I...>, lua_State* L, T&& c) { + int pushcount = multi_push(L, detail::forward_get<I>(c.upvalues)...); + return stack::push(L, c_closure(c.c_function, pushcount)); + } + + template <typename T> + static int push(lua_State* L, T&& c) { + return push(std::make_index_sequence<1 + sizeof...(Args)>(), L, std::forward<T>(c)); + } + }; + + template <> + struct pusher<void*> { + static int push(lua_State* L, void* userdata) { + lua_pushlightuserdata(L, userdata); + return 1; + } + }; + + template <> + struct pusher<const void*> { + static int push(lua_State* L, const void* userdata) { + lua_pushlightuserdata(L, const_cast<void*>(userdata)); + return 1; + } + }; + + template <> + struct pusher<lightuserdata_value> { + static int push(lua_State* L, lightuserdata_value userdata) { + lua_pushlightuserdata(L, userdata); + return 1; + } + }; + + template <typename T> + struct pusher<light<T>> { + static int push(lua_State* L, light<T> l) { + lua_pushlightuserdata(L, static_cast<void*>(l.value)); + return 1; + } + }; + + template <typename T> + struct pusher<user<T>> { + template <bool with_meta = true, typename Key, typename... Args> + static int push_with(lua_State* L, Key&& name, Args&&... args) { + // A dumb pusher + T* data = detail::user_allocate<T>(L); + std::allocator<T> alloc{}; + std::allocator_traits<std::allocator<T>>::construct(alloc, data, std::forward<Args>(args)...); + if (with_meta) { + // Make sure we have a plain GC set for this data + if (luaL_newmetatable(L, name) != 0) { + lua_CFunction cdel = detail::user_alloc_destruct<T>; + lua_pushcclosure(L, cdel, 0); + lua_setfield(L, -2, "__gc"); + } + lua_setmetatable(L, -2); + } + return 1; + } + + template <typename Arg, typename... Args, meta::disable<meta::any_same<meta::unqualified_t<Arg>, no_metatable_t, metatable_t>> = meta::enabler> + static int push(lua_State* L, Arg&& arg, Args&&... args) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, std::forward<Arg>(arg), std::forward<Args>(args)...); + } + + template <typename... Args> + static int push(lua_State* L, no_metatable_t, Args&&... args) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, std::forward<Args>(args)...); + } + + template <typename Key, typename... Args> + static int push(lua_State* L, metatable_t, Key&& key, Args&&... args) { + const auto name = &key[0]; + return push_with<true>(L, name, std::forward<Args>(args)...); + } + + static int push(lua_State* L, const user<T>& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, u.value); + } + + static int push(lua_State* L, user<T>&& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with(L, name, std::move(u.value)); + } + + static int push(lua_State* L, no_metatable_t, const user<T>& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, u.value); + } + + static int push(lua_State* L, no_metatable_t, user<T>&& u) { + const auto name = &usertype_traits<meta::unqualified_t<T>>::user_gc_metatable()[0]; + return push_with<false>(L, name, std::move(u.value)); + } + }; + + template <> + struct pusher<userdata_value> { + static int push(lua_State* L, userdata_value data) { + void** ud = detail::usertype_allocate_pointer<void>(L); + *ud = data.value; + return 1; + } + }; + + template <> + struct pusher<const char*> { + static int push_sized(lua_State* L, const char* str, std::size_t len) { + lua_pushlstring(L, str, len); + return 1; + } + + static int push(lua_State* L, const char* str) { + if (str == nullptr) + return stack::push(L, lua_nil); + return push_sized(L, str, std::char_traits<char>::length(str)); + } + + static int push(lua_State* L, const char* strb, const char* stre) { + return push_sized(L, strb, stre - strb); + } + + static int push(lua_State* L, const char* str, std::size_t len) { + return push_sized(L, str, len); + } + }; + + template <> + struct pusher<char*> { + static int push_sized(lua_State* L, const char* str, std::size_t len) { + pusher<const char*> p{}; + (void)p; + return p.push_sized(L, str, len); + } + + static int push(lua_State* L, const char* str) { + pusher<const char*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char* strb, const char* stre) { + pusher<const char*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char* str, std::size_t len) { + pusher<const char*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <size_t N> + struct pusher<char[N]> { + static int push(lua_State* L, const char (&str)[N]) { + lua_pushlstring(L, str, std::char_traits<char>::length(str)); + return 1; + } + + static int push(lua_State* L, const char (&str)[N], std::size_t sz) { + lua_pushlstring(L, str, sz); + return 1; + } + }; + + template <> + struct pusher<char> { + static int push(lua_State* L, char c) { + const char str[2] = { c, '\0' }; + return stack::push(L, str, 1); + } + }; + + template <typename Traits, typename Al> + struct pusher<std::basic_string<char, Traits, Al>> { + static int push(lua_State* L, const std::basic_string<char, Traits, Al>& str) { + lua_pushlstring(L, str.c_str(), str.size()); + return 1; + } + + static int push(lua_State* L, const std::basic_string<char, Traits, Al>& str, std::size_t sz) { + lua_pushlstring(L, str.c_str(), sz); + return 1; + } + }; + + template <typename Ch, typename Traits> + struct pusher<basic_string_view<Ch, Traits>> { + static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv) { + return stack::push(L, sv.data(), sv.length()); + } + + static int push(lua_State* L, const basic_string_view<Ch, Traits>& sv, std::size_t n) { + return stack::push(L, sv.data(), n); + } + }; + + template <> + struct pusher<meta_function> { + static int push(lua_State* L, meta_function m) { + const std::string& str = to_string(m); + lua_pushlstring(L, str.c_str(), str.size()); + return 1; + } + }; + + template <> + struct pusher<absolute_index> { + static int push(lua_State* L, absolute_index ai) { + lua_pushvalue(L, ai); + return 1; + } + }; + + template <> + struct pusher<raw_index> { + static int push(lua_State* L, raw_index ri) { + lua_pushvalue(L, ri); + return 1; + } + }; + + template <> + struct pusher<ref_index> { + static int push(lua_State* L, ref_index ri) { + lua_rawgeti(L, LUA_REGISTRYINDEX, ri); + return 1; + } + }; + + template <> + struct pusher<const wchar_t*> { + static int push(lua_State* L, const wchar_t* wstr) { + return push(L, wstr, std::char_traits<wchar_t>::length(wstr)); + } + + static int push(lua_State* L, const wchar_t* wstr, std::size_t sz) { + return push(L, wstr, wstr + sz); + } + + static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { + if (sizeof(wchar_t) == 2) { + const char16_t* sb = reinterpret_cast<const char16_t*>(strb); + const char16_t* se = reinterpret_cast<const char16_t*>(stre); + return stack::push(L, sb, se); + } + const char32_t* sb = reinterpret_cast<const char32_t*>(strb); + const char32_t* se = reinterpret_cast<const char32_t*>(stre); + return stack::push(L, sb, se); + } + }; + + template <> + struct pusher<wchar_t*> { + static int push(lua_State* L, const wchar_t* str) { + pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const wchar_t* strb, const wchar_t* stre) { + pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const wchar_t* str, std::size_t len) { + pusher<const wchar_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <> + struct pusher<const char16_t*> { + static int convert_into(lua_State* L, char* start, std::size_t, const char16_t* strb, const char16_t* stre) { + char* target = start; + char32_t cp = 0; + for (const char16_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf16_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf8(cp); + const char* utf8data = er.code_units.data(); + std::memcpy(target, utf8data, er.code_units_size); + target += er.code_units_size; + strtarget = dr.next; + } + + return stack::push(L, start, target); + } + + static int push(lua_State* L, const char16_t* u16str) { + return push(L, u16str, std::char_traits<char16_t>::length(u16str)); + } + + static int push(lua_State* L, const char16_t* u16str, std::size_t sz) { + return push(L, u16str, u16str + sz); + } + + static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { + // TODO: use new unicode methods + // TODO: use new unicode methods + char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; + // if our max string space is small enough, use SBO + // right off the bat + std::size_t max_possible_code_units = (stre - strb) * 4; + if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, max_possible_code_units, strb, stre); + } + // otherwise, we must manually count/check size + std::size_t needed_size = 0; + for (const char16_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf16_to_code_point(strtarget, stre); + auto er = unicode::code_point_to_utf8(dr.codepoint); + needed_size += er.code_units_size; + strtarget = dr.next; + } + if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, needed_size, strb, stre); + } + std::string u8str("", 0); + u8str.resize(needed_size); + char* target = &u8str[0]; + return convert_into(L, target, needed_size, strb, stre); + } + }; + + template <> + struct pusher<char16_t*> { + static int push(lua_State* L, const char16_t* str) { + pusher<const char16_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char16_t* strb, const char16_t* stre) { + pusher<const char16_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char16_t* str, std::size_t len) { + pusher<const char16_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <> + struct pusher<const char32_t*> { + static int convert_into(lua_State* L, char* start, std::size_t, const char32_t* strb, const char32_t* stre) { + char* target = start; + char32_t cp = 0; + for (const char32_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf32_to_code_point(strtarget, stre); + if (dr.error != unicode::error_code::ok) { + cp = unicode::unicode_detail::replacement; + } + else { + cp = dr.codepoint; + } + auto er = unicode::code_point_to_utf8(cp); + const char* data = er.code_units.data(); + std::memcpy(target, data, er.code_units_size); + target += er.code_units_size; + strtarget = dr.next; + } + return stack::push(L, start, target); + } + + static int push(lua_State* L, const char32_t* u32str) { + return push(L, u32str, u32str + std::char_traits<char32_t>::length(u32str)); + } + + static int push(lua_State* L, const char32_t* u32str, std::size_t sz) { + return push(L, u32str, u32str + sz); + } + + static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { + // TODO: use new unicode methods + char sbo[SOL_STACK_STRING_OPTIMIZATION_SIZE]; + // if our max string space is small enough, use SBO + // right off the bat + std::size_t max_possible_code_units = (stre - strb) * 4; + if (max_possible_code_units <= SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, max_possible_code_units, strb, stre); + } + // otherwise, we must manually count/check size + std::size_t needed_size = 0; + for (const char32_t* strtarget = strb; strtarget < stre;) { + auto dr = unicode::utf32_to_code_point(strtarget, stre); + auto er = unicode::code_point_to_utf8(dr.codepoint); + needed_size += er.code_units_size; + strtarget = dr.next; + } + if (needed_size < SOL_STACK_STRING_OPTIMIZATION_SIZE) { + return convert_into(L, sbo, needed_size, strb, stre); + } + std::string u8str("", 0); + u8str.resize(needed_size); + char* target = &u8str[0]; + return convert_into(L, target, needed_size, strb, stre); + } + }; + + template <> + struct pusher<char32_t*> { + static int push(lua_State* L, const char32_t* str) { + pusher<const char32_t*> p{}; + (void)p; + return p.push(L, str); + } + + static int push(lua_State* L, const char32_t* strb, const char32_t* stre) { + pusher<const char32_t*> p{}; + (void)p; + return p.push(L, strb, stre); + } + + static int push(lua_State* L, const char32_t* str, std::size_t len) { + pusher<const char32_t*> p{}; + (void)p; + return p.push(L, str, len); + } + }; + + template <size_t N> + struct pusher<wchar_t[N]> { + static int push(lua_State* L, const wchar_t (&str)[N]) { + return push(L, str, std::char_traits<wchar_t>::length(str)); + } + + static int push(lua_State* L, const wchar_t (&str)[N], std::size_t sz) { + return stack::push<const wchar_t*>(L, str, str + sz); + } + }; + + template <size_t N> + struct pusher<char16_t[N]> { + static int push(lua_State* L, const char16_t (&str)[N]) { + return push(L, str, std::char_traits<char16_t>::length(str)); + } + + static int push(lua_State* L, const char16_t (&str)[N], std::size_t sz) { + return stack::push<const char16_t*>(L, str, str + sz); + } + }; + + template <size_t N> + struct pusher<char32_t[N]> { + static int push(lua_State* L, const char32_t (&str)[N]) { + return push(L, str, std::char_traits<char32_t>::length(str)); + } + + static int push(lua_State* L, const char32_t (&str)[N], std::size_t sz) { + return stack::push<const char32_t*>(L, str, str + sz); + } + }; + + template <> + struct pusher<wchar_t> { + static int push(lua_State* L, wchar_t c) { + const wchar_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <> + struct pusher<char16_t> { + static int push(lua_State* L, char16_t c) { + const char16_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <> + struct pusher<char32_t> { + static int push(lua_State* L, char32_t c) { + const char32_t str[2] = { c, '\0' }; + return stack::push(L, &str[0], 1); + } + }; + + template <typename Ch, typename Traits, typename Al> + struct pusher<std::basic_string<Ch, Traits, Al>, std::enable_if_t<!std::is_same<Ch, char>::value>> { + static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& wstr) { + return push(L, wstr, wstr.size()); + } + + static int push(lua_State* L, const std::basic_string<Ch, Traits, Al>& wstr, std::size_t sz) { + return stack::push(L, wstr.data(), wstr.data() + sz); + } + }; + + template <typename... Args> + struct pusher<std::tuple<Args...>> { + template <std::size_t... I, typename T> + static int push(std::index_sequence<I...>, lua_State* L, T&& t) { + int pushcount = 0; + (void)detail::swallow{ 0, (pushcount += stack::push(L, detail::forward_get<I>(t)), 0)... }; + return pushcount; + } + + template <typename T> + static int push(lua_State* L, T&& t) { + return push(std::index_sequence_for<Args...>(), L, std::forward<T>(t)); + } + }; + + template <typename A, typename B> + struct pusher<std::pair<A, B>> { + template <typename T> + static int push(lua_State* L, T&& t) { + int pushcount = stack::push(L, detail::forward_get<0>(t)); + pushcount += stack::push(L, detail::forward_get<1>(t)); + return pushcount; + } + }; + + template <typename O> + struct pusher<optional<O>> { + template <typename T> + static int push(lua_State* L, T&& t) { + if (t == nullopt) { + return stack::push(L, nullopt); + } + return stack::push(L, static_cast<std::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value())); + } + }; + + template <> + struct pusher<nullopt_t> { + static int push(lua_State* L, nullopt_t) { + return stack::push(L, lua_nil); + } + }; + + template <> + struct pusher<std::nullptr_t> { + static int push(lua_State* L, std::nullptr_t) { + return stack::push(L, lua_nil); + } + }; + + template <> + struct pusher<this_state> { + static int push(lua_State*, const this_state&) { + return 0; + } + }; + + template <> + struct pusher<this_main_state> { + static int push(lua_State*, const this_main_state&) { + return 0; + } + }; + + template <> + struct pusher<new_table> { + static int push(lua_State* L, const new_table& nt) { + lua_createtable(L, nt.sequence_hint, nt.map_hint); + return 1; + } + }; + +#if defined(SOL_CXX17_FEATURES) && SOL_CXX17_FEATURES + template <typename O> + struct pusher<std::optional<O>> { + template <typename T> + static int push(lua_State* L, T&& t) { + if (t == std::nullopt) { + return stack::push(L, nullopt); + } + return stack::push(L, static_cast<std::conditional_t<std::is_lvalue_reference<T>::value, O&, O&&>>(t.value())); + } + }; + +#if defined(SOL_STD_VARIANT) && SOL_STD_VARIANT + namespace stack_detail { + + struct push_function { + lua_State* L; + + push_function(lua_State* L) + : L(L) { + } + + template <typename T> + int operator()(T&& value) const { + return stack::push<T>(L, std::forward<T>(value)); + } + }; + + } // namespace stack_detail + + template <typename... Tn> + struct pusher<std::variant<Tn...>> { + static int push(lua_State* L, const std::variant<Tn...>& v) { + return std::visit(stack_detail::push_function(L), v); + } + + static int push(lua_State* L, std::variant<Tn...>&& v) { + return std::visit(stack_detail::push_function(L), std::move(v)); + } + }; +#endif // Variant because Clang is terrible +#endif // C++17 Support +} +} // namespace sol::stack + +// end of sol/stack_push.hpp + +// beginning of sol/stack_pop.hpp + +namespace sol { +namespace stack { + template <typename T, typename> + struct popper { + inline static decltype(auto) pop(lua_State* L) { + record tracking{}; +#ifdef __INTEL_COMPILER + auto&& r = get<T>(L, -lua_size<T>::value, tracking); +#else + decltype(auto) r = get<T>(L, -lua_size<T>::value, tracking); +#endif + lua_pop(L, tracking.used); + return r; + } + }; + + template <typename T> + struct popper<T, std::enable_if_t<is_stack_based<meta::unqualified_t<T>>::value>> { + static_assert(meta::neg<is_stack_based<meta::unqualified_t<T>>>::value, "You cannot pop something that lives solely on the stack: it will not remain on the stack when popped and thusly will go out of scope!"); + }; +} +} // namespace sol::stack + +// end of sol/stack_pop.hpp + +// beginning of sol/stack_field.hpp + +namespace sol { +namespace stack { + template <typename T, bool, bool, typename> + struct field_getter { + template <typename Key> + void get(lua_State* L, Key&& key, int tableindex = -2) { + push(L, std::forward<Key>(key)); + lua_gettable(L, tableindex); + } + }; + + template <typename T, bool global, typename C> + struct field_getter<T, global, true, C> { + template <typename Key> + void get(lua_State* L, Key&& key, int tableindex = -2) { + push(L, std::forward<Key>(key)); + lua_rawget(L, tableindex); + } + }; + + template <bool b, bool raw, typename C> + struct field_getter<metatable_t, b, raw, C> { + void get(lua_State* L, metatable_t, int tableindex = -1) { + if (lua_getmetatable(L, tableindex) == 0) + push(L, lua_nil); + } + }; + + template <bool b, bool raw, typename C> + struct field_getter<env_t, b, raw, C> { + void get(lua_State* L, env_t, int tableindex = -1) { +#if SOL_LUA_VERSION < 502 + // Use lua_setfenv + lua_getfenv(L, tableindex); +#else + // Use upvalues as explained in Lua 5.2 and beyond's manual + if (lua_getupvalue(L, tableindex, 1) == nullptr) { + push(L, lua_nil); + } +#endif + } + }; + + template <typename T, bool raw> + struct field_getter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> { + template <typename Key> + void get(lua_State* L, Key&& key, int = -1) { + lua_getglobal(L, &key[0]); + } + }; + + template <typename T> + struct field_getter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> { + template <typename Key> + void get(lua_State* L, Key&& key, int tableindex = -1) { + lua_getfield(L, tableindex, &key[0]); + } + }; + +#if SOL_LUA_VERSION >= 503 + template <typename T> + struct field_getter<T, false, false, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> { + template <typename Key> + void get(lua_State* L, Key&& key, int tableindex = -1) { + lua_geti(L, tableindex, static_cast<lua_Integer>(key)); + } + }; +#endif // Lua 5.3.x + +#if SOL_LUA_VERSION >= 502 + template <typename C> + struct field_getter<void*, false, true, C> { + void get(lua_State* L, void* key, int tableindex = -1) { + lua_rawgetp(L, tableindex, key); + } + }; +#endif // Lua 5.3.x + + template <typename T> + struct field_getter<T, false, true, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> { + template <typename Key> + void get(lua_State* L, Key&& key, int tableindex = -1) { + lua_rawgeti(L, tableindex, static_cast<lua_Integer>(key)); + } + }; + + template <typename... Args, bool b, bool raw, typename C> + struct field_getter<std::tuple<Args...>, b, raw, C> { + template <std::size_t... I, typename Keys> + void apply(std::index_sequence<0, I...>, lua_State* L, Keys&& keys, int tableindex) { + get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex); + void(detail::swallow{(get_field<false, raw>(L, detail::forward_get<I>(keys)), 0)...}); + reference saved(L, -1); + lua_pop(L, static_cast<int>(sizeof...(I))); + saved.push(); + } + + template <typename Keys> + void get(lua_State* L, Keys&& keys) { + apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), lua_absindex(L, -1)); + } + + template <typename Keys> + void get(lua_State* L, Keys&& keys, int tableindex) { + apply(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), tableindex); + } + }; + + template <typename A, typename B, bool b, bool raw, typename C> + struct field_getter<std::pair<A, B>, b, raw, C> { + template <typename Keys> + void get(lua_State* L, Keys&& keys, int tableindex) { + get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex); + get_field<false, raw>(L, detail::forward_get<1>(keys)); + reference saved(L, -1); + lua_pop(L, static_cast<int>(2)); + saved.push(); + } + + template <typename Keys> + void get(lua_State* L, Keys&& keys) { + get_field<b, raw>(L, detail::forward_get<0>(keys)); + get_field<false, raw>(L, detail::forward_get<1>(keys)); + reference saved(L, -1); + lua_pop(L, static_cast<int>(2)); + saved.push(); + } + }; + + template <typename T, bool, bool, typename> + struct field_setter { + template <typename Key, typename Value> + void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) { + push(L, std::forward<Key>(key)); + push(L, std::forward<Value>(value)); + lua_settable(L, tableindex); + } + }; + + template <typename T, bool b, typename C> + struct field_setter<T, b, true, C> { + template <typename Key, typename Value> + void set(lua_State* L, Key&& key, Value&& value, int tableindex = -3) { + push(L, std::forward<Key>(key)); + push(L, std::forward<Value>(value)); + lua_rawset(L, tableindex); + } + }; + + template <bool b, bool raw, typename C> + struct field_setter<metatable_t, b, raw, C> { + template <typename Value> + void set(lua_State* L, metatable_t, Value&& value, int tableindex = -2) { + push(L, std::forward<Value>(value)); + lua_setmetatable(L, tableindex); + } + }; + + template <typename T, bool raw> + struct field_setter<T, true, raw, std::enable_if_t<meta::is_c_str<T>::value>> { + template <typename Key, typename Value> + void set(lua_State* L, Key&& key, Value&& value, int = -2) { + push(L, std::forward<Value>(value)); + lua_setglobal(L, &key[0]); + } + }; + + template <typename T> + struct field_setter<T, false, false, std::enable_if_t<meta::is_c_str<T>::value>> { + template <typename Key, typename Value> + void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) { + push(L, std::forward<Value>(value)); + lua_setfield(L, tableindex, &key[0]); + } + }; + +#if SOL_LUA_VERSION >= 503 + template <typename T> + struct field_setter<T, false, false, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> { + template <typename Key, typename Value> + void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) { + push(L, std::forward<Value>(value)); + lua_seti(L, tableindex, static_cast<lua_Integer>(key)); + } + }; +#endif // Lua 5.3.x + + template <typename T> + struct field_setter<T, false, true, std::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> { + template <typename Key, typename Value> + void set(lua_State* L, Key&& key, Value&& value, int tableindex = -2) { + push(L, std::forward<Value>(value)); + lua_rawseti(L, tableindex, static_cast<lua_Integer>(key)); + } + }; + +#if SOL_LUA_VERSION >= 502 + template <typename C> + struct field_setter<void*, false, true, C> { + template <typename Key, typename Value> + void set(lua_State* L, void* key, Value&& value, int tableindex = -2) { + push(L, std::forward<Value>(value)); + lua_rawsetp(L, tableindex, key); + } + }; +#endif // Lua 5.2.x + + template <typename... Args, bool b, bool raw, typename C> + struct field_setter<std::tuple<Args...>, b, raw, C> { + template <bool g, std::size_t I, typename Key, typename Value> + void apply(std::index_sequence<I>, lua_State* L, Key&& keys, Value&& value, int tableindex) { + I < 1 ? set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value), tableindex) : set_field<g, raw>(L, detail::forward_get<I>(keys), std::forward<Value>(value)); + } + + template <bool g, std::size_t I0, std::size_t I1, std::size_t... I, typename Keys, typename Value> + void apply(std::index_sequence<I0, I1, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) { + I0 < 1 ? get_field<g, raw>(L, detail::forward_get<I0>(keys), tableindex) : get_field<g, raw>(L, detail::forward_get<I0>(keys), -1); + apply<false>(std::index_sequence<I1, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), -1); + } + + template <bool g, std::size_t I0, std::size_t... I, typename Keys, typename Value> + void top_apply(std::index_sequence<I0, I...>, lua_State* L, Keys&& keys, Value&& value, int tableindex) { + apply<g>(std::index_sequence<I0, I...>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex); + lua_pop(L, static_cast<int>(sizeof...(I))); + } + + template <typename Keys, typename Value> + void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -3) { + top_apply<b>(std::make_index_sequence<sizeof...(Args)>(), L, std::forward<Keys>(keys), std::forward<Value>(value), tableindex); + } + }; + + template <typename A, typename B, bool b, bool raw, typename C> + struct field_setter<std::pair<A, B>, b, raw, C> { + template <typename Keys, typename Value> + void set(lua_State* L, Keys&& keys, Value&& value, int tableindex = -1) { + get_field<b, raw>(L, detail::forward_get<0>(keys), tableindex); + set_field<false, raw>(L, detail::forward_get<1>(keys), std::forward<Value>(value)); + lua_pop(L, 1); + } + }; +} +} // namespace sol::stack + +// end of sol/stack_field.hpp + +// beginning of sol/stack_probe.hpp + +namespace sol { +namespace stack { + template <typename T, typename P, bool b, bool raw, typename> + struct probe_field_getter { + template <typename Key> + probe get(lua_State* L, Key&& key, int tableindex = -2) { + if (!b && !maybe_indexable(L, tableindex)) { + return probe(false, 0); + } + get_field<b, raw>(L, std::forward<Key>(key), tableindex); + return probe(check<P>(L), 1); + } + }; + + template <typename A, typename B, typename P, bool b, bool raw, typename C> + struct probe_field_getter<std::pair<A, B>, P, b, raw, C> { + template <typename Keys> + probe get(lua_State* L, Keys&& keys, int tableindex = -2) { + if (!b && !maybe_indexable(L, tableindex)) { + return probe(false, 0); + } + get_field<b, raw>(L, std::get<0>(keys), tableindex); + if (!maybe_indexable(L)) { + return probe(false, 1); + } + get_field<false, raw>(L, std::get<1>(keys), tableindex); + return probe(check<P>(L), 2); + } + }; + + template <typename... Args, typename P, bool b, bool raw, typename C> + struct probe_field_getter<std::tuple<Args...>, P, b, raw, C> { + template <std::size_t I, typename Keys> + probe apply(std::index_sequence<I>, int sofar, lua_State* L, Keys&& keys, int tableindex) { + get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex); + return probe(check<P>(L), sofar); + } + + template <std::size_t I, std::size_t I1, std::size_t... In, typename Keys> + probe apply(std::index_sequence<I, I1, In...>, int sofar, lua_State* L, Keys&& keys, int tableindex) { + get_field < I<1 && b, raw>(L, std::get<I>(keys), tableindex); + if (!maybe_indexable(L)) { + return probe(false, sofar); + } + return apply(std::index_sequence<I1, In...>(), sofar + 1, L, std::forward<Keys>(keys), -1); + } + + template <typename Keys> + probe get(lua_State* L, Keys&& keys, int tableindex = -2) { + if (!b && !maybe_indexable(L, tableindex)) { + return probe(false, 0); + } + return apply(std::index_sequence_for<Args...>(), 1, L, std::forward<Keys>(keys), tableindex); + } + }; +} +} // namespace sol::stack + +// end of sol/stack_probe.hpp + +namespace sol { + namespace detail { + using typical_chunk_name_t = char[32]; + + inline const std::string& default_chunk_name() { + static const std::string name = ""; + return name; + } + + template <std::size_t N> + const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) { + if (chunkname.empty()) { + auto it = code.cbegin(); + auto e = code.cend(); + std::size_t i = 0; + static const std::size_t n = N - 4; + for (i = 0; i < n && it != e; ++i, ++it) { + basechunkname[i] = *it; + } + if (it != e) { + for (std::size_t c = 0; c < 3; ++i, ++c) { + basechunkname[i] = '.'; + } + } + basechunkname[i] = '\0'; + return &basechunkname[0]; + } + else { + return chunkname.c_str(); + } + } + } // namespace detail + + namespace stack { + namespace stack_detail { + template <typename T> + inline int push_as_upvalues(lua_State* L, T& item) { + typedef std::decay_t<T> TValue; + static const std::size_t itemsize = sizeof(TValue); + static const std::size_t voidsize = sizeof(void*); + static const std::size_t voidsizem1 = voidsize - 1; + static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize; + typedef std::array<void*, data_t_count> data_t; + + data_t data{ {} }; + std::memcpy(&data[0], std::addressof(item), itemsize); + int pushcount = 0; + for (auto&& v : data) { + pushcount += push(L, lightuserdata_value(v)); + } + return pushcount; + } + + template <typename T> + inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) { + static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*); + typedef std::array<void*, data_t_count> data_t; + data_t voiddata{ {} }; + for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) { + voiddata[i] = get<lightuserdata_value>(L, upvalue_index(index++)); + } + return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index); + } + + struct evaluator { + template <typename Fx, typename... Args> + static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, record&, Fx&& fx, Args&&... args) { + return std::forward<Fx>(fx)(std::forward<Args>(args)...); + } + + template <typename Fx, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename... FxArgs> + static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L, int start, record& tracking, Fx&& fx, FxArgs&&... fxargs) { + return eval(types<Args...>(), std::index_sequence<Is...>(), L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)..., stack_detail::unchecked_get<Arg>(L, start + tracking.used, tracking)); + } + }; + + template <bool checkargs = detail::default_safe_function_calls , std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value >> + inline decltype(auto) call(types<R>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { +#ifndef _MSC_VER + static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention."); +#endif // This compiler make me so sad + argument_handler<types<R, Args...>> handler{}; + multi_check<checkargs, Args...>(L, start, handler); + record tracking{}; + return evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); + } + + template <bool checkargs = detail::default_safe_function_calls, std::size_t... I, typename... Args, typename Fx, typename... FxArgs> + inline void call(types<void>, types<Args...> ta, std::index_sequence<I...> tai, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { +#ifndef _MSC_VER + static_assert(meta::all<meta::is_not_move_only<Args>...>::value, "One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take a reference and std::move it manually if this was your intention."); +#endif // This compiler make me so fucking sad + argument_handler<types<void, Args...>> handler{}; + multi_check<checkargs, Args...>(L, start, handler); + record tracking{}; + evaluator{}.eval(ta, tai, L, start, tracking, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); + } + } // namespace stack_detail + + template <typename T> + int set_ref(lua_State* L, T&& arg, int tableindex = -2) { + push(L, std::forward<T>(arg)); + return luaL_ref(L, tableindex); + } + + template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>> + inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { + typedef std::make_index_sequence<sizeof...(Args)> args_indices; + return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); + } + + template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>> + inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) { + return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); + } + + template <bool check_args = detail::default_safe_function_calls, typename... Args, typename Fx, typename... FxArgs> + inline void call(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) { + typedef std::make_index_sequence<sizeof...(Args)> args_indices; + stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); + } + + template <bool check_args = detail::default_safe_function_calls, typename... Args, typename Fx, typename... FxArgs> + inline void call(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) { + call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...); + } + + template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<!std::is_void<R>::value>> + inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) { + typedef meta::count_for_pack<lua_size, Args...> expected_count; + return call<check_args>(tr, ta, L, (std::max)(static_cast<int>(lua_gettop(L) - expected_count::value), static_cast<int>(0)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...); + } + + template <bool check_args = detail::default_safe_function_calls, typename... Args, typename Fx, typename... FxArgs> + inline void call_from_top(types<void> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) { + typedef meta::count_for_pack<lua_size, Args...> expected_count; + call<check_args>(tr, ta, L, (std::max)(static_cast<int>(lua_gettop(L) - expected_count::value), static_cast<int>(0)), std::forward<Fx>(fx), std::forward<FxArgs>(args)...); + } + + template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename... Args, typename Fx, typename... FxArgs> + inline int call_into_lua(types<void> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) { + call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...); + if (clean_stack) { + lua_settop(L, 0); + } + return 0; + } + + template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args, typename Fx, typename... FxArgs, typename = std::enable_if_t<meta::neg<std::is_void<Ret0>>::value>> + inline int call_into_lua(types<Ret0, Ret...>, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) { + decltype(auto) r = call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...); + typedef meta::unqualified_t<decltype(r)> R; + typedef meta::any<is_stack_based<R>, + std::is_same<R, absolute_index>, + std::is_same<R, ref_index>, + std::is_same<R, raw_index>> + is_stack; + if (clean_stack && !is_stack::value) { + lua_settop(L, 0); + } + return push_reference(L, std::forward<decltype(r)>(r)); + } + + template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs> + inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) { + typedef lua_bind_traits<meta::unqualified_t<Fx>> traits_type; + typedef typename traits_type::args_list args_list; + typedef typename traits_type::returns_list returns_list; + return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...); + } + + inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) { + if (lua_gettop(L) == 0) { + return call_syntax::dot; + } + luaL_getmetatable(L, key.data()); + auto pn = pop_n(L, 1); + if (lua_compare(L, -1, index, LUA_OPEQ) != 1) { + return call_syntax::dot; + } + return call_syntax::colon; + } + + inline void script(lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) { + lua_error(L); + } + } + + inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) { + if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) { + lua_error(L); + } + } + + inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) { +#if defined(SOL_LUAJIT) && !defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) + if (L == nullptr) { + return; + } + lua_pushlightuserdata(L, (void*)handler); + auto pn = pop_n(L, 1); + luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON); +#else + (void)L; + (void)handler; +#endif + } + + inline void luajit_exception_off(lua_State* L) { +#if defined(SOL_LUAJIT) + if (L == nullptr) { + return; + } + luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF); +#else + (void)L; +#endif + } + } // namespace stack +} // namespace sol + +// end of sol/stack.hpp + +// beginning of sol/unsafe_function.hpp + +// beginning of sol/function_result.hpp + +// beginning of sol/protected_function_result.hpp + +// beginning of sol/proxy_base.hpp + +namespace sol { + struct proxy_base_tag {}; + + template <typename Super> + struct proxy_base : proxy_base_tag { + operator std::string() const { + const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); + return super.template get<std::string>(); + } + + template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, is_proxy_primitive<meta::unqualified_t<T>>> = meta::enabler> + operator T() const { + const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); + return super.template get<T>(); + } + + template <typename T, meta::enable<meta::neg<meta::is_string_constructible<T>>, meta::neg<is_proxy_primitive<meta::unqualified_t<T>>>> = meta::enabler> + operator T&() const { + const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); + return super.template get<T&>(); + } + + lua_State* lua_state() const { + const Super& super = *static_cast<const Super*>(static_cast<const void*>(this)); + return super.lua_state(); + } + }; +} // namespace sol + +// end of sol/proxy_base.hpp + +// beginning of sol/stack_iterator.hpp + +namespace sol { + template <typename proxy_t, bool is_const> + struct stack_iterator { + typedef std::conditional_t<is_const, const proxy_t, proxy_t> reference; + typedef std::conditional_t<is_const, const proxy_t*, proxy_t*> pointer; + typedef proxy_t value_type; + typedef std::ptrdiff_t difference_type; + typedef std::random_access_iterator_tag iterator_category; + lua_State* L; + int index; + int stacktop; + proxy_t sp; + + stack_iterator() + : L(nullptr), index((std::numeric_limits<int>::max)()), stacktop((std::numeric_limits<int>::max)()), sp() { + } + stack_iterator(const stack_iterator<proxy_t, true>& r) + : L(r.L), index(r.index), stacktop(r.stacktop), sp(r.sp) { + } + stack_iterator(lua_State* luastate, int idx, int topidx) + : L(luastate), index(idx), stacktop(topidx), sp(luastate, idx) { + } + + reference operator*() { + return proxy_t(L, index); + } + + reference operator*() const { + return proxy_t(L, index); + } + + pointer operator->() { + sp = proxy_t(L, index); + return &sp; + } + + pointer operator->() const { + const_cast<proxy_t&>(sp) = proxy_t(L, index); + return &sp; + } + + stack_iterator& operator++() { + ++index; + return *this; + } + + stack_iterator operator++(int) { + auto r = *this; + this->operator++(); + return r; + } + + stack_iterator& operator--() { + --index; + return *this; + } + + stack_iterator operator--(int) { + auto r = *this; + this->operator--(); + return r; + } + + stack_iterator& operator+=(difference_type idx) { + index += static_cast<int>(idx); + return *this; + } + + stack_iterator& operator-=(difference_type idx) { + index -= static_cast<int>(idx); + return *this; + } + + difference_type operator-(const stack_iterator& r) const { + return index - r.index; + } + + stack_iterator operator+(difference_type idx) const { + stack_iterator r = *this; + r += idx; + return r; + } + + reference operator[](difference_type idx) const { + return proxy_t(L, index + static_cast<int>(idx)); + } + + bool operator==(const stack_iterator& r) const { + if (stacktop == (std::numeric_limits<int>::max)()) { + return r.index == r.stacktop; + } + else if (r.stacktop == (std::numeric_limits<int>::max)()) { + return index == stacktop; + } + return index == r.index; + } + + bool operator!=(const stack_iterator& r) const { + return !(this->operator==(r)); + } + + bool operator<(const stack_iterator& r) const { + return index < r.index; + } + + bool operator>(const stack_iterator& r) const { + return index > r.index; + } + + bool operator<=(const stack_iterator& r) const { + return index <= r.index; + } + + bool operator>=(const stack_iterator& r) const { + return index >= r.index; + } + }; + + template <typename proxy_t, bool is_const> + inline stack_iterator<proxy_t, is_const> operator+(typename stack_iterator<proxy_t, is_const>::difference_type n, const stack_iterator<proxy_t, is_const>& r) { + return r + n; + } +} // namespace sol + +// end of sol/stack_iterator.hpp + +// beginning of sol/stack_proxy.hpp + +// beginning of sol/stack_proxy_base.hpp + +namespace sol { + struct stack_proxy_base : public proxy_base<stack_proxy_base> { + private: + lua_State* L; + int index; + + public: + stack_proxy_base() + : L(nullptr), index(0) { + } + stack_proxy_base(lua_State* L, int index) + : L(L), index(index) { + } + + template <typename T> + decltype(auto) get() const { + return stack::get<T>(L, stack_index()); + } + + template <typename T> + bool is() const { + return stack::check<T>(L, stack_index()); + } + + template <typename T> + decltype(auto) as() const { + return get<T>(); + } + + type get_type() const noexcept { + return type_of(lua_state(), stack_index()); + } + + int push() const { + return push(L); + } + + int push(lua_State* Ls) const { + lua_pushvalue(Ls, index); + return 1; + } + + lua_State* lua_state() const { + return L; + } + int stack_index() const { + return index; + } + }; + + namespace stack { + template <> + struct getter<stack_proxy_base> { + static stack_proxy_base get(lua_State* L, int index = -1) { + return stack_proxy_base(L, index); + } + }; + + template <> + struct pusher<stack_proxy_base> { + static int push(lua_State*, const stack_proxy_base& ref) { + return ref.push(); + } + }; + } // namespace stack + +} // namespace sol + +// end of sol/stack_proxy_base.hpp + +namespace sol { + struct stack_proxy : public stack_proxy_base { + public: + stack_proxy() + : stack_proxy_base() { + } + stack_proxy(lua_State* L, int index) + : stack_proxy_base(L, index) { + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args); + + template <typename... Args> + decltype(auto) operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + }; + + namespace stack { + template <> + struct getter<stack_proxy> { + static stack_proxy get(lua_State* L, int index = -1) { + return stack_proxy(L, index); + } + }; + + template <> + struct pusher<stack_proxy> { + static int push(lua_State*, const stack_proxy& ref) { + return ref.push(); + } + }; + } // namespace stack +} // namespace sol + +// end of sol/stack_proxy.hpp + +namespace sol { + struct protected_function_result : public proxy_base<protected_function_result> { + private: + lua_State* L; + int index; + int returncount; + int popcount; + call_status err; + + template <typename T> + decltype(auto) tagged_get(types<optional<T>>, int index_offset) const { + typedef decltype(stack::get<optional<T>>(L, index)) ret_t; + int target = index + index_offset; + if (!valid()) { + return ret_t(nullopt); + } + return stack::get<optional<T>>(L, target); + } + + template <typename T> + decltype(auto) tagged_get(types<T>, int index_offset) const { + int target = index + index_offset; +#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES + if (!valid()) { + type t = type_of(L, target); + type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is not an error)"); + } +#endif // Check Argument Safety + return stack::get<T>(L, target); + } + + optional<error> tagged_get(types<optional<error>>, int index_offset) const { + int target = index + index_offset; + if (valid()) { + return nullopt; + } + return error(detail::direct_error, stack::get<std::string>(L, target)); + } + + error tagged_get(types<error>, int index_offset) const { + int target = index + index_offset; +#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES + if (valid()) { + type t = type_of(L, target); + type_panic_c_str(L, target, t, type::none, "bad get from protected_function_result (is an error)"); + } +#endif // Check Argument Safety + return error(detail::direct_error, stack::get<std::string>(L, target)); + } + + public: + typedef stack_proxy reference_type; + typedef stack_proxy value_type; + typedef stack_proxy* pointer; + typedef std::ptrdiff_t difference_type; + typedef std::size_t size_type; + typedef stack_iterator<stack_proxy, false> iterator; + typedef stack_iterator<stack_proxy, true> const_iterator; + typedef std::reverse_iterator<iterator> reverse_iterator; + typedef std::reverse_iterator<const_iterator> const_reverse_iterator; + + protected_function_result() = default; + protected_function_result(lua_State* Ls, int idx = -1, int retnum = 0, int popped = 0, call_status pferr = call_status::ok) noexcept + : L(Ls), index(idx), returncount(retnum), popcount(popped), err(pferr) { + } + protected_function_result(const protected_function_result&) = default; + protected_function_result& operator=(const protected_function_result&) = default; + protected_function_result(protected_function_result&& o) noexcept + : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.abandon(); + } + protected_function_result& operator=(protected_function_result&& o) noexcept { + L = o.L; + index = o.index; + returncount = o.returncount; + popcount = o.popcount; + err = o.err; + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.abandon(); + return *this; + } + + protected_function_result(const unsafe_function_result& o) = delete; + protected_function_result& operator=(const unsafe_function_result& o) = delete; + protected_function_result(unsafe_function_result&& o) noexcept; + protected_function_result& operator=(unsafe_function_result&& o) noexcept; + + call_status status() const noexcept { + return err; + } + + bool valid() const noexcept { + return status() == call_status::ok || status() == call_status::yielded; + } + + template <typename T> + decltype(auto) get(int index_offset = 0) const { + return tagged_get(types<meta::unqualified_t<T>>(), index_offset); + } + + type get_type(difference_type index_offset = 0) const noexcept { + return type_of(L, index + static_cast<int>(index_offset)); + } + + stack_proxy operator[](difference_type index_offset) const { + return stack_proxy(L, index + static_cast<int>(index_offset)); + } + + iterator begin() { + return iterator(L, index, stack_index() + return_count()); + } + iterator end() { + return iterator(L, stack_index() + return_count(), stack_index() + return_count()); + } + const_iterator begin() const { + return const_iterator(L, index, stack_index() + return_count()); + } + const_iterator end() const { + return const_iterator(L, stack_index() + return_count(), stack_index() + return_count()); + } + const_iterator cbegin() const { + return begin(); + } + const_iterator cend() const { + return end(); + } + + reverse_iterator rbegin() { + return std::reverse_iterator<iterator>(begin()); + } + reverse_iterator rend() { + return std::reverse_iterator<iterator>(end()); + } + const_reverse_iterator rbegin() const { + return std::reverse_iterator<const_iterator>(begin()); + } + const_reverse_iterator rend() const { + return std::reverse_iterator<const_iterator>(end()); + } + const_reverse_iterator crbegin() const { + return std::reverse_iterator<const_iterator>(cbegin()); + } + const_reverse_iterator crend() const { + return std::reverse_iterator<const_iterator>(cend()); + } + + lua_State* lua_state() const noexcept { + return L; + }; + int stack_index() const noexcept { + return index; + }; + int return_count() const noexcept { + return returncount; + }; + int pop_count() const noexcept { + return popcount; + }; + void abandon() noexcept { + //L = nullptr; + index = 0; + returncount = 0; + popcount = 0; + err = call_status::runtime; + } + ~protected_function_result() { + stack::remove(L, index, popcount); + } + }; + + namespace stack { + template <> + struct pusher<protected_function_result> { + static int push(lua_State* L, const protected_function_result& pfr) { + int p = 0; + for (int i = 0; i < pfr.pop_count(); ++i) { + lua_pushvalue(L, i + pfr.stack_index()); + ++p; + } + return p; + } + }; + } // namespace stack +} // namespace sol + +// end of sol/protected_function_result.hpp + +// beginning of sol/unsafe_function_result.hpp + +namespace sol { + struct unsafe_function_result : public proxy_base<unsafe_function_result> { + private: + lua_State* L; + int index; + int returncount; + + public: + typedef stack_proxy reference_type; + typedef stack_proxy value_type; + typedef stack_proxy* pointer; + typedef std::ptrdiff_t difference_type; + typedef std::size_t size_type; + typedef stack_iterator<stack_proxy, false> iterator; + typedef stack_iterator<stack_proxy, true> const_iterator; + typedef std::reverse_iterator<iterator> reverse_iterator; + typedef std::reverse_iterator<const_iterator> const_reverse_iterator; + + unsafe_function_result() = default; + unsafe_function_result(lua_State* Ls, int idx = -1, int retnum = 0) + : L(Ls), index(idx), returncount(retnum) { + } + unsafe_function_result(const unsafe_function_result&) = default; + unsafe_function_result& operator=(const unsafe_function_result&) = default; + unsafe_function_result(unsafe_function_result&& o) + : L(o.L), index(o.index), returncount(o.returncount) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but will be thorough + o.abandon(); + } + unsafe_function_result& operator=(unsafe_function_result&& o) { + L = o.L; + index = o.index; + returncount = o.returncount; + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but will be thorough + o.abandon(); + return *this; + } + + unsafe_function_result(const protected_function_result& o) = delete; + unsafe_function_result& operator=(const protected_function_result& o) = delete; + unsafe_function_result(protected_function_result&& o) noexcept; + unsafe_function_result& operator=(protected_function_result&& o) noexcept; + + template <typename T> + decltype(auto) get(difference_type index_offset = 0) const { + return stack::get<T>(L, index + static_cast<int>(index_offset)); + } + + type get_type(difference_type index_offset = 0) const noexcept { + return type_of(L, index + static_cast<int>(index_offset)); + } + + stack_proxy operator[](difference_type index_offset) const { + return stack_proxy(L, index + static_cast<int>(index_offset)); + } + + iterator begin() { + return iterator(L, index, stack_index() + return_count()); + } + iterator end() { + return iterator(L, stack_index() + return_count(), stack_index() + return_count()); + } + const_iterator begin() const { + return const_iterator(L, index, stack_index() + return_count()); + } + const_iterator end() const { + return const_iterator(L, stack_index() + return_count(), stack_index() + return_count()); + } + const_iterator cbegin() const { + return begin(); + } + const_iterator cend() const { + return end(); + } + + reverse_iterator rbegin() { + return std::reverse_iterator<iterator>(begin()); + } + reverse_iterator rend() { + return std::reverse_iterator<iterator>(end()); + } + const_reverse_iterator rbegin() const { + return std::reverse_iterator<const_iterator>(begin()); + } + const_reverse_iterator rend() const { + return std::reverse_iterator<const_iterator>(end()); + } + const_reverse_iterator crbegin() const { + return std::reverse_iterator<const_iterator>(cbegin()); + } + const_reverse_iterator crend() const { + return std::reverse_iterator<const_iterator>(cend()); + } + + call_status status() const noexcept { + return call_status::ok; + } + + bool valid() const noexcept { + return status() == call_status::ok || status() == call_status::yielded; + } + + lua_State* lua_state() const { + return L; + }; + int stack_index() const { + return index; + }; + int return_count() const { + return returncount; + }; + void abandon() noexcept { + //L = nullptr; + index = 0; + returncount = 0; + } + ~unsafe_function_result() { + lua_pop(L, returncount); + } + }; + + namespace stack { + template <> + struct pusher<unsafe_function_result> { + static int push(lua_State* L, const unsafe_function_result& fr) { + int p = 0; + for (int i = 0; i < fr.return_count(); ++i) { + lua_pushvalue(L, i + fr.stack_index()); + ++p; + } + return p; + } + }; + } // namespace stack +} // namespace sol + +// end of sol/unsafe_function_result.hpp + +namespace sol { + + namespace detail { + template <> + struct is_speshul<unsafe_function_result> : std::true_type {}; + template <> + struct is_speshul<protected_function_result> : std::true_type {}; + + template <std::size_t I, typename... Args, typename T> + stack_proxy get(types<Args...>, index_value<0>, index_value<I>, const T& fr) { + return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); + } + + template <std::size_t I, std::size_t N, typename Arg, typename... Args, typename T, meta::enable<meta::boolean<(N > 0)>> = meta::enabler> + stack_proxy get(types<Arg, Args...>, index_value<N>, index_value<I>, const T& fr) { + return get(types<Args...>(), index_value<N - 1>(), index_value<I + lua_size<Arg>::value>(), fr); + } + } // namespace detail + + template <> + struct tie_size<unsafe_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {}; + + template <> + struct tie_size<protected_function_result> : std::integral_constant<std::size_t, SIZE_MAX> {}; + + template <std::size_t I> + stack_proxy get(const unsafe_function_result& fr) { + return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); + } + + template <std::size_t I, typename... Args> + stack_proxy get(types<Args...> t, const unsafe_function_result& fr) { + return detail::get(t, index_value<I>(), index_value<0>(), fr); + } + + template <std::size_t I> + stack_proxy get(const protected_function_result& fr) { + return stack_proxy(fr.lua_state(), static_cast<int>(fr.stack_index() + I)); + } + + template <std::size_t I, typename... Args> + stack_proxy get(types<Args...> t, const protected_function_result& fr) { + return detail::get(t, index_value<I>(), index_value<0>(), fr); + } +} // namespace sol + +// end of sol/function_result.hpp + +// beginning of sol/function_types.hpp + +// beginning of sol/function_types_core.hpp + +// beginning of sol/wrapper.hpp + +namespace sol { + + namespace detail { + template <typename T> + using array_return_type = std::conditional_t<std::is_array<T>::value, std::add_lvalue_reference_t<T>, T>; + } + + template <typename F, typename = void> + struct wrapper { + typedef lua_bind_traits<meta::unqualified_t<F>> traits_type; + typedef typename traits_type::args_list args_list; + typedef typename traits_type::args_list free_args_list; + typedef typename traits_type::returns_list returns_list; + + template <typename... Args> + static decltype(auto) call(F& f, Args&&... args) { + return f(std::forward<Args>(args)...); + } + + struct caller { + template <typename... Args> + decltype(auto) operator()(F& fx, Args&&... args) const { + return call(fx, std::forward<Args>(args)...); + } + }; + }; + + template <typename F> + struct wrapper<F, std::enable_if_t<std::is_function<std::remove_pointer_t<meta::unqualified_t<F>>>::value>> { + typedef lua_bind_traits<std::remove_pointer_t<meta::unqualified_t<F>>> traits_type; + typedef typename traits_type::args_list args_list; + typedef typename traits_type::args_list free_args_list; + typedef typename traits_type::returns_list returns_list; + + template <F fx, typename... Args> + static decltype(auto) invoke(Args&&... args) { + return fx(std::forward<Args>(args)...); + } + + template <typename... Args> + static decltype(auto) call(F& fx, Args&&... args) { + return fx(std::forward<Args>(args)...); + } + + struct caller { + template <typename... Args> + decltype(auto) operator()(F& fx, Args&&... args) const { + return call(fx, std::forward<Args>(args)...); + } + }; + + template <F fx> + struct invoker { + template <typename... Args> + decltype(auto) operator()(Args&&... args) const { + return invoke<fx>(std::forward<Args>(args)...); + } + }; + }; + + template <typename F> + struct wrapper<F, std::enable_if_t<std::is_member_object_pointer<meta::unqualified_t<F>>::value>> { + typedef lua_bind_traits<meta::unqualified_t<F>> traits_type; + typedef typename traits_type::object_type object_type; + typedef typename traits_type::return_type return_type; + typedef typename traits_type::args_list args_list; + typedef types<object_type&, return_type> free_args_list; + typedef typename traits_type::returns_list returns_list; + + template <F fx> + static auto call(object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> { + return mem.*fx; + } + + template <F fx, typename Arg, typename... Args> + static decltype(auto) invoke(object_type& mem, Arg&& arg, Args&&...) { + return mem.*fx = std::forward<Arg>(arg); + } + + template <typename Fx> + static auto call(Fx&& fx, object_type& mem) -> detail::array_return_type<decltype(mem.*fx)> { + return mem.*fx; + } + + template <typename Fx, typename Arg, typename... Args> + static void call(Fx&& fx, object_type& mem, Arg&& arg, Args&&...) { + (mem.*fx) = std::forward<Arg>(arg); + } + + struct caller { + template <typename Fx, typename... Args> + decltype(auto) operator()(Fx&& fx, object_type& mem, Args&&... args) const { + return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...); + } + }; + + template <F fx> + struct invoker { + template <typename... Args> + decltype(auto) operator()(Args&&... args) const { + return invoke<fx>(std::forward<Args>(args)...); + } + }; + }; + + template <typename F, typename R, typename O, typename... FArgs> + struct member_function_wrapper { + typedef O object_type; + typedef lua_bind_traits<F> traits_type; + typedef typename traits_type::args_list args_list; + typedef types<object_type&, FArgs...> free_args_list; + typedef meta::tuple_types<R> returns_list; + + template <F fx, typename... Args> + static R invoke(O& mem, Args&&... args) { + return (mem.*fx)(std::forward<Args>(args)...); + } + + template <typename Fx, typename... Args> + static R call(Fx&& fx, O& mem, Args&&... args) { + return (mem.*fx)(std::forward<Args>(args)...); + } + + struct caller { + template <typename Fx, typename... Args> + decltype(auto) operator()(Fx&& fx, O& mem, Args&&... args) const { + return call(std::forward<Fx>(fx), mem, std::forward<Args>(args)...); + } + }; + + template <F fx> + struct invoker { + template <typename... Args> + decltype(auto) operator()(O& mem, Args&&... args) const { + return invoke<fx>(mem, std::forward<Args>(args)...); + } + }; + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...)> : public member_function_wrapper<R (O::*)(Args...), R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const> : public member_function_wrapper<R (O::*)(Args...) const, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile> : public member_function_wrapper<R (O::*)(Args...) const volatile, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...)&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...)&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const volatile&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) &&> : public member_function_wrapper<R (O::*)(Args...)&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const&&> : public member_function_wrapper<R (O::*)(Args...) const&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile&&> : public member_function_wrapper<R (O::*)(Args...) const volatile&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) &&> : public member_function_wrapper<R (O::*)(Args..., ...)&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const&&> : public member_function_wrapper<R (O::*)(Args..., ...) const&, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const volatile&&> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile&, R, O, Args...> { + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + //noexcept has become a part of a function's type + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) noexcept> : public member_function_wrapper<R (O::*)(Args...) noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const noexcept> : public member_function_wrapper<R (O::*)(Args...) const noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) & noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) & noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const volatile& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) && noexcept> : public member_function_wrapper<R (O::*)(Args...) & noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args...) const volatile& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) && noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) & noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const& noexcept, R, O, Args...> { + }; + + template <typename R, typename O, typename... Args> + struct wrapper<R (O::*)(Args..., ...) const volatile&& noexcept> : public member_function_wrapper<R (O::*)(Args..., ...) const volatile& noexcept, R, O, Args...> { + }; + +#endif // noexcept is part of a function's type + +} // namespace sol + +// end of sol/wrapper.hpp + +namespace sol { +namespace function_detail { + template <typename Fx, int start = 1, bool is_yielding = false> + inline int call(lua_State* L) { + Fx& fx = stack::get<user<Fx>>(L, upvalue_index(start)); + int nr = fx(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } +} +} // namespace sol::function_detail + +// end of sol/function_types_core.hpp + +// beginning of sol/function_types_templated.hpp + +// beginning of sol/call.hpp + +// beginning of sol/protect.hpp + +namespace sol { + + template <typename T> + struct protect_t { + T value; + + template <typename Arg, typename... Args, meta::disable<std::is_same<protect_t, meta::unqualified_t<Arg>>> = meta::enabler> + protect_t(Arg&& arg, Args&&... args) + : value(std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + + protect_t(const protect_t&) = default; + protect_t(protect_t&&) = default; + protect_t& operator=(const protect_t&) = default; + protect_t& operator=(protect_t&&) = default; + }; + + template <typename T> + auto protect(T&& value) { + return protect_t<std::decay_t<T>>(std::forward<T>(value)); + } + +} // namespace sol + +// end of sol/protect.hpp + +// beginning of sol/property.hpp + +namespace sol { + + struct no_prop {}; + + template <typename R, typename W> + struct property_wrapper { + typedef std::integral_constant<bool, !std::is_void<R>::value> can_read; + typedef std::integral_constant<bool, !std::is_void<W>::value> can_write; + typedef std::conditional_t<can_read::value, R, no_prop> Read; + typedef std::conditional_t<can_write::value, W, no_prop> Write; + Read read; + Write write; + + template <typename Rx, typename Wx> + property_wrapper(Rx&& r, Wx&& w) + : read(std::forward<Rx>(r)), write(std::forward<Wx>(w)) { + } + }; + + namespace property_detail { + template <typename R, typename W> + inline decltype(auto) property(std::true_type, R&& read, W&& write) { + return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write)); + } + template <typename W, typename R> + inline decltype(auto) property(std::false_type, W&& write, R&& read) { + return property_wrapper<std::decay_t<R>, std::decay_t<W>>(std::forward<R>(read), std::forward<W>(write)); + } + template <typename R> + inline decltype(auto) property(std::true_type, R&& read) { + return property_wrapper<std::decay_t<R>, void>(std::forward<R>(read), no_prop()); + } + template <typename W> + inline decltype(auto) property(std::false_type, W&& write) { + return property_wrapper<void, std::decay_t<W>>(no_prop(), std::forward<W>(write)); + } + } // namespace property_detail + + template <typename F, typename G> + inline decltype(auto) property(F&& f, G&& g) { + typedef lua_bind_traits<meta::unqualified_t<F>> left_traits; + typedef lua_bind_traits<meta::unqualified_t<G>> right_traits; + return property_detail::property(meta::boolean<(left_traits::free_arity < right_traits::free_arity)>(), std::forward<F>(f), std::forward<G>(g)); + } + + template <typename F> + inline decltype(auto) property(F&& f) { + typedef lua_bind_traits<meta::unqualified_t<F>> left_traits; + return property_detail::property(meta::boolean<(left_traits::free_arity < 2)>(), std::forward<F>(f)); + } + + template <typename F> + inline decltype(auto) readonly_property(F&& f) { + return property_detail::property(std::true_type(), std::forward<F>(f)); + } + + template <typename F> + inline decltype(auto) writeonly_property(F&& f) { + return property_detail::property(std::false_type(), std::forward<F>(f)); + } + + template <typename T> + struct readonly_wrapper { + T v; + + readonly_wrapper(T v) + : v(std::move(v)) { + } + + operator T&() { + return v; + } + operator const T&() const { + return v; + } + }; + + // Allow someone to make a member variable readonly (const) + template <typename R, typename T> + inline auto readonly(R T::*v) { + return readonly_wrapper<meta::unqualified_t<decltype(v)>>(v); + } + + template <typename T> + struct var_wrapper { + T value; + template <typename... Args> + var_wrapper(Args&&... args) + : value(std::forward<Args>(args)...) { + } + var_wrapper(const var_wrapper&) = default; + var_wrapper(var_wrapper&&) = default; + var_wrapper& operator=(const var_wrapper&) = default; + var_wrapper& operator=(var_wrapper&&) = default; + }; + + template <typename V> + inline auto var(V&& v) { + typedef meta::unqualified_t<V> T; + return var_wrapper<T>(std::forward<V>(v)); + } + + namespace meta { + template <typename T> + struct is_member_object : std::is_member_object_pointer<T> {}; + + template <typename T> + struct is_member_object<readonly_wrapper<T>> : std::true_type {}; + } // namespace meta + +} // namespace sol + +// end of sol/property.hpp + +namespace sol { + namespace usertype_detail { + + } // namespace usertype_detail + + namespace filter_detail { + template <int I, int... In> + inline void handle_filter(static_stack_dependencies<I, In...>, lua_State* L, int&) { + if (sizeof...(In) == 0) { + return; + } + absolute_index ai(L, I); + if (type_of(L, ai) != type::userdata) { + return; + } + lua_createtable(L, static_cast<int>(sizeof...(In)), 0); + stack_reference deps(L, -1); + auto per_dep = [&L, &deps](int i) { + lua_pushvalue(L, i); + luaL_ref(L, deps.stack_index()); + }; + (void)per_dep; + (void)detail::swallow{ int(), (per_dep(In), int())... }; + lua_setuservalue(L, ai); + } + + template <int... In> + inline void handle_filter(returns_self_with<In...>, lua_State* L, int& pushed) { + pushed = stack::push(L, raw_index(1)); + handle_filter(static_stack_dependencies<-1, In...>(), L, pushed); + } + + inline void handle_filter(const stack_dependencies& sdeps, lua_State* L, int&) { + absolute_index ai(L, sdeps.target); + if (type_of(L, ai) != type::userdata) { + return; + } + lua_createtable(L, static_cast<int>(sdeps.size()), 0); + stack_reference deps(L, -1); + for (std::size_t i = 0; i < sdeps.size(); ++i) { + lua_pushvalue(L, sdeps.stack_indices[i]); + luaL_ref(L, deps.stack_index()); + } + lua_setuservalue(L, ai); + } + + template <typename P, meta::disable<std::is_base_of<detail::filter_base_tag, meta::unqualified_t<P>>> = meta::enabler> + inline void handle_filter(P&& p, lua_State* L, int& pushed) { + pushed = std::forward<P>(p)(L, pushed); + } + } // namespace filter_detail + + namespace function_detail { + inline int no_construction_error(lua_State* L) { + return luaL_error(L, "sol: cannot call this constructor (tagged as non-constructible)"); + } + } // namespace function_detail + + namespace call_detail { + + template <typename R, typename W> + inline auto& pick(std::true_type, property_wrapper<R, W>& f) { + return f.read; + } + + template <typename R, typename W> + inline auto& pick(std::false_type, property_wrapper<R, W>& f) { + return f.write; + } + + template <typename T, typename List> + struct void_call : void_call<T, meta::function_args_t<List>> {}; + + template <typename T, typename... Args> + struct void_call<T, types<Args...>> { + static void call(Args...) { + } + }; + + template <typename T, bool checked, bool clean_stack> + struct constructor_match { + T* obj; + + constructor_match(T* o) + : obj(o) { + } + + template <typename Fx, std::size_t I, typename... R, typename... Args> + int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start) const { + detail::default_construct func{}; + return stack::call_into_lua<checked, clean_stack>(r, a, L, start, func, obj); + } + }; + + namespace overload_detail { + template <std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&&, lua_State* L, int, int, Args&&...) { + return luaL_error(L, "sol: no matching function call takes this number of arguments and the specified types"); + } + + template <typename Fx, typename... Fxs, std::size_t I, std::size_t... In, std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity(types<Fx, Fxs...>, std::index_sequence<I, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; + typedef meta::tuple_types<typename traits::return_type> return_types; + typedef typename traits::free_args_list args_list; + // compile-time eliminate any functions that we know ahead of time are of improper arity + if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) { + return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) { + return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + stack::record tracking{}; + if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) { + return overload_match_arity(types<Fxs...>(), std::index_sequence<In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); + } + + template <std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity_single(types<>, std::index_sequence<>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + + template <typename Fx, std::size_t I, std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity_single(types<Fx>, std::index_sequence<I>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; + typedef meta::tuple_types<typename traits::return_type> return_types; + typedef typename traits::free_args_list args_list; + // compile-time eliminate any functions that we know ahead of time are of improper arity + if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) { + return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) { + return overload_match_arity(types<>(), std::index_sequence<>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); + } + + template <typename Fx, typename Fx1, typename... Fxs, std::size_t I, std::size_t I1, std::size_t... In, std::size_t... M, typename Match, typename... Args> + inline int overload_match_arity_single(types<Fx, Fx1, Fxs...>, std::index_sequence<I, I1, In...>, std::index_sequence<M...>, Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + typedef lua_bind_traits<meta::unwrap_unqualified_t<Fx>> traits; + typedef meta::tuple_types<typename traits::return_type> return_types; + typedef typename traits::free_args_list args_list; + // compile-time eliminate any functions that we know ahead of time are of improper arity + if (!traits::runtime_variadics_t::value && meta::find_in_pack_v<index_value<traits::free_arity>, index_value<M>...>::value) { + return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + if (!traits::runtime_variadics_t::value && traits::free_arity != fxarity) { + return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<traits::free_arity, M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + stack::record tracking{}; + if (!stack::stack_detail::check_types<true>{}.check(args_list(), L, start, no_panic, tracking)) { + return overload_match_arity(types<Fx1, Fxs...>(), std::index_sequence<I1, In...>(), std::index_sequence<M...>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + return matchfx(types<Fx>(), index_value<I>(), return_types(), args_list(), L, fxarity, start, std::forward<Args>(args)...); + } + } // namespace overload_detail + + template <typename... Functions, typename Match, typename... Args> + inline int overload_match_arity(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + return overload_detail::overload_match_arity_single(types<Functions...>(), std::make_index_sequence<sizeof...(Functions)>(), std::index_sequence<>(), std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + + template <typename... Functions, typename Match, typename... Args> + inline int overload_match(Match&& matchfx, lua_State* L, int start, Args&&... args) { + int fxarity = lua_gettop(L) - (start - 1); + return overload_match_arity<Functions...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + + template <typename T, typename... TypeLists, typename Match, typename... Args> + inline int construct_match(Match&& matchfx, lua_State* L, int fxarity, int start, Args&&... args) { + // use same overload resolution matching as all other parts of the framework + return overload_match_arity<decltype(void_call<T, TypeLists>::call)...>(std::forward<Match>(matchfx), L, fxarity, start, std::forward<Args>(args)...); + } + + template <typename T, bool checked, bool clean_stack, typename... TypeLists> + inline int construct_trampolined(lua_State* L) { + static const auto& meta = usertype_traits<T>::metatable(); + int argcount = lua_gettop(L); + call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot; + argcount -= static_cast<int>(syntax); + + T* obj = detail::usertype_allocate<T>(L); + reference userdataref(L, -1); + userdataref.pop(); + + construct_match<T, TypeLists...>(constructor_match<T, checked, clean_stack>(obj), L, argcount, 1 + static_cast<int>(syntax)); + + userdataref.push(); + stack::stack_detail::undefined_metatable<T> umf(L, &meta[0]); + umf(); + + return 1; + } + + template <typename T, bool checked, bool clean_stack, typename... TypeLists> + inline int construct(lua_State* L) { + return detail::static_trampoline<&construct_trampolined<T, checked, clean_stack, TypeLists...>>(L); + } + + template <typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename = void> + struct agnostic_lua_call_wrapper { + typedef wrapper<meta::unqualified_t<F>> wrap; + + template <typename Fx, typename... Args> + static int convertible_call(std::true_type, lua_State* L, Fx&& f, Args&&... args) { + typedef typename wrap::traits_type traits_type; + typedef typename traits_type::function_pointer_type fp_t; + fp_t fx = f; + return agnostic_lua_call_wrapper<fp_t, is_index, is_variable, checked, boost, clean_stack>{}.call(L, fx, std::forward<Args>(args)...); + } + + template <typename Fx, typename... Args> + static int convertible_call(std::false_type, lua_State* L, Fx&& f, Args&&... args) { + typedef typename wrap::returns_list returns_list; + typedef typename wrap::free_args_list args_list; + typedef typename wrap::caller caller; + return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + 1, caller(), std::forward<Fx>(f), std::forward<Args>(args)...); + } + + template <typename Fx, typename... Args> + static int call(lua_State* L, Fx&& f, Args&&... args) { + typedef typename wrap::traits_type traits_type; + typedef typename traits_type::function_pointer_type fp_t; + return convertible_call(std::conditional_t<std::is_class<meta::unqualified_t<F>>::value, std::is_convertible<std::decay_t<Fx>, fp_t>, std::false_type>(), L, std::forward<Fx>(f), std::forward<Args>(args)...); + } + }; + + template <typename T, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<var_wrapper<T>, true, is_variable, checked, boost, clean_stack, C> { + template <typename F> + static int call(lua_State* L, F&& f) { + typedef is_stack_based<meta::unqualified_t<decltype(detail::unwrap(f.value))>> is_stack; + if (clean_stack && !is_stack::value) { + lua_settop(L, 0); + } + return stack::push_reference(L, detail::unwrap(f.value)); + } + }; + + template <typename T, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<var_wrapper<T>, false, is_variable, checked, boost, clean_stack, C> { + template <typename V> + static int call_assign(std::true_type, lua_State* L, V&& f) { + detail::unwrap(f.value) = stack::unqualified_get<meta::unwrapped_t<T>>(L, boost + (is_variable ? 3 : 1)); + if (clean_stack) { + lua_settop(L, 0); + } + return 0; + } + + template <typename... Args> + static int call_assign(std::false_type, lua_State* L, Args&&...) { + return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available"); + } + + template <typename... Args> + static int call_const(std::false_type, lua_State* L, Args&&... args) { + typedef meta::unwrapped_t<T> R; + return call_assign(std::is_assignable<std::add_lvalue_reference_t<meta::unqualified_t<R>>, R>(), L, std::forward<Args>(args)...); + } + + template <typename... Args> + static int call_const(std::true_type, lua_State* L, Args&&...) { + return luaL_error(L, "sol: cannot write to a readonly (const) variable"); + } + + template <typename V> + static int call(lua_State* L, V&& f) { + return call_const(std::is_const<meta::unwrapped_t<T>>(), L, f); + } + }; + + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<lua_CFunction_ref, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, lua_CFunction_ref f) { + return f(L); + } + }; + + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<lua_CFunction, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, lua_CFunction f) { + return f(L); + } + }; + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<detail::lua_CFunction_noexcept, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, detail::lua_CFunction_noexcept f) { + return f(L); + } + }; +#endif // noexcept function types + + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<no_prop, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, const no_prop&) { + return luaL_error(L, is_index ? "sol: cannot read from a writeonly property" : "sol: cannot write to a readonly property"); + } + }; + + template <bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<no_construction, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, const no_construction&) { + return function_detail::no_construction_error(L); + } + }; + + template <typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<bases<Args...>, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State*, const bases<Args...>&) { + // Uh. How did you even call this, lul + return 0; + } + }; + + template <typename T, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct agnostic_lua_call_wrapper<std::reference_wrapper<T>, is_index, is_variable, checked, boost, clean_stack, C> { + static int call(lua_State* L, std::reference_wrapper<T> f) { + return agnostic_lua_call_wrapper<T, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f.get()); + } + }; + + template <typename T, typename F, bool is_index, bool is_variable, bool checked = detail::default_safe_function_calls, int boost = 0, bool clean_stack = true, typename = void> + struct lua_call_wrapper : agnostic_lua_call_wrapper<F, is_index, is_variable, checked, boost, clean_stack> {}; + + template <typename T, typename F, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack> + struct lua_call_wrapper<T, F, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_function_pointer<F>::value>> { + typedef wrapper<meta::unqualified_t<F>> wrap; + typedef typename wrap::object_type object_type; + + template <typename Fx> + static int call(lua_State* L, Fx&& f, object_type& o) { + typedef typename wrap::returns_list returns_list; + typedef typename wrap::args_list args_list; + typedef typename wrap::caller caller; + return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), std::forward<Fx>(f), o); + } + + template <typename Fx> + static int call(lua_State* L, Fx&& f) { + typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta; +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeo = stack::unqualified_check_get<Ta*>(L, 1); + if (!maybeo || maybeo.value() == nullptr) { + return luaL_error(L, "sol: received nil for 'self' argument (use ':' for accessing member functions, make sure member variables are preceeded by the actual object with '.' syntax)"); + } + object_type* o = static_cast<object_type*>(maybeo.value()); + return call(L, std::forward<Fx>(f), *o); +#else + object_type& o = static_cast<object_type&>(*stack::unqualified_get<non_null<Ta*>>(L, 1)); + return call(L, std::forward<Fx>(f), o); +#endif // Safety + } + }; + + template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack> + struct lua_call_wrapper<T, F, false, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_object_pointer<F>::value>> { + typedef lua_bind_traits<F> traits_type; + typedef wrapper<meta::unqualified_t<F>> wrap; + typedef typename wrap::object_type object_type; + + template <typename V> + static int call_assign(std::true_type, lua_State* L, V&& f, object_type& o) { + typedef typename wrap::args_list args_list; + typedef typename wrap::caller caller; + return stack::call_into_lua<checked, clean_stack>(types<void>(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, o); + } + + template <typename V> + static int call_assign(std::true_type, lua_State* L, V&& f) { + typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta; +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeo = stack::check_get<Ta*>(L, 1); + if (!maybeo || maybeo.value() == nullptr) { + if (is_variable) { + return luaL_error(L, "sol: received nil for 'self' argument (bad '.' access?)"); + } + return luaL_error(L, "sol: received nil for 'self' argument (pass 'self' as first argument)"); + } + object_type* o = static_cast<object_type*>(maybeo.value()); + return call_assign(std::true_type(), L, f, *o); +#else + object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1)); + return call_assign(std::true_type(), L, f, o); +#endif // Safety + } + + template <typename... Args> + static int call_assign(std::false_type, lua_State* L, Args&&...) { + return luaL_error(L, "sol: cannot write to this variable: copy assignment/constructor not available"); + } + + template <typename... Args> + static int call_const(std::false_type, lua_State* L, Args&&... args) { + typedef typename traits_type::return_type R; + return call_assign(std::is_copy_assignable<meta::unqualified_t<R>>(), L, std::forward<Args>(args)...); + } + + template <typename... Args> + static int call_const(std::true_type, lua_State* L, Args&&...) { + return luaL_error(L, "sol: cannot write to a readonly (const) variable"); + } + + template <typename V> + static int call(lua_State* L, V&& f) { + return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f)); + } + + template <typename V> + static int call(lua_State* L, V&& f, object_type& o) { + return call_const(std::is_const<typename traits_type::return_type>(), L, std::forward<V>(f), o); + } + }; + + template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack> + struct lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_member_object_pointer<F>::value>> { + typedef lua_bind_traits<F> traits_type; + typedef wrapper<meta::unqualified_t<F>> wrap; + typedef typename wrap::object_type object_type; + + template <typename V> + static int call(lua_State* L, V&& v, object_type& o) { + typedef typename wrap::returns_list returns_list; + typedef typename wrap::caller caller; + F f(std::forward<V>(v)); + return stack::call_into_lua<checked, clean_stack>(returns_list(), types<>(), L, boost + (is_variable ? 3 : 2), caller(), f, o); + } + + template <typename V> + static int call(lua_State* L, V&& f) { + typedef std::conditional_t<std::is_void<T>::value, object_type, T> Ta; +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeo = stack::check_get<Ta*>(L, 1); + if (!maybeo || maybeo.value() == nullptr) { + if (is_variable) { + return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)"); + } + return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)"); + } + object_type* o = static_cast<object_type*>(maybeo.value()); + return call(L, f, *o); +#else + object_type& o = static_cast<object_type&>(*stack::get<non_null<Ta*>>(L, 1)); + return call(L, f, o); +#endif // Safety + } + }; + + template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, readonly_wrapper<F>, false, is_variable, checked, boost, clean_stack, C> { + typedef lua_bind_traits<F> traits_type; + typedef wrapper<meta::unqualified_t<F>> wrap; + typedef typename wrap::object_type object_type; + + template <typename V> + static int call(lua_State* L, V&&) { + return luaL_error(L, "sol: cannot write to a sol::readonly variable"); + } + + template <typename V> + static int call(lua_State* L, V&&, object_type&) { + return luaL_error(L, "sol: cannot write to a sol::readonly variable"); + } + }; + + template <typename T, typename F, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, readonly_wrapper<F>, true, is_variable, checked, boost, clean_stack, C> : lua_call_wrapper<T, F, true, is_variable, checked, boost, clean_stack, C> { + }; + + template <typename T, typename... Args, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, constructor_list<Args...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef constructor_list<Args...> F; + + static int call(lua_State* L, F&) { + const auto& meta = usertype_traits<T>::metatable(); + int argcount = lua_gettop(L); + call_syntax syntax = argcount > 0 ? stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1) : call_syntax::dot; + argcount -= static_cast<int>(syntax); + + T* obj = detail::usertype_allocate<T>(L); + reference userdataref(L, -1); + + construct_match<T, Args...>(constructor_match<T, false, clean_stack>(obj), L, argcount, boost + 1 + static_cast<int>(syntax)); + + userdataref.push(); + stack::stack_detail::undefined_metatable<T> umf(L, &meta[0]); + umf(); + + return 1; + } + }; + + template <typename T, typename... Cxs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, constructor_wrapper<Cxs...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef constructor_wrapper<Cxs...> F; + + struct onmatch { + template <typename Fx, std::size_t I, typename... R, typename... Args> + int operator()(types<Fx>, index_value<I>, types<R...> r, types<Args...> a, lua_State* L, int, int start, F& f) { + const auto& meta = usertype_traits<T>::metatable(); + T* obj = detail::usertype_allocate<T>(L); + reference userdataref(L, -1); + + auto& func = std::get<I>(f.functions); + stack::call_into_lua<checked, clean_stack>(r, a, L, boost + start, func, detail::implicit_wrapper<T>(obj)); + + userdataref.push(); + stack::stack_detail::undefined_metatable<T> umf(L, &meta[0]); + umf(); + + return 1; + } + }; + + static int call(lua_State* L, F& f) { + call_syntax syntax = stack::get_call_syntax(L, usertype_traits<T>::user_metatable(), 1); + int syntaxval = static_cast<int>(syntax); + int argcount = lua_gettop(L) - syntaxval; + return construct_match<T, meta::pop_front_type_t<meta::function_args_t<Cxs>>...>(onmatch(), L, argcount, 1 + syntaxval, f); + } + }; + + template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack> + struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<std::is_void<Fx>::value>> { + typedef destructor_wrapper<Fx> F; + + static int call(lua_State* L, const F&) { + return detail::usertype_alloc_destruct<T>(L); + } + }; + + template <typename T, typename Fx, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack> + struct lua_call_wrapper<T, destructor_wrapper<Fx>, is_index, is_variable, checked, boost, clean_stack, std::enable_if_t<!std::is_void<Fx>::value>> { + typedef destructor_wrapper<Fx> F; + + static int call_void(std::true_type, lua_State* L, const F& f) { + typedef meta::bind_traits<meta::unqualified_t<decltype(f.fx)>> bt; + typedef typename bt::template arg_at<0> arg0; + typedef meta::unqualified_t<arg0> O; + + O& obj = stack::get<O>(L); + f.fx(detail::implicit_wrapper<O>(obj)); + return 0; + } + + static int call_void(std::false_type, lua_State* L, const F& f) { + T& obj = stack::get<T>(L); + f.fx(detail::implicit_wrapper<T>(obj)); + return 0; + } + + static int call(lua_State* L, const F& f) { + return call_void(std::is_void<T>(), L, f); + } + }; + + template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, overload_set<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef overload_set<Fs...> F; + + struct on_match { + template <typename Fx, std::size_t I, typename... R, typename... Args> + int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) { + auto& f = std::get<I>(fx.functions); + return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost>{}.call(L, f); + } + }; + + static int call(lua_State* L, F& fx) { + return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L), 1, fx); + } + }; + + template <typename T, typename... Fs, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, factory_wrapper<Fs...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef factory_wrapper<Fs...> F; + + struct on_match { + template <typename Fx, std::size_t I, typename... R, typename... Args> + int operator()(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int, F& fx) { + auto& f = std::get<I>(fx.functions); + return lua_call_wrapper<T, Fx, is_index, is_variable, checked, boost, clean_stack>{}.call(L, f); + } + }; + + static int call(lua_State* L, F& fx) { + return overload_match_arity<Fs...>(on_match(), L, lua_gettop(L) - boost, 1 + boost, fx); + } + }; + + template <typename T, typename R, typename W, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, property_wrapper<R, W>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef std::conditional_t<is_index, R, W> P; + typedef meta::unqualified_t<P> U; + typedef wrapper<U> wrap; + typedef lua_bind_traits<U> traits_type; + typedef meta::unqualified_t<typename traits_type::template arg_at<0>> object_type; + + template <typename F> + static int self_call(std::true_type, lua_State* L, F&& f) { + // The type being void means we don't have any arguments, so it might be a free functions? + typedef typename traits_type::free_args_list args_list; + typedef typename wrap::returns_list returns_list; + typedef typename wrap::caller caller; + return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f); + } + + template <typename F> + static int self_call(std::false_type, lua_State* L, F&& f) { + typedef meta::pop_front_type_t<typename traits_type::free_args_list> args_list; + typedef T Ta; + typedef std::remove_pointer_t<object_type> Oa; +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeo = stack::check_get<Ta*>(L, 1); + if (!maybeo || maybeo.value() == nullptr) { + if (is_variable) { + return luaL_error(L, "sol: 'self' argument is lua_nil (bad '.' access?)"); + } + return luaL_error(L, "sol: 'self' argument is lua_nil (pass 'self' as first argument)"); + } + Oa* o = static_cast<Oa*>(maybeo.value()); +#else + Oa* o = static_cast<Oa*>(stack::get<non_null<Ta*>>(L, 1)); +#endif // Safety + typedef typename wrap::returns_list returns_list; + typedef typename wrap::caller caller; + return stack::call_into_lua<checked, clean_stack>(returns_list(), args_list(), L, boost + (is_variable ? 3 : 2), caller(), f, detail::implicit_wrapper<Oa>(*o)); + } + + template <typename F, typename... Args> + static int defer_call(std::false_type, lua_State* L, F&& f, Args&&... args) { + return self_call(meta::any<std::is_void<object_type>, meta::boolean<lua_type_of<meta::unwrap_unqualified_t<object_type>>::value != type::userdata>>(), L, pick(meta::boolean<is_index>(), f), std::forward<Args>(args)...); + } + + template <typename F, typename... Args> + static int defer_call(std::true_type, lua_State* L, F&& f, Args&&... args) { + auto& p = pick(meta::boolean<is_index>(), std::forward<F>(f)); + return lua_call_wrapper<T, meta::unqualified_t<decltype(p)>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, p, std::forward<Args>(args)...); + } + + template <typename F, typename... Args> + static int call(lua_State* L, F&& f, Args&&... args) { + typedef meta::any< + std::is_void<U>, + std::is_same<U, no_prop>, + meta::is_specialization_of<U, var_wrapper>, + meta::is_specialization_of<U, constructor_wrapper>, + meta::is_specialization_of<U, constructor_list>, + std::is_member_pointer<U>> + is_specialized; + return defer_call(is_specialized(), L, std::forward<F>(f), std::forward<Args>(args)...); + } + }; + + template <typename T, typename V, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, protect_t<V>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef protect_t<V> F; + + template <typename... Args> + static int call(lua_State* L, F& fx, Args&&... args) { + return lua_call_wrapper<T, V, is_index, is_variable, true, boost, clean_stack>{}.call(L, fx.value, std::forward<Args>(args)...); + } + }; + + template <typename T, typename F, typename... Filters, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, filter_wrapper<F, Filters...>, is_index, is_variable, checked, boost, clean_stack, C> { + typedef filter_wrapper<F, Filters...> P; + + template <std::size_t... In> + static int call(std::index_sequence<In...>, lua_State* L, P& fx) { + int pushed = lua_call_wrapper<T, F, is_index, is_variable, checked, boost, false, C>{}.call(L, fx.value); + (void)detail::swallow{ int(), (filter_detail::handle_filter(std::get<In>(fx.filters), L, pushed), int())... }; + return pushed; + } + + static int call(lua_State* L, P& fx) { + typedef typename P::indices indices; + return call(indices(), L, fx); + } + }; + + template <typename T, typename Sig, typename P, bool is_index, bool is_variable, bool checked, int boost, bool clean_stack, typename C> + struct lua_call_wrapper<T, function_arguments<Sig, P>, is_index, is_variable, checked, boost, clean_stack, C> { + template <typename F> + static int call(lua_State* L, F&& f) { + return lua_call_wrapper<T, meta::unqualified_t<P>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, std::get<0>(f.arguments)); + } + }; + + template <typename T, bool is_index, bool is_variable, int boost = 0, bool checked = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... Args> + inline int call_wrapped(lua_State* L, Fx&& fx, Args&&... args) { + return lua_call_wrapper<T, meta::unqualified_t<Fx>, is_index, is_variable, checked, boost, clean_stack>{}.call(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <typename T, bool is_index, bool is_variable, typename F, int start = 1, bool checked = detail::default_safe_function_calls, bool clean_stack = true> + inline int call_user(lua_State* L) { + auto& fx = stack::unqualified_get<user<F>>(L, upvalue_index(start)); + return call_wrapped<T, is_index, is_variable, 0, checked, clean_stack>(L, fx); + } + + template <typename T, typename = void> + struct is_var_bind : std::false_type {}; + + template <typename T> + struct is_var_bind<T, std::enable_if_t<std::is_member_object_pointer<T>::value>> : std::true_type {}; + + template <> + struct is_var_bind<no_prop> : std::true_type {}; + + template <typename R, typename W> + struct is_var_bind<property_wrapper<R, W>> : std::true_type {}; + + template <typename T> + struct is_var_bind<var_wrapper<T>> : std::true_type {}; + + template <typename T> + struct is_var_bind<readonly_wrapper<T>> : is_var_bind<meta::unqualified_t<T>> {}; + + template <typename F, typename... Filters> + struct is_var_bind<filter_wrapper<F, Filters...>> : is_var_bind<meta::unqualified_t<F>> {}; + } // namespace call_detail + + template <typename T> + struct is_variable_binding : call_detail::is_var_bind<meta::unqualified_t<T>> {}; + + template <typename T> + struct is_function_binding : meta::neg<is_variable_binding<T>> {}; + +} // namespace sol + +// end of sol/call.hpp + +namespace sol { + namespace function_detail { + template <typename F, F fx> + inline int call_wrapper_variable(std::false_type, lua_State* L) { + typedef meta::bind_traits<meta::unqualified_t<F>> traits_type; + typedef typename traits_type::args_list args_list; + typedef meta::tuple_types<typename traits_type::return_type> return_type; + return stack::call_into_lua(return_type(), args_list(), L, 1, fx); + } + + template <typename R, typename V, V, typename T> + inline int call_set_assignable(std::false_type, T&&, lua_State* L) { + return luaL_error(L, "cannot write to this type: copy assignment/constructor not available"); + } + + template <typename R, typename V, V variable, typename T> + inline int call_set_assignable(std::true_type, lua_State* L, T&& mem) { + (mem.*variable) = stack::get<R>(L, 2); + return 0; + } + + template <typename R, typename V, V, typename T> + inline int call_set_variable(std::false_type, lua_State* L, T&&) { + return luaL_error(L, "cannot write to a const variable"); + } + + template <typename R, typename V, V variable, typename T> + inline int call_set_variable(std::true_type, lua_State* L, T&& mem) { + return call_set_assignable<R, V, variable>(std::is_assignable<std::add_lvalue_reference_t<R>, R>(), L, std::forward<T>(mem)); + } + + template <typename V, V variable> + inline int call_wrapper_variable(std::true_type, lua_State* L) { + typedef meta::bind_traits<meta::unqualified_t<V>> traits_type; + typedef typename traits_type::object_type T; + typedef typename traits_type::return_type R; + auto& mem = stack::get<T>(L, 1); + switch (lua_gettop(L)) { + case 1: { + decltype(auto) r = (mem.*variable); + stack::push_reference(L, std::forward<decltype(r)>(r)); + return 1; + } + case 2: + return call_set_variable<R, V, variable>(meta::neg<std::is_const<R>>(), L, mem); + default: + return luaL_error(L, "incorrect number of arguments to member variable function call"); + } + } + + template <typename F, F fx> + inline int call_wrapper_function(std::false_type, lua_State* L) { + return call_wrapper_variable<F, fx>(std::is_member_object_pointer<F>(), L); + } + + template <typename F, F fx> + inline int call_wrapper_function(std::true_type, lua_State* L) { + return call_detail::call_wrapped<void, false, false>(L, fx); + } + + template <typename F, F fx> + int call_wrapper_entry(lua_State* L) noexcept(meta::bind_traits<F>::is_noexcept) { + return call_wrapper_function<F, fx>(std::is_member_function_pointer<meta::unqualified_t<F>>(), L); + } + + template <typename... Fxs> + struct c_call_matcher { + template <typename Fx, std::size_t I, typename R, typename... Args> + int operator()(types<Fx>, index_value<I>, types<R>, types<Args...>, lua_State* L, int, int) const { + typedef meta::at_in_pack_t<I, Fxs...> target; + return target::call(L); + } + }; + + template <typename F, F fx> + inline int c_call_raw(std::true_type, lua_State* L) { + return fx(L); + } + + template <typename F, F fx> + inline int c_call_raw(std::false_type, lua_State* L) { +#ifdef __clang__ + return detail::trampoline(L, function_detail::call_wrapper_entry<F, fx>); +#else + return detail::typed_static_trampoline<decltype(&function_detail::call_wrapper_entry<F, fx>), (&function_detail::call_wrapper_entry<F, fx>)>(L); +#endif // fuck you clang :c + } + + } // namespace function_detail + + template <typename F, F fx> + inline int c_call(lua_State* L) { + typedef meta::unqualified_t<F> Fu; + typedef std::integral_constant<bool, std::is_same<Fu, lua_CFunction>::value +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + || std::is_same<Fu, detail::lua_CFunction_noexcept>::value +#endif + > is_raw; + return function_detail::c_call_raw<F, fx>(is_raw(), L); + } + + template <typename F, F f> + struct wrap { + typedef F type; + + static int call(lua_State* L) { + return c_call<type, f>(L); + } + }; + + template <typename... Fxs> + inline int c_call(lua_State* L) { + if (sizeof...(Fxs) < 2) { + return meta::at_in_pack_t<0, Fxs...>::call(L); + } + else { + return call_detail::overload_match_arity<typename Fxs::type...>(function_detail::c_call_matcher<Fxs...>(), L, lua_gettop(L), 1); + } + } + +} // namespace sol + +// end of sol/function_types_templated.hpp + +// beginning of sol/function_types_stateless.hpp + +namespace sol { +namespace function_detail { + template <typename Function, bool is_yielding> + struct upvalue_free_function { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef meta::bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L); + function_type* fx = udata.first; + return call_detail::call_wrapped<void, true, false>(L, fx); + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_member_function { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + // Layout: + // idx 1...n: verbatim data of member function pointer + // idx n + 1: is the object's void pointer + // We don't need to store the size, because the other side is templated + // with the same member function pointer type + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second); + function_type& memfx = memberdata.first; + auto& item = *objdata.first; + return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item); + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_member_variable { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + // idx n + 1: is the object's void pointer + // We don't need to store the size, because the other side is templated + // with the same member function pointer type + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second); + auto& mem = *objdata.first; + function_type& var = memberdata.first; + switch (lua_gettop(L)) { + case 0: + return call_detail::call_wrapped<T, true, false, -1>(L, var, mem); + case 1: + return call_detail::call_wrapped<T, false, false, -1>(L, var, mem); + default: + return luaL_error(L, "sol: incorrect number of arguments to member variable function"); + } + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_member_variable<T, readonly_wrapper<Function>, is_yielding> { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + // idx n + 1: is the object's void pointer + // We don't need to store the size, because the other side is templated + // with the same member function pointer type + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second); + auto& mem = *objdata.first; + function_type& var = memberdata.first; + switch (lua_gettop(L)) { + case 0: + return call_detail::call_wrapped<T, true, false, -1>(L, var, mem); + default: + return luaL_error(L, "sol: incorrect number of arguments to member variable function"); + } + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_this_member_function { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(traits_type::is_noexcept) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + function_type& memfx = memberdata.first; + return call_detail::call_wrapped<T, false, false>(L, memfx); + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_this_member_variable { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + + static int real_call(lua_State* L) noexcept(false) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + function_type& var = memberdata.first; + switch (lua_gettop(L)) { + case 1: + return call_detail::call_wrapped<T, true, false>(L, var); + case 2: + return call_detail::call_wrapped<T, false, false>(L, var); + default: + return luaL_error(L, "sol: incorrect number of arguments to member variable function"); + } + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct upvalue_this_member_variable<T, readonly_wrapper<Function>, is_yielding> { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef lua_bind_traits<function_type> traits_type; + + static int real_call(lua_State* L) noexcept(false) { + // Layout: + // idx 1...n: verbatim data of member variable pointer + auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L); + function_type& var = memberdata.first; + switch (lua_gettop(L)) { + case 1: + return call_detail::call_wrapped<T, true, false>(L, var); + default: + return luaL_error(L, "sol: incorrect number of arguments to member variable function"); + } + } + + static int call(lua_State* L) { + int nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + return call(L); + } + }; +} +} // namespace sol::function_detail + +// end of sol/function_types_stateless.hpp + +// beginning of sol/function_types_stateful.hpp + +namespace sol { +namespace function_detail { + template <typename Func, bool is_yielding, bool no_trampoline> + struct functor_function { + typedef std::decay_t<meta::unwrap_unqualified_t<Func>> function_type; + function_type fx; + + template <typename... Args> + functor_function(function_type f, Args&&... args) + : fx(std::move(f), std::forward<Args>(args)...) { + } + + int call(lua_State* L) { + int nr = call_detail::call_wrapped<void, true, false>(L, fx); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + if (!no_trampoline) { + auto f = [&](lua_State*) -> int { return this->call(L); }; + return detail::trampoline(L, f); + } + else { + return call(L); + } + } + }; + + template <typename T, typename Function, bool is_yielding> + struct member_function { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef meta::function_return_t<function_type> return_type; + typedef meta::function_args_t<function_type> args_lists; + function_type invocation; + T member; + + template <typename... Args> + member_function(function_type f, Args&&... args) + : invocation(std::move(f)), member(std::forward<Args>(args)...) { + } + + int call(lua_State* L) { + int nr = call_detail::call_wrapped<T, true, false, -1>(L, invocation, detail::unwrap(detail::deref(member))); + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + auto f = [&](lua_State*) -> int { return this->call(L); }; + return detail::trampoline(L, f); + } + }; + + template <typename T, typename Function, bool is_yielding> + struct member_variable { + typedef std::remove_pointer_t<std::decay_t<Function>> function_type; + typedef typename meta::bind_traits<function_type>::return_type return_type; + typedef typename meta::bind_traits<function_type>::args_list args_lists; + function_type var; + T member; + typedef std::add_lvalue_reference_t<meta::unwrapped_t<std::remove_reference_t<decltype(detail::deref(member))>>> M; + + template <typename... Args> + member_variable(function_type v, Args&&... args) + : var(std::move(v)), member(std::forward<Args>(args)...) { + } + + int call(lua_State* L) { + int nr; + { + M mem = detail::unwrap(detail::deref(member)); + switch (lua_gettop(L)) { + case 0: + nr = call_detail::call_wrapped<T, true, false, -1>(L, var, mem); + break; + case 1: + nr = call_detail::call_wrapped<T, false, false, -1>(L, var, mem); + break; + default: + nr = luaL_error(L, "sol: incorrect number of arguments to member variable function"); + break; + } + } + if (is_yielding) { + return lua_yield(L, nr); + } + else { + return nr; + } + } + + int operator()(lua_State* L) { + auto f = [&](lua_State*) -> int { return this->call(L); }; + return detail::trampoline(L, f); + } + }; +} +} // namespace sol::function_detail + +// end of sol/function_types_stateful.hpp + +// beginning of sol/function_types_overloaded.hpp + +namespace sol { +namespace function_detail { + template <int start_skew = 0, typename... Functions> + struct overloaded_function { + typedef std::tuple<Functions...> overload_list; + typedef std::make_index_sequence<sizeof...(Functions)> indices; + overload_list overloads; + + overloaded_function(overload_list set) + : overloads(std::move(set)) { + } + + overloaded_function(Functions... fxs) + : overloads(fxs...) { + } + + template <typename Fx, std::size_t I, typename... R, typename... Args> + int call(types<Fx>, index_value<I>, types<R...>, types<Args...>, lua_State* L, int, int) { + auto& func = std::get<I>(overloads); + return call_detail::call_wrapped<void, true, false, start_skew>(L, func); + } + + int operator()(lua_State* L) { + auto mfx = [&](auto&&... args) { return this->call(std::forward<decltype(args)>(args)...); }; + return call_detail::overload_match<Functions...>(mfx, L, 1 + start_skew); + } + }; +} +} // namespace sol::function_detail + +// end of sol/function_types_overloaded.hpp + +// beginning of sol/resolve.hpp + +namespace sol { + +#ifndef __clang__ + // constexpr is fine for not-clang + + namespace detail { + template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>> + inline constexpr auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) { + using Sig = R(Args...); + typedef meta::unqualified_t<F> Fu; + return static_cast<Sig Fu::*>(&Fu::operator()); + } + + template <typename F, typename U = meta::unqualified_t<F>> + inline constexpr auto resolve_f(std::true_type, F&& f) + -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) { + return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f)); + } + + template <typename F> + inline constexpr void resolve_f(std::false_type, F&&) { + static_assert(meta::has_deducible_signature<F>::value, + "Cannot use no-template-parameter call with an overloaded functor: specify the signature"); + } + + template <typename F, typename U = meta::unqualified_t<F>> + inline constexpr auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) { + return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f)); + } + + template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>> + inline constexpr auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) { + return resolve_i(types<R(Args...)>(), std::forward<F>(f)); + } + + template <typename Sig, typename C> + inline constexpr Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) { + return mem_func_ptr; + } + + template <typename Sig, typename C> + inline constexpr Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) { + return mem_variable_ptr; + } + } // namespace detail + + template <typename... Args, typename R> + inline constexpr auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) { + return fun_ptr; + } + + template <typename Sig> + inline constexpr Sig* resolve(Sig* fun_ptr) { + return fun_ptr; + } + + template <typename... Args, typename R, typename C> + inline constexpr auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) { + return mem_ptr; + } + + template <typename Sig, typename C> + inline constexpr Sig C::*resolve(Sig C::*mem_ptr) { + return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr); + } + + template <typename... Sig, typename F, meta::disable<std::is_function<meta::unqualified_t<F>>> = meta::enabler> + inline constexpr auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) { + return detail::resolve_i(types<Sig...>(), std::forward<F>(f)); + } +#else + + // Clang has distinct problems with constexpr arguments, + // so don't use the constexpr versions inside of clang. + + namespace detail { + template <typename R, typename... Args, typename F, typename = std::result_of_t<meta::unqualified_t<F>(Args...)>> + inline auto resolve_i(types<R(Args...)>, F &&) -> R (meta::unqualified_t<F>::*)(Args...) { + using Sig = R(Args...); + typedef meta::unqualified_t<F> Fu; + return static_cast<Sig Fu::*>(&Fu::operator()); + } + + template <typename F, typename U = meta::unqualified_t<F>> + inline auto resolve_f(std::true_type, F&& f) + -> decltype(resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f))) { + return resolve_i(types<meta::function_signature_t<decltype(&U::operator())>>(), std::forward<F>(f)); + } + + template <typename F> + inline void resolve_f(std::false_type, F&&) { + static_assert(meta::has_deducible_signature<F>::value, + "Cannot use no-template-parameter call with an overloaded functor: specify the signature"); + } + + template <typename F, typename U = meta::unqualified_t<F>> + inline auto resolve_i(types<>, F&& f) -> decltype(resolve_f(meta::has_deducible_signature<U>(), std::forward<F>(f))) { + return resolve_f(meta::has_deducible_signature<U>{}, std::forward<F>(f)); + } + + template <typename... Args, typename F, typename R = std::result_of_t<F&(Args...)>> + inline auto resolve_i(types<Args...>, F&& f) -> decltype(resolve_i(types<R(Args...)>(), std::forward<F>(f))) { + return resolve_i(types<R(Args...)>(), std::forward<F>(f)); + } + + template <typename Sig, typename C> + inline Sig C::*resolve_v(std::false_type, Sig C::*mem_func_ptr) { + return mem_func_ptr; + } + + template <typename Sig, typename C> + inline Sig C::*resolve_v(std::true_type, Sig C::*mem_variable_ptr) { + return mem_variable_ptr; + } + } // namespace detail + + template <typename... Args, typename R> + inline auto resolve(R fun_ptr(Args...)) -> R (*)(Args...) { + return fun_ptr; + } + + template <typename Sig> + inline Sig* resolve(Sig* fun_ptr) { + return fun_ptr; + } + + template <typename... Args, typename R, typename C> + inline auto resolve(R (C::*mem_ptr)(Args...)) -> R (C::*)(Args...) { + return mem_ptr; + } + + template <typename Sig, typename C> + inline Sig C::*resolve(Sig C::*mem_ptr) { + return detail::resolve_v(std::is_member_object_pointer<Sig C::*>(), mem_ptr); + } + + template <typename... Sig, typename F> + inline auto resolve(F&& f) -> decltype(detail::resolve_i(types<Sig...>(), std::forward<F>(f))) { + return detail::resolve_i(types<Sig...>(), std::forward<F>(f)); + } + +#endif + +} // namespace sol + +// end of sol/resolve.hpp + +namespace sol { + namespace function_detail { + template <typename T> + struct class_indicator {}; + + struct call_indicator {}; + } // namespace function_detail + + namespace stack { + template <typename... Sigs> + struct pusher<function_sig<Sigs...>> { + template <bool is_yielding, typename... Sig, typename Fx, typename... Args> + static void select_convertible(std::false_type, types<Sig...>, lua_State* L, Fx&& fx, Args&&... args) { + typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx; + typedef function_detail::functor_function<clean_fx, is_yielding, true> F; + set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename R, typename... A, typename Fx, typename... Args> + static void select_convertible(std::true_type, types<R(A...)>, lua_State* L, Fx&& fx, Args&&... args) { + using fx_ptr_t = R (*)(A...); + fx_ptr_t fxptr = detail::unwrap(std::forward<Fx>(fx)); + select_function<is_yielding>(std::true_type(), L, fxptr, std::forward<Args>(args)...); + } + + template <bool is_yielding, typename R, typename... A, typename Fx, typename... Args> + static void select_convertible(types<R(A...)> t, lua_State* L, Fx&& fx, Args&&... args) { + typedef std::decay_t<meta::unwrap_unqualified_t<Fx>> raw_fx_t; + typedef R (*fx_ptr_t)(A...); + typedef std::is_convertible<raw_fx_t, fx_ptr_t> is_convertible; + select_convertible<is_yielding>(is_convertible(), t, L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename... Args> + static void select_convertible(types<>, lua_State* L, Fx&& fx, Args&&... args) { + typedef meta::function_signature_t<meta::unwrap_unqualified_t<Fx>> Sig; + select_convertible<is_yielding>(types<Sig>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename T, typename... Args> + static void select_reference_member_variable(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { + typedef std::remove_pointer_t<std::decay_t<Fx>> clean_fx; + typedef function_detail::member_variable<meta::unwrap_unqualified_t<T>, clean_fx, is_yielding> F; + set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename T, typename... Args> + static void select_reference_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { + typedef std::decay_t<Fx> dFx; + dFx memfxptr(std::forward<Fx>(fx)); + auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...); + lua_CFunction freefunc = &function_detail::upvalue_member_variable<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr); + upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr))); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <bool is_yielding, typename Fx, typename... Args> + static void select_member_variable(std::false_type, lua_State* L, Fx&& fx, Args&&... args) { + select_convertible<is_yielding>(types<Sigs...>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<meta::unqualified_t<T>, function_detail::class_indicator>> = meta::enabler> + static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { + typedef meta::boolean<meta::is_specialization_of<meta::unqualified_t<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference; + select_reference_member_variable<is_yielding>(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename C> + static void select_member_variable(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>) { + lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, fx); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <bool is_yielding, typename Fx> + static void select_member_variable(std::true_type, lua_State* L, Fx&& fx) { + typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C; + lua_CFunction freefunc = &function_detail::upvalue_this_member_variable<C, Fx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, fx); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <bool is_yielding, typename Fx, typename T, typename... Args> + static void select_reference_member_function(std::false_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { + typedef std::decay_t<Fx> clean_fx; + typedef function_detail::member_function<meta::unwrap_unqualified_t<T>, clean_fx, is_yielding> F; + set_fx<false, F>(L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename T, typename... Args> + static void select_reference_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { + typedef std::decay_t<Fx> dFx; + dFx memfxptr(std::forward<Fx>(fx)); + auto userptr = detail::ptr(std::forward<T>(obj), std::forward<Args>(args)...); + lua_CFunction freefunc = &function_detail::upvalue_member_function<std::decay_t<decltype(*userptr)>, meta::unqualified_t<Fx>, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, memfxptr); + upvalues += stack::push(L, lightuserdata_value(static_cast<void*>(userptr))); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <bool is_yielding, typename Fx, typename... Args> + static void select_member_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) { + select_member_variable<is_yielding>(meta::is_member_object<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename T, typename... Args, meta::disable<meta::is_specialization_of<meta::unqualified_t<T>, function_detail::class_indicator>> = meta::enabler> + static void select_member_function(std::true_type, lua_State* L, Fx&& fx, T&& obj, Args&&... args) { + typedef meta::boolean<meta::is_specialization_of<meta::unqualified_t<T>, std::reference_wrapper>::value || std::is_pointer<T>::value> is_reference; + select_reference_member_function<is_yielding>(is_reference(), L, std::forward<Fx>(fx), std::forward<T>(obj), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename C> + static void select_member_function(std::true_type, lua_State* L, Fx&& fx, function_detail::class_indicator<C>) { + lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, fx); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <bool is_yielding, typename Fx> + static void select_member_function(std::true_type, lua_State* L, Fx&& fx) { + typedef typename meta::bind_traits<meta::unqualified_t<Fx>>::object_type C; + lua_CFunction freefunc = &function_detail::upvalue_this_member_function<C, Fx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, fx); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <bool is_yielding, typename Fx, typename... Args> + static void select_function(std::false_type, lua_State* L, Fx&& fx, Args&&... args) { + select_member_function<is_yielding>(std::is_member_function_pointer<meta::unqualified_t<Fx>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, typename... Args> + static void select_function(std::true_type, lua_State* L, Fx&& fx, Args&&... args) { + std::decay_t<Fx> target(std::forward<Fx>(fx), std::forward<Args>(args)...); + lua_CFunction freefunc = &function_detail::upvalue_free_function<Fx, is_yielding>::call; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::stack_detail::push_as_upvalues(L, target); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <bool is_yielding> + static void select_function(std::true_type, lua_State* L, lua_CFunction f) { + // TODO: support yielding + stack::push(L, f); + } + +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + template <bool is_yielding> + static void select_function(std::true_type, lua_State* L, detail::lua_CFunction_noexcept f) { + // TODO: support yielding + stack::push(L, f); + } +#endif // noexcept function type + + template <bool is_yielding, typename Fx, typename... Args, meta::disable<is_lua_reference<meta::unqualified_t<Fx>>> = meta::enabler> + static void select(lua_State* L, Fx&& fx, Args&&... args) { + select_function<is_yielding>(std::is_function<std::remove_pointer_t<meta::unqualified_t<Fx>>>(), L, std::forward<Fx>(fx), std::forward<Args>(args)...); + } + + template <bool is_yielding, typename Fx, meta::enable<is_lua_reference<meta::unqualified_t<Fx>>> = meta::enabler> + static void select(lua_State* L, Fx&& fx) { + // TODO: hoist into lambda in this case?? + stack::push(L, std::forward<Fx>(fx)); + } + + template <bool is_yielding, typename Fx, typename... Args> + static void set_fx(lua_State* L, Args&&... args) { + lua_CFunction freefunc = detail::static_trampoline<function_detail::call<meta::unqualified_t<Fx>, 2, is_yielding>>; + + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<Fx>>(L, std::forward<Args>(args)...); + stack::push(L, c_closure(freefunc, upvalues)); + } + + template <typename Arg0, typename... Args, meta::disable<std::is_same<detail::yield_tag_t, meta::unqualified_t<Arg0>>> = meta::enabler> + static int push(lua_State* L, Arg0&& arg0, Args&&... args) { + // Set will always place one thing (function) on the stack + select<false>(L, std::forward<Arg0>(arg0), std::forward<Args>(args)...); + return 1; + } + + template <typename... Args> + static int push(lua_State* L, detail::yield_tag_t, Args&&... args) { + // Set will always place one thing (function) on the stack + select<true>(L, std::forward<Args>(args)...); + return 1; + } + }; + + template <typename T> + struct pusher<yielding_t<T>> { + template <typename... Args> + static int push(lua_State* L, const yielding_t<T>& f, Args&&... args) { + pusher<function_sig<>> p{}; + (void)p; + return p.push(L, detail::yield_tag, f.func, std::forward<Args>(args)...); + } + + template <typename... Args> + static int push(lua_State* L, yielding_t<T>&& f, Args&&... args) { + pusher<function_sig<>> p{}; + (void)p; + return p.push(L, detail::yield_tag, f.func, std::forward<Args>(args)...); + } + }; + + template <typename T, typename... Args> + struct pusher<function_arguments<T, Args...>> { + template <std::size_t... I, typename FP> + static int push_func(std::index_sequence<I...>, lua_State* L, FP&& fp) { + return stack::push<T>(L, detail::forward_get<I>(fp.arguments)...); + } + + static int push(lua_State* L, const function_arguments<T, Args...>& fp) { + return push_func(std::make_index_sequence<sizeof...(Args)>(), L, fp); + } + + static int push(lua_State* L, function_arguments<T, Args...>&& fp) { + return push_func(std::make_index_sequence<sizeof...(Args)>(), L, std::move(fp)); + } + }; + + template <typename Signature> + struct pusher<std::function<Signature>> { + static int push(lua_State* L, const std::function<Signature>& fx) { + return pusher<function_sig<Signature>>{}.push(L, fx); + } + + static int push(lua_State* L, std::function<Signature>&& fx) { + return pusher<function_sig<Signature>>{}.push(L, std::move(fx)); + } + }; + + template <typename Signature> + struct pusher<Signature, std::enable_if_t<std::is_member_pointer<Signature>::value>> { + template <typename F, typename... Args> + static int push(lua_State* L, F&& f, Args&&... args) { + pusher<function_sig<>> p{}; + (void)p; + return p.push(L, std::forward<F>(f), std::forward<Args>(args)...); + } + }; + + template <typename Signature> + struct pusher<Signature, std::enable_if_t<meta::all<std::is_function<std::remove_pointer_t<Signature>>, meta::neg<std::is_same<Signature, lua_CFunction>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<lua_CFunction>>> +#if defined(SOL_NOEXCEPT_FUNCTION_TYPE) && SOL_NOEXCEPT_FUNCTION_TYPE + , + meta::neg<std::is_same<Signature, detail::lua_CFunction_noexcept>>, meta::neg<std::is_same<Signature, std::remove_pointer_t<detail::lua_CFunction_noexcept>>> +#endif // noexcept function types + >::value>> { + template <typename F> + static int push(lua_State* L, F&& f) { + return pusher<function_sig<>>{}.push(L, std::forward<F>(f)); + } + }; + + template <typename... Functions> + struct pusher<overload_set<Functions...>> { + static int push(lua_State* L, overload_set<Functions...>&& set) { + // TODO: yielding + typedef function_detail::overloaded_function<0, Functions...> F; + pusher<function_sig<>>{}.set_fx<false, F>(L, std::move(set.functions)); + return 1; + } + + static int push(lua_State* L, const overload_set<Functions...>& set) { + // TODO: yielding + typedef function_detail::overloaded_function<0, Functions...> F; + pusher<function_sig<>>{}.set_fx<false, F>(L, set.functions); + return 1; + } + }; + + template <typename T> + struct pusher<protect_t<T>> { + static int push(lua_State* L, protect_t<T>&& pw) { + lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<protect_t<T>>>(L, std::move(pw.value)); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, const protect_t<T>& pw) { + lua_CFunction cf = call_detail::call_user<void, false, false, protect_t<T>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<protect_t<T>>>(L, pw.value); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename F, typename G> + struct pusher<property_wrapper<F, G>, std::enable_if_t<!std::is_void<F>::value && !std::is_void<G>::value>> { + static int push(lua_State* L, property_wrapper<F, G>&& pw) { + return stack::push(L, overload(std::move(pw.read), std::move(pw.write))); + } + static int push(lua_State* L, const property_wrapper<F, G>& pw) { + return stack::push(L, overload(pw.read, pw.write)); + } + }; + + template <typename F> + struct pusher<property_wrapper<F, void>> { + static int push(lua_State* L, property_wrapper<F, void>&& pw) { + return stack::push(L, std::move(pw.read)); + } + static int push(lua_State* L, const property_wrapper<F, void>& pw) { + return stack::push(L, pw.read); + } + }; + + template <typename F> + struct pusher<property_wrapper<void, F>> { + static int push(lua_State* L, property_wrapper<void, F>&& pw) { + return stack::push(L, std::move(pw.write)); + } + static int push(lua_State* L, const property_wrapper<void, F>& pw) { + return stack::push(L, pw.write); + } + }; + + template <typename T> + struct pusher<var_wrapper<T>> { + static int push(lua_State* L, var_wrapper<T>&& vw) { + return stack::push(L, std::move(vw.value)); + } + static int push(lua_State* L, const var_wrapper<T>& vw) { + return stack::push(L, vw.value); + } + }; + + template <typename... Functions> + struct pusher<factory_wrapper<Functions...>> { + static int push(lua_State* L, const factory_wrapper<Functions...>& fw) { + typedef function_detail::overloaded_function<0, Functions...> F; + pusher<function_sig<>>{}.set_fx<false, F>(L, fw.functions); + return 1; + } + + static int push(lua_State* L, factory_wrapper<Functions...>&& fw) { + typedef function_detail::overloaded_function<0, Functions...> F; + pusher<function_sig<>>{}.set_fx<false, F>(L, std::move(fw.functions)); + return 1; + } + + static int push(lua_State* L, const factory_wrapper<Functions...>& set, function_detail::call_indicator) { + typedef function_detail::overloaded_function<1, Functions...> F; + pusher<function_sig<>>{}.set_fx<false, F>(L, set.functions); + return 1; + } + + static int push(lua_State* L, factory_wrapper<Functions...>&& set, function_detail::call_indicator) { + typedef function_detail::overloaded_function<1, Functions...> F; + pusher<function_sig<>>{}.set_fx<false, F>(L, std::move(set.functions)); + return 1; + } + }; + + template <> + struct pusher<no_construction> { + static int push(lua_State* L, no_construction) { + lua_CFunction cf = &function_detail::no_construction_error; + return stack::push(L, cf); + } + + static int push(lua_State* L, no_construction c, function_detail::call_indicator) { + return push(L, c); + } + }; + + template <typename T, typename... Lists> + struct pusher<detail::tagged<T, constructor_list<Lists...>>> { + static int push(lua_State* L, detail::tagged<T, constructor_list<Lists...>>) { + lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>; + return stack::push(L, cf); + } + + static int push(lua_State* L, constructor_list<Lists...>) { + lua_CFunction cf = call_detail::construct<T, detail::default_safe_function_calls, true, Lists...>; + return stack::push(L, cf); + } + }; + + template <typename L0, typename... Lists> + struct pusher<constructor_list<L0, Lists...>> { + typedef constructor_list<L0, Lists...> cl_t; + static int push(lua_State* L, cl_t cl) { + typedef typename meta::bind_traits<L0>::return_type T; + return stack::push<detail::tagged<T, cl_t>>(L, cl); + } + }; + + template <typename T, typename... Fxs> + struct pusher<detail::tagged<T, constructor_wrapper<Fxs...>>> { + template <typename C> + static int push(lua_State* L, C&& c) { + lua_CFunction cf = call_detail::call_user<T, false, false, constructor_wrapper<Fxs...>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<constructor_wrapper<Fxs...>>>(L, std::forward<C>(c)); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename F, typename... Fxs> + struct pusher<constructor_wrapper<F, Fxs...>> { + template <typename C> + static int push(lua_State* L, C&& c) { + typedef typename meta::bind_traits<F>::template arg_at<0> arg0; + typedef meta::unqualified_t<std::remove_pointer_t<arg0>> T; + return stack::push<detail::tagged<T, constructor_wrapper<F, Fxs...>>>(L, std::forward<C>(c)); + } + }; + + template <typename T> + struct pusher<detail::tagged<T, destructor_wrapper<void>>> { + static int push(lua_State* L, destructor_wrapper<void>) { + lua_CFunction cf = detail::usertype_alloc_destruct<T>; + return stack::push(L, cf); + } + }; + + template <typename T, typename Fx> + struct pusher<detail::tagged<T, destructor_wrapper<Fx>>> { + static int push(lua_State* L, destructor_wrapper<Fx>&& c) { + lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c)); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, const destructor_wrapper<Fx>& c) { + lua_CFunction cf = call_detail::call_user<T, false, false, destructor_wrapper<Fx>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename Fx> + struct pusher<destructor_wrapper<Fx>> { + static int push(lua_State* L, destructor_wrapper<Fx>&& c) { + lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, std::move(c)); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, const destructor_wrapper<Fx>& c) { + lua_CFunction cf = call_detail::call_user<void, false, false, destructor_wrapper<Fx>, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<destructor_wrapper<Fx>>>(L, c); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + + template <typename F, typename... Filters> + struct pusher<filter_wrapper<F, Filters...>> { + typedef filter_wrapper<F, Filters...> P; + + static int push(lua_State* L, const P& p) { + lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<P>>(L, p); + return stack::push(L, c_closure(cf, upvalues)); + } + + static int push(lua_State* L, P&& p) { + lua_CFunction cf = call_detail::call_user<void, false, false, P, 2>; + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push<user<P>>(L, std::move(p)); + return stack::push(L, c_closure(cf, upvalues)); + } + }; + } // namespace stack +} // namespace sol + +// end of sol/function_types.hpp + +namespace sol { + template <typename base_t, bool aligned = false> + class basic_function : public base_t { + private: + void luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount) const { + lua_call(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount)); + } + + template <std::size_t... I, typename... Ret> + auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) const { + luacall(n, lua_size<std::tuple<Ret...>>::value); + return stack::pop<std::tuple<Ret...>>(lua_state()); + } + + template <std::size_t I, typename Ret> + Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) const { + luacall(n, lua_size<Ret>::value); + return stack::pop<Ret>(lua_state()); + } + + template <std::size_t I> + void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) const { + luacall(n, 0); + } + + unsafe_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) const { + int stacksize = lua_gettop(lua_state()); + int firstreturn = (std::max)(1, stacksize - static_cast<int>(n)); + luacall(n, LUA_MULTRET); + int poststacksize = lua_gettop(lua_state()); + int returncount = poststacksize - (firstreturn - 1); + return unsafe_function_result(lua_state(), firstreturn, returncount); + } + + public: + using base_t::lua_state; + + basic_function() = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_function>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_function(T&& r) noexcept + : base_t(std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_function<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_function>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_function(const basic_function&) = default; + basic_function& operator=(const basic_function&) = default; + basic_function(basic_function&&) = default; + basic_function& operator=(basic_function&&) = default; + basic_function(const stack_reference& r) + : basic_function(r.lua_state(), r.stack_index()) { + } + basic_function(stack_reference&& r) + : basic_function(r.lua_state(), r.stack_index()) { + } + basic_function(lua_nil_t n) + : base_t(n) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_function(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_function>(lua_state(), -1, handler); +#endif // Safety + } + basic_function(lua_State* L, int index = -1) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_function>(L, index, handler); +#endif // Safety + } + basic_function(lua_State* L, ref_index index) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_function>(lua_state(), -1, handler); +#endif // Safety + } + + template <typename... Args> + unsafe_function_result operator()(Args&&... args) const { + return call<>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) operator()(types<Ret...>, Args&&... args) const { + return call<Ret...>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) const { + if (!aligned) { + base_t::push(); + } + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount); + } + }; +} // namespace sol + +// end of sol/unsafe_function.hpp + +// beginning of sol/protected_function.hpp + +// beginning of sol/protected_handler.hpp + +namespace sol { + namespace detail { + inline const char(&default_handler_name())[9]{ + static const char name[9] = "sol.\xF0\x9F\x94\xA9"; + return name; + } + + template <bool b, typename target_t = reference> + struct protected_handler { + typedef is_stack_based<target_t> is_stack; + const target_t& target; + int stackindex; + + protected_handler(std::false_type, const target_t& target) + : target(target), stackindex(0) { + if (b) { + stackindex = lua_gettop(target.lua_state()) + 1; + target.push(); + } + } + + protected_handler(std::true_type, const target_t& target) + : target(target), stackindex(0) { + if (b) { + stackindex = target.stack_index(); + } + } + + protected_handler(const target_t& target) + : protected_handler(is_stack(), target) { + } + + bool valid() const noexcept { + return b; + } + + ~protected_handler() { + if (!is_stack::value && stackindex != 0) { + lua_remove(target.lua_state(), stackindex); + } + } + }; + + template <typename base_t, typename T> + basic_function<base_t> force_cast(T& p) { + return p; + } + + template <typename Reference, bool is_main_ref = false> + static Reference get_default_handler(lua_State* L) { + if (is_stack_based<Reference>::value || L == nullptr) + return Reference(L, lua_nil); + L = is_main_ref ? main_thread(L, L) : L; + lua_getglobal(L, default_handler_name()); + auto pp = stack::pop_n(L, 1); + return Reference(L, -1); + } + + template <typename T> + static void set_default_handler(lua_State* L, const T& ref) { + if (L == nullptr) { + return; + } + if (!ref.valid()) { + lua_pushnil(L); + lua_setglobal(L, default_handler_name()); + } + else { + ref.push(L); + lua_setglobal(L, default_handler_name()); + } + } + } // namespace detail +} // namespace sol + +// end of sol/protected_handler.hpp + +namespace sol { + template <typename base_t, bool aligned = false, typename handler_t = reference> + class basic_protected_function : public base_t { + public: + typedef is_stack_based<handler_t> is_stack_handler; + + static handler_t get_default_handler(lua_State* L) { + return detail::get_default_handler<handler_t, is_main_threaded<base_t>::value>(L); + } + + template <typename T> + static void set_default_handler(const T& ref) { + detail::set_default_handler(ref.lua_state(), ref); + } + + private: + template <bool b> + call_status luacall(std::ptrdiff_t argcount, std::ptrdiff_t resultcount, detail::protected_handler<b, handler_t>& h) const { + return static_cast<call_status>(lua_pcall(lua_state(), static_cast<int>(argcount), static_cast<int>(resultcount), h.stackindex)); + } + + template <std::size_t... I, bool b, typename... Ret> + auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { + luacall(n, sizeof...(Ret), h); + return stack::pop<std::tuple<Ret...>>(lua_state()); + } + + template <std::size_t I, bool b, typename Ret> + Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { + luacall(n, 1, h); + return stack::pop<Ret>(lua_state()); + } + + template <std::size_t I, bool b> + void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { + luacall(n, 0, h); + } + + template <bool b> + protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n, detail::protected_handler<b, handler_t>& h) const { + int stacksize = lua_gettop(lua_state()); + int poststacksize = stacksize; + int firstreturn = 1; + int returncount = 0; + call_status code = call_status::ok; +#if !defined(SOL_NO_EXCEPTIONS) || !SOL_NO_EXCEPTIONS + auto onexcept = [&](optional<const std::exception&> maybe_ex, const char* error) { + h.stackindex = 0; + if (b) { + h.target.push(); + detail::call_exception_handler(lua_state(), maybe_ex, error); + lua_call(lua_state(), 1, 1); + } + else { + detail::call_exception_handler(lua_state(), maybe_ex, error); + } + }; + (void)onexcept; +#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT) + try { +#endif // Safe Exception Propagation +#endif // No Exceptions + firstreturn = (std::max)(1, static_cast<int>(stacksize - n - static_cast<int>(h.valid()))); + code = luacall(n, LUA_MULTRET, h); + poststacksize = lua_gettop(lua_state()) - static_cast<int>(h.valid()); + returncount = poststacksize - (firstreturn - 1); +#ifndef SOL_NO_EXCEPTIONS +#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) || (defined(SOL_LUAJIT) && SOL_LUAJIT) + } + // Handle C++ errors thrown from C++ functions bound inside of lua + catch (const char* error) { + onexcept(optional<const std::exception&>(nullopt), error); + firstreturn = lua_gettop(lua_state()); + return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); + } + catch (const std::string& error) { + onexcept(optional<const std::exception&>(nullopt), error.c_str()); + firstreturn = lua_gettop(lua_state()); + return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); + } + catch (const std::exception& error) { + onexcept(optional<const std::exception&>(error), error.what()); + firstreturn = lua_gettop(lua_state()); + return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); + } +#if (!defined(SOL_EXCEPTIONS_SAFE_PROPAGATION) || !SOL_NO_EXCEPTIONS_SAFE_PROPAGATION) + // LuaJIT cannot have the catchall when the safe propagation is on + // but LuaJIT will swallow all C++ errors + // if we don't at least catch std::exception ones + catch (...) { + onexcept(optional<const std::exception&>(nullopt), "caught (...) unknown error during protected_function call"); + firstreturn = lua_gettop(lua_state()); + return protected_function_result(lua_state(), firstreturn, 0, 1, call_status::runtime); + } +#endif // LuaJIT +#else + // do not handle exceptions: they can be propogated into C++ and keep all type information / rich information +#endif // Safe Exception Propagation +#endif // Exceptions vs. No Exceptions + return protected_function_result(lua_state(), firstreturn, returncount, returncount, code); + } + + public: + using base_t::lua_state; + + handler_t error_handler; + + basic_protected_function() = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_protected_function>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_protected_function(T&& r) noexcept + : base_t(std::forward<T>(r)), error_handler(get_default_handler(r.lua_state())) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_function<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_protected_function>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_protected_function(const basic_protected_function&) = default; + basic_protected_function& operator=(const basic_protected_function&) = default; + basic_protected_function(basic_protected_function&&) = default; + basic_protected_function& operator=(basic_protected_function&&) = default; + basic_protected_function(const basic_function<base_t>& b) + : basic_protected_function(b, get_default_handler(b.lua_state())) { + } + basic_protected_function(basic_function<base_t>&& b) + : basic_protected_function(std::move(b), get_default_handler(b.lua_state())) { + } + basic_protected_function(const basic_function<base_t>& b, handler_t eh) + : base_t(b), error_handler(std::move(eh)) { + } + basic_protected_function(basic_function<base_t>&& b, handler_t eh) + : base_t(std::move(b)), error_handler(std::move(eh)) { + } + basic_protected_function(const stack_reference& r) + : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) { + } + basic_protected_function(stack_reference&& r) + : basic_protected_function(r.lua_state(), r.stack_index(), get_default_handler(r.lua_state())) { + } + basic_protected_function(const stack_reference& r, handler_t eh) + : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) { + } + basic_protected_function(stack_reference&& r, handler_t eh) + : basic_protected_function(r.lua_state(), r.stack_index(), std::move(eh)) { + } + + template <typename Super> + basic_protected_function(const proxy_base<Super>& p) + : basic_protected_function(p, get_default_handler(p.lua_state())) { + } + template <typename Super> + basic_protected_function(proxy_base<Super>&& p) + : basic_protected_function(std::move(p), get_default_handler(p.lua_state())) { + } + template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler> + basic_protected_function(Proxy&& p, Handler&& eh) + : basic_protected_function(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) { + } + + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_protected_function(lua_State* L, T&& r) + : basic_protected_function(L, std::forward<T>(r), get_default_handler(L)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_protected_function(lua_State* L, T&& r, handler_t eh) + : base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_protected_function>(lua_state(), -1, handler); +#endif // Safety + } + + basic_protected_function(lua_nil_t n) + : base_t(n), error_handler(n) { + } + + basic_protected_function(lua_State* L, int index = -1) + : basic_protected_function(L, index, get_default_handler(L)) { + } + basic_protected_function(lua_State* L, int index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_protected_function>(L, index, handler); +#endif // Safety + } + basic_protected_function(lua_State* L, absolute_index index) + : basic_protected_function(L, index, get_default_handler(L)) { + } + basic_protected_function(lua_State* L, absolute_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_protected_function>(L, index, handler); +#endif // Safety + } + basic_protected_function(lua_State* L, raw_index index) + : basic_protected_function(L, index, get_default_handler(L)) { + } + basic_protected_function(lua_State* L, raw_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_protected_function>(L, index, handler); +#endif // Safety + } + basic_protected_function(lua_State* L, ref_index index) + : basic_protected_function(L, index, get_default_handler(L)) { + } + basic_protected_function(lua_State* L, ref_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_protected_function>(lua_state(), -1, handler); +#endif // Safety + } + + template <typename... Args> + protected_function_result operator()(Args&&... args) const { + return call<>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) operator()(types<Ret...>, Args&&... args) const { + return call<Ret...>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) const { + if (!aligned) { + // we do not expect the function to already be on the stack: push it + if (error_handler.valid()) { + detail::protected_handler<true, handler_t> h(error_handler); + base_t::push(); + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); + } + else { + detail::protected_handler<false, handler_t> h(error_handler); + base_t::push(); + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); + } + } + else { + // the function is already on the stack at the right location + if (error_handler.valid()) { + // the handler will be pushed onto the stack manually, + // since it's not already on the stack this means we need to push our own + // function on the stack too and swap things to be in-place + if (!is_stack_handler::value) { + // so, we need to remove the function at the top and then dump the handler out ourselves + base_t::push(); + } + detail::protected_handler<true, handler_t> h(error_handler); + if (!is_stack_handler::value) { + lua_replace(lua_state(), -3); + h.stackindex = lua_absindex(lua_state(), -2); + } + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); + } + else { + detail::protected_handler<false, handler_t> h(error_handler); + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount, h); + } + } + } + }; +} // namespace sol + +// end of sol/protected_function.hpp + +namespace sol { + template <typename... Ret, typename... Args> + inline decltype(auto) stack_proxy::call(Args&&... args) { + stack_function sf(this->lua_state(), this->stack_index()); + return sf.template call<Ret...>(std::forward<Args>(args)...); + } + + inline protected_function_result::protected_function_result(unsafe_function_result&& o) noexcept + : L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()), popcount(o.return_count()), err(o.status()) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.abandon(); + } + + inline protected_function_result& protected_function_result::operator=(unsafe_function_result&& o) noexcept { + L = o.lua_state(); + index = o.stack_index(); + returncount = o.return_count(); + popcount = o.return_count(); + err = o.status(); + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.abandon(); + return *this; + } + + inline unsafe_function_result::unsafe_function_result(protected_function_result&& o) noexcept + : L(o.lua_state()), index(o.stack_index()), returncount(o.return_count()) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.abandon(); + } + inline unsafe_function_result& unsafe_function_result::operator=(protected_function_result&& o) noexcept { + L = o.lua_state(); + index = o.stack_index(); + returncount = o.return_count(); + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.abandon(); + return *this; + } + + namespace stack { + template <typename Signature> + struct getter<std::function<Signature>> { + typedef meta::bind_traits<Signature> fx_t; + typedef typename fx_t::args_list args_lists; + typedef meta::tuple_types<typename fx_t::return_type> return_types; + + template <typename... Args, typename... Ret> + static std::function<Signature> get_std_func(types<Ret...>, types<Args...>, lua_State* L, int index) { + unsafe_function f(L, index); + auto fx = [ f = std::move(f) ](Args && ... args) -> meta::return_type_t<Ret...> { + return f.call<Ret...>(std::forward<Args>(args)...); + }; + return std::move(fx); + } + + template <typename... FxArgs> + static std::function<Signature> get_std_func(types<void>, types<FxArgs...>, lua_State* L, int index) { + unsafe_function f(L, index); + auto fx = [f = std::move(f)](FxArgs&&... args) -> void { + f(std::forward<FxArgs>(args)...); + }; + return std::move(fx); + } + + template <typename... FxArgs> + static std::function<Signature> get_std_func(types<>, types<FxArgs...> t, lua_State* L, int index) { + return get_std_func(types<void>(), t, L, index); + } + + static std::function<Signature> get(lua_State* L, int index, record& tracking) { + tracking.last = 1; + tracking.used += 1; + type t = type_of(L, index); + if (t == type::none || t == type::lua_nil) { + return nullptr; + } + return get_std_func(return_types(), args_lists(), L, index); + } + }; + } // namespace stack + +} // namespace sol + +// end of sol/function.hpp + +namespace sol { + template <typename Table, typename Key> + struct proxy : public proxy_base<proxy<Table, Key>> { + private: + typedef meta::condition<meta::is_specialization_of<Key, std::tuple>, Key, std::tuple<meta::condition<std::is_array<meta::unqualified_t<Key>>, Key&, meta::unqualified_t<Key>>>> key_type; + + template <typename T, std::size_t... I> + decltype(auto) tuple_get(std::index_sequence<I...>) const { + return tbl.template traverse_get<T>(std::get<I>(key)...); + } + + template <std::size_t... I, typename T> + void tuple_set(std::index_sequence<I...>, T&& value) { + tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value)); + } + + auto setup_table(std::true_type) { + auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, tbl.stack_index()); + lua_pop(lua_state(), p.levels); + return p; + } + + bool is_valid(std::false_type) { + auto pp = stack::push_pop(tbl); + auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); + lua_pop(lua_state(), p.levels); + return p; + } + + public: + Table tbl; + key_type key; + + template <typename T> + proxy(Table table, T&& k) + : tbl(table), key(std::forward<T>(k)) { + } + + template <typename T> + proxy& set(T&& item) { + tuple_set(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>(), std::forward<T>(item)); + return *this; + } + + template <typename... Args> + proxy& set_function(Args&&... args) { + tbl.set_function(key, std::forward<Args>(args)...); + return *this; + } + + template <typename U, meta::enable<meta::neg<is_lua_reference_or_proxy<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler> + proxy& operator=(U&& other) { + return set_function(std::forward<U>(other)); + } + + template <typename U, meta::disable<meta::neg<is_lua_reference_or_proxy<meta::unwrap_unqualified_t<U>>>, meta::is_callable<meta::unwrap_unqualified_t<U>>> = meta::enabler> + proxy& operator=(U&& other) { + return set(std::forward<U>(other)); + } + + template <typename T> + proxy& operator=(std::initializer_list<T> other) { + return set(std::move(other)); + } + + template <typename T> + decltype(auto) get() const { + return tuple_get<T>(std::make_index_sequence<std::tuple_size<meta::unqualified_t<key_type>>::value>()); + } + + template <typename T> + decltype(auto) get_or(T&& otherwise) const { + typedef decltype(get<T>()) U; + optional<U> option = get<optional<U>>(); + if (option) { + return static_cast<U>(option.value()); + } + return static_cast<U>(std::forward<T>(otherwise)); + } + + template <typename T, typename D> + decltype(auto) get_or(D&& otherwise) const { + optional<T> option = get<optional<T>>(); + if (option) { + return static_cast<T>(option.value()); + } + return static_cast<T>(std::forward<D>(otherwise)); + } + + template <typename T> + decltype(auto) get_or_create() { + return get_or_create<T>(new_table()); + } + + template <typename T, typename Otherwise> + decltype(auto) get_or_create(Otherwise&& other) { + if (!this->valid()) { + this->set(std::forward<Otherwise>(other)); + } + return get<T>(); + } + + template <typename K> + decltype(auto) operator[](K&& k) const { + auto keys = meta::tuplefy(key, std::forward<K>(k)); + return proxy<Table, decltype(keys)>(tbl, std::move(keys)); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) { +#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000 + // MSVC is ass sometimes + return get<function>().call<Ret...>(std::forward<Args>(args)...); +#else + return get<function>().template call<Ret...>(std::forward<Args>(args)...); +#endif + } + + template <typename... Args> + decltype(auto) operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + + bool valid() const { + auto pp = stack::push_pop(tbl); + auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); + lua_pop(lua_state(), p.levels); + return p; + } + + int push() const noexcept { + return push(this->lua_state()); + } + + int push(lua_State* L) const noexcept { + return get<reference>().push(L); + } + + type get_type() const { + type t = type::none; + auto pp = stack::push_pop(tbl); + auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); + if (p) { + t = type_of(lua_state(), -1); + } + lua_pop(lua_state(), p.levels); + return t; + } + + lua_State* lua_state() const { + return tbl.lua_state(); + } + + proxy& force() { + if (this->valid()) { + this->set(new_table()); + } + return *this; + } + }; + + template <typename Table, typename Key, typename T> + inline bool operator==(T&& left, const proxy<Table, Key>& right) { + typedef decltype(stack::get<T>(nullptr, 0)) U; + return right.template get<optional<U>>() == left; + } + + template <typename Table, typename Key, typename T> + inline bool operator==(const proxy<Table, Key>& right, T&& left) { + typedef decltype(stack::get<T>(nullptr, 0)) U; + return right.template get<optional<U>>() == left; + } + + template <typename Table, typename Key, typename T> + inline bool operator!=(T&& left, const proxy<Table, Key>& right) { + typedef decltype(stack::get<T>(nullptr, 0)) U; + return right.template get<optional<U>>() != left; + } + + template <typename Table, typename Key, typename T> + inline bool operator!=(const proxy<Table, Key>& right, T&& left) { + typedef decltype(stack::get<T>(nullptr, 0)) U; + return right.template get<optional<U>>() != left; + } + + template <typename Table, typename Key> + inline bool operator==(lua_nil_t, const proxy<Table, Key>& right) { + return !right.valid(); + } + + template <typename Table, typename Key> + inline bool operator==(const proxy<Table, Key>& right, lua_nil_t) { + return !right.valid(); + } + + template <typename Table, typename Key> + inline bool operator!=(lua_nil_t, const proxy<Table, Key>& right) { + return right.valid(); + } + + template <typename Table, typename Key> + inline bool operator!=(const proxy<Table, Key>& right, lua_nil_t) { + return right.valid(); + } + + template <bool b> + template <typename Super> + basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r) { + basic_reference<b> v = r; + this->operator=(std::move(v)); + return *this; + } + + template <bool b> + template <typename Super> + basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r) { + basic_reference<b> v = r; + this->operator=(std::move(v)); + return *this; + } + + namespace stack { + template <typename Table, typename Key> + struct pusher<proxy<Table, Key>> { + static int push(lua_State* L, const proxy<Table, Key>& p) { + reference r = p; + return r.push(L); + } + }; + } // namespace stack +} // namespace sol + +// end of sol/proxy.hpp + +// beginning of sol/usertype.hpp + +// beginning of sol/usertype_metatable.hpp + +// beginning of sol/deprecate.hpp + +#ifndef SOL_DEPRECATED +#ifdef _MSC_VER +#define SOL_DEPRECATED __declspec(deprecated) +#elif __GNUC__ +#define SOL_DEPRECATED __attribute__((deprecated)) +#else +#define SOL_DEPRECATED [[deprecated]] +#endif // compilers +#endif // SOL_DEPRECATED + +namespace sol { +namespace detail { + template <typename T> + struct SOL_DEPRECATED deprecate_type { + using type = T; + }; +} +} // namespace sol::detail + +// end of sol/deprecate.hpp + +// beginning of sol/object.hpp + +// beginning of sol/object_base.hpp + +namespace sol { + + template <typename base_t> + class basic_object_base : public base_t { + private: + template <typename T> + decltype(auto) as_stack(std::true_type) const { + return stack::get<T>(base_t::lua_state(), base_t::stack_index()); + } + + template <typename T> + decltype(auto) as_stack(std::false_type) const { + base_t::push(); + return stack::pop<T>(base_t::lua_state()); + } + + template <typename T> + bool is_stack(std::true_type) const { + return stack::check<T>(base_t::lua_state(), base_t::stack_index(), no_panic); + } + + template <typename T> + bool is_stack(std::false_type) const { + int r = base_t::registry_index(); + if (r == LUA_REFNIL) + return meta::any_same<meta::unqualified_t<T>, lua_nil_t, nullopt_t, std::nullptr_t>::value ? true : false; + if (r == LUA_NOREF) + return false; + auto pp = stack::push_pop(*this); + return stack::check<T>(base_t::lua_state(), -1, no_panic); + } + + public: + basic_object_base() noexcept = default; + basic_object_base(const basic_object_base&) = default; + basic_object_base(basic_object_base&&) = default; + basic_object_base& operator=(const basic_object_base&) = default; + basic_object_base& operator=(basic_object_base&&) = default; + template <typename T, typename... Args, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object_base>>> = meta::enabler> + basic_object_base(T&& arg, Args&&... args) + : base_t(std::forward<T>(arg), std::forward<Args>(args)...) { + } + + template <typename T> + decltype(auto) as() const { + return as_stack<T>(is_stack_based<base_t>()); + } + + template <typename T> + bool is() const { + return is_stack<T>(is_stack_based<base_t>()); + } + }; +} // namespace sol + +// end of sol/object_base.hpp + +// beginning of sol/userdata.hpp + +namespace sol { + template <typename base_type> + class basic_userdata : public basic_table<base_type> { + typedef basic_table<base_type> base_t; + + public: + using base_t::lua_state; + + basic_userdata() noexcept = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_userdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_userdata(T&& r) noexcept + : base_t(std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_userdata<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + type_assert(lua_state(), -1, type::userdata); + } +#endif // Safety + } + basic_userdata(const basic_userdata&) = default; + basic_userdata(basic_userdata&&) = default; + basic_userdata& operator=(const basic_userdata&) = default; + basic_userdata& operator=(basic_userdata&&) = default; + basic_userdata(const stack_reference& r) + : basic_userdata(r.lua_state(), r.stack_index()) { + } + basic_userdata(stack_reference&& r) + : basic_userdata(r.lua_state(), r.stack_index()) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_userdata(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_userdata>(L, -1, handler); +#endif // Safety + } + basic_userdata(lua_State* L, int index = -1) + : base_t(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_userdata>(L, index, handler); +#endif // Safety + } + basic_userdata(lua_State* L, ref_index index) + : base_t(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_userdata>(L, -1, handler); +#endif // Safety + } + }; + + template <typename base_type> + class basic_lightuserdata : public basic_object_base<base_type> { + typedef basic_object_base<base_type> base_t; + + public: + using base_t::lua_state; + + basic_lightuserdata() noexcept = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_lightuserdata>>, meta::neg<std::is_same<base_t, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_lightuserdata(T&& r) noexcept + : base_t(std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_lightuserdata<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + type_assert(lua_state(), -1, type::lightuserdata); + } +#endif // Safety + } + basic_lightuserdata(const basic_lightuserdata&) = default; + basic_lightuserdata(basic_lightuserdata&&) = default; + basic_lightuserdata& operator=(const basic_lightuserdata&) = default; + basic_lightuserdata& operator=(basic_lightuserdata&&) = default; + basic_lightuserdata(const stack_reference& r) + : basic_lightuserdata(r.lua_state(), r.stack_index()) { + } + basic_lightuserdata(stack_reference&& r) + : basic_lightuserdata(r.lua_state(), r.stack_index()) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_lightuserdata(lua_State* L, T&& r) + : basic_lightuserdata(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_lightuserdata>(lua_state(), -1, handler); +#endif // Safety + } + basic_lightuserdata(lua_State* L, int index = -1) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_lightuserdata>(L, index, handler); +#endif // Safety + } + basic_lightuserdata(lua_State* L, ref_index index) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_lightuserdata>(lua_state(), index, handler); +#endif // Safety + } + }; + +} // namespace sol + +// end of sol/userdata.hpp + +// beginning of sol/as_args.hpp + +namespace sol { + template <typename T> + struct as_args_t { + T src; + }; + + template <typename Source> + auto as_args(Source&& source) { + return as_args_t<Source>{ std::forward<Source>(source) }; + } + + namespace stack { + template <typename T> + struct pusher<as_args_t<T>> { + int push(lua_State* L, const as_args_t<T>& e) { + int p = 0; + for (const auto& i : e.src) { + p += stack::push(L, i); + } + return p; + } + }; + } // namespace stack +} // namespace sol + +// end of sol/as_args.hpp + +// beginning of sol/variadic_args.hpp + +namespace sol { + struct variadic_args { + private: + lua_State* L; + int index; + int stacktop; + + public: + typedef stack_proxy reference_type; + typedef stack_proxy value_type; + typedef stack_proxy* pointer; + typedef std::ptrdiff_t difference_type; + typedef std::size_t size_type; + typedef stack_iterator<stack_proxy, false> iterator; + typedef stack_iterator<stack_proxy, true> const_iterator; + typedef std::reverse_iterator<iterator> reverse_iterator; + typedef std::reverse_iterator<const_iterator> const_reverse_iterator; + + variadic_args() = default; + variadic_args(lua_State* luastate, int stackindex = -1) + : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lua_gettop(luastate)) { + } + variadic_args(lua_State* luastate, int stackindex, int lastindex) + : L(luastate), index(lua_absindex(luastate, stackindex)), stacktop(lastindex) { + } + variadic_args(const variadic_args&) = default; + variadic_args& operator=(const variadic_args&) = default; + variadic_args(variadic_args&& o) + : L(o.L), index(o.index), stacktop(o.stacktop) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but will be thorough + o.L = nullptr; + o.index = 0; + o.stacktop = 0; + } + variadic_args& operator=(variadic_args&& o) { + L = o.L; + index = o.index; + stacktop = o.stacktop; + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but will be thorough + o.L = nullptr; + o.index = 0; + o.stacktop = 0; + return *this; + } + + iterator begin() { + return iterator(L, index, stacktop + 1); + } + iterator end() { + return iterator(L, stacktop + 1, stacktop + 1); + } + const_iterator begin() const { + return const_iterator(L, index, stacktop + 1); + } + const_iterator end() const { + return const_iterator(L, stacktop + 1, stacktop + 1); + } + const_iterator cbegin() const { + return begin(); + } + const_iterator cend() const { + return end(); + } + + reverse_iterator rbegin() { + return std::reverse_iterator<iterator>(begin()); + } + reverse_iterator rend() { + return std::reverse_iterator<iterator>(end()); + } + const_reverse_iterator rbegin() const { + return std::reverse_iterator<const_iterator>(begin()); + } + const_reverse_iterator rend() const { + return std::reverse_iterator<const_iterator>(end()); + } + const_reverse_iterator crbegin() const { + return std::reverse_iterator<const_iterator>(cbegin()); + } + const_reverse_iterator crend() const { + return std::reverse_iterator<const_iterator>(cend()); + } + + int push() const { + return push(L); + } + + int push(lua_State* target) const { + int pushcount = 0; + for (int i = index; i <= stacktop; ++i) { + lua_pushvalue(L, i); + pushcount += 1; + } + if (target != L) { + lua_xmove(L, target, pushcount); + } + return pushcount; + } + + template <typename T> + decltype(auto) get(difference_type index_offset = 0) const { + return stack::get<T>(L, index + static_cast<int>(index_offset)); + } + + type get_type(difference_type index_offset = 0) const noexcept { + return type_of(L, index + static_cast<int>(index_offset)); + } + + stack_proxy operator[](difference_type index_offset) const { + return stack_proxy(L, index + static_cast<int>(index_offset)); + } + + lua_State* lua_state() const { + return L; + }; + int stack_index() const { + return index; + }; + int leftover_count() const { + return stacktop - (index - 1); + } + std::size_t size() const { + return static_cast<std::size_t>(leftover_count()); + } + int top() const { + return stacktop; + } + }; + + namespace stack { + template <> + struct getter<variadic_args> { + static variadic_args get(lua_State* L, int index, record& tracking) { + tracking.last = 0; + return variadic_args(L, index); + } + }; + + template <> + struct pusher<variadic_args> { + static int push(lua_State* L, const variadic_args& ref) { + return ref.push(L); + } + }; + } // namespace stack +} // namespace sol + +// end of sol/variadic_args.hpp + +namespace sol { + + template <typename R = reference, bool should_pop = !is_stack_based<R>::value, typename T> + R make_reference(lua_State* L, T&& value) { + int backpedal = stack::push(L, std::forward<T>(value)); + R r = stack::get<R>(L, -backpedal); + if (should_pop) { + lua_pop(L, backpedal); + } + return r; + } + + template <typename T, typename R = reference, bool should_pop = !is_stack_based<R>::value, typename... Args> + R make_reference(lua_State* L, Args&&... args) { + int backpedal = stack::push<T>(L, std::forward<Args>(args)...); + R r = stack::get<R>(L, -backpedal); + if (should_pop) { + lua_pop(L, backpedal); + } + return r; + } + + template <typename base_type> + class basic_object : public basic_object_base<base_type> { + private: + typedef basic_object_base<base_type> base_t; + + template <bool invert_and_pop = false> + basic_object(std::integral_constant<bool, invert_and_pop>, lua_State* L, int index = -1) noexcept + : base_t(L, index) { + if (invert_and_pop) { + lua_pop(L, -index); + } + } + + public: + basic_object() noexcept = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_object>>, meta::neg<std::is_same<base_type, stack_reference>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_object(T&& r) + : base_t(std::forward<T>(r)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_object(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { + } + basic_object(lua_nil_t r) + : base_t(r) { + } + basic_object(const basic_object&) = default; + basic_object(basic_object&&) = default; + basic_object(const stack_reference& r) noexcept + : basic_object(r.lua_state(), r.stack_index()) { + } + basic_object(stack_reference&& r) noexcept + : basic_object(r.lua_state(), r.stack_index()) { + } + template <typename Super> + basic_object(const proxy_base<Super>& r) noexcept + : basic_object(r.operator basic_object()) { + } + template <typename Super> + basic_object(proxy_base<Super>&& r) noexcept + : basic_object(r.operator basic_object()) { + } + basic_object(lua_State* L, lua_nil_t r) noexcept + : base_t(L, r) { + } + basic_object(lua_State* L, int index = -1) noexcept + : base_t(L, index) { + } + basic_object(lua_State* L, absolute_index index) noexcept + : base_t(L, index) { + } + basic_object(lua_State* L, raw_index index) noexcept + : base_t(L, index) { + } + basic_object(lua_State* L, ref_index index) noexcept + : base_t(L, index) { + } + template <typename T, typename... Args> + basic_object(lua_State* L, in_place_type_t<T>, Args&&... args) noexcept + : basic_object(std::integral_constant<bool, !is_stack_based<base_t>::value>(), L, -stack::push<T>(L, std::forward<Args>(args)...)) { + } + template <typename T, typename... Args> + basic_object(lua_State* L, in_place_t, T&& arg, Args&&... args) noexcept + : basic_object(L, in_place_type<T>, std::forward<T>(arg), std::forward<Args>(args)...) { + } + basic_object& operator=(const basic_object&) = default; + basic_object& operator=(basic_object&&) = default; + basic_object& operator=(const base_type& b) { + base_t::operator=(b); + return *this; + } + basic_object& operator=(base_type&& b) { + base_t::operator=(std::move(b)); + return *this; + } + template <typename Super> + basic_object& operator=(const proxy_base<Super>& r) { + this->operator=(r.operator basic_object()); + return *this; + } + template <typename Super> + basic_object& operator=(proxy_base<Super>&& r) { + this->operator=(r.operator basic_object()); + return *this; + } + }; + + template <typename T> + object make_object(lua_State* L, T&& value) { + return make_reference<object, true>(L, std::forward<T>(value)); + } + + template <typename T, typename... Args> + object make_object(lua_State* L, Args&&... args) { + return make_reference<T, object, true>(L, std::forward<Args>(args)...); + } +} // namespace sol + +// end of sol/object.hpp + +// beginning of sol/container_usertype_metatable.hpp + +// beginning of sol/container_traits.hpp + +namespace sol { + + template <typename T> + struct container_traits; + + template <typename T> + struct as_container_t { + T source; + + as_container_t(T value) + : source(std::move(value)) { + } + + operator std::add_rvalue_reference_t<T>() { + return std::move(source); + } + + operator std::add_lvalue_reference_t<std::add_const_t<T>>() const { + return source; + } + }; + + template <typename T> + struct as_container_t<T&> { + std::reference_wrapper<T> source; + + as_container_t(T& value) + : source(value) { + } + + operator T&() { + return source; + } + }; + + template <typename T> + auto as_container(T&& value) { + return as_container_t<T>(std::forward<T>(value)); + } + + namespace container_detail { + + template <typename T> + struct has_clear_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::clear)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_empty_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::empty)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_erase_after_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(std::declval<C>().erase_after(std::declval<std::add_rvalue_reference_t<typename C::const_iterator>>()))*); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T, typename = void> + struct has_find_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::value_type>>()))*); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_find_test<T, std::enable_if_t<meta::is_lookup<T>::value>> { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(std::declval<C>().find(std::declval<std::add_rvalue_reference_t<typename C::key_type>>()))*); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_erase_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(std::declval<C>().erase(std::declval<typename C::iterator>()))*); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_find_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::find)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_insert_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::insert)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_erase_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::erase)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_index_set_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::index_set)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_index_get_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::index_get)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_set_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::set)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_get_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::get)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_at_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::at)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_pairs_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::pairs)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_ipairs_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::ipairs)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_next_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::next)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_add_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::add)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + struct has_traits_size_test { + private: + typedef std::array<char, 1> one; + typedef std::array<char, 2> two; + + template <typename C> + static one test(decltype(&C::size)); + template <typename C> + static two test(...); + + public: + static const bool value = sizeof(test<T>(0)) == sizeof(char); + }; + + template <typename T> + using has_clear = meta::boolean<has_clear_test<T>::value>; + + template <typename T> + using has_empty = meta::boolean<has_empty_test<T>::value>; + + template <typename T> + using has_find = meta::boolean<has_find_test<T>::value>; + + template <typename T> + using has_erase = meta::boolean<has_erase_test<T>::value>; + + template <typename T> + using has_erase_after = meta::boolean<has_erase_after_test<T>::value>; + + template <typename T> + using has_traits_get = meta::boolean<has_traits_get_test<T>::value>; + + template <typename T> + using has_traits_at = meta::boolean<has_traits_at_test<T>::value>; + + template <typename T> + using has_traits_set = meta::boolean<has_traits_set_test<T>::value>; + + template <typename T> + using has_traits_index_get = meta::boolean<has_traits_index_get_test<T>::value>; + + template <typename T> + using has_traits_index_set = meta::boolean<has_traits_index_set_test<T>::value>; + + template <typename T> + using has_traits_pairs = meta::boolean<has_traits_pairs_test<T>::value>; + + template <typename T> + using has_traits_ipairs = meta::boolean<has_traits_ipairs_test<T>::value>; + + template <typename T> + using has_traits_next = meta::boolean<has_traits_next_test<T>::value>; + + template <typename T> + using has_traits_add = meta::boolean<has_traits_add_test<T>::value>; + + template <typename T> + using has_traits_size = meta::boolean<has_traits_size_test<T>::value>; + + template <typename T> + using has_traits_clear = has_clear<T>; + + template <typename T> + using has_traits_empty = has_empty<T>; + + template <typename T> + using has_traits_find = meta::boolean<has_traits_find_test<T>::value>; + + template <typename T> + using has_traits_insert = meta::boolean<has_traits_insert_test<T>::value>; + + template <typename T> + using has_traits_erase = meta::boolean<has_traits_erase_test<T>::value>; + + template <typename T> + struct is_forced_container : is_container<T> {}; + + template <typename T> + struct is_forced_container<as_container_t<T>> : std::true_type {}; + + template <typename T> + struct container_decay { + typedef T type; + }; + + template <typename T> + struct container_decay<as_container_t<T>> { + typedef T type; + }; + + template <typename T> + using container_decay_t = typename container_decay<meta::unqualified_t<T>>::type; + + template <typename T> + decltype(auto) get_key(std::false_type, T&& t) { + return std::forward<T>(t); + } + + template <typename T> + decltype(auto) get_key(std::true_type, T&& t) { + return t.first; + } + + template <typename T> + decltype(auto) get_value(std::false_type, T&& t) { + return std::forward<T>(t); + } + + template <typename T> + decltype(auto) get_value(std::true_type, T&& t) { + return t.second; + } + + struct error_result { + int results; + const char* fmt_; + std::array<const char*, 4> args; + + error_result() : results(0), fmt_(nullptr) { + } + + error_result(int results) : results(results), fmt_(nullptr) { + } + + error_result(const char* fmt_, const char* msg) : results(0), fmt_(fmt_) { + args[0] = msg; + } + }; + + inline int handle_errors(lua_State* L, const error_result& er) { + if (er.fmt_ == nullptr) { + return er.results; + } + return luaL_error(L, er.fmt_, er.args[0], er.args[1], er.args[2], er.args[3]); + } + + template <typename X, typename = void> + struct container_traits_default { + private: + typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T; + + public: + typedef lua_nil_t iterator; + typedef lua_nil_t value_type; + + static int at(lua_State* L) { + return luaL_error(L, "sol: cannot call 'at(index)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int get(lua_State* L) { + return luaL_error(L, "sol: cannot call 'get(key)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int index_get(lua_State* L) { + return luaL_error(L, "sol: cannot call 'container[key]' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int set(lua_State* L) { + return luaL_error(L, "sol: cannot call 'set(key, value)' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int index_set(lua_State* L) { + return luaL_error(L, "sol: cannot call 'container[key] = value' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int add(lua_State* L) { + return luaL_error(L, "sol: cannot call 'add' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int insert(lua_State* L) { + return luaL_error(L, "sol: cannot call 'insert' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int find(lua_State* L) { + return luaL_error(L, "sol: cannot call 'find' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int size(lua_State* L) { + return luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int clear(lua_State* L) { + return luaL_error(L, "sol: cannot call 'clear' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int empty(lua_State* L) { + return luaL_error(L, "sol: cannot call 'empty' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int erase(lua_State* L) { + return luaL_error(L, "sol: cannot call 'erase' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int next(lua_State* L) { + return luaL_error(L, "sol: cannot call 'next' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int pairs(lua_State* L) { + return luaL_error(L, "sol: cannot call '__pairs/pairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static int ipairs(lua_State* L) { + return luaL_error(L, "sol: cannot call '__ipairs' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + } + + static iterator begin(lua_State* L, T&) { + luaL_error(L, "sol: cannot call 'being' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + return lua_nil; + } + + static iterator end(lua_State* L, T&) { + luaL_error(L, "sol: cannot call 'end' on type '%s': it is not recognized as a container", detail::demangle<T>().c_str()); + return lua_nil; + } + }; + + template <typename X> + struct container_traits_default<X, std::enable_if_t<meta::all<is_forced_container<meta::unqualified_t<X>>, meta::has_value_type<meta::unqualified_t<container_decay_t<X>>>, meta::has_iterator<meta::unqualified_t<container_decay_t<X>>>>::value>> { + private: + typedef std::remove_pointer_t<meta::unwrap_unqualified_t<container_decay_t<X>>> T; + + private: + typedef container_traits<X> deferred_traits; + typedef meta::is_associative<T> is_associative; + typedef meta::is_lookup<T> is_lookup; + typedef meta::is_matched_lookup<T> is_matched_lookup; + typedef typename T::iterator iterator; + typedef typename T::value_type value_type; + typedef std::conditional_t<is_matched_lookup::value, + std::pair<value_type, value_type>, + std::conditional_t<is_associative::value || is_lookup::value, + value_type, + std::pair<std::ptrdiff_t, value_type> + > + > KV; + typedef typename KV::first_type K; + typedef typename KV::second_type V; + typedef std::conditional_t<is_matched_lookup::value, std::ptrdiff_t, K> next_K; + typedef decltype(*std::declval<iterator&>()) iterator_return; + typedef std::conditional_t<is_associative::value || is_matched_lookup::value, + std::add_lvalue_reference_t<V>, + std::conditional_t<is_lookup::value, + V, + iterator_return + > + > captured_type; + typedef typename meta::iterator_tag<iterator>::type iterator_category; + typedef std::is_same<iterator_category, std::input_iterator_tag> is_input_iterator; + typedef std::conditional_t<is_input_iterator::value, + V, + decltype(detail::deref_non_pointer(std::declval<captured_type>())) + > push_type; + typedef std::is_copy_assignable<V> is_copyable; + typedef meta::neg<meta::any< + std::is_const<V>, std::is_const<std::remove_reference_t<iterator_return>>, meta::neg<is_copyable> + >> is_writable; + typedef meta::unqualified_t<decltype(get_key(is_associative(), std::declval<std::add_lvalue_reference_t<value_type>>()))> key_type; + typedef meta::all<std::is_integral<K>, meta::neg<meta::any<is_associative, is_lookup>>> is_linear_integral; + + struct iter { + T& source; + iterator it; + std::size_t i; + + iter(T& source, iterator it) + : source(source), it(std::move(it)), i(0) { + } + }; + + static auto& get_src(lua_State* L) { +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto p = stack::unqualified_check_get<T*>(L, 1); + if (!p) { + luaL_error(L, "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", detail::demangle<T>().c_str()); + } + if (p.value() == nullptr) { + luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str()); + } + return *p.value(); +#else + return stack::unqualified_get<T>(L, 1); +#endif // Safe getting with error + } + + static error_result at_category(std::input_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) { + pos += deferred_traits::index_adjustment(L, self); + if (pos < 0) { + return stack::push(L, lua_nil); + } + auto it = deferred_traits::begin(L, self); + auto e = deferred_traits::end(L, self); + if (it == e) { + return stack::push(L, lua_nil); + } + while (pos > 0) { + --pos; + ++it; + if (it == e) { + return stack::push(L, lua_nil); + } + } + return get_associative(is_associative(), L, it); + } + + static error_result at_category(std::random_access_iterator_tag, lua_State* L, T& self, std::ptrdiff_t pos) { + std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); + pos += deferred_traits::index_adjustment(L, self); + if (pos < 0 || pos >= len) { + return stack::push(L, lua_nil); + } + auto it = std::next(deferred_traits::begin(L, self), pos); + return get_associative(is_associative(), L, it); + } + + static error_result at_start(lua_State* L, T& self, std::ptrdiff_t pos) { + return at_category(iterator_category(), L, self, pos); + } + + static error_result get_associative(std::true_type, lua_State* L, iterator& it) { + auto& v = *it; + return stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(v.second)); + } + + static error_result get_associative(std::false_type, lua_State* L, iterator& it) { + return stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(*it)); + } + + static error_result get_category(std::input_iterator_tag, lua_State* L, T& self, K& key) { + key += deferred_traits::index_adjustment(L, self); + if (key < 0) { + return stack::push(L, lua_nil); + } + auto it = deferred_traits::begin(L, self); + auto e = deferred_traits::end(L, self); + if (it == e) { + return stack::push(L, lua_nil); + } + while (key > 0) { + --key; + ++it; + if (it == e) { + return stack::push(L, lua_nil); + } + } + return get_associative(is_associative(), L, it); + } + + static error_result get_category(std::random_access_iterator_tag, lua_State* L, T& self, K& key) { + std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); + key += deferred_traits::index_adjustment(L, self); + if (key < 0 || key >= len) { + return stack::push(L, lua_nil); + } + auto it = std::next(deferred_traits::begin(L, self), key); + return get_associative(is_associative(), L, it); + } + + static error_result get_it(std::true_type, lua_State* L, T& self, K& key) { + return get_category(iterator_category(), L, self, key); + } + + static error_result get_comparative(std::true_type, lua_State* L, T& self, K& key) { + auto fx = [&](const value_type& r) -> bool { + return key == get_key(is_associative(), r); + }; + auto e = deferred_traits::end(L, self); + auto it = std::find_if(deferred_traits::begin(L, self), e, std::ref(fx)); + if (it == e) { + return stack::push(L, lua_nil); + } + return get_associative(is_associative(), L, it); + } + + static error_result get_comparative(std::false_type, lua_State*, T&, K&) { + return error_result("cannot get this key on '%s': no suitable way to increment iterator and compare to key value '%s'", detail::demangle<T>().data(), detail::demangle<K>().data()); + } + + static error_result get_it(std::false_type, lua_State* L, T& self, K& key) { + return get_comparative(meta::supports_op_equal<K, key_type>(), L, self, key); + } + + static error_result set_associative(std::true_type, iterator& it, stack_object value) { + auto& v = *it; + v.second = value.as<V>(); + return {}; + } + + static error_result set_associative(std::false_type, iterator& it, stack_object value) { + auto& v = *it; + v = value.as<V>(); + return {}; + } + + static error_result set_writable(std::true_type, lua_State*, T&, iterator& it, stack_object value) { + return set_associative(is_associative(), it, std::move(value)); + } + + static error_result set_writable(std::false_type, lua_State*, T&, iterator&, stack_object) { + return error_result("cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data()); + } + + static error_result set_category(std::input_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) { + decltype(auto) key = okey.as<K>(); + key += deferred_traits::index_adjustment(L, self); + auto e = deferred_traits::end(L, self); + auto it = deferred_traits::begin(L, self); + auto backit = it; + for (; key > 0 && it != e; --key, ++it) { + backit = it; + } + if (it == e) { + if (key == 0) { + return add_copyable(is_copyable(), L, self, std::move(value), meta::has_insert_after<T>::value ? backit : it); + } + return error_result("out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); + } + return set_writable(is_writable(), L, self, it, std::move(value)); + } + + static error_result set_category(std::random_access_iterator_tag, lua_State* L, T& self, stack_object okey, stack_object value) { + decltype(auto) key = okey.as<K>(); + if (key <= 0) { + return error_result("sol: out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str()); + } + key += deferred_traits::index_adjustment(L, self); + std::ptrdiff_t len = static_cast<std::ptrdiff_t>(size_start(L, self)); + if (key == len) { + return add_copyable(is_copyable(), L, self, std::move(value)); + } + else if (key > len) { + return error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); + } + auto it = std::next(deferred_traits::begin(L, self), key); + return set_writable(is_writable(), L, self, it, std::move(value)); + } + + static error_result set_comparative(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) { + decltype(auto) key = okey.as<K>(); + if (!is_writable::value) { + return error_result("cannot perform a 'set': '%s's iterator reference is not writable (non-copy-assignable or const)", detail::demangle<T>().data()); + } + auto fx = [&](const value_type& r) -> bool { + return key == get_key(is_associative(), r); + }; + auto e = deferred_traits::end(L, self); + auto it = std::find_if(deferred_traits::begin(L, self), e, std::ref(fx)); + if (it == e) { + return {}; + } + return set_writable(is_writable(), L, self, it, std::move(value)); + } + + static error_result set_comparative(std::false_type, lua_State*, T&, stack_object, stack_object) { + return error_result("cannot set this value on '%s': no suitable way to increment iterator or compare to '%s' key", detail::demangle<T>().data(), detail::demangle<K>().data()); + } + + static error_result set_associative_insert(std::true_type, lua_State*, T& self, iterator& it, K& key, stack_object value) { + self.insert(it, value_type(key, value.as<V>())); + return {}; + } + + static error_result set_associative_insert(std::false_type, lua_State*, T& self, iterator& it, K& key, stack_object) { + self.insert(it, key); + return {}; + } + + static error_result set_associative_find(std::true_type, lua_State* L, T& self, stack_object okey, stack_object value) { + decltype(auto) key = okey.as<K>(); + auto it = self.find(key); + if (it == deferred_traits::end(L, self)) { + return set_associative_insert(is_associative(), L, self, it, key, std::move(value)); + } + return set_writable(is_writable(), L, self, it, std::move(value)); + } + + static error_result set_associative_find(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) { + return set_comparative(meta::supports_op_equal<K, key_type>(), L, self, std::move(key), std::move(value)); + } + + static error_result set_it(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { + return set_category(iterator_category(), L, self, std::move(key), std::move(value)); + } + + static error_result set_it(std::false_type, lua_State* L, T& self, stack_object key, stack_object value) { + return set_associative_find(meta::all<has_find<T>, meta::any<is_associative, is_lookup>>(), L, self, std::move(key), std::move(value)); + } + + static error_result find_has_associative_lookup(std::true_type, lua_State* L, T& self) { + decltype(auto) key = stack::unqualified_get<K>(L, 2); + auto it = self.find(key); + if (it == deferred_traits::end(L, self)) { + return stack::push(L, lua_nil); + } + return get_associative(is_associative(), L, it); + } + + static error_result find_has_associative_lookup(std::false_type, lua_State* L, T& self) { + decltype(auto) value = stack::unqualified_get<V>(L, 2); + auto it = self.find(value); + if (it == deferred_traits::end(L, self)) { + return stack::push(L, lua_nil); + } + return get_associative(is_associative(), L, it); + } + + static error_result find_has(std::true_type, lua_State* L, T& self) { + return find_has_associative_lookup(meta::any<is_lookup, is_associative>(), L, self); + } + + static error_result find_associative_lookup(std::true_type, lua_State* L, iterator& it, std::size_t) { + return get_associative(is_associative(), L, it); + } + + static error_result find_associative_lookup(std::false_type, lua_State* L, iterator&, std::size_t index) { + return stack::push(L, index); + } + + static error_result find_comparative(std::false_type, lua_State*, T&) { + return error_result("cannot call 'find' on '%s': there is no 'find' function and the value_type is not equality comparable", detail::demangle<T>().c_str()); + } + + static error_result find_comparative(std::true_type, lua_State* L, T& self) { + decltype(auto) value = stack::unqualified_get<V>(L, 2); + auto it = deferred_traits::begin(L, self); + auto e = deferred_traits::end(L, self); + std::size_t index = 1; + for (;; ++it, ++index) { + if (it == e) { + return stack::push(L, lua_nil); + } + if (value == get_value(is_associative(), *it)) { + break; + } + } + return find_associative_lookup(meta::any<is_lookup, is_associative>(), L, it, index); + } + + static error_result find_has(std::false_type, lua_State* L, T& self) { + return find_comparative(meta::supports_op_equal<V>(), L, self); + } + + static error_result add_insert_after(std::false_type, lua_State* L, T& self, stack_object value, iterator&) { + return add_insert_after(std::false_type(), L, self, value); + } + + static error_result add_insert_after(std::false_type, lua_State*, T&, stack_object) { + return error_result("cannot call 'add' on type '%s': no suitable insert/push_back C++ functions", detail::demangle<T>().data()); + } + + static error_result add_insert_after(std::true_type, lua_State*, T& self, stack_object value, iterator& pos) { + self.insert_after(pos, value.as<V>()); + return {}; + } + + static error_result add_insert_after(std::true_type, lua_State* L, T& self, stack_object value) { + auto backit = self.before_begin(); + { + auto e = deferred_traits::end(L, self); + for (auto it = deferred_traits::begin(L, self); it != e; ++backit, ++it) { + } + } + return add_insert_after(std::true_type(), L, self, value, backit); + } + + static error_result add_insert(std::true_type, lua_State*, T& self, stack_object value, iterator& pos) { + self.insert(pos, value.as<V>()); + return {}; + } + + static error_result add_insert(std::true_type, lua_State* L, T& self, stack_object value) { + auto pos = deferred_traits::end(L, self); + return add_insert(std::true_type(), L, self, value, pos); + } + + static error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value, iterator& pos) { + return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value), pos); + } + + static error_result add_insert(std::false_type, lua_State* L, T& self, stack_object value) { + return add_insert_after(meta::has_insert_after<T>(), L, self, std::move(value)); + } + + static error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value, iterator&) { + self.push_back(value.as<V>()); + return {}; + } + + static error_result add_push_back(std::true_type, lua_State*, T& self, stack_object value) { + self.push_back(value.as<V>()); + return {}; + } + + static error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value, iterator& pos) { + return add_insert(meta::has_insert<T>(), L, self, value, pos); + } + + static error_result add_push_back(std::false_type, lua_State* L, T& self, stack_object value) { + return add_insert(meta::has_insert<T>(), L, self, value); + } + + static error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key, iterator& pos) { + self.insert(pos, value_type(key.as<K>(), stack::unqualified_get<V>(L, 3))); + return {}; + } + + static error_result add_associative(std::true_type, lua_State* L, T& self, stack_object key) { + auto pos = deferred_traits::end(L, self); + return add_associative(std::true_type(), L, self, std::move(key), pos); + } + + static error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value, iterator& pos) { + return add_push_back(meta::has_push_back<T>(), L, self, value, pos); + } + + static error_result add_associative(std::false_type, lua_State* L, T& self, stack_object value) { + return add_push_back(meta::has_push_back<T>(), L, self, value); + } + + static error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value, iterator& pos) { + return add_associative(is_associative(), L, self, std::move(value), pos); + } + + static error_result add_copyable(std::true_type, lua_State* L, T& self, stack_object value) { + return add_associative(is_associative(), L, self, value); + } + + static error_result add_copyable(std::false_type, lua_State* L, T& self, stack_object value, iterator&) { + return add_copyable(std::false_type(), L, self, std::move(value)); + } + + static error_result add_copyable(std::false_type, lua_State*, T&, stack_object) { + return error_result("cannot call 'add' on '%s': value_type is non-copyable", detail::demangle<T>().data()); + } + + static error_result insert_lookup(std::true_type, lua_State* L, T& self, stack_object, stack_object value) { + // TODO: should we warn or error about someone calling insert on an ordered / lookup container with no associativity? + return add_copyable(std::true_type(), L, self, std::move(value)); + } + + static error_result insert_lookup(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) { + auto it = deferred_traits::begin(L, self); + auto key = where.as<K>(); + key += deferred_traits::index_adjustment(L, self); + std::advance(it, key); + self.insert(it, value.as<V>()); + return {}; + } + + static error_result insert_after_has(std::true_type, lua_State* L, T& self, stack_object where, stack_object value) { + auto key = where.as<K>(); + auto backit = self.before_begin(); + { + key += deferred_traits::index_adjustment(L, self); + auto e = deferred_traits::end(L, self); + for (auto it = deferred_traits::begin(L, self); key > 0; ++backit, ++it, --key) { + if (backit == e) { + return error_result("sol: out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); + } + } + } + self.insert_after(backit, value.as<V>()); + return {}; + } + + static error_result insert_after_has(std::false_type, lua_State*, T&, stack_object, stack_object) { + return error_result("cannot call 'insert' on '%s': no suitable or similar functionality detected on this container", detail::demangle<T>().data()); + } + + static error_result insert_has(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { + return insert_lookup(meta::any<is_associative, is_lookup>(), L, self, std::move(key), std::move(value)); + } + + static error_result insert_has(std::false_type, lua_State* L, T& self, stack_object where, stack_object value) { + return insert_after_has(meta::has_insert_after<T>(), L, self, where, value); + } + + static error_result insert_copyable(std::true_type, lua_State* L, T& self, stack_object key, stack_object value) { + return insert_has(meta::has_insert<T>(), L, self, std::move(key), std::move(value)); + } + + static error_result insert_copyable(std::false_type, lua_State*, T&, stack_object, stack_object) { + return error_result("cannot call 'insert' on '%s': value_type is non-copyable", detail::demangle<T>().data()); + } + + static error_result erase_integral(std::true_type, lua_State* L, T& self, K& key) { + auto it = deferred_traits::begin(L, self); + key += deferred_traits::index_adjustment(L, self); + std::advance(it, key); + self.erase(it); + + return {}; + } + + static error_result erase_integral(std::false_type, lua_State* L, T& self, const K& key) { + auto fx = [&](const value_type& r) -> bool { + return key == r; + }; + auto e = deferred_traits::end(L, self); + auto it = std::find_if(deferred_traits::begin(L, self), e, std::ref(fx)); + if (it == e) { + return {}; + } + self.erase(it); + + return {}; + } + + static error_result erase_associative_lookup(std::true_type, lua_State*, T& self, const K& key) { + self.erase(key); + return {}; + } + + static error_result erase_associative_lookup(std::false_type, lua_State* L, T& self, K& key) { + return erase_integral(std::is_integral<K>(), L, self, key); + } + + static error_result erase_after_has(std::true_type, lua_State* L, T& self, K& key) { + auto backit = self.before_begin(); + { + key += deferred_traits::index_adjustment(L, self); + auto e = deferred_traits::end(L, self); + for (auto it = deferred_traits::begin(L, self); key > 0; ++backit, ++it, --key) { + if (backit == e) { + return error_result("sol: out of bounds for erase on '%s'", detail::demangle<T>().c_str()); + } + } + } + self.erase_after(backit); + return {}; + } + + static error_result erase_after_has(std::false_type, lua_State*, T&, const K&) { + return error_result("sol: cannot call erase on '%s'", detail::demangle<T>().c_str()); + } + + static error_result erase_has(std::true_type, lua_State* L, T& self, K& key) { + return erase_associative_lookup(meta::any<is_associative, is_lookup>(), L, self, key); + } + + static error_result erase_has(std::false_type, lua_State* L, T& self, K& key) { + return erase_after_has(has_erase_after<T>(), L, self, key); + } + + static auto size_has(std::false_type, lua_State* L, T& self) { + return std::distance(deferred_traits::begin(L, self), deferred_traits::end(L, self)); + } + + static auto size_has(std::true_type, lua_State*, T& self) { + return self.size(); + } + + static void clear_has(std::true_type, lua_State*, T& self) { + self.clear(); + } + + static void clear_has(std::false_type, lua_State* L, T&) { + luaL_error(L, "sol: cannot call clear on '%s'", detail::demangle<T>().c_str()); + } + + static bool empty_has(std::true_type, lua_State*, T& self) { + return self.empty(); + } + + static bool empty_has(std::false_type, lua_State* L, T& self) { + return deferred_traits::begin(L, self) == deferred_traits::end(L, self); + } + + static error_result get_start(lua_State* L, T& self, K& key) { + return get_it(is_linear_integral(), L, self, key); + } + + static error_result set_start(lua_State* L, T& self, stack_object key, stack_object value) { + return set_it(is_linear_integral(), L, self, std::move(key), std::move(value)); + } + + static std::size_t size_start(lua_State* L, T& self) { + return size_has(meta::has_size<T>(), L, self); + } + + static void clear_start(lua_State* L, T& self) { + clear_has(has_clear<T>(), L, self); + } + + static bool empty_start(lua_State* L, T& self) { + return empty_has(has_empty<T>(), L, self); + } + + static error_result erase_start(lua_State* L, T& self, K& key) { + return erase_has(has_erase<T>(), L, self, key); + } + + template <bool ip> + static int next_associative(std::true_type, lua_State* L) { + iter& i = stack::unqualified_get<user<iter>>(L, 1); + auto& source = i.source; + auto& it = i.it; + if (it == deferred_traits::end(L, source)) { + return 0; + } + int p; + if (ip) { + ++i.i; + p = stack::push_reference(L, i.i); + } + else { + p = stack::push_reference(L, it->first); + } + p += stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(it->second)); + std::advance(it, 1); + return p; + } + + template <bool> + static int next_associative(std::false_type, lua_State* L) { + iter& i = stack::unqualified_get<user<iter>>(L, 1); + auto& source = i.source; + auto& it = i.it; + next_K k = stack::unqualified_get<next_K>(L, 2); + if (it == deferred_traits::end(L, source)) { + return 0; + } + int p; + p = stack::push_reference(L, k + 1); + p += stack::stack_detail::push_reference<push_type>(L, detail::deref_non_pointer(*it)); + std::advance(it, 1); + return p; + } + + template <bool ip> + static int next_iter(lua_State* L) { + typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; + return next_associative<ip>(is_assoc(), L); + } + + template <bool ip> + static int pairs_associative(std::true_type, lua_State* L) { + auto& src = get_src(L); + stack::push(L, next_iter<ip>); + stack::push<user<iter>>(L, src, deferred_traits::begin(L, src)); + stack::push(L, lua_nil); + return 3; + } + + template <bool ip> + static int pairs_associative(std::false_type, lua_State* L) { + auto& src = get_src(L); + stack::push(L, next_iter<ip>); + stack::push<user<iter>>(L, src, deferred_traits::begin(L, src)); + stack::push(L, 0); + return 3; + } + + public: + static int at(lua_State* L) { + auto& self = get_src(L); + error_result er; + { + std::ptrdiff_t pos = stack::unqualified_get<std::ptrdiff_t>(L); + er = at_start(L, self, pos); + } + return handle_errors(L, er); + } + + static int get(lua_State* L) { + auto& self = get_src(L); + error_result er; + { + decltype(auto) key = stack::unqualified_get<K>(L); + er = get_start(L, self, key); + } + return handle_errors(L, er); + } + + static int index_get(lua_State* L) { + return get(L); + } + + static int set(lua_State* L) { + stack_object value = stack_object(L, raw_index(3)); + if (type_of(L, 3) == type::lua_nil) { + return erase(L); + } + auto& self = get_src(L); + error_result er = set_start(L, self, stack_object(L, raw_index(2)), std::move(value)); + return handle_errors(L, er); + } + + static int index_set(lua_State* L) { + return set(L); + } + + static int add(lua_State* L) { + auto& self = get_src(L); + error_result er = add_copyable(is_copyable(), L, self, stack_object(L, raw_index(2))); + return handle_errors(L, er); + } + + static int insert(lua_State* L) { + auto& self = get_src(L); + error_result er = insert_copyable(is_copyable(), L, self, stack_object(L, raw_index(2)), stack_object(L, raw_index(3))); + return handle_errors(L, er); + } + + static int find(lua_State* L) { + auto& self = get_src(L); + error_result er = find_has(has_find<T>(), L, self); + return handle_errors(L, er); + } + + static iterator begin(lua_State*, T& self) { + using std::begin; + return begin(self); + } + + static iterator end(lua_State*, T& self) { + using std::end; + return end(self); + } + + static int size(lua_State* L) { + auto& self = get_src(L); + std::size_t r = size_start(L, self); + return stack::push(L, r); + } + + static int clear(lua_State* L) { + auto& self = get_src(L); + clear_start(L, self); + return 0; + } + + static int erase(lua_State* L) { + auto& self = get_src(L); + error_result er; + { + decltype(auto) key = stack::unqualified_get<K>(L, 2); + er = erase_start(L, self, key); + } + return handle_errors(L, er); + } + + static int empty(lua_State* L) { + auto& self = get_src(L); + return stack::push(L, empty_start(L, self)); + } + + static std::ptrdiff_t index_adjustment(lua_State*, T&) { +#if defined(SOL_CONTAINERS_START_INDEX) + return static_cast<std::ptrdiff_t>((SOL_CONTAINERS_START) == 0 ? 0 : -(SOL_CONTAINERS_START)); +#else + return static_cast<std::ptrdiff_t>(-1); +#endif + } + + static int pairs(lua_State* L) { + typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; + return pairs_associative<false>(is_assoc(), L); + } + + static int ipairs(lua_State* L) { + typedef meta::any<is_associative, meta::all<is_lookup, meta::neg<is_matched_lookup>>> is_assoc; + return pairs_associative<true>(is_assoc(), L); + } + + static int next(lua_State* L) { + return stack::push(L, next_iter<false>); + } + }; + + template <typename X> + struct container_traits_default<X, std::enable_if_t<std::is_array<std::remove_pointer_t<meta::unwrap_unqualified_t<X>>>::value>> { + private: + typedef std::remove_pointer_t<meta::unwrap_unqualified_t<X>> T; + typedef container_traits<X> deferred_traits; + + public: + typedef std::remove_extent_t<T> value_type; + typedef value_type* iterator; + + private: + struct iter { + T& source; + iterator it; + + iter(T& source, iterator it) + : source(source), it(std::move(it)) { + } + }; + + static auto& get_src(lua_State* L) { + auto p = stack::unqualified_check_get<T*>(L, 1); +#if defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + if (!p) { + luaL_error(L, "sol: 'self' is not of type '%s' (pass 'self' as first argument with ':' or call on proper type)", detail::demangle<T>().c_str()); + } + if (p.value() == nullptr) { + luaL_error(L, "sol: 'self' argument is nil (pass 'self' as first argument with ':' or call on a '%s' type)", detail::demangle<T>().c_str()); + } +#endif // Safe getting with error + return *p.value(); + } + + static int find(std::true_type, lua_State* L) { + T& self = get_src(L); + decltype(auto) value = stack::unqualified_get<value_type>(L, 2); + std::size_t N = std::extent<T>::value; + for (std::size_t idx = 0; idx < N; ++idx) { + const auto& v = self[idx]; + if (v == value) { + return stack::push(L, idx + 1); + } + } + return stack::push(L, lua_nil); + } + + static int find(std::false_type, lua_State* L) { + return luaL_error(L, "sol: cannot call 'find' on '%s': no supported comparison operator for the value type", detail::demangle<T>().c_str()); + } + + static int next_iter(lua_State* L) { + iter& i = stack::unqualified_get<user<iter>>(L, 1); + auto& source = i.source; + auto& it = i.it; + std::size_t k = stack::unqualified_get<std::size_t>(L, 2); + if (it == deferred_traits::end(L, source)) { + return 0; + } + int p; + p = stack::push_reference(L, k + 1); + p += stack::push_reference(L, detail::deref_non_pointer(*it)); + std::advance(it, 1); + return p; + } + + public: + static int clear(lua_State* L) { + return luaL_error(L, "sol: cannot call 'clear' on type '%s': cannot remove all items from a fixed array", detail::demangle<T>().c_str()); + } + + static int erase(lua_State* L) { + return luaL_error(L, "sol: cannot call 'erase' on type '%s': cannot remove an item from fixed arrays", detail::demangle<T>().c_str()); + } + + static int add(lua_State* L) { + return luaL_error(L, "sol: cannot call 'add' on type '%s': cannot add to fixed arrays", detail::demangle<T>().c_str()); + } + + static int insert(lua_State* L) { + return luaL_error(L, "sol: cannot call 'insert' on type '%s': cannot insert new entries into fixed arrays", detail::demangle<T>().c_str()); + } + + static int at(lua_State* L) { + return get(L); + } + + static int get(lua_State* L) { + T& self = get_src(L); + std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2); + idx += deferred_traits::index_adjustment(L, self); + if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value) || idx < 0) { + return stack::push(L, lua_nil); + } + return stack::push_reference(L, detail::deref_non_pointer(self[idx])); + } + + static int index_get(lua_State* L) { + return get(L); + } + + static int set(lua_State* L) { + T& self = get_src(L); + std::ptrdiff_t idx = stack::unqualified_get<std::ptrdiff_t>(L, 2); + idx += deferred_traits::index_adjustment(L, self); + if (idx >= static_cast<std::ptrdiff_t>(std::extent<T>::value)) { + return luaL_error(L, "sol: index out of bounds (too big) for set on '%s'", detail::demangle<T>().c_str()); + } + if (idx < 0) { + return luaL_error(L, "sol: index out of bounds (too small) for set on '%s'", detail::demangle<T>().c_str()); + } + self[idx] = stack::unqualified_get<value_type>(L, 3); + return 0; + } + + static int index_set(lua_State* L) { + return set(L); + } + + static int find(lua_State* L) { + return find(meta::supports_op_equal<value_type, value_type>(), L); + } + + static int size(lua_State* L) { + return stack::push(L, std::extent<T>::value); + } + + static int empty(lua_State* L) { + return stack::push(L, std::extent<T>::value > 0); + } + + static int pairs(lua_State* L) { + auto& src = get_src(L); + stack::push(L, next_iter); + stack::push<user<iter>>(L, src, deferred_traits::begin(L, src)); + stack::push(L, 0); + return 3; + } + + static int ipairs(lua_State* L) { + return pairs(L); + } + + static int next(lua_State* L) { + return stack::push(L, next_iter); + } + + static std::ptrdiff_t index_adjustment(lua_State*, T&) { +#if defined(SOL_CONTAINERS_START_INDEX) + return (SOL_CONTAINERS_START) == 0 ? 0 : -(SOL_CONTAINERS_START); +#else + return -1; +#endif + } + + static iterator begin(lua_State*, T& self) { + return std::addressof(self[0]); + } + + static iterator end(lua_State*, T& self) { + return std::addressof(self[0]) + std::extent<T>::value; + } + }; + + template <typename X> + struct container_traits_default<container_traits<X>> : container_traits_default<X> {}; + } // namespace container_detail + + template <typename T> + struct container_traits : container_detail::container_traits_default<T> {}; + +} // namespace sol + +// end of sol/container_traits.hpp + +namespace sol { + + template <typename X> + struct container_usertype_metatable { + typedef std::remove_pointer_t<meta::unqualified_t<X>> T; + typedef container_traits<T> traits; + typedef container_detail::container_traits_default<T> default_traits; + + static int real_index_get_traits(std::true_type, lua_State* L) { + return traits::index_get(L); + } + + static int real_index_get_traits(std::false_type, lua_State* L) { + return default_traits::index_get(L); + } + + static int real_index_call(lua_State* L) { + typedef usertype_detail::map_t<std::string, lua_CFunction> call_map; + static const call_map calls{ + { "at", &at_call }, + { "get", &real_get_call }, + { "set", &real_set_call }, + { "size", &real_length_call }, + { "add", &real_add_call }, + { "empty", &real_empty_call }, + { "insert", &real_insert_call }, + { "clear", &real_clear_call }, + { "find", &real_find_call }, + { "erase", &real_erase_call }, + { "pairs", &pairs_call }, + { "next", &next_call }, + }; + auto maybenameview = stack::unqualified_check_get<string_view>(L, 2); + if (maybenameview) { + const string_view& nameview = *maybenameview; +#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH + auto it = calls.find(nameview, string_view_hash(), std::equal_to<string_view>()); +#else + std::string name(nameview.data(), nameview.size()); + auto it = calls.find(name); +#endif + if (it != calls.cend()) { + return stack::push(L, it->second); + } + } + return real_index_get_traits(container_detail::has_traits_index_get<traits>(), L); + } + + static int real_at_traits(std::true_type, lua_State* L) { + return traits::at(L); + } + + static int real_at_traits(std::false_type, lua_State* L) { + return default_traits::at(L); + } + + static int real_at_call(lua_State* L) { + return real_at_traits(container_detail::has_traits_at<traits>(), L); + } + + static int real_get_traits(std::true_type, lua_State* L) { + return traits::get(L); + } + + static int real_get_traits(std::false_type, lua_State* L) { + return default_traits::get(L); + } + + static int real_get_call(lua_State* L) { + return real_get_traits(container_detail::has_traits_get<traits>(), L); + } + + static int real_set_traits(std::true_type, lua_State* L) { + return traits::set(L); + } + + static int real_set_traits(std::false_type, lua_State* L) { + return default_traits::set(L); + } + + static int real_set_call(lua_State* L) { + return real_set_traits(container_detail::has_traits_set<traits>(), L); + } + + static int real_index_set_traits(std::true_type, lua_State* L) { + return traits::index_set(L); + } + + static int real_index_set_traits(std::false_type, lua_State* L) { + return default_traits::index_set(L); + } + + static int real_new_index_call(lua_State* L) { + return real_index_set_traits(container_detail::has_traits_index_set<traits>(), L); + } + + static int real_pairs_traits(std::true_type, lua_State* L) { + return traits::pairs(L); + } + + static int real_pairs_traits(std::false_type, lua_State* L) { + return default_traits::pairs(L); + } + + static int real_pairs_call(lua_State* L) { + return real_pairs_traits(container_detail::has_traits_pairs<traits>(), L); + } + + static int real_ipairs_traits(std::true_type, lua_State* L) { + return traits::ipairs(L); + } + + static int real_ipairs_traits(std::false_type, lua_State* L) { + return default_traits::ipairs(L); + } + + static int real_ipairs_call(lua_State* L) { + return real_ipairs_traits(container_detail::has_traits_ipairs<traits>(), L); + } + + static int real_next_traits(std::true_type, lua_State* L) { + return traits::next(L); + } + + static int real_next_traits(std::false_type, lua_State* L) { + return default_traits::next(L); + } + + static int real_next_call(lua_State* L) { + return real_next_traits(container_detail::has_traits_next<traits>(), L); + } + + static int real_size_traits(std::true_type, lua_State* L) { + return traits::size(L); + } + + static int real_size_traits(std::false_type, lua_State* L) { + return default_traits::size(L); + } + + static int real_length_call(lua_State* L) { + return real_size_traits(container_detail::has_traits_size<traits>(), L); + } + + static int real_add_traits(std::true_type, lua_State* L) { + return traits::add(L); + } + + static int real_add_traits(std::false_type, lua_State* L) { + return default_traits::add(L); + } + + static int real_add_call(lua_State* L) { + return real_add_traits(container_detail::has_traits_add<traits>(), L); + } + + static int real_insert_traits(std::true_type, lua_State* L) { + return traits::insert(L); + } + + static int real_insert_traits(std::false_type, lua_State* L) { + return default_traits::insert(L); + } + + static int real_insert_call(lua_State* L) { + return real_insert_traits(container_detail::has_traits_insert<traits>(), L); + } + + static int real_clear_traits(std::true_type, lua_State* L) { + return traits::clear(L); + } + + static int real_clear_traits(std::false_type, lua_State* L) { + return default_traits::clear(L); + } + + static int real_clear_call(lua_State* L) { + return real_clear_traits(container_detail::has_traits_clear<traits>(), L); + } + + static int real_empty_traits(std::true_type, lua_State* L) { + return traits::empty(L); + } + + static int real_empty_traits(std::false_type, lua_State* L) { + return default_traits::empty(L); + } + + static int real_empty_call(lua_State* L) { + return real_empty_traits(container_detail::has_traits_empty<traits>(), L); + } + + static int real_erase_traits(std::true_type, lua_State* L) { + return traits::erase(L); + } + + static int real_erase_traits(std::false_type, lua_State* L) { + return default_traits::erase(L); + } + + static int real_erase_call(lua_State* L) { + return real_erase_traits(container_detail::has_traits_erase<traits>(), L); + } + + static int real_find_traits(std::true_type, lua_State* L) { + return traits::find(L); + } + + static int real_find_traits(std::false_type, lua_State* L) { + return default_traits::find(L); + } + + static int real_find_call(lua_State* L) { + return real_find_traits(container_detail::has_traits_find<traits>(), L); + } + + static int add_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_add_call), (&real_add_call)>(L); + } + + static int erase_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_erase_call), (&real_erase_call)>(L); + } + + static int insert_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_insert_call), (&real_insert_call)>(L); + } + + static int clear_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_clear_call), (&real_clear_call)>(L); + } + + static int empty_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_empty_call), (&real_empty_call)>(L); + } + + static int find_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_find_call), (&real_find_call)>(L); + } + + static int length_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_length_call), (&real_length_call)>(L); + } + + static int pairs_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_pairs_call), (&real_pairs_call)>(L); + } + + static int ipairs_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_ipairs_call), (&real_ipairs_call)>(L); + } + + static int next_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_next_call), (&real_next_call)>(L); + } + + static int at_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_at_call), (&real_at_call)>(L); + } + + static int get_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_get_call), (&real_get_call)>(L); + } + + static int set_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_set_call), (&real_set_call)>(L); + } + + static int index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L); + } + + static int new_index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L); + } + }; + + namespace stack { + namespace stack_detail { + template <typename T, bool is_shim = false> + struct metatable_setup { + lua_State* L; + + metatable_setup(lua_State* L) + : L(L) { + } + + void operator()() { + typedef container_usertype_metatable<std::conditional_t<is_shim, + as_container_t<std::remove_pointer_t<T>>, + std::remove_pointer_t<T>>> + meta_cumt; + static const char* metakey = is_shim ? &usertype_traits<as_container_t<std::remove_pointer_t<T>>>::metatable()[0] : &usertype_traits<T>::metatable()[0]; + static const std::array<luaL_Reg, 19> reg = { { + { "__pairs", &meta_cumt::pairs_call }, + { "__ipairs", &meta_cumt::ipairs_call }, + { "__len", &meta_cumt::length_call }, + { "__index", &meta_cumt::index_call }, + { "__newindex", &meta_cumt::new_index_call }, + { "pairs", &meta_cumt::pairs_call }, + { "next", &meta_cumt::next_call }, + { "at", &meta_cumt::at_call }, + { "get", &meta_cumt::get_call }, + { "set", &meta_cumt::set_call }, + { "size", &meta_cumt::length_call }, + { "empty", &meta_cumt::empty_call }, + { "clear", &meta_cumt::clear_call }, + { "insert", &meta_cumt::insert_call }, + { "add", &meta_cumt::add_call }, + { "find", &meta_cumt::find_call }, + { "erase", &meta_cumt::erase_call }, + std::is_pointer<T>::value ? luaL_Reg{ nullptr, nullptr } : luaL_Reg{ "__gc", &detail::usertype_alloc_destruct<T> }, + { nullptr, nullptr } + } }; + + if (luaL_newmetatable(L, metakey) == 1) { + luaL_setfuncs(L, reg.data(), 0); + } + lua_setmetatable(L, -2); + } + }; + } // namespace stack_detail + + template <typename T> + struct pusher<as_container_t<T>> { + typedef meta::unqualified_t<T> C; + + static int push_lvalue(std::true_type, lua_State* L, const C& cont) { + stack_detail::metatable_setup<C*, true> fx(L); + return pusher<detail::as_pointer_tag<const C>>{}.push_fx(L, fx, detail::ptr(cont)); + } + + static int push_lvalue(std::false_type, lua_State* L, const C& cont) { + stack_detail::metatable_setup<C, true> fx(L); + return pusher<detail::as_value_tag<C>>{}.push_fx(L, fx, cont); + } + + static int push_rvalue(std::true_type, lua_State* L, C&& cont) { + stack_detail::metatable_setup<C, true> fx(L); + return pusher<detail::as_value_tag<C>>{}.push_fx(L, fx, std::move(cont)); + } + + static int push_rvalue(std::false_type, lua_State* L, const C& cont) { + return push_lvalue(std::is_lvalue_reference<T>(), L, cont); + } + + static int push(lua_State* L, const as_container_t<T>& as_cont) { + return push_lvalue(std::is_lvalue_reference<T>(), L, as_cont.source); + } + + static int push(lua_State* L, as_container_t<T>&& as_cont) { + return push_rvalue(meta::all<std::is_rvalue_reference<T>, meta::neg<std::is_lvalue_reference<T>>>(), L, std::forward<T>(as_cont.source)); + } + }; + + template <typename T> + struct pusher<as_container_t<T*>> { + typedef std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>> C; + + static int push(lua_State* L, T* cont) { + stack_detail::metatable_setup<C> fx(L); + return pusher<detail::as_pointer_tag<T>>{}.push_fx(L, fx, cont); + } + }; + + template <typename T> + struct pusher<T, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<is_lua_reference<meta::unqualified_t<T>>>>::value>> { + typedef meta::unqualified_t<T> C; + + static int push(lua_State* L, const T& cont) { + stack_detail::metatable_setup<C> fx(L); + return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, cont); + } + + static int push(lua_State* L, T&& cont) { + stack_detail::metatable_setup<C> fx(L); + return pusher<detail::as_value_tag<T>>{}.push_fx(L, fx, std::move(cont)); + } + }; + + template <typename T> + struct pusher<T*, std::enable_if_t<meta::all<is_container<meta::unqualified_t<T>>, meta::neg<is_lua_reference<meta::unqualified_t<T>>>>::value>> { + typedef std::add_pointer_t<meta::unqualified_t<std::remove_pointer_t<T>>> C; + + static int push(lua_State* L, T* cont) { + stack_detail::metatable_setup<C> fx(L); + return pusher<detail::as_pointer_tag<T>>{}.push_fx(L, fx, cont); + } + }; + + template <typename T, typename C> + struct checker<as_container_t<T>, type::userdata, C> { + template <typename Handler> + static bool check(lua_State* L, int index, Handler&& handler, record& tracking) { + return stack::check<T>(L, index, std::forward<Handler>(handler), tracking); + } + }; + + template <typename T> + struct getter<as_container_t<T>> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return stack::unqualified_get<T>(L, index, tracking); + } + }; + + template <typename T> + struct getter<as_container_t<T>*> { + static decltype(auto) get(lua_State* L, int index, record& tracking) { + return stack::unqualified_get<T*>(L, index, tracking); + } + }; + } // namespace stack + +} // namespace sol + +// end of sol/container_usertype_metatable.hpp + +// beginning of sol/usertype_core.hpp + +#include <sstream> + +namespace sol { + namespace usertype_detail { + struct no_comp { + template <typename A, typename B> + bool operator()(A&&, B&&) const { + return false; + } + }; + + template <typename T> + int is_check(lua_State* L) { + return stack::push(L, stack::check<T>(L, 1, &no_panic)); + } + + template <typename T> + inline int member_default_to_string(std::true_type, lua_State* L) { + decltype(auto) ts = stack::get<T>(L, 1).to_string(); + return stack::push(L, std::forward<decltype(ts)>(ts)); + } + + template <typename T> + inline int member_default_to_string(std::false_type, lua_State* L) { + return luaL_error(L, "cannot perform to_string on '%s': no 'to_string' overload in namespace, 'to_string' member function, or operator<<(ostream&, ...) present", detail::demangle<T>().data()); + } + + template <typename T> + inline int adl_default_to_string(std::true_type, lua_State* L) { + using namespace std; + decltype(auto) ts = to_string(stack::get<T>(L, 1)); + return stack::push(L, std::forward<decltype(ts)>(ts)); + } + + template <typename T> + inline int adl_default_to_string(std::false_type, lua_State* L) { + return member_default_to_string<T>(meta::supports_to_string_member<T>(), L); + } + + template <typename T> + inline int oss_default_to_string(std::true_type, lua_State* L) { + std::ostringstream oss; + oss << stack::unqualified_get<T>(L, 1); + return stack::push(L, oss.str()); + } + + template <typename T> + inline int oss_default_to_string(std::false_type, lua_State* L) { + return adl_default_to_string<T>(meta::supports_adl_to_string<T>(), L); + } + + template <typename T> + inline int default_to_string(lua_State* L) { + return oss_default_to_string<T>(meta::supports_ostream_op<T>(), L); + } + + template <typename T, typename Op> + int comparsion_operator_wrap(lua_State* L) { + auto maybel = stack::unqualified_check_get<T&>(L, 1); + if (maybel) { + auto mayber = stack::unqualified_check_get<T&>(L, 2); + if (mayber) { + auto& l = *maybel; + auto& r = *mayber; + if (std::is_same<no_comp, Op>::value) { + return stack::push(L, detail::ptr(l) == detail::ptr(r)); + } + else { + Op op; + return stack::push(L, (detail::ptr(l) == detail::ptr(r)) || op(detail::deref(l), detail::deref(r))); + } + } + } + return stack::push(L, false); + } + + template <typename T, typename Op, typename Supports, typename Regs, meta::enable<Supports> = meta::enabler> + inline void make_reg_op(Regs& l, int& index, const char* name) { + lua_CFunction f = &comparsion_operator_wrap<T, Op>; + l[index] = luaL_Reg{ name, f }; + ++index; + } + + template <typename T, typename Op, typename Supports, typename Regs, meta::disable<Supports> = meta::enabler> + inline void make_reg_op(Regs&, int&, const char*) { + // Do nothing if there's no support + } + + template <typename T, typename Supports, typename Regs, meta::enable<Supports> = meta::enabler> + inline void make_to_string_op(Regs& l, int& index) { + const char* name = to_string(meta_function::to_string).c_str(); + lua_CFunction f = &detail::static_trampoline<&default_to_string<T>>; + l[index] = luaL_Reg{ name, f }; + ++index; + } + + template <typename T, typename Supports, typename Regs, meta::disable<Supports> = meta::enabler> + inline void make_to_string_op(Regs&, int&) { + // Do nothing if there's no support + } + + template <typename T, typename Regs, meta::enable<meta::has_deducible_signature<T>> = meta::enabler> + inline void make_call_op(Regs& l, int& index) { + const char* name = to_string(meta_function::call).c_str(); + lua_CFunction f = &c_call<decltype(&T::operator()), &T::operator()>; + l[index] = luaL_Reg{ name, f }; + ++index; + } + + template <typename T, typename Regs, meta::disable<meta::has_deducible_signature<T>> = meta::enabler> + inline void make_call_op(Regs&, int&) { + // Do nothing if there's no support + } + + template <typename T, typename Regs> + inline void make_length_op_const(std::true_type, Regs& l, int& index) { + const char* name = to_string(meta_function::length).c_str(); +#if defined(__clang__) + l[index] = luaL_Reg{ name, &c_call<decltype(&T::size), &T::size> }; +#else + typedef decltype(std::declval<T>().size()) R; + using sz_func = R(T::*)()const; + l[index] = luaL_Reg{ name, &c_call<decltype(static_cast<sz_func>(&T::size)), static_cast<sz_func>(&T::size)> }; +#endif + ++index; + } + + template <typename T, typename Regs> + inline void make_length_op_const(std::false_type, Regs& l, int& index) { + const char* name = to_string(meta_function::length).c_str(); +#if defined(__clang__) + l[index] = luaL_Reg{ name, &c_call<decltype(&T::size), &T::size> }; +#else + typedef decltype(std::declval<T>().size()) R; + using sz_func = R(T::*)(); + l[index] = luaL_Reg{ name, &c_call<decltype(static_cast<sz_func>(&T::size)), static_cast<sz_func>(&T::size)> }; +#endif + ++index; + } + + template <typename T, typename Regs, meta::enable<meta::has_size<T>, meta::has_size<const T>> = meta::enabler> + inline void make_length_op(Regs& l, int& index) { + make_length_op_const<T>(meta::has_size<const T>(), l, index); + } + + template <typename T, typename Regs, meta::disable<meta::has_size<T>, meta::has_size<const T>> = meta::enabler> + inline void make_length_op(Regs&, int&) { + // Do nothing if there's no support + } + + template <typename T, typename Regs, meta::enable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>>> + void make_destructor(Regs& l, int& index) { + const char* name = to_string(meta_function::garbage_collect).c_str(); + l[index] = luaL_Reg{ name, is_unique_usertype<T>::value ? &detail::unique_destruct<T> : &detail::usertype_alloc_destruct<T> }; + ++index; + } + + template <typename T, typename Regs, meta::disable<meta::neg<std::is_pointer<T>>, std::is_destructible<T>>> + void make_destructor(Regs& l, int& index) { + if (!std::is_destructible<T>::value) { + // if the value is not destructible, plant an erroring __gc method + // to warn the user of a problem when it comes around + // this won't trigger if the user performs `new_usertype` / `new_simple_usertype` and + // rigs the class up properly + const char* name = to_string(meta_function::garbage_collect).c_str(); + l[index] = luaL_Reg{ name, &detail::cannot_destruct<T> }; + ++index; + } + } + + template <typename T, typename Regs, typename Fx> + void insert_default_registrations(std::false_type, Regs&, int&, Fx&&) { + // no-op + } + + template <typename T, typename Regs, typename Fx> + void insert_default_registrations(std::true_type, Regs& l, int& index, Fx&& fx) { + if (fx(meta_function::less_than)) { + const char* name = to_string(meta_function::less_than).c_str(); + usertype_detail::make_reg_op<T, std::less<>, meta::supports_op_less<T>>(l, index, name); + } + if (fx(meta_function::less_than_or_equal_to)) { + const char* name = to_string(meta_function::less_than_or_equal_to).c_str(); + usertype_detail::make_reg_op<T, std::less_equal<>, meta::supports_op_less_equal<T>>(l, index, name); + } + if (fx(meta_function::equal_to)) { + const char* name = to_string(meta_function::equal_to).c_str(); + usertype_detail::make_reg_op<T, std::conditional_t<meta::supports_op_equal<T>::value, std::equal_to<>, usertype_detail::no_comp>, std::true_type>(l, index, name); + } + if (fx(meta_function::pairs)) { + const char* name = to_string(meta_function::pairs).c_str(); + l[index] = luaL_Reg{ name, container_usertype_metatable<as_container_t<T>>::pairs_call }; + ++index; + } + if (fx(meta_function::length)) { + usertype_detail::make_length_op<T>(l, index); + } + if (fx(meta_function::to_string)) { + usertype_detail::make_to_string_op<T, is_to_stringable<T>>(l, index); + } + if (fx(meta_function::call_function)) { + usertype_detail::make_call_op<T>(l, index); + } + } + + template <typename T, typename Regs, typename Fx> + void insert_default_registrations(Regs& l, int& index, Fx&& fx) { + insert_default_registrations<T>(is_automagical<T>(), l, index, std::forward<Fx>(fx)); + } + } // namespace usertype_detail + + namespace stack { namespace stack_detail { + template <typename T> + struct undefined_metatable { + typedef meta::all<meta::neg<std::is_pointer<T>>, std::is_destructible<T>> is_destructible; + typedef std::remove_pointer_t<T> P; + lua_State* L; + const char* key; + + undefined_metatable(lua_State* l, const char* k) + : L(l), key(k) { + } + + void operator()() const { + if (luaL_newmetatable(L, key) == 1) { + luaL_Reg l[32]{}; + int index = 0; + auto fx = [](meta_function) { return true; }; + usertype_detail::insert_default_registrations<P>(l, index, fx); + usertype_detail::make_destructor<T>(l, index); + luaL_setfuncs(L, l, 0); + + // __type table + lua_createtable(L, 0, 2); + const std::string& name = detail::demangle<T>(); + lua_pushlstring(L, name.c_str(), name.size()); + lua_setfield(L, -2, "name"); + lua_CFunction is_func = &usertype_detail::is_check<T>; + lua_pushcclosure(L, is_func, 0); + lua_setfield(L, -2, "is"); + lua_setfield(L, -2, to_string(meta_function::type).c_str()); + } + lua_setmetatable(L, -2); + } + }; + } + } // namespace stack::stack_detail +} // namespace sol + +// end of sol/usertype_core.hpp + +#include <cstdio> +#include <bitset> + +namespace sol { + + struct usertype_metatable_core; + + namespace usertype_detail { + const int metatable_index = 2; + const int metatable_core_index = 3; + const int filler_index = 4; + const int magic_index = 5; + + const int simple_metatable_index = 2; + const int index_function_index = 3; + const int newindex_function_index = 4; + + typedef void (*base_walk)(lua_State*, bool&, int&, string_view&); + typedef int (*member_search)(lua_State*, void*, usertype_metatable_core&, int); + + struct call_information { + member_search index; + member_search new_index; + int runtime_target; + + call_information(member_search index, member_search newindex) + : call_information(index, newindex, -1) { + } + call_information(member_search index, member_search newindex, int runtimetarget) + : index(index), new_index(newindex), runtime_target(runtimetarget) { + } + }; + + typedef map_t<std::string, call_information> mapping_t; + + struct variable_wrapper { + virtual int index(lua_State* L) = 0; + virtual int new_index(lua_State* L) = 0; + virtual ~variable_wrapper(){}; + }; + + template <typename T, typename F> + struct callable_binding : variable_wrapper { + F fx; + + template <typename Arg> + callable_binding(Arg&& arg) + : fx(std::forward<Arg>(arg)) { + } + + virtual int index(lua_State* L) override { + return call_detail::call_wrapped<T, true, true>(L, fx); + } + + virtual int new_index(lua_State* L) override { + return call_detail::call_wrapped<T, false, true>(L, fx); + } + }; + + typedef map_t<std::string, std::unique_ptr<variable_wrapper>> variable_map; + typedef map_t<std::string, object> function_map; + + struct simple_map { + const char* metakey; + variable_map variables; + function_map functions; + object index; + object newindex; + base_walk indexbaseclasspropogation; + base_walk newindexbaseclasspropogation; + + simple_map(const char* mkey, base_walk index, base_walk newindex, object i, object ni, variable_map&& vars, function_map&& funcs) + : metakey(mkey), variables(std::move(vars)), functions(std::move(funcs)), index(std::move(i)), newindex(std::move(ni)), indexbaseclasspropogation(index), newindexbaseclasspropogation(newindex) { + } + }; + } // namespace usertype_detail + + struct usertype_metatable_core { + usertype_detail::mapping_t mapping; + lua_CFunction indexfunc; + lua_CFunction newindexfunc; + std::vector<object> runtime; + bool mustindex; + + usertype_metatable_core(lua_CFunction ifx, lua_CFunction nifx) + : mapping(), indexfunc(ifx), newindexfunc(nifx), runtime(), mustindex(false) { + } + + usertype_metatable_core(const usertype_metatable_core&) = default; + usertype_metatable_core(usertype_metatable_core&&) = default; + usertype_metatable_core& operator=(const usertype_metatable_core&) = default; + usertype_metatable_core& operator=(usertype_metatable_core&&) = default; + }; + + namespace usertype_detail { + const lua_Integer toplevel_magic = static_cast<lua_Integer>(0xCCC2CCC1); + + inline int is_indexer(string_view s) { + if (s == to_string(meta_function::index)) { + return 1; + } + else if (s == to_string(meta_function::new_index)) { + return 2; + } + return 0; + } + + inline int is_indexer(meta_function mf) { + if (mf == meta_function::index) { + return 1; + } + else if (mf == meta_function::new_index) { + return 2; + } + return 0; + } + + inline int is_indexer(call_construction) { + return 0; + } + + inline int is_indexer(base_classes_tag) { + return 0; + } + + inline auto make_string_view(string_view s) { + return s; + } + + inline auto make_string_view(call_construction) { + return string_view(to_string(meta_function::call_function)); + } + + inline auto make_string_view(meta_function mf) { + return string_view(to_string(mf)); + } + + inline auto make_string_view(base_classes_tag) { + return string_view(detail::base_class_cast_key()); + } + + template <typename Arg> + inline std::string make_string(Arg&& arg) { + string_view s = make_string_view(arg); + return std::string(s.data(), s.size()); + } + + template <typename N> + inline luaL_Reg make_reg(N&& n, lua_CFunction f) { + luaL_Reg l{make_string_view(std::forward<N>(n)).data(), f}; + return l; + } + + struct registrar { + registrar() = default; + registrar(const registrar&) = default; + registrar(registrar&&) = default; + registrar& operator=(const registrar&) = default; + registrar& operator=(registrar&&) = default; + virtual int push_um(lua_State* L) = 0; + virtual ~registrar() { + } + }; + + inline bool is_toplevel(lua_State* L, int index = magic_index) { + int isnum = 0; + lua_Integer magic = lua_tointegerx(L, upvalue_index(index), &isnum); + return isnum != 0 && magic == toplevel_magic; + } + + inline int runtime_object_call(lua_State* L, void*, usertype_metatable_core& umc, int runtimetarget) { + std::vector<object>& runtime = umc.runtime; + object& runtimeobj = runtime[runtimetarget]; + return stack::push(L, runtimeobj); + } + + template <typename T, bool is_index> + inline int indexing_fail(lua_State* L) { + if (is_index) { +#if 0 //defined(SOL_SAFE_USERTYPE) && SOL_SAFE_USERTYPE + auto maybeaccessor = stack::get<optional<string_view>>(L, is_index ? -1 : -2); + string_view accessor = maybeaccessor.value_or(string_detail::string_shim("(unknown)")); + return luaL_error(L, "sol: attempt to index (get) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.data()); +#else + if (is_toplevel(L)) { + if (lua_getmetatable(L, 1) == 1) { + int metatarget = lua_gettop(L); + stack::get_field(L, stack_reference(L, raw_index(2)), metatarget); + return 1; + } + } + // With runtime extensibility, we can't hard-error things. They have to return nil, like regular table types, unfortunately... + return stack::push(L, lua_nil); +#endif + } + else { + auto maybeaccessor = stack::get<optional<string_view>>(L, is_index ? -1 : -2); + string_view accessor = maybeaccessor.value_or(string_view("(unknown)")); + return luaL_error(L, "sol: attempt to index (set) nil value \"%s\" on userdata (bad (misspelled?) key name or does not exist)", accessor.data()); + } + } + + int runtime_new_index(lua_State* L, void*, usertype_metatable_core&, int runtimetarget); + + template <typename T, bool is_simple> + inline int metatable_new_index(lua_State* L) { + if (is_toplevel(L)) { + auto non_indexable = [&L]() { + if (is_simple) { + simple_map& sm = stack::get<user<simple_map>>(L, upvalue_index(simple_metatable_index)); + function_map& functions = sm.functions; + optional<string_view> maybeaccessor = stack::get<optional<string_view>>(L, 2); + if (!maybeaccessor) { + return; + } + string_view& accessor_view = maybeaccessor.value(); +#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH + auto preexistingit = functions.find(accessor_view, string_view_hash(), std::equal_to<string_view>()); +#else + std::string accessor(accessor_view.data(), accessor_view.size()); + auto preexistingit = functions.find(accessor); +#endif + if (preexistingit == functions.cend()) { +#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH + std::string accessor(accessor_view.data(), accessor_view.size()); +#endif + functions.emplace_hint(preexistingit, std::move(accessor), object(L, 3)); + } + else { + preexistingit->second = object(L, 3); + } + return; + } + usertype_metatable_core& umc = stack::get<light<usertype_metatable_core>>(L, upvalue_index(metatable_core_index)); + bool mustindex = umc.mustindex; + if (!mustindex) + return; + optional<string_view> maybeaccessor = stack::get<optional<string_view>>(L, 2); + if (!maybeaccessor) { + return; + } + string_view& accessor_view = maybeaccessor.value(); + mapping_t& mapping = umc.mapping; + std::vector<object>& runtime = umc.runtime; + int target = static_cast<int>(runtime.size()); +#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH + auto preexistingit = mapping.find(accessor_view, string_view_hash(), std::equal_to<string_view>()); +#else + std::string accessor(accessor_view.data(), accessor_view.size()); + auto preexistingit = mapping.find(accessor); +#endif + if (preexistingit == mapping.cend()) { +#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH + std::string accessor(accessor_view.data(), accessor_view.size()); +#endif + runtime.emplace_back(L, 3); + mapping.emplace_hint(mapping.cend(), std::move(accessor), call_information(&runtime_object_call, &runtime_new_index, target)); + } + else { + target = preexistingit->second.runtime_target; + runtime[target] = object(L, 3); + preexistingit->second = call_information(&runtime_object_call, &runtime_new_index, target); + } + }; + non_indexable(); + for (std::size_t i = 0; i < 4; lua_settop(L, 3), ++i) { + const char* metakey = nullptr; + switch (i) { + case 0: + metakey = &usertype_traits<T*>::metatable()[0]; + luaL_getmetatable(L, metakey); + break; + case 1: + metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0]; + luaL_getmetatable(L, metakey); + break; + case 2: + metakey = &usertype_traits<T>::metatable()[0]; + luaL_getmetatable(L, metakey); + break; + case 3: + default: + metakey = &usertype_traits<T>::user_metatable()[0]; + { + luaL_getmetatable(L, metakey); + lua_getmetatable(L, -1); + } + break; + } + int tableindex = lua_gettop(L); + if (type_of(L, tableindex) == type::lua_nil) { + continue; + } + stack::set_field<false, true>(L, stack_reference(L, raw_index(2)), stack_reference(L, raw_index(3)), tableindex); + } + lua_settop(L, 0); + return 0; + } + return indexing_fail<T, false>(L); + } + + inline int runtime_new_index(lua_State* L, void*, usertype_metatable_core& umc, int runtimetarget) { + std::vector<object>& runtime = umc.runtime; + object& runtimeobj = runtime[runtimetarget]; + runtimeobj = object(L, 3); + return 0; + } + + template <bool is_index, typename Base> + static void walk_single_base(lua_State* L, bool& found, int& ret, string_view&) { + if (found) + return; + const char* metakey = &usertype_traits<Base>::metatable()[0]; + const char* gcmetakey = &usertype_traits<Base>::gc_table()[0]; + const char* basewalkkey = is_index ? detail::base_class_index_propogation_key() : detail::base_class_new_index_propogation_key(); + + luaL_getmetatable(L, metakey); + if (type_of(L, -1) == type::lua_nil) { + lua_pop(L, 1); + return; + } + + stack::get_field(L, basewalkkey); + if (type_of(L, -1) == type::lua_nil) { + lua_pop(L, 2); + return; + } + lua_CFunction basewalkfunc = stack::pop<lua_CFunction>(L); + lua_pop(L, 1); + + stack::get_field<true>(L, gcmetakey); + int value = basewalkfunc(L); + if (value > -1) { + found = true; + ret = value; + } + } + + template <bool is_index, typename... Bases> + static void walk_all_bases(lua_State* L, bool& found, int& ret, string_view& accessor) { + (void)L; + (void)found; + (void)ret; + (void)accessor; + (void)detail::swallow{0, (walk_single_base<is_index, Bases>(L, found, ret, accessor), 0)...}; + } + } // namespace usertype_detail + + template <typename T> + struct clean_type { + typedef std::conditional_t<std::is_array<meta::unqualified_t<T>>::value, T&, std::decay_t<T>> type; + }; + + template <typename T> + using clean_type_t = typename clean_type<T>::type; + + template <typename T, typename IndexSequence, typename... Tn> + struct usertype_metatable : usertype_detail::registrar {}; + + template <typename T, std::size_t... I, typename... Tn> + struct usertype_metatable<T, std::index_sequence<I...>, Tn...> : usertype_metatable_core, usertype_detail::registrar { + typedef std::make_index_sequence<sizeof...(I) * 2> indices; + typedef std::index_sequence<I...> half_indices; + typedef std::array<luaL_Reg, sizeof...(Tn) / 2 + 1 + 31> regs_t; + typedef std::tuple<Tn...> RawTuple; + typedef std::tuple<clean_type_t<Tn>...> Tuple; + template <std::size_t Idx> + struct check_binding : is_variable_binding<meta::unqualified_tuple_element_t<Idx, Tuple>> {}; + Tuple functions; + lua_CFunction destructfunc; + lua_CFunction callconstructfunc; + lua_CFunction indexbase; + lua_CFunction newindexbase; + usertype_detail::base_walk indexbaseclasspropogation; + usertype_detail::base_walk newindexbaseclasspropogation; + void* baseclasscheck; + void* baseclasscast; + bool secondarymeta; + std::bitset<32> properties; + + template <std::size_t Idx, meta::enable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler> + lua_CFunction make_func() const { + return std::get<Idx + 1>(functions); + } + + template <std::size_t Idx, meta::disable<std::is_same<lua_CFunction, meta::unqualified_tuple_element<Idx + 1, RawTuple>>> = meta::enabler> + lua_CFunction make_func() const { + const auto& name = std::get<Idx>(functions); + return (usertype_detail::make_string_view(name) == "__newindex") ? &call<Idx + 1, false> : &call<Idx + 1, true>; + } + + static bool contains_variable() { + typedef meta::any<check_binding<(I * 2 + 1)>...> has_variables; + return has_variables::value; + } + + bool contains_index() const { + bool idx = false; + (void)detail::swallow{0, ((idx |= (usertype_detail::is_indexer(std::get<I * 2>(functions)) != 0)), 0)...}; + return idx; + } + + int finish_regs(regs_t& l, int& index) { + auto prop_fx = [&](meta_function mf) { return !properties[static_cast<int>(mf)]; }; + usertype_detail::insert_default_registrations<T>(l, index, prop_fx); + if (destructfunc != nullptr) { + l[index] = luaL_Reg{to_string(meta_function::garbage_collect).c_str(), destructfunc}; + ++index; + } + return index; + } + + template <std::size_t Idx, typename F> + void make_regs(regs_t&, int&, call_construction, F&&) { + callconstructfunc = call<Idx + 1>; + secondarymeta = true; + } + + template <std::size_t, typename... Bases> + void make_regs(regs_t&, int&, base_classes_tag, bases<Bases...>) { + static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases"); + if (sizeof...(Bases) < 1) { + return; + } + mustindex = true; + (void)detail::swallow{0, ((detail::has_derived<Bases>::value = true), 0)...}; + + static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); + static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: file a bug report."); + baseclasscheck = (void*)&detail::inheritance<T, Bases...>::type_check; + baseclasscast = (void*)&detail::inheritance<T, Bases...>::type_cast; + indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>; + newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>; + } + + template <std::size_t Idx, typename N, typename F, typename = std::enable_if_t<!meta::any_same<meta::unqualified_t<N>, base_classes_tag, call_construction>::value>> + void make_regs(regs_t& l, int& index, N&& n, F&&) { + if (is_variable_binding<meta::unqualified_t<F>>::value) { + return; + } + luaL_Reg reg = usertype_detail::make_reg(std::forward<N>(n), make_func<Idx>()); + for (std::size_t i = 0; i < properties.size(); ++i) { + meta_function mf = static_cast<meta_function>(i); + const std::string& mfname = to_string(mf); + if (mfname == reg.name) { + switch (mf) { + case meta_function::construct: + if (properties[i]) { +#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS) + throw error("sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems"); +#else + assert(false && "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems"); +#endif + } + break; + case meta_function::garbage_collect: + if (destructfunc != nullptr) { +#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS) + throw error("sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems"); +#else + assert(false && "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems"); +#endif + } + destructfunc = reg.func; + return; + case meta_function::index: + indexfunc = reg.func; + mustindex = true; + properties.set(i); + return; + case meta_function::new_index: + newindexfunc = reg.func; + mustindex = true; + properties.set(i); + return; + default: + break; + } + properties.set(i); + break; + } + } + l[index] = reg; + ++index; + } + + template <typename... Args, typename = std::enable_if_t<sizeof...(Args) == sizeof...(Tn)>> + usertype_metatable(Args&&... args) + : usertype_metatable_core(&usertype_detail::indexing_fail<T, true>, &usertype_detail::metatable_new_index<T, false>), usertype_detail::registrar(), functions(std::forward<Args>(args)...), destructfunc(nullptr), callconstructfunc(nullptr), indexbase(&core_indexing_call<true>), newindexbase(&core_indexing_call<false>), indexbaseclasspropogation(usertype_detail::walk_all_bases<true>), newindexbaseclasspropogation(usertype_detail::walk_all_bases<false>), baseclasscheck(nullptr), baseclasscast(nullptr), secondarymeta(contains_variable()), properties() { + properties.reset(); + std::initializer_list<typename usertype_detail::mapping_t::value_type> ilist{{std::pair<std::string, usertype_detail::call_information>(usertype_detail::make_string(std::get<I * 2>(functions)), + usertype_detail::call_information(&usertype_metatable::real_find_call<I * 2, I * 2 + 1, true>, + &usertype_metatable::real_find_call<I * 2, I * 2 + 1, false>))}...}; + this->mapping.insert(ilist); + for (const auto& n : meta_function_names()) { + this->mapping.erase(n); + } + this->mustindex = contains_variable() || contains_index(); + } + + usertype_metatable(const usertype_metatable&) = default; + usertype_metatable(usertype_metatable&&) = default; + usertype_metatable& operator=(const usertype_metatable&) = default; + usertype_metatable& operator=(usertype_metatable&&) = default; + + template <std::size_t I0, std::size_t I1, bool is_index> + static int real_find_call(lua_State* L, void* um, usertype_metatable_core&, int) { + auto& f = *static_cast<usertype_metatable*>(um); + if (is_variable_binding<decltype(std::get<I1>(f.functions))>::value) { + return real_call_with<I1, is_index, true>(L, f); + } + // set up upvalues + // for a chained call + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push(L, light<usertype_metatable>(f)); + auto cfunc = &call<I1, is_index>; + return stack::push(L, c_closure(cfunc, upvalues)); + } + + template <bool is_index> + static int real_meta_call(lua_State* L, void* um, int) { + auto& f = *static_cast<usertype_metatable*>(um); + return is_index ? f.indexfunc(L) : f.newindexfunc(L); + } + + template <bool is_index, bool toplevel = false, bool is_meta_bound = false> + static int core_indexing_call(lua_State* L) { + usertype_metatable& f = toplevel + ? static_cast<usertype_metatable&>(stack::get<light<usertype_metatable>>(L, upvalue_index(usertype_detail::metatable_index))) + : static_cast<usertype_metatable&>(stack::pop<user<usertype_metatable>>(L)); + static const int keyidx = -2 + static_cast<int>(is_index); + if (toplevel && stack::get<type>(L, keyidx) != type::string) { + return is_index ? f.indexfunc(L) : f.newindexfunc(L); + } + int runtime_target = 0; + usertype_detail::member_search member = nullptr; + { +#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH + string_view name = stack::get<string_view>(L, keyidx); + auto memberit = f.mapping.find(name, string_view_hash(), std::equal_to<string_view>()); +#else + std::string name = stack::get<std::string>(L, keyidx); + auto memberit = f.mapping.find(name); +#endif + if (memberit != f.mapping.cend()) { + const usertype_detail::call_information& ci = memberit->second; + member = is_index ? ci.index : ci.new_index; + runtime_target = ci.runtime_target; + } + } + if (member != nullptr) { + return (member)(L, static_cast<void*>(&f), static_cast<usertype_metatable_core&>(f), runtime_target); + } + if (is_meta_bound && toplevel && !is_index) { + return usertype_detail::metatable_new_index<T, false>(L); + } + string_view accessor = stack::get<string_view>(L, keyidx); + int ret = 0; + bool found = false; + // Otherwise, we need to do propagating calls through the bases + if (is_index) + f.indexbaseclasspropogation(L, found, ret, accessor); + else + f.newindexbaseclasspropogation(L, found, ret, accessor); + if (found) { + return ret; + } + if (is_meta_bound) { + return is_index ? usertype_detail::indexing_fail<T, is_index>(L) : usertype_detail::metatable_new_index<T, false>(L); + } + return toplevel ? (is_index ? f.indexfunc(L) : f.newindexfunc(L)) : -1; + } + + static int real_index_call(lua_State* L) { + return core_indexing_call<true, true>(L); + } + + static int real_new_index_call(lua_State* L) { + return core_indexing_call<false, true>(L); + } + + static int real_meta_index_call(lua_State* L) { + return core_indexing_call<true, true, true>(L); + } + + static int real_meta_new_index_call(lua_State* L) { + return core_indexing_call<false, true, true>(L); + } + + template <std::size_t Idx, bool is_index = true, bool is_variable = false> + static int real_call(lua_State* L) { + usertype_metatable& f = stack::get<light<usertype_metatable>>(L, upvalue_index(usertype_detail::metatable_index)); + return real_call_with<Idx, is_index, is_variable>(L, f); + } + + template <std::size_t Idx, bool is_index = true, bool is_variable = false> + static int real_call_with(lua_State* L, usertype_metatable& um) { + typedef meta::unqualified_tuple_element_t<Idx - 1, Tuple> K; + typedef meta::unqualified_tuple_element_t<Idx, Tuple> F; + static const int boost = !detail::is_non_factory_constructor<F>::value + && std::is_same<K, call_construction>::value + ? 1 + : 0; + auto& f = std::get<Idx>(um.functions); + return call_detail::call_wrapped<T, is_index, is_variable, boost>(L, f); + } + + template <std::size_t Idx, bool is_index = true, bool is_variable = false> + static int call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_call<Idx, is_index, is_variable>), (&real_call<Idx, is_index, is_variable>)>(L); + } + + template <std::size_t Idx, bool is_index = true, bool is_variable = false> + static int call_with(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_call_with<Idx, is_index, is_variable>), (&real_call_with<Idx, is_index, is_variable>)>(L); + } + + static int index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_index_call), (&real_index_call)>(L); + } + + static int new_index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_new_index_call), (&real_new_index_call)>(L); + } + + static int meta_index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_meta_index_call), (&real_meta_index_call)>(L); + } + + static int meta_new_index_call(lua_State* L) { + return detail::typed_static_trampoline<decltype(&real_meta_new_index_call), (&real_meta_new_index_call)>(L); + } + + virtual int push_um(lua_State* L) override { + return stack::push(L, std::move(*this)); + } + + ~usertype_metatable() override { + } + }; + + namespace stack { + + template <typename T, std::size_t... I, typename... Args> + struct pusher<usertype_metatable<T, std::index_sequence<I...>, Args...>> { + typedef usertype_metatable<T, std::index_sequence<I...>, Args...> umt_t; + typedef typename umt_t::regs_t regs_t; + + static umt_t& make_cleanup(lua_State* L, umt_t&& umx) { + // ensure some sort of uniqueness + static int uniqueness = 0; + std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable(); + // std::to_string doesn't exist in android still, with NDK, so this bullshit + // is necessary + // thanks, Android :v + int appended = snprintf(nullptr, 0, "%d", uniqueness); + std::size_t insertionpoint = uniquegcmetakey.length() - 1; + uniquegcmetakey.append(appended, '\0'); + char* uniquetarget = &uniquegcmetakey[insertionpoint]; + snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness); + ++uniqueness; + + const char* gcmetakey = &usertype_traits<T>::gc_table()[0]; + // Make sure userdata's memory is properly in lua first, + // otherwise all the light userdata we make later will become invalid + stack::push<user<umt_t>>(L, metatable_key, uniquegcmetakey, std::move(umx)); + // Create the top level thing that will act as our deleter later on + stack_reference umt(L, -1); + stack::set_field<true>(L, gcmetakey, umt); + umt.pop(); + + stack::get_field<true>(L, gcmetakey); + umt_t& target_umt = stack::pop<user<umt_t>>(L); + return target_umt; + } + + static int push(lua_State* L, umt_t&& umx) { + + umt_t& um = make_cleanup(L, std::move(umx)); + usertype_metatable_core& umc = um; + regs_t value_table{{}}; + int lastreg = 0; + (void)detail::swallow{0, (um.template make_regs<(I * 2)>(value_table, lastreg, std::get<(I * 2)>(um.functions), std::get<(I * 2 + 1)>(um.functions)), 0)...}; + um.finish_regs(value_table, lastreg); + value_table[lastreg] = {nullptr, nullptr}; + regs_t ref_table = value_table; + regs_t unique_table = value_table; + bool hasdestructor = !value_table.empty() && to_string(meta_function::garbage_collect) == value_table[lastreg - 1].name; + if (hasdestructor) { + ref_table[lastreg - 1] = {nullptr, nullptr}; + } + unique_table[lastreg - 1] = {value_table[lastreg - 1].name, detail::unique_destruct<T>}; + + lua_createtable(L, 0, 2); + stack_reference type_table(L, -1); + + stack::set_field(L, "name", detail::demangle<T>(), type_table.stack_index()); + stack::set_field(L, "is", &usertype_detail::is_check<T>, type_table.stack_index()); + + // Now use um + const bool& mustindex = umc.mustindex; + for (std::size_t i = 0; i < 3; ++i) { + // Pointer types, AKA "references" from C++ + const char* metakey = nullptr; + luaL_Reg* metaregs = nullptr; + switch (i) { + case 0: + metakey = &usertype_traits<T*>::metatable()[0]; + metaregs = ref_table.data(); + break; + case 1: + metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0]; + metaregs = unique_table.data(); + break; + case 2: + default: + metakey = &usertype_traits<T>::metatable()[0]; + metaregs = value_table.data(); + break; + } + luaL_newmetatable(L, metakey); + stack_reference t(L, -1); + stack::set_field(L, meta_function::type, type_table, t.stack_index()); + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push(L, make_light(um)); + luaL_setfuncs(L, metaregs, upvalues); + + if (um.baseclasscheck != nullptr) { + stack::set_field(L, detail::base_class_check_key(), um.baseclasscheck, t.stack_index()); + } + if (um.baseclasscast != nullptr) { + stack::set_field(L, detail::base_class_cast_key(), um.baseclasscast, t.stack_index()); + } + + stack::set_field(L, detail::base_class_index_propogation_key(), make_closure(um.indexbase, nullptr, make_light(um), make_light(umc)), t.stack_index()); + stack::set_field(L, detail::base_class_new_index_propogation_key(), make_closure(um.newindexbase, nullptr, make_light(um), make_light(umc)), t.stack_index()); + + if (mustindex) { + // Basic index pushing: specialize + // index and newindex to give variables and stuff + stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, nullptr, make_light(um), make_light(umc)), t.stack_index()); + stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, nullptr, make_light(um), make_light(umc)), t.stack_index()); + } + else { + // If there's only functions, we can use the fast index version + stack::set_field(L, meta_function::index, t, t.stack_index()); + } + // metatable on the metatable + // for call constructor purposes and such + lua_createtable(L, 0, 3); + stack_reference metabehind(L, -1); + stack::set_field(L, meta_function::type, type_table, metabehind.stack_index()); + if (um.callconstructfunc != nullptr) { + stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, nullptr, make_light(um), make_light(umc)), metabehind.stack_index()); + } + if (um.secondarymeta) { + stack::set_field(L, meta_function::index, make_closure(umt_t::index_call, nullptr, make_light(um), make_light(umc)), metabehind.stack_index()); + stack::set_field(L, meta_function::new_index, make_closure(umt_t::new_index_call, nullptr, make_light(um), make_light(umc)), metabehind.stack_index()); + } + // type information needs to be present on the behind-tables too + + stack::set_field(L, metatable_key, metabehind, t.stack_index()); + metabehind.pop(); + // We want to just leave the table + // in the registry only, otherwise we return it + t.pop(); + } + + // Now for the shim-table that actually gets assigned to the name + luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]); + stack_reference t(L, -1); + stack::set_field(L, meta_function::type, type_table, t.stack_index()); + int upvalues = 0; + upvalues += stack::push(L, nullptr); + upvalues += stack::push(L, make_light(um)); + luaL_setfuncs(L, value_table.data(), upvalues); + { + lua_createtable(L, 0, 3); + stack_reference metabehind(L, -1); + // type information needs to be present on the behind-tables too + stack::set_field(L, meta_function::type, type_table, metabehind.stack_index()); + if (um.callconstructfunc != nullptr) { + stack::set_field(L, meta_function::call_function, make_closure(um.callconstructfunc, nullptr, make_light(um), make_light(umc)), metabehind.stack_index()); + } + + stack::set_field(L, meta_function::index, make_closure(umt_t::meta_index_call, nullptr, make_light(um), make_light(umc), nullptr, usertype_detail::toplevel_magic), metabehind.stack_index()); + stack::set_field(L, meta_function::new_index, make_closure(umt_t::meta_new_index_call, nullptr, make_light(um), make_light(umc), nullptr, usertype_detail::toplevel_magic), metabehind.stack_index()); + stack::set_field(L, metatable_key, metabehind, t.stack_index()); + metabehind.pop(); + } + + lua_remove(L, type_table.stack_index()); + + return 1; + } + }; + + } // namespace stack + +} // namespace sol + +// end of sol/usertype_metatable.hpp + +// beginning of sol/simple_usertype_metatable.hpp + +namespace sol { + + namespace usertype_detail { + inline int call_indexing_object(lua_State* L, object& f) { + int before = lua_gettop(L); + f.push(); + for (int i = 1; i <= before; ++i) { + lua_pushvalue(L, i); + } + lua_call(L, before, LUA_MULTRET); + int after = lua_gettop(L); + return after - before; + } + + template <typename T, bool is_index, bool toplevel = false, bool has_indexing = false> + inline int simple_core_indexing_call(lua_State* L) { + simple_map& sm = toplevel + ? stack::get<user<simple_map>>(L, upvalue_index(simple_metatable_index)) + : stack::pop<user<simple_map>>(L); + variable_map& variables = sm.variables; + function_map& functions = sm.functions; + static const int keyidx = -2 + static_cast<int>(is_index); + if (toplevel) { + if (type_of(L, keyidx) != type::string) { + if (has_indexing) { + object& indexingfunc = is_index + ? sm.index + : sm.newindex; + return call_indexing_object(L, indexingfunc); + } + else { + return is_index + ? indexing_fail<T, is_index>(L) + : metatable_new_index<T, true>(L); + } + } + } + string_view accessor = stack::get<string_view>(L, keyidx); + variable_wrapper* varwrap = nullptr; + { +#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH + string_view& accessorkey = accessor; + auto vit = variables.find(accessorkey, string_view_hash(), std::equal_to<string_view>()); +#else + std::string accessorkey(accessor.data(), accessor.size()); + auto vit = variables.find(accessorkey); +#endif // Compatible Hash + if (vit != variables.cend()) { + varwrap = vit->second.get(); + } + } + if (varwrap != nullptr) { + return is_index ? varwrap->index(L) : varwrap->new_index(L); + } + bool function_failed = false; + { +#if defined(SOL_UNORDERED_MAP_COMPATIBLE_HASH) && SOL_UNORDERED_MAP_COMPATIBLE_HASH + string_view& accessorkey = accessor; + auto fit = functions.find(accessorkey, string_view_hash(), std::equal_to<string_view>()); +#else + std::string accessorkey(accessor.data(), accessor.size()); + auto fit = functions.find(accessorkey); +#endif // Compatible Hash + if (fit != functions.cend()) { + object& func = fit->second; + if (is_index) { + return stack::push(L, func); + } + else { + function_failed = true; + } + } + } + if (function_failed) { + if (has_indexing && !is_toplevel(L)) { + object& indexingfunc = is_index + ? sm.index + : sm.newindex; + return call_indexing_object(L, indexingfunc); + } + else { + return is_index + ? indexing_fail<T, is_index>(L) + : metatable_new_index<T, true>(L); + } + } + /* Check table storage first for a method that works + luaL_getmetatable(L, sm.metakey); + if (type_of(L, -1) != type::lua_nil) { + stack::get_field<false, true>(L, accessor.c_str(), lua_gettop(L)); + if (type_of(L, -1) != type::lua_nil) { + // Woo, we found it? + lua_remove(L, -2); + return 1; + } + lua_pop(L, 1); + } + lua_pop(L, 1); + */ + + int ret = 0; + bool found = false; + // Otherwise, we need to do propagating calls through the bases + if (is_index) { + sm.indexbaseclasspropogation(L, found, ret, accessor); + } + else { + sm.newindexbaseclasspropogation(L, found, ret, accessor); + } + if (found) { + return ret; + } + if (toplevel) { + if (has_indexing && !is_toplevel(L)) { + object& indexingfunc = is_index + ? sm.index + : sm.newindex; + return call_indexing_object(L, indexingfunc); + } + else { + return is_index + ? indexing_fail<T, is_index>(L) + : metatable_new_index<T, true>(L); + } + } + return -1; + } + + template <typename T, bool has_indexing = false> + inline int simple_real_index_call(lua_State* L) { + return simple_core_indexing_call<T, true, true, has_indexing>(L); + } + + template <typename T, bool has_indexing = false> + inline int simple_real_new_index_call(lua_State* L) { + return simple_core_indexing_call<T, false, true, has_indexing>(L); + } + + template <typename T, bool has_indexing = false> + inline int simple_index_call(lua_State* L) { +#if defined(__clang__) + return detail::trampoline(L, &simple_real_index_call<T, has_indexing>); +#else + return detail::typed_static_trampoline<decltype(&simple_real_index_call<T, has_indexing>), (&simple_real_index_call<T, has_indexing>)>(L); +#endif + } + + template <typename T, bool has_indexing = false> + inline int simple_new_index_call(lua_State* L) { +#if defined(__clang__) + return detail::trampoline(L, &simple_real_new_index_call<T, has_indexing>); +#else + return detail::typed_static_trampoline<decltype(&simple_real_new_index_call<T, has_indexing>), (&simple_real_new_index_call<T, has_indexing>)>(L); +#endif + } + } // namespace usertype_detail + + struct simple_tag { + } const simple{}; + + template <typename T> + struct simple_usertype_metatable : usertype_detail::registrar { + public: + usertype_detail::function_map registrations; + usertype_detail::variable_map varmap; + object callconstructfunc; + object indexfunc; + object newindexfunc; + lua_CFunction indexbase; + lua_CFunction newindexbase; + usertype_detail::base_walk indexbaseclasspropogation; + usertype_detail::base_walk newindexbaseclasspropogation; + void* baseclasscheck; + void* baseclasscast; + bool mustindex; + bool secondarymeta; + std::array<bool, 32> properties; + + template <typename N> + void insert(N&& n, object&& o) { + std::string key = usertype_detail::make_string(std::forward<N>(n)); + int is_indexer = static_cast<int>(usertype_detail::is_indexer(n)); + if (is_indexer == 1) { + indexfunc = o; + mustindex = true; + } + else if (is_indexer == 2) { + newindexfunc = o; + mustindex = true; + } + auto hint = registrations.find(key); + if (hint == registrations.cend()) { + registrations.emplace_hint(hint, std::move(key), std::move(o)); + return; + } + hint->second = std::move(o); + } + + template <typename N, typename F, typename... Args> + void insert_prepare(std::true_type, lua_State* L, N&&, F&& f, Args&&... args) { + object o = make_object<F>(L, std::forward<F>(f), function_detail::call_indicator(), std::forward<Args>(args)...); + callconstructfunc = std::move(o); + } + + template <typename N, typename F, typename... Args> + void insert_prepare(std::false_type, lua_State* L, N&& n, F&& f, Args&&... args) { + object o = make_object<F>(L, std::forward<F>(f), std::forward<Args>(args)...); + insert(std::forward<N>(n), std::move(o)); + } + + template <typename N, typename F> + void add_member_function(std::true_type, lua_State* L, N&& n, F&& f) { + insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f), function_detail::class_indicator<T>()); + } + + template <typename N, typename F> + void add_member_function(std::false_type, lua_State* L, N&& n, F&& f) { + insert_prepare(std::is_same<meta::unqualified_t<N>, call_construction>(), L, std::forward<N>(n), std::forward<F>(f)); + } + + template <typename N, typename F, meta::enable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler> + void add_function(lua_State* L, N&& n, F&& f) { + object o = make_object(L, as_function_reference(std::forward<F>(f))); + if (std::is_same<meta::unqualified_t<N>, call_construction>::value) { + callconstructfunc = std::move(o); + return; + } + insert(std::forward<N>(n), std::move(o)); + } + + template <typename N, typename F, meta::disable<meta::is_callable<meta::unwrap_unqualified_t<F>>> = meta::enabler> + void add_function(lua_State* L, N&& n, F&& f) { + add_member_function(std::is_member_pointer<meta::unwrap_unqualified_t<F>>(), L, std::forward<N>(n), std::forward<F>(f)); + } + + template <typename N, typename F, meta::disable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler> + void add(lua_State* L, N&& n, F&& f) { + add_function(L, std::forward<N>(n), std::forward<F>(f)); + } + + template <typename N, typename F, meta::enable<is_variable_binding<meta::unqualified_t<F>>> = meta::enabler> + void add(lua_State*, N&& n, F&& f) { + mustindex = true; + secondarymeta = true; + std::string key = usertype_detail::make_string(std::forward<N>(n)); + auto o = std::make_unique<usertype_detail::callable_binding<T, std::decay_t<F>>>(std::forward<F>(f)); + auto hint = varmap.find(key); + if (hint == varmap.cend()) { + varmap.emplace_hint(hint, std::move(key), std::move(o)); + return; + } + hint->second = std::move(o); + } + + template <typename N, typename... Fxs> + void add(lua_State* L, N&& n, constructor_wrapper<Fxs...> c) { + object o(L, in_place_type<detail::tagged<T, constructor_wrapper<Fxs...>>>, std::move(c)); + if (std::is_same<meta::unqualified_t<N>, call_construction>::value) { + callconstructfunc = std::move(o); + return; + } + insert(std::forward<N>(n), std::move(o)); + } + + template <typename N, typename... Lists> + void add(lua_State* L, N&& n, constructor_list<Lists...> c) { + object o(L, in_place_type<detail::tagged<T, constructor_list<Lists...>>>, std::move(c)); + if (std::is_same<meta::unqualified_t<N>, call_construction>::value) { + callconstructfunc = std::move(o); + return; + } + insert(std::forward<N>(n), std::move(o)); + } + + template <typename N> + void add(lua_State* L, N&& n, destructor_wrapper<void> c) { + object o(L, in_place_type<detail::tagged<T, destructor_wrapper<void>>>, std::move(c)); + if (std::is_same<meta::unqualified_t<N>, call_construction>::value) { + callconstructfunc = std::move(o); + return; + } + insert(std::forward<N>(n), std::move(o)); + } + + template <typename N, typename Fx> + void add(lua_State* L, N&& n, destructor_wrapper<Fx> c) { + object o(L, in_place_type<detail::tagged<T, destructor_wrapper<Fx>>>, std::move(c)); + if (std::is_same<meta::unqualified_t<N>, call_construction>::value) { + callconstructfunc = std::move(o); + return; + } + insert(std::forward<N>(n), std::move(o)); + } + + template <typename... Bases> + void add(lua_State*, base_classes_tag, bases<Bases...>) { + static_assert(sizeof(usertype_detail::base_walk) <= sizeof(void*), "size of function pointer is greater than sizeof(void*); cannot work on this platform. Please file a bug report."); + static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases"); + if (sizeof...(Bases) < 1) { + return; + } + mustindex = true; + (void)detail::swallow{0, ((detail::has_derived<Bases>::value = true), 0)...}; + + static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report."); + static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function), "The size of this data pointer is too small to fit the inheritance checking function: Please file a bug report."); + baseclasscheck = reinterpret_cast<void*>(&detail::inheritance<T, Bases...>::type_check); + baseclasscast = reinterpret_cast<void*>(&detail::inheritance<T, Bases...>::type_cast); + indexbaseclasspropogation = usertype_detail::walk_all_bases<true, Bases...>; + newindexbaseclasspropogation = usertype_detail::walk_all_bases<false, Bases...>; + } + + private: + template <std::size_t... I, typename Tuple> + simple_usertype_metatable(detail::verified_tag, std::index_sequence<I...>, lua_State* L, Tuple&& args) + : callconstructfunc(lua_nil), indexfunc(lua_nil), newindexfunc(lua_nil), indexbase(&usertype_detail::simple_core_indexing_call<T, true>), newindexbase(&usertype_detail::simple_core_indexing_call<T, false>), indexbaseclasspropogation(usertype_detail::walk_all_bases<true>), newindexbaseclasspropogation(&usertype_detail::walk_all_bases<false>), baseclasscheck(nullptr), baseclasscast(nullptr), mustindex(false), secondarymeta(false), properties() { + properties.fill(false); + + (void)detail::swallow{0, + (add(L, detail::forward_get<I * 2>(args), detail::forward_get<I * 2 + 1>(args)), 0)...}; + } + + template <typename... Args> + simple_usertype_metatable(lua_State* L, detail::verified_tag v, Args&&... args) + : simple_usertype_metatable(v, std::make_index_sequence<sizeof...(Args) / 2>(), L, std::forward_as_tuple(std::forward<Args>(args)...)) { + } + + template <typename... Args> + simple_usertype_metatable(lua_State* L, detail::add_destructor_tag, Args&&... args) + : simple_usertype_metatable(L, detail::verified, std::forward<Args>(args)..., "__gc", default_destructor) { + } + + template <typename... Args> + simple_usertype_metatable(lua_State* L, detail::check_destructor_tag, Args&&... args) + : simple_usertype_metatable(L, meta::condition<meta::all<std::is_destructible<T>, meta::neg<detail::has_destructor<Args...>>>, detail::add_destructor_tag, detail::verified_tag>(), std::forward<Args>(args)...) { + } + + public: + simple_usertype_metatable(lua_State* L) + : simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>>, decltype(default_constructor), detail::check_destructor_tag>()) { + } + + template <typename Arg, typename... Args, meta::disable_any<meta::any_same<meta::unqualified_t<Arg>, detail::verified_tag, detail::add_destructor_tag, detail::check_destructor_tag>, meta::is_specialization_of<meta::unqualified_t<Arg>, constructors>, meta::is_specialization_of<meta::unqualified_t<Arg>, constructor_wrapper>> = meta::enabler> + simple_usertype_metatable(lua_State* L, Arg&& arg, Args&&... args) + : simple_usertype_metatable(L, meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<detail::has_constructor<Args...>>>, decltype(default_constructor), detail::check_destructor_tag>(), std::forward<Arg>(arg), std::forward<Args>(args)...) { + } + + template <typename... Args, typename... CArgs> + simple_usertype_metatable(lua_State* L, constructors<CArgs...> constructorlist, Args&&... args) + : simple_usertype_metatable(L, detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) { + } + + template <typename... Args, typename... Fxs> + simple_usertype_metatable(lua_State* L, constructor_wrapper<Fxs...> constructorlist, Args&&... args) + : simple_usertype_metatable(L, detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) { + } + + simple_usertype_metatable(const simple_usertype_metatable&) = default; + simple_usertype_metatable(simple_usertype_metatable&&) = default; + simple_usertype_metatable& operator=(const simple_usertype_metatable&) = default; + simple_usertype_metatable& operator=(simple_usertype_metatable&&) = default; + + virtual int push_um(lua_State* L) override { + return stack::push(L, std::move(*this)); + } + }; + + namespace stack { + template <typename T> + struct pusher<simple_usertype_metatable<T>> { + typedef simple_usertype_metatable<T> umt_t; + + static usertype_detail::simple_map& make_cleanup(lua_State* L, umt_t& umx) { + static int uniqueness = 0; + std::string uniquegcmetakey = usertype_traits<T>::user_gc_metatable(); + // std::to_string doesn't exist in android still, with NDK, so this bullshit + // is necessary + // thanks, Android :v + int appended = snprintf(nullptr, 0, "%d", uniqueness); + std::size_t insertionpoint = uniquegcmetakey.length() - 1; + uniquegcmetakey.append(appended, '\0'); + char* uniquetarget = &uniquegcmetakey[insertionpoint]; + snprintf(uniquetarget, uniquegcmetakey.length(), "%d", uniqueness); + ++uniqueness; + + const char* gcmetakey = &usertype_traits<T>::gc_table()[0]; + stack::push<user<usertype_detail::simple_map>>(L, metatable_key, uniquegcmetakey, &usertype_traits<T>::metatable()[0], + umx.indexbaseclasspropogation, umx.newindexbaseclasspropogation, + std::move(umx.indexfunc), std::move(umx.newindexfunc), + std::move(umx.varmap), std::move(umx.registrations)); + stack_reference stackvarmap(L, -1); + stack::set_field<true>(L, gcmetakey, stackvarmap); + stackvarmap.pop(); + + stack::get_field<true>(L, gcmetakey); + usertype_detail::simple_map& varmap = stack::pop<user<usertype_detail::simple_map>>(L); + return varmap; + } + + static int push(lua_State* L, umt_t&& umx) { + bool hasindex = umx.indexfunc.valid(); + bool hasnewindex = umx.newindexfunc.valid(); + auto& varmap = make_cleanup(L, umx); + auto& properties = umx.properties; + auto sic = hasindex ? &usertype_detail::simple_index_call<T, true> : &usertype_detail::simple_index_call<T, false>; + auto snic = hasnewindex ? &usertype_detail::simple_new_index_call<T, true> : &usertype_detail::simple_new_index_call<T, false>; + + lua_createtable(L, 0, 2); + stack_reference type_table(L, -1); + + stack::set_field(L, "name", detail::demangle<T>(), type_table.stack_index()); + stack::set_field(L, "is", &usertype_detail::is_check<T>, type_table.stack_index()); + + auto safety_check = [&](const std::string& first) { + for (std::size_t j = 0; j < properties.size(); ++j) { + meta_function mf = static_cast<meta_function>(j); + const std::string& mfname = to_string(mf); + bool& prop = properties[j]; + if (mfname != first) + continue; + switch (mf) { + case meta_function::construct: + if (prop) { +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + assert(false && "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems"); +#else + throw error("sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems"); +#endif + } + break; + case meta_function::garbage_collect: + if (prop) { +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + assert(false && "sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems"); +#else + throw error("sol: 2 separate constructor (new) functions were set on this type. Please specify only 1 sol::meta_function::construct/'new' type AND wrap the function in a sol::factories/initializers call, as shown by the documentation and examples, otherwise you may create problems"); +#endif + } + return; + default: + break; + } + prop = true; + break; + } + }; + + for (auto& kvp : varmap.functions) { + auto& first = std::get<0>(kvp); + safety_check(first); + } + + auto register_kvp = [&](std::size_t meta_index, stack_reference& t, const std::string& first, object& second) { + meta_function mf = meta_function::construct; + for (std::size_t j = 0; j < properties.size(); ++j) { + mf = static_cast<meta_function>(j); + const std::string& mfname = to_string(mf); + bool& prop = properties[j]; + if (mfname != first) + continue; + switch (mf) { + case meta_function::index: + umx.indexfunc = second; + break; + case meta_function::new_index: + umx.newindexfunc = second; + break; + default: + break; + } + prop = true; + break; + } + switch (meta_index) { + case 0: + if (mf == meta_function::garbage_collect) { + return; + } + break; + case 1: + if (mf == meta_function::garbage_collect) { + stack::set_field(L, first, detail::unique_destruct<T>, t.stack_index()); + return; + } + break; + case 2: + default: + break; + } + stack::set_field(L, first, second, t.stack_index()); + }; + for (std::size_t i = 0; i < 3; ++i) { + const char* metakey = nullptr; + switch (i) { + case 0: + metakey = &usertype_traits<T*>::metatable()[0]; + break; + case 1: + metakey = &usertype_traits<detail::unique_usertype<T>>::metatable()[0]; + break; + case 2: + default: + metakey = &usertype_traits<T>::metatable()[0]; + break; + } + luaL_newmetatable(L, metakey); + stack_reference t(L, -1); + stack::set_field(L, meta_function::type, type_table, t.stack_index()); + + for (auto& kvp : varmap.functions) { + auto& first = std::get<0>(kvp); + auto& second = std::get<1>(kvp); + register_kvp(i, t, first, second); + } + luaL_Reg opregs[34]{}; + int opregsindex = 0; + auto prop_fx = [&](meta_function mf) { return !properties[static_cast<int>(mf)]; }; + usertype_detail::insert_default_registrations<T>(opregs, opregsindex, prop_fx); + t.push(); + luaL_setfuncs(L, opregs, 0); + t.pop(); + + if (umx.baseclasscheck != nullptr) { + stack::set_field(L, detail::base_class_check_key(), umx.baseclasscheck, t.stack_index()); + } + if (umx.baseclasscast != nullptr) { + stack::set_field(L, detail::base_class_cast_key(), umx.baseclasscast, t.stack_index()); + } + + // Base class propagation features + stack::set_field(L, detail::base_class_index_propogation_key(), umx.indexbase, t.stack_index()); + stack::set_field(L, detail::base_class_new_index_propogation_key(), umx.newindexbase, t.stack_index()); + + if (umx.mustindex) { + // use indexing function + stack::set_field(L, meta_function::index, + make_closure(sic, + nullptr, + make_light(varmap)), + t.stack_index()); + stack::set_field(L, meta_function::new_index, + make_closure(snic, + nullptr, + make_light(varmap)), + t.stack_index()); + } + else { + // Metatable indexes itself + stack::set_field(L, meta_function::index, t, t.stack_index()); + } + // metatable on the metatable + // for call constructor purposes and such + lua_createtable(L, 0, 2 * static_cast<int>(umx.secondarymeta) + static_cast<int>(umx.callconstructfunc.valid())); + stack_reference metabehind(L, -1); + stack::set_field(L, meta_function::type, type_table, metabehind.stack_index()); + if (umx.callconstructfunc.valid()) { + stack::set_field(L, meta_function::call_function, umx.callconstructfunc, metabehind.stack_index()); + } + if (umx.secondarymeta) { + stack::set_field(L, meta_function::index, + make_closure(sic, + nullptr, + make_light(varmap)), + metabehind.stack_index()); + stack::set_field(L, meta_function::new_index, + make_closure(snic, + nullptr, + make_light(varmap)), + metabehind.stack_index()); + } + stack::set_field(L, metatable_key, metabehind, t.stack_index()); + metabehind.pop(); + + t.pop(); + } + + // Now for the shim-table that actually gets pushed + luaL_newmetatable(L, &usertype_traits<T>::user_metatable()[0]); + stack_reference t(L, -1); + stack::set_field(L, meta_function::type, type_table, t.stack_index()); + + for (auto& kvp : varmap.functions) { + auto& first = std::get<0>(kvp); + auto& second = std::get<1>(kvp); + register_kvp(2, t, first, second); + } + { + lua_createtable(L, 0, 2 + static_cast<int>(umx.callconstructfunc.valid())); + stack_reference metabehind(L, -1); + stack::set_field(L, meta_function::type, type_table, metabehind.stack_index()); + if (umx.callconstructfunc.valid()) { + stack::set_field(L, meta_function::call_function, umx.callconstructfunc, metabehind.stack_index()); + } + // use indexing function + stack::set_field(L, meta_function::index, + make_closure(sic, + nullptr, + make_light(varmap), + nullptr, + nullptr, + usertype_detail::toplevel_magic), + metabehind.stack_index()); + stack::set_field(L, meta_function::new_index, + make_closure(snic, + nullptr, + make_light(varmap), + nullptr, + nullptr, + usertype_detail::toplevel_magic), + metabehind.stack_index()); + stack::set_field(L, metatable_key, metabehind, t.stack_index()); + metabehind.pop(); + } + + lua_remove(L, type_table.stack_index()); + + // Don't pop the table when we're done; + // return it + return 1; + } + }; + } // namespace stack +} // namespace sol + +// end of sol/simple_usertype_metatable.hpp + +namespace sol { + + template <typename T> + class usertype { + private: + std::unique_ptr<usertype_detail::registrar> metatableregister; + + template <typename... Args> + usertype(detail::verified_tag, Args&&... args) + : metatableregister(std::make_unique<usertype_metatable<T, std::make_index_sequence<sizeof...(Args) / 2>, Args...>>(std::forward<Args>(args)...)) { + static_assert(detail::has_destructor<Args...>::value, "this type does not have an explicit destructor declared; please pass a custom destructor function wrapped in sol::destruct, especially if the type does not have an accessible (private) destructor"); + } + + template <typename... Args> + usertype(detail::add_destructor_tag, Args&&... args) + : usertype(detail::verified, std::forward<Args>(args)..., "__gc", default_destructor) { + } + + template <typename... Args> + usertype(detail::check_destructor_tag, Args&&... args) + : usertype(meta::condition<meta::all<std::is_destructible<T>, meta::neg<detail::has_destructor<Args...>>>, detail::add_destructor_tag, detail::verified_tag>(), std::forward<Args>(args)...) { + } + + public: + template <typename... Args> + usertype(Args&&... args) + : usertype(meta::condition<meta::all<std::is_default_constructible<T>, meta::neg<detail::has_constructor<Args...>>>, decltype(default_constructor), detail::check_destructor_tag>(), std::forward<Args>(args)...) { + } + + template <typename... Args, typename... CArgs> + usertype(constructors<CArgs...> constructorlist, Args&&... args) + : usertype(detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) { + } + + template <typename... Args, typename... Fxs> + usertype(constructor_wrapper<Fxs...> constructorlist, Args&&... args) + : usertype(detail::check_destructor_tag(), std::forward<Args>(args)..., "new", constructorlist) { + } + + template <typename... Args> + usertype(simple_tag, lua_State* L, Args&&... args) + : metatableregister(std::make_unique<simple_usertype_metatable<T>>(L, std::forward<Args>(args)...)) { + } + + usertype_detail::registrar* registrar_data() { + return metatableregister.get(); + } + + int push(lua_State* L) { + int r = metatableregister->push_um(L); + metatableregister = nullptr; + return r; + } + }; + + template <typename T> + class simple_usertype : public usertype<T> { + private: + typedef usertype<T> base_t; + lua_State* state; + + public: + template <typename... Args> + simple_usertype(lua_State* L, Args&&... args) + : base_t(simple, L, std::forward<Args>(args)...), state(L) { + } + + template <typename N, typename F> + void set(N&& n, F&& f) { + auto meta = static_cast<simple_usertype_metatable<T>*>(base_t::registrar_data()); + meta->add(state, std::forward<N>(n), std::forward<F>(f)); + } + }; + + namespace stack { + template <typename T> + struct pusher<usertype<T>> { + static int push(lua_State* L, usertype<T>& user) { + return user.push(L); + } + }; + } // namespace stack +} // namespace sol + +// end of sol/usertype.hpp + +// beginning of sol/table_iterator.hpp + +namespace sol { + + template <typename reference_type> + class basic_table_iterator : public std::iterator<std::input_iterator_tag, std::pair<object, object>> { + public: + typedef object key_type; + typedef object mapped_type; + typedef std::pair<object, object> value_type; + typedef std::input_iterator_tag iterator_category; + typedef std::ptrdiff_t difference_type; + typedef value_type* pointer; + typedef value_type& reference; + typedef const value_type& const_reference; + + private: + std::pair<object, object> kvp; + reference_type ref; + int tableidx = 0; + int keyidx = 0; + std::ptrdiff_t idx = 0; + + public: + basic_table_iterator() + : keyidx(-1), idx(-1) { + } + + basic_table_iterator(reference_type x) + : ref(std::move(x)) { + ref.push(); + tableidx = lua_gettop(ref.lua_state()); + stack::push(ref.lua_state(), lua_nil); + this->operator++(); + if (idx == -1) { + return; + } + --idx; + } + + basic_table_iterator& operator++() { + if (idx == -1) + return *this; + + if (lua_next(ref.lua_state(), tableidx) == 0) { + idx = -1; + keyidx = -1; + return *this; + } + ++idx; + kvp.first = object(ref.lua_state(), -2); + kvp.second = object(ref.lua_state(), -1); + lua_pop(ref.lua_state(), 1); + // leave key on the stack + keyidx = lua_gettop(ref.lua_state()); + return *this; + } + + basic_table_iterator operator++(int) { + auto saved = *this; + this->operator++(); + return saved; + } + + reference operator*() { + return kvp; + } + + const_reference operator*() const { + return kvp; + } + + bool operator==(const basic_table_iterator& right) const { + return idx == right.idx; + } + + bool operator!=(const basic_table_iterator& right) const { + return idx != right.idx; + } + + ~basic_table_iterator() { + if (keyidx != -1) { + stack::remove(ref.lua_state(), keyidx, 1); + } + if (ref.lua_state() != nullptr && ref.valid()) { + stack::remove(ref.lua_state(), tableidx, 1); + } + } + }; + +} // namespace sol + +// end of sol/table_iterator.hpp + +namespace sol { + namespace detail { + template <std::size_t n> + struct clean { + lua_State* L; + clean(lua_State* luastate) + : L(luastate) { + } + ~clean() { + lua_pop(L, static_cast<int>(n)); + } + }; + struct ref_clean { + lua_State* L; + int& n; + ref_clean(lua_State* luastate, int& n) + : L(luastate), n(n) { + } + ~ref_clean() { + lua_pop(L, static_cast<int>(n)); + } + }; + inline int fail_on_newindex(lua_State* L) { + return luaL_error(L, "sol: cannot modify the elements of an enumeration table"); + } + } // namespace detail + + const new_table create = new_table{}; + + template <bool top_level, typename base_type> + class basic_table_core : public basic_object_base<base_type> { + typedef basic_object_base<base_type> base_t; + friend class state; + friend class state_view; + + template <typename... Args> + using is_global = meta::all<meta::boolean<top_level>, meta::is_c_str<Args>...>; + + template <typename Fx> + void for_each(std::true_type, Fx&& fx) const { + auto pp = stack::push_pop(*this); + stack::push(base_t::lua_state(), lua_nil); + while (lua_next(base_t::lua_state(), -2)) { + object key(base_t::lua_state(), -2); + object value(base_t::lua_state(), -1); + std::pair<object&, object&> keyvalue(key, value); + auto pn = stack::pop_n(base_t::lua_state(), 1); + fx(keyvalue); + } + } + + template <typename Fx> + void for_each(std::false_type, Fx&& fx) const { + auto pp = stack::push_pop(*this); + stack::push(base_t::lua_state(), lua_nil); + while (lua_next(base_t::lua_state(), -2)) { + object key(base_t::lua_state(), -2); + object value(base_t::lua_state(), -1); + auto pn = stack::pop_n(base_t::lua_state(), 1); + fx(key, value); + } + } + + template <bool raw, typename Ret0, typename Ret1, typename... Ret, std::size_t... I, typename Keys> + auto tuple_get(types<Ret0, Ret1, Ret...>, std::index_sequence<0, 1, I...>, Keys&& keys) const + -> decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) { + typedef decltype(stack::pop<std::tuple<Ret0, Ret1, Ret...>>(nullptr)) Tup; + return Tup( + traverse_get_optional<top_level, raw, Ret0>(meta::is_optional<meta::unqualified_t<Ret0>>(), detail::forward_get<0>(keys)), + traverse_get_optional<top_level, raw, Ret1>(meta::is_optional<meta::unqualified_t<Ret1>>(), detail::forward_get<1>(keys)), + traverse_get_optional<top_level, raw, Ret>(meta::is_optional<meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys))...); + } + + template <bool raw, typename Ret, std::size_t I, typename Keys> + decltype(auto) tuple_get(types<Ret>, std::index_sequence<I>, Keys&& keys) const { + return traverse_get_optional<top_level, raw, Ret>(meta::is_optional<meta::unqualified_t<Ret>>(), detail::forward_get<I>(keys)); + } + + template <bool raw, typename Pairs, std::size_t... I> + void tuple_set(std::index_sequence<I...>, Pairs&& pairs) { + auto pp = stack::push_pop < top_level && (is_global<decltype(detail::forward_get<I * 2>(pairs))...>::value) > (*this); + void(detail::swallow{ (stack::set_field<top_level, raw>(base_t::lua_state(), + detail::forward_get<I * 2>(pairs), + detail::forward_get<I * 2 + 1>(pairs), + lua_gettop(base_t::lua_state())), + 0)... }); + } + + template <bool global, bool raw, typename T, typename Key> + decltype(auto) traverse_get_deep(Key&& key) const { + stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key)); + return stack::get<T>(base_t::lua_state()); + } + + template <bool global, bool raw, typename T, typename Key, typename... Keys> + decltype(auto) traverse_get_deep(Key&& key, Keys&&... keys) const { + stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key)); + return traverse_get_deep<false, raw, T>(std::forward<Keys>(keys)...); + } + + template <bool global, bool raw, typename T, std::size_t I, typename Key> + decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key) const { + typedef decltype(stack::get<T>(base_t::lua_state())) R; + auto p = stack::probe_get_field<global, raw, T>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state())); + popcount += p.levels; + if (!p.success) + return R(nullopt); + return stack::get<T>(base_t::lua_state()); + } + + template <bool global, bool raw, typename T, std::size_t I, typename Key, typename... Keys> + decltype(auto) traverse_get_deep_optional(int& popcount, Key&& key, Keys&&... keys) const { + auto p = I > 0 ? stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), -1) : stack::probe_get_field<global>(base_t::lua_state(), std::forward<Key>(key), lua_gettop(base_t::lua_state())); + popcount += p.levels; + if (!p.success) + return T(nullopt); + return traverse_get_deep_optional<false, raw, T, I + 1>(popcount, std::forward<Keys>(keys)...); + } + + template <bool global, bool raw, typename T, typename... Keys> + decltype(auto) traverse_get_optional(std::false_type, Keys&&... keys) const { + detail::clean<sizeof...(Keys)> c(base_t::lua_state()); + return traverse_get_deep<global, raw, T>(std::forward<Keys>(keys)...); + } + + template <bool global, bool raw, typename T, typename... Keys> + decltype(auto) traverse_get_optional(std::true_type, Keys&&... keys) const { + int popcount = 0; + detail::ref_clean c(base_t::lua_state(), popcount); + return traverse_get_deep_optional<global, raw, T, 0>(popcount, std::forward<Keys>(keys)...); + } + + template <bool global, bool raw, typename Key, typename Value> + void traverse_set_deep(Key&& key, Value&& value) const { + stack::set_field<global, raw>(base_t::lua_state(), std::forward<Key>(key), std::forward<Value>(value)); + } + + template <bool global, bool raw, typename Key, typename... Keys> + void traverse_set_deep(Key&& key, Keys&&... keys) const { + stack::get_field<global, raw>(base_t::lua_state(), std::forward<Key>(key)); + traverse_set_deep<false, raw>(std::forward<Keys>(keys)...); + } + + basic_table_core(lua_State* L, detail::global_tag t) noexcept + : base_t(L, t) { + } + + protected: + basic_table_core(detail::no_safety_tag, lua_nil_t n) + : base_t(n) { + } + basic_table_core(detail::no_safety_tag, lua_State* L, int index) + : base_t(L, index) { + } + basic_table_core(detail::no_safety_tag, lua_State* L, ref_index index) + : base_t(L, index) { + } + template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_table_core(detail::no_safety_tag, T&& r) noexcept + : base_t(std::forward<T>(r)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_table_core(detail::no_safety_tag, lua_State*L, T&& r) noexcept + : base_t(L, std::forward<T>(r)) { + } + + public: + typedef basic_table_iterator<base_type> iterator; + typedef iterator const_iterator; + + using base_t::lua_state; + + basic_table_core() noexcept = default; + basic_table_core(const basic_table_core&) = default; + basic_table_core(basic_table_core&&) = default; + basic_table_core& operator=(const basic_table_core&) = default; + basic_table_core& operator=(basic_table_core&&) = default; + basic_table_core(const stack_reference& r) + : basic_table_core(r.lua_state(), r.stack_index()) { + } + basic_table_core(stack_reference&& r) + : basic_table_core(r.lua_state(), r.stack_index()) { + } + template <typename T, meta::enable_any<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_table_core(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_table_core>(lua_state(), -1, handler); +#endif // Safety + } + basic_table_core(lua_State* L, const new_table& nt) + : base_t(L, -stack::push(L, nt)) { + if (!is_stack_based<meta::unqualified_t<base_type>>::value) { + lua_pop(L, 1); + } + } + basic_table_core(lua_State* L, int index = -1) + : basic_table_core(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_table_core>(L, index, handler); +#endif // Safety + } + basic_table_core(lua_State* L, ref_index index) + : basic_table_core(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_table_core>(lua_state(), -1, handler); +#endif // Safety + } + template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_table_core>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_table_core(T&& r) noexcept + : basic_table_core(detail::no_safety, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_table<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_table_core>(base_t::lua_state(), -1, handler); + } +#endif // Safety + } + basic_table_core(lua_nil_t r) noexcept + : basic_table_core(detail::no_safety, r) { + } + + iterator begin() const { + return iterator(*this); + } + + iterator end() const { + return iterator(); + } + + const_iterator cbegin() const { + return begin(); + } + + const_iterator cend() const { + return end(); + } + + template <typename... Ret, typename... Keys> + decltype(auto) get(Keys&&... keys) const { + static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match"); + auto pp = stack::push_pop<is_global<Keys...>::value>(*this); + return tuple_get<false>(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), std::forward_as_tuple(std::forward<Keys>(keys)...)); + } + + template <typename T, typename Key> + decltype(auto) get_or(Key&& key, T&& otherwise) const { + typedef decltype(get<T>("")) U; + optional<U> option = get<optional<U>>(std::forward<Key>(key)); + if (option) { + return static_cast<U>(option.value()); + } + return static_cast<U>(std::forward<T>(otherwise)); + } + + template <typename T, typename Key, typename D> + decltype(auto) get_or(Key&& key, D&& otherwise) const { + optional<T> option = get<optional<T>>(std::forward<Key>(key)); + if (option) { + return static_cast<T>(option.value()); + } + return static_cast<T>(std::forward<D>(otherwise)); + } + + template <typename T, typename... Keys> + decltype(auto) traverse_get(Keys&&... keys) const { + auto pp = stack::push_pop<is_global<Keys...>::value>(*this); + return traverse_get_optional<top_level, false, T>(meta::is_optional<meta::unqualified_t<T>>(), std::forward<Keys>(keys)...); + } + + template <typename... Keys> + basic_table_core& traverse_set(Keys&&... keys) { + auto pp = stack::push_pop<is_global<Keys...>::value>(*this); + auto pn = stack::pop_n(base_t::lua_state(), static_cast<int>(sizeof...(Keys) - 2)); + traverse_set_deep<top_level, false>(std::forward<Keys>(keys)...); + return *this; + } + + template <typename... Args> + basic_table_core& set(Args&&... args) { + tuple_set<false>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...)); + return *this; + } + + template <typename... Ret, typename... Keys> + decltype(auto) raw_get(Keys&&... keys) const { + static_assert(sizeof...(Keys) == sizeof...(Ret), "number of keys and number of return types do not match"); + auto pp = stack::push_pop<is_global<Keys...>::value>(*this); + return tuple_get<true>(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), std::forward_as_tuple(std::forward<Keys>(keys)...)); + } + + template <typename T, typename Key> + decltype(auto) raw_get_or(Key&& key, T&& otherwise) const { + typedef decltype(raw_get<T>("")) U; + optional<U> option = raw_get<optional<U>>(std::forward<Key>(key)); + if (option) { + return static_cast<U>(option.value()); + } + return static_cast<U>(std::forward<T>(otherwise)); + } + + template <typename T, typename Key, typename D> + decltype(auto) raw_get_or(Key&& key, D&& otherwise) const { + optional<T> option = raw_get<optional<T>>(std::forward<Key>(key)); + if (option) { + return static_cast<T>(option.value()); + } + return static_cast<T>(std::forward<D>(otherwise)); + } + + template <typename T, typename... Keys> + decltype(auto) traverse_raw_get(Keys&&... keys) const { + auto pp = stack::push_pop<is_global<Keys...>::value>(*this); + return traverse_get_optional<top_level, true, T>(meta::is_optional<meta::unqualified_t<T>>(), std::forward<Keys>(keys)...); + } + + template <typename... Keys> + basic_table_core& traverse_raw_set(Keys&&... keys) { + auto pp = stack::push_pop<is_global<Keys...>::value>(*this); + auto pn = stack::pop_n(base_t::lua_state(), static_cast<int>(sizeof...(Keys) - 2)); + traverse_set_deep<top_level, true>(std::forward<Keys>(keys)...); + return *this; + } + + template <typename... Args> + basic_table_core& raw_set(Args&&... args) { + tuple_set<true>(std::make_index_sequence<sizeof...(Args) / 2>(), std::forward_as_tuple(std::forward<Args>(args)...)); + return *this; + } + + template <typename T> + basic_table_core& set_usertype(usertype<T>& user) { + return set_usertype(usertype_traits<T>::name(), user); + } + + template <typename Key, typename T> + basic_table_core& set_usertype(Key&& key, usertype<T>& user) { + return set(std::forward<Key>(key), user); + } + + template <typename Class, typename... Args> + basic_table_core& new_usertype(const std::string& name, Args&&... args) { + usertype<Class> utype(std::forward<Args>(args)...); + set_usertype(name, utype); + return *this; + } + + template <typename Class, typename CTor0, typename... CTor, typename... Args> + basic_table_core& new_usertype(const std::string& name, Args&&... args) { + constructors<types<CTor0, CTor...>> ctor{}; + return new_usertype<Class>(name, ctor, std::forward<Args>(args)...); + } + + template <typename Class, typename... CArgs, typename... Args> + basic_table_core& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) { + usertype<Class> utype(ctor, std::forward<Args>(args)...); + set_usertype(name, utype); + return *this; + } + + template <typename Class, typename... Args> + basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) { + simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...); + set_usertype(name, utype); + return *this; + } + + template <typename Class, typename CTor0, typename... CTor, typename... Args> + basic_table_core& new_simple_usertype(const std::string& name, Args&&... args) { + constructors<types<CTor0, CTor...>> ctor{}; + return new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...); + } + + template <typename Class, typename... CArgs, typename... Args> + basic_table_core& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) { + simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...); + set_usertype(name, utype); + return *this; + } + + template <typename Class, typename... Args> + simple_usertype<Class> create_simple_usertype(Args&&... args) { + simple_usertype<Class> utype(base_t::lua_state(), std::forward<Args>(args)...); + return utype; + } + + template <typename Class, typename CTor0, typename... CTor, typename... Args> + simple_usertype<Class> create_simple_usertype(Args&&... args) { + constructors<types<CTor0, CTor...>> ctor{}; + return create_simple_usertype<Class>(ctor, std::forward<Args>(args)...); + } + + template <typename Class, typename... CArgs, typename... Args> + simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args) { + simple_usertype<Class> utype(base_t::lua_state(), ctor, std::forward<Args>(args)...); + return utype; + } + + template <bool read_only = true, typename... Args> + table new_enum(const string_view& name, Args&&... args) { + table target = create_with(std::forward<Args>(args)...); + if (read_only) { + table x = create_with( + meta_function::new_index, detail::fail_on_newindex, + meta_function::index, target); + table shim = create_named(name, metatable_key, x); + return shim; + } + else { + set(name, target); + return target; + } + } + + template <typename T, bool read_only = true> + table new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) { + table target = create(static_cast<int>(items.size()), static_cast<int>(0)); + for (const auto& kvp : items) { + target.set(kvp.first, kvp.second); + } + if (read_only) { + table x = create_with( + meta_function::new_index, detail::fail_on_newindex, + meta_function::index, target); + table shim = create_named(name, metatable_key, x); + return shim; + } + else { + set(name, target); + return target; + } + } + + template <typename Fx> + void for_each(Fx&& fx) const { + typedef meta::is_invokable<Fx(std::pair<object, object>)> is_paired; + for_each(is_paired(), std::forward<Fx>(fx)); + } + + size_t size() const { + auto pp = stack::push_pop(*this); + lua_len(base_t::lua_state(), -1); + return stack::pop<size_t>(base_t::lua_state()); + } + + bool empty() const { + return cbegin() == cend(); + } + + template <typename T> + proxy<basic_table_core&, T> operator[](T&& key) & { + return proxy<basic_table_core&, T>(*this, std::forward<T>(key)); + } + + template <typename T> + proxy<const basic_table_core&, T> operator[](T&& key) const& { + return proxy<const basic_table_core&, T>(*this, std::forward<T>(key)); + } + + template <typename T> + proxy<basic_table_core, T> operator[](T&& key) && { + return proxy<basic_table_core, T>(*this, std::forward<T>(key)); + } + + template <typename Sig, typename Key, typename... Args> + basic_table_core& set_function(Key&& key, Args&&... args) { + set_fx(types<Sig>(), std::forward<Key>(key), std::forward<Args>(args)...); + return *this; + } + + template <typename Key, typename... Args> + basic_table_core& set_function(Key&& key, Args&&... args) { + set_fx(types<>(), std::forward<Key>(key), std::forward<Args>(args)...); + return *this; + } + + template <typename... Args> + basic_table_core& add(Args&&... args) { + auto pp = stack::push_pop(*this); + (void)detail::swallow{ 0, + (stack::set_ref(base_t::lua_state(), std::forward<Args>(args)), 0)... }; + return *this; + } + + private: + template <typename R, typename... Args, typename Fx, typename Key, typename = std::result_of_t<Fx(Args...)>> + void set_fx(types<R(Args...)>, Key&& key, Fx&& fx) { + set_resolved_function<R(Args...)>(std::forward<Key>(key), std::forward<Fx>(fx)); + } + + template <typename Fx, typename Key, meta::enable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler> + void set_fx(types<>, Key&& key, Fx&& fx) { + set(std::forward<Key>(key), std::forward<Fx>(fx)); + } + + template <typename Fx, typename Key, typename... Args, meta::disable<meta::is_specialization_of<meta::unqualified_t<Fx>, overload_set>> = meta::enabler> + void set_fx(types<>, Key&& key, Fx&& fx, Args&&... args) { + set(std::forward<Key>(key), as_function_reference(std::forward<Fx>(fx), std::forward<Args>(args)...)); + } + + template <typename... Sig, typename... Args, typename Key> + void set_resolved_function(Key&& key, Args&&... args) { + set(std::forward<Key>(key), as_function_reference<function_sig<Sig...>>(std::forward<Args>(args)...)); + } + + public: + static inline table create(lua_State* L, int narr = 0, int nrec = 0) { + lua_createtable(L, narr, nrec); + table result(L); + lua_pop(L, 1); + return result; + } + + template <typename Key, typename Value, typename... Args> + static inline table create(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + lua_createtable(L, narr, nrec); + table result(L); + result.set(std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + lua_pop(L, 1); + return result; + } + + template <typename... Args> + static inline table create_with(lua_State* L, Args&&... args) { + static_assert(sizeof...(Args) % 2 == 0, "You must have an even number of arguments for a key, value ... list."); + static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value); + return create(L, narr, static_cast<int>((sizeof...(Args) / 2) - narr), std::forward<Args>(args)...); + } + + table create(int narr = 0, int nrec = 0) { + return create(base_t::lua_state(), narr, nrec); + } + + template <typename Key, typename Value, typename... Args> + table create(int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + return create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + } + + template <typename Name> + table create(Name&& name, int narr = 0, int nrec = 0) { + table x = create(base_t::lua_state(), narr, nrec); + this->set(std::forward<Name>(name), x); + return x; + } + + template <typename Name, typename Key, typename Value, typename... Args> + table create(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + table x = create(base_t::lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + this->set(std::forward<Name>(name), x); + return x; + } + + template <typename... Args> + table create_with(Args&&... args) { + return create_with(base_t::lua_state(), std::forward<Args>(args)...); + } + + template <typename Name, typename... Args> + table create_named(Name&& name, Args&&... args) { + static const int narr = static_cast<int>(meta::count_2_for_pack<std::is_integral, Args...>::value); + return create(std::forward<Name>(name), narr, (sizeof...(Args) / 2) - narr, std::forward<Args>(args)...); + } + }; +} // namespace sol + +// end of sol/table_core.hpp + +namespace sol { + typedef table_core<false> table; + + namespace stack { + template <> + struct getter<metatable_t> { + static table get(lua_State* L, int index = -1) { + if (lua_getmetatable(L, index) == 0) { + return table(L, ref_index(LUA_REFNIL)); + } + return table(L, -1); + } + }; + } // namespace stack +} // namespace sol + +// end of sol/table.hpp + +// beginning of sol/environment.hpp + +namespace sol { + + template <typename base_type> + struct basic_environment : basic_table<base_type> { + private: + typedef basic_table<base_type> base_t; + + public: + using base_t::lua_state; + + basic_environment() noexcept = default; + basic_environment(const basic_environment&) = default; + basic_environment(basic_environment&&) = default; + basic_environment& operator=(const basic_environment&) = default; + basic_environment& operator=(basic_environment&&) = default; + basic_environment(const stack_reference& r) + : basic_environment(r.lua_state(), r.stack_index()) { + } + basic_environment(stack_reference&& r) + : basic_environment(r.lua_state(), r.stack_index()) { + } + + basic_environment(lua_State* L, new_table nt) + : base_t(L, std::move(nt)) { + } + template <bool b> + basic_environment(lua_State* L, new_table t, const basic_reference<b>& fallback) + : basic_environment(L, std::move(t)) { + stack_table mt(L, new_table(0, 1)); + mt.set(meta_function::index, fallback); + this->set(metatable_key, mt); + mt.pop(); + } + + basic_environment(env_t, const stack_reference& extraction_target) + : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<env_t>(this->lua_state(), -1, handler); +#endif // Safety + lua_pop(this->lua_state(), 2); + } + template <bool b> + basic_environment(env_t, const basic_reference<b>& extraction_target) + : base_t(detail::no_safety, extraction_target.lua_state(), (stack::push_environment_of(extraction_target), -1)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<env_t>(this->lua_state(), -1, handler); +#endif // Safety + lua_pop(this->lua_state(), 2); + } + basic_environment(lua_State* L, int index = -1) + : base_t(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_environment>(L, index, handler); +#endif // Safety + } + basic_environment(lua_State* L, ref_index index) + : base_t(detail::no_safety, L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_environment>(L, -1, handler); +#endif // Safety + } + template <typename T, meta::enable<meta::neg<meta::any_same<meta::unqualified_t<T>, basic_environment>>, meta::neg<std::is_same<base_type, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_environment(T&& r) noexcept + : base_t(detail::no_safety, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_environment<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_environment>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_environment(lua_nil_t r) noexcept + : base_t(detail::no_safety, r) { + } + + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_environment(lua_State* L, T&& r) noexcept + : base_t(detail::no_safety, L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_environment<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_environment>(lua_state(), -1, handler); + } +#endif // Safety + } + + template <typename T> + void set_on(const T& target) const { + lua_State* L = target.lua_state(); + auto pp = stack::push_pop(target); +#if SOL_LUA_VERSION < 502 + // Use lua_setfenv + this->push(); + lua_setfenv(L, -2); +#else + // Use upvalues as explained in Lua 5.2 and beyond's manual + this->push(); + const char* name = lua_setupvalue(L, -2, 1); + if (name == nullptr) { + this->pop(); + } +#endif + } + }; + + template <typename T, typename E> + void set_environment(const basic_environment<E>& env, const T& target) { + env.set_on(target); + } + + template <typename E = reference, typename T> + basic_environment<E> get_environment(const T& target) { + lua_State* L = target.lua_state(); + auto pp = stack::pop_n(L, stack::push_environment_of(target)); + return basic_environment<E>(L, -1); + } + + struct this_environment { + optional<environment> env; + + this_environment() + : env(nullopt) { + } + this_environment(environment e) + : env(std::move(e)) { + } + this_environment(const this_environment&) = default; + this_environment(this_environment&&) = default; + this_environment& operator=(const this_environment&) = default; + this_environment& operator=(this_environment&&) = default; + + explicit operator bool() const { + return static_cast<bool>(env); + } + + operator optional<environment>&() { + return env; + } + + operator const optional<environment>&() const { + return env; + } + + operator environment&() { + return env.value(); + } + + operator const environment&() const { + return env.value(); + } + }; + + namespace stack { + template <> + struct getter<env_t> { + static environment get(lua_State* L, int index, record& tracking) { + tracking.use(1); + return get_environment(stack_reference(L, raw_index(index))); + } + }; + + template <> + struct getter<this_environment> { + static this_environment get(lua_State* L, int, record& tracking) { + tracking.use(0); + lua_Debug info; + // Level 0 means current function (this C function, which may or may not be useful for us?) + // Level 1 means next call frame up the stack. (Can be nothing if function called directly from C++ with lua_p/call) + int pre_stack_size = lua_gettop(L); + if (lua_getstack(L, 1, &info) != 1) { + if (lua_getstack(L, 0, &info) != 1) { + lua_settop(L, pre_stack_size); + return this_environment(); + } + } + if (lua_getinfo(L, "f", &info) == 0) { + lua_settop(L, pre_stack_size); + return this_environment(); + } + + stack_reference f(L, -1); + environment env(env_key, f); + if (!env.valid()) { + lua_settop(L, pre_stack_size); + return this_environment(); + } + return this_environment(std::move(env)); + } + }; + } // namespace stack +} // namespace sol + +// end of sol/environment.hpp + +// beginning of sol/load_result.hpp + +namespace sol { + struct load_result : public proxy_base<load_result> { + private: + lua_State* L; + int index; + int returncount; + int popcount; + load_status err; + + template <typename T> + decltype(auto) tagged_get(types<optional<T>>) const { + if (!valid()) { + return optional<T>(nullopt); + } + return stack::get<optional<T>>(L, index); + } + + template <typename T> + decltype(auto) tagged_get(types<T>) const { +#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES != 0 + if (!valid()) { + type_panic_c_str(L, index, type_of(L, index), type::none); + } +#endif // Check Argument Safety + return stack::get<T>(L, index); + } + + optional<error> tagged_get(types<optional<error>>) const { + if (valid()) { + return nullopt; + } + return error(detail::direct_error, stack::get<std::string>(L, index)); + } + + error tagged_get(types<error>) const { +#if defined(SOL_SAFE_PROXIES) && SOL_SAFE_PROXIES != 0 + if (valid()) { + type_panic_c_str(L, index, type_of(L, index), type::none, "expecting an error type (a string, from Lua)"); + } +#endif // Check Argument Safety + return error(detail::direct_error, stack::get<std::string>(L, index)); + } + + public: + load_result() = default; + load_result(lua_State* Ls, int stackindex = -1, int retnum = 0, int popnum = 0, load_status lerr = load_status::ok) noexcept + : L(Ls), index(stackindex), returncount(retnum), popcount(popnum), err(lerr) { + } + load_result(const load_result&) = default; + load_result& operator=(const load_result&) = default; + load_result(load_result&& o) noexcept + : L(o.L), index(o.index), returncount(o.returncount), popcount(o.popcount), err(o.err) { + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.L = nullptr; + o.index = 0; + o.returncount = 0; + o.popcount = 0; + o.err = load_status::syntax; + } + load_result& operator=(load_result&& o) noexcept { + L = o.L; + index = o.index; + returncount = o.returncount; + popcount = o.popcount; + err = o.err; + // Must be manual, otherwise destructor will screw us + // return count being 0 is enough to keep things clean + // but we will be thorough + o.L = nullptr; + o.index = 0; + o.returncount = 0; + o.popcount = 0; + o.err = load_status::syntax; + return *this; + } + + load_status status() const noexcept { + return err; + } + + bool valid() const noexcept { + return status() == load_status::ok; + } + + template <typename T> + T get() const { + return tagged_get(types<meta::unqualified_t<T>>()); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) { +#if !defined(__clang__) && defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 191200000 + // MSVC is ass sometimes + return get<protected_function>().call<Ret...>(std::forward<Args>(args)...); +#else + return get<protected_function>().template call<Ret...>(std::forward<Args>(args)...); +#endif + } + + template <typename... Args> + decltype(auto) operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + + lua_State* lua_state() const noexcept { + return L; + }; + int stack_index() const noexcept { + return index; + }; + + ~load_result() { + stack::remove(L, index, popcount); + } + }; +} // namespace sol + +// end of sol/load_result.hpp + +// beginning of sol/state_handling.hpp + +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS +#endif + +namespace sol { + inline void register_main_thread(lua_State* L) { +#if SOL_LUA_VERSION < 502 + if (L == nullptr) { + lua_pushnil(L); + lua_setglobal(L, detail::default_main_thread_name()); + return; + } + lua_pushthread(L); + lua_setglobal(L, detail::default_main_thread_name()); +#else + (void)L; +#endif + } + + inline int default_at_panic(lua_State* L) { +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + (void)L; + return -1; +#else + size_t messagesize; + const char* message = lua_tolstring(L, -1, &messagesize); + if (message) { + std::string err(message, messagesize); + lua_settop(L, 0); +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS + std::cerr << "[sol2] An error occurred and panic has been invoked: "; + std::cerr << err; + std::cerr << std::endl; +#endif + throw error(err); + } + lua_settop(L, 0); + throw error(std::string("An unexpected error occurred and panic has been invoked")); +#endif // Printing Errors + } + + inline int default_traceback_error_handler(lua_State* L) { + std::string msg = "An unknown error has triggered the default error handler"; + optional<string_view> maybetopmsg = stack::check_get<string_view>(L, 1); + if (maybetopmsg) { + const string_view& topmsg = maybetopmsg.value(); + msg.assign(topmsg.data(), topmsg.size()); + } + luaL_traceback(L, L, msg.c_str(), 1); + optional<string_view> maybetraceback = stack::check_get<string_view>(L, -1); + if (maybetraceback) { + const string_view& traceback = maybetraceback.value(); + msg.assign(traceback.data(), traceback.size()); + } +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS + //std::cerr << "[sol2] An error occurred and was caught in traceback: "; + //std::cerr << msg; + //std::cerr << std::endl; +#endif // Printing + return stack::push(L, msg); + } + + inline void set_default_state(lua_State* L, lua_CFunction panic_function = &default_at_panic, lua_CFunction traceback_function = c_call<decltype(&default_traceback_error_handler), &default_traceback_error_handler>, exception_handler_function exf = detail::default_exception_handler) { + lua_atpanic(L, panic_function); + protected_function::set_default_handler(object(L, in_place, traceback_function)); + set_default_exception_handler(L, exf); + register_main_thread(L); + stack::luajit_exception_handler(L); + } + + inline std::size_t total_memory_used(lua_State* L) { + std::size_t kb = lua_gc(L, LUA_GCCOUNT, 0); + kb *= 1024; + kb += lua_gc(L, LUA_GCCOUNTB, 0); + return kb; + } + + inline protected_function_result script_pass_on_error(lua_State*, protected_function_result result) { + return result; + } + + inline protected_function_result script_throw_on_error(lua_State*L, protected_function_result result) { + type t = type_of(L, result.stack_index()); + std::string err = "sol: "; + err += to_string(result.status()); + err += " error"; +#if !(defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS) + std::exception_ptr eptr = std::current_exception(); + if (eptr) { + err += " with a "; + try { + std::rethrow_exception(eptr); + } + catch (const std::exception& ex) { + err += "std::exception -- "; + err.append(ex.what()); + } + catch (const std::string& message) { + err += "thrown message -- "; + err.append(message); + } + catch (const char* message) { + err += "thrown message -- "; + err.append(message); + } + catch (...) { + err.append("thrown but unknown type, cannot serialize into error message"); + } + } +#endif // serialize exception information if possible + if (t == type::string) { + err += ": "; + string_view serr = stack::get<string_view>(L, result.stack_index()); + err.append(serr.data(), serr.size()); + } +#if defined(SOL_PRINT_ERRORS) && SOL_PRINT_ERRORS + std::cerr << "[sol2] An error occurred and has been passed to an error handler: "; + std::cerr << err; + std::cerr << std::endl; +#endif + // replacing information of stack error into pfr + int target = result.stack_index(); + if (result.pop_count() > 0) { + stack::remove(L, target, result.pop_count()); + } + stack::push(L, err); + int top = lua_gettop(L); + int towards = top - target; + if (towards != 0) { + lua_rotate(L, top, towards); + } +#if defined(SOL_NO_EXCEPTIONS) && SOL_NO_EXCEPTIONS + return result; +#else + // just throw our error + throw error(detail::direct_error, err); +#endif // If exceptions are allowed + } + + inline protected_function_result script_default_on_error(lua_State* L, protected_function_result pfr) { +#if defined(SOL_DEFAULT_PASS_ON_ERROR) && SOL_DEFAULT_PASS_ON_ERROR + return script_pass_on_error(L, std::move(pfr)); +#else + return script_throw_on_error(L, std::move(pfr)); +#endif + } +} // namespace sol + +// end of sol/state_handling.hpp + +namespace sol { + + class state_view { + private: + lua_State* L; + table reg; + global_table global; + + optional<object> is_loaded_package(const std::string& key) { + auto loaded = reg.traverse_get<optional<object>>("_LOADED", key); + bool is53mod = loaded && !(loaded->is<bool>() && !loaded->as<bool>()); + if (is53mod) + return loaded; +#if SOL_LUA_VERSION <= 501 + auto loaded51 = global.traverse_get<optional<object>>("package", "loaded", key); + bool is51mod = loaded51 && !(loaded51->is<bool>() && !loaded51->as<bool>()); + if (is51mod) + return loaded51; +#endif + return nullopt; + } + + template <typename T> + void ensure_package(const std::string& key, T&& sr) { +#if SOL_LUA_VERSION <= 501 + auto pkg = global["package"]; + if (!pkg.valid()) { + pkg = create_table_with("loaded", create_table_with(key, sr)); + } + else { + auto ld = pkg["loaded"]; + if (!ld.valid()) { + ld = create_table_with(key, sr); + } + else { + ld[key] = sr; + } + } +#endif + auto loaded = reg["_LOADED"]; + if (!loaded.valid()) { + loaded = create_table_with(key, sr); + } + else { + loaded[key] = sr; + } + } + + template <typename Fx> + object require_core(const std::string& key, Fx&& action, bool create_global = true) { + optional<object> loaded = is_loaded_package(key); + if (loaded && loaded->valid()) + return std::move(*loaded); + action(); + stack_reference sr(L, -1); + if (create_global) + set(key, sr); + ensure_package(key, sr); + return stack::pop<object>(L); + } + + public: + typedef global_table::iterator iterator; + typedef global_table::const_iterator const_iterator; + + state_view(lua_State* Ls) + : L(Ls), reg(Ls, LUA_REGISTRYINDEX), global(Ls, detail::global_) { + } + + state_view(this_state Ls) + : state_view(Ls.L) { + } + + lua_State* lua_state() const { + return L; + } + + template <typename... Args> + void open_libraries(Args&&... args) { + static_assert(meta::all_same<lib, Args...>::value, "all types must be libraries"); + if (sizeof...(args) == 0) { + luaL_openlibs(L); + return; + } + + lib libraries[1 + sizeof...(args)] = {lib::count, std::forward<Args>(args)...}; + + for (auto&& library : libraries) { + switch (library) { +#if SOL_LUA_VERSION <= 501 && defined(SOL_LUAJIT) + case lib::coroutine: +#endif // luajit opens coroutine base stuff + case lib::base: + luaL_requiref(L, "base", luaopen_base, 1); + lua_pop(L, 1); + break; + case lib::package: + luaL_requiref(L, "package", luaopen_package, 1); + lua_pop(L, 1); + break; +#if !defined(SOL_LUAJIT) + case lib::coroutine: +#if SOL_LUA_VERSION > 501 + luaL_requiref(L, "coroutine", luaopen_coroutine, 1); + lua_pop(L, 1); +#endif // Lua 5.2+ only + break; +#endif // Not LuaJIT - comes builtin + case lib::string: + luaL_requiref(L, "string", luaopen_string, 1); + lua_pop(L, 1); + break; + case lib::table: + luaL_requiref(L, "table", luaopen_table, 1); + lua_pop(L, 1); + break; + case lib::math: + luaL_requiref(L, "math", luaopen_math, 1); + lua_pop(L, 1); + break; + case lib::bit32: +#ifdef SOL_LUAJIT + luaL_requiref(L, "bit32", luaopen_bit, 1); + lua_pop(L, 1); +#elif (SOL_LUA_VERSION == 502) || defined(LUA_COMPAT_BITLIB) || defined(LUA_COMPAT_5_2) + luaL_requiref(L, "bit32", luaopen_bit32, 1); + lua_pop(L, 1); +#else +#endif // Lua 5.2 only (deprecated in 5.3 (503)) (Can be turned on with Compat flags) + break; + case lib::io: + luaL_requiref(L, "io", luaopen_io, 1); + lua_pop(L, 1); + break; + case lib::os: + luaL_requiref(L, "os", luaopen_os, 1); + lua_pop(L, 1); + break; + case lib::debug: + luaL_requiref(L, "debug", luaopen_debug, 1); + lua_pop(L, 1); + break; + case lib::utf8: +#if SOL_LUA_VERSION > 502 && !defined(SOL_LUAJIT) + luaL_requiref(L, "utf8", luaopen_utf8, 1); + lua_pop(L, 1); +#endif // Lua 5.3+ only + break; + case lib::ffi: +#ifdef SOL_LUAJIT + luaL_requiref(L, "ffi", luaopen_ffi, 1); + lua_pop(L, 1); +#endif // LuaJIT only + break; + case lib::jit: +#ifdef SOL_LUAJIT + luaL_requiref(L, "jit", luaopen_jit, 0); + lua_pop(L, 1); +#endif // LuaJIT Only + break; + case lib::count: + default: + break; + } + } + } + + object require(const std::string& key, lua_CFunction open_function, bool create_global = true) { + luaL_requiref(L, key.c_str(), open_function, create_global ? 1 : 0); + return stack::pop<object>(L); + } + + object require_script(const std::string& key, const string_view& code, bool create_global = true, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + auto action = [this, &code, &chunkname, &mode]() { + stack::script(L, code, chunkname, mode); + }; + return require_core(key, action, create_global); + } + + object require_file(const std::string& key, const std::string& filename, bool create_global = true, load_mode mode = load_mode::any) { + auto action = [this, &filename, &mode]() { + stack::script_file(L, filename, mode); + }; + return require_core(key, action, create_global); + } + + template <typename E> + protected_function_result do_string(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + set_environment(env, pf); + return pf(); + } + + template <typename E> + protected_function_result do_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { + load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + set_environment(env, pf); + return pf(); + } + + protected_function_result do_string(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + return pf(); + } + + protected_function_result do_file(const std::string& filename, load_mode mode = load_mode::any) { + load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); + if (x != load_status::ok) { + return protected_function_result(L, absolute_index(L, -1), 0, 1, static_cast<call_status>(x)); + } + stack_aligned_protected_function pf(L, -1); + return pf(); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result safe_script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + protected_function_result pfr = do_string(code, chunkname, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + template <typename Fx, typename E> + protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + protected_function_result pfr = do_string(code, env, chunkname, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + template <typename E> + protected_function_result safe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, env, script_default_on_error, chunkname, mode); + } + + protected_function_result safe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, script_default_on_error, chunkname, mode); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result safe_script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) { + protected_function_result pfr = do_file(filename, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + template <typename Fx, typename E> + protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) { + protected_function_result pfr = do_file(filename, env, mode); + if (!pfr.valid()) { + return on_error(L, std::move(pfr)); + } + return pfr; + } + + template <typename E> + protected_function_result safe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { + return safe_script_file(filename, env, script_default_on_error, mode); + } + + protected_function_result safe_script_file(const std::string& filename, load_mode mode = load_mode::any) { + return safe_script_file(filename, script_default_on_error, mode); + } + + template <typename E> + unsafe_function_result unsafe_script(const string_view& code, const basic_environment<E>& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + int index = lua_gettop(L); + if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())) { + lua_error(L); + } + set_environment(env, stack_reference(L, raw_index(index + 1))); + if (lua_pcall(L, 0, LUA_MULTRET, 0)) { + lua_error(L); + } + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + unsafe_function_result unsafe_script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + int index = lua_gettop(L); + stack::script(L, code, chunkname, mode); + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + template <typename E> + unsafe_function_result unsafe_script_file(const std::string& filename, const basic_environment<E>& env, load_mode mode = load_mode::any) { + int index = lua_gettop(L); + if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())) { + lua_error(L); + } + set_environment(env, stack_reference(L, raw_index(index + 1))); + if (lua_pcall(L, 0, LUA_MULTRET, 0)) { + lua_error(L); + } + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + unsafe_function_result unsafe_script_file(const std::string& filename, load_mode mode = load_mode::any) { + int index = lua_gettop(L); + stack::script_file(L, filename, mode); + int postindex = lua_gettop(L); + int returns = postindex - index; + return unsafe_function_result(L, (std::max)(postindex - (returns - 1), 1), returns); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result script(const string_view& code, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, std::forward<Fx>(on_error), chunkname, mode); + } + + template <typename Fx, meta::disable_any<meta::is_string_constructible<meta::unqualified_t<Fx>>, meta::is_specialization_of<meta::unqualified_t<Fx>, basic_environment>> = meta::enabler> + protected_function_result script_file(const std::string& filename, Fx&& on_error, load_mode mode = load_mode::any) { + return safe_script_file(filename, std::forward<Fx>(on_error), mode); + } + + template <typename Fx, typename E> + protected_function_result script(const string_view& code, const basic_environment<E>& env, Fx&& on_error, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, env, std::forward<Fx>(on_error), chunkname, mode); + } + + template <typename Fx, typename E> + protected_function_result script_file(const std::string& filename, const basic_environment<E>& env, Fx&& on_error, load_mode mode = load_mode::any) { + return safe_script_file(filename, env, std::forward<Fx>(on_error), mode); + } + + protected_function_result script(const string_view& code, const environment& env, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, env, script_default_on_error, chunkname, mode); + } + + protected_function_result script_file(const std::string& filename, const environment& env, load_mode mode = load_mode::any) { + return safe_script_file(filename, env, script_default_on_error, mode); + } + +#if defined(SOL_SAFE_FUNCTION) && SOL_SAFE_FUNCTION + protected_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return safe_script(code, chunkname, mode); + } + + protected_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) { + return safe_script_file(filename, mode); + } +#else + unsafe_function_result script(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return unsafe_script(code, chunkname, mode); + } + + unsafe_function_result script_file(const std::string& filename, load_mode mode = load_mode::any) { + return unsafe_script_file(filename, mode); + } +#endif + load_result load(const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname); + load_status x = static_cast<load_status>(luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str())); + return load_result(L, absolute_index(L, -1), 1, 1, x); + } + + load_result load_buffer(const char* buff, size_t size, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + return load(string_view(buff, size), chunkname, mode); + } + + load_result load_file(const std::string& filename, load_mode mode = load_mode::any) { + load_status x = static_cast<load_status>(luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str())); + return load_result(L, absolute_index(L, -1), 1, 1, x); + } + + load_result load(lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) { + detail::typical_chunk_name_t basechunkname = {}; + const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname); + load_status x = static_cast<load_status>(lua_load(L, reader, data, chunknametarget, to_string(mode).c_str())); + return load_result(L, absolute_index(L, -1), 1, 1, x); + } + + iterator begin() const { + return global.begin(); + } + + iterator end() const { + return global.end(); + } + + const_iterator cbegin() const { + return global.cbegin(); + } + + const_iterator cend() const { + return global.cend(); + } + + global_table globals() const { + return global; + } + + table registry() const { + return reg; + } + + std::size_t memory_used() const { + return total_memory_used(lua_state()); + } + + int stack_top() const { + return stack::top(L); + } + + int stack_clear() { + int s = stack_top(); + lua_pop(L, s); + return s; + } + + void collect_garbage() { + lua_gc(lua_state(), LUA_GCCOLLECT, 0); + } + + operator lua_State*() const { + return lua_state(); + } + + void set_panic(lua_CFunction panic) { + lua_atpanic(lua_state(), panic); + } + + void set_exception_handler(exception_handler_function handler) { + set_default_exception_handler(lua_state(), handler); + } + + template <typename... Args, typename... Keys> + decltype(auto) get(Keys&&... keys) const { + return global.get<Args...>(std::forward<Keys>(keys)...); + } + + template <typename T, typename Key> + decltype(auto) get_or(Key&& key, T&& otherwise) const { + return global.get_or(std::forward<Key>(key), std::forward<T>(otherwise)); + } + + template <typename T, typename Key, typename D> + decltype(auto) get_or(Key&& key, D&& otherwise) const { + return global.get_or<T>(std::forward<Key>(key), std::forward<D>(otherwise)); + } + + template <typename... Args> + state_view& set(Args&&... args) { + global.set(std::forward<Args>(args)...); + return *this; + } + + template <typename T, typename... Keys> + decltype(auto) traverse_get(Keys&&... keys) const { + return global.traverse_get<T>(std::forward<Keys>(keys)...); + } + + template <typename... Args> + state_view& traverse_set(Args&&... args) { + global.traverse_set(std::forward<Args>(args)...); + return *this; + } + + template <typename T> + state_view& set_usertype(usertype<T>& user) { + return set_usertype(usertype_traits<T>::name(), user); + } + + template <typename Key, typename T> + state_view& set_usertype(Key&& key, usertype<T>& user) { + global.set_usertype(std::forward<Key>(key), user); + return *this; + } + + template <typename Class, typename... Args> + state_view& new_usertype(const std::string& name, Args&&... args) { + global.new_usertype<Class>(name, std::forward<Args>(args)...); + return *this; + } + + template <typename Class, typename CTor0, typename... CTor, typename... Args> + state_view& new_usertype(const std::string& name, Args&&... args) { + global.new_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...); + return *this; + } + + template <typename Class, typename... CArgs, typename... Args> + state_view& new_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) { + global.new_usertype<Class>(name, ctor, std::forward<Args>(args)...); + return *this; + } + + template <typename Class, typename... Args> + state_view& new_simple_usertype(const std::string& name, Args&&... args) { + global.new_simple_usertype<Class>(name, std::forward<Args>(args)...); + return *this; + } + + template <typename Class, typename CTor0, typename... CTor, typename... Args> + state_view& new_simple_usertype(const std::string& name, Args&&... args) { + global.new_simple_usertype<Class, CTor0, CTor...>(name, std::forward<Args>(args)...); + return *this; + } + + template <typename Class, typename... CArgs, typename... Args> + state_view& new_simple_usertype(const std::string& name, constructors<CArgs...> ctor, Args&&... args) { + global.new_simple_usertype<Class>(name, ctor, std::forward<Args>(args)...); + return *this; + } + + template <typename Class, typename... Args> + simple_usertype<Class> create_simple_usertype(Args&&... args) { + return global.create_simple_usertype<Class>(std::forward<Args>(args)...); + } + + template <typename Class, typename CTor0, typename... CTor, typename... Args> + simple_usertype<Class> create_simple_usertype(Args&&... args) { + return global.create_simple_usertype<Class, CTor0, CTor...>(std::forward<Args>(args)...); + } + + template <typename Class, typename... CArgs, typename... Args> + simple_usertype<Class> create_simple_usertype(constructors<CArgs...> ctor, Args&&... args) { + return global.create_simple_usertype<Class>(ctor, std::forward<Args>(args)...); + } + + template <bool read_only = true, typename... Args> + state_view& new_enum(const string_view& name, Args&&... args) { + global.new_enum<read_only>(name, std::forward<Args>(args)...); + return *this; + } + + template <typename T, bool read_only = true> + state_view& new_enum(const string_view& name, std::initializer_list<std::pair<string_view, T>> items) { + global.new_enum<T, read_only>(name, std::move(items)); + return *this; + } + + template <typename Fx> + void for_each(Fx&& fx) { + global.for_each(std::forward<Fx>(fx)); + } + + template <typename T> + proxy<global_table&, T> operator[](T&& key) { + return global[std::forward<T>(key)]; + } + + template <typename T> + proxy<const global_table&, T> operator[](T&& key) const { + return global[std::forward<T>(key)]; + } + + template <typename Sig, typename... Args, typename Key> + state_view& set_function(Key&& key, Args&&... args) { + global.set_function<Sig>(std::forward<Key>(key), std::forward<Args>(args)...); + return *this; + } + + template <typename... Args, typename Key> + state_view& set_function(Key&& key, Args&&... args) { + global.set_function(std::forward<Key>(key), std::forward<Args>(args)...); + return *this; + } + + template <typename Name> + table create_table(Name&& name, int narr = 0, int nrec = 0) { + return global.create(std::forward<Name>(name), narr, nrec); + } + + template <typename Name, typename Key, typename Value, typename... Args> + table create_table(Name&& name, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + return global.create(std::forward<Name>(name), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + } + + template <typename Name, typename... Args> + table create_named_table(Name&& name, Args&&... args) { + table x = global.create_with(std::forward<Args>(args)...); + global.set(std::forward<Name>(name), x); + return x; + } + + table create_table(int narr = 0, int nrec = 0) { + return create_table(lua_state(), narr, nrec); + } + + template <typename Key, typename Value, typename... Args> + table create_table(int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + return create_table(lua_state(), narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + } + + template <typename... Args> + table create_table_with(Args&&... args) { + return create_table_with(lua_state(), std::forward<Args>(args)...); + } + + static inline table create_table(lua_State* L, int narr = 0, int nrec = 0) { + return global_table::create(L, narr, nrec); + } + + template <typename Key, typename Value, typename... Args> + static inline table create_table(lua_State* L, int narr, int nrec, Key&& key, Value&& value, Args&&... args) { + return global_table::create(L, narr, nrec, std::forward<Key>(key), std::forward<Value>(value), std::forward<Args>(args)...); + } + + template <typename... Args> + static inline table create_table_with(lua_State* L, Args&&... args) { + return global_table::create_with(L, std::forward<Args>(args)...); + } + }; +} // namespace sol + +// end of sol/state_view.hpp + +// beginning of sol/thread.hpp + +namespace sol { + struct lua_thread_state { + lua_State* L; + + lua_thread_state(lua_State* Ls) + : L(Ls) { + } + + lua_State* lua_state() const noexcept { + return L; + } + operator lua_State*() const noexcept { + return lua_state(); + } + lua_State* operator->() const noexcept { + return lua_state(); + } + }; + + namespace stack { + template <> + struct pusher<lua_thread_state> { + int push(lua_State*, lua_thread_state lts) { + lua_pushthread(lts.L); + return 1; + } + }; + + template <> + struct getter<lua_thread_state> { + lua_thread_state get(lua_State* L, int index, record& tracking) { + tracking.use(1); + lua_thread_state lts( lua_tothread(L, index) ); + return lts; + } + }; + + template <> + struct check_getter<lua_thread_state> { + template <typename Handler> + optional<lua_thread_state> get(lua_State* L, int index, Handler&& handler, record& tracking) { + lua_thread_state lts( lua_tothread(L, index) ); + if (lts.lua_state() == nullptr) { + handler(L, index, type::thread, type_of(L, index), "value is not a valid thread type"); + return nullopt; + } + tracking.use(1); + return lts; + } + }; + } // namespace stack + + template <typename base_t> + class basic_thread : public base_t { + public: + using base_t::lua_state; + + basic_thread() noexcept = default; + basic_thread(const basic_thread&) = default; + basic_thread(basic_thread&&) = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_thread>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_thread(T&& r) + : base_t(std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_thread>(lua_state(), -1, handler); +#endif // Safety + } + basic_thread(const stack_reference& r) + : basic_thread(r.lua_state(), r.stack_index()){}; + basic_thread(stack_reference&& r) + : basic_thread(r.lua_state(), r.stack_index()){}; + basic_thread& operator=(const basic_thread&) = default; + basic_thread& operator=(basic_thread&&) = default; + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_thread(lua_State* L, T&& r) + : base_t(L, std::forward<T>(r)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_thread>(lua_state(), -1, handler); +#endif // Safety + } + basic_thread(lua_State* L, int index = -1) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_thread>(L, index, handler); +#endif // Safety + } + basic_thread(lua_State* L, ref_index index) + : base_t(L, index) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_thread>(lua_state(), -1, handler); +#endif // Safety + } + basic_thread(lua_State* L, lua_State* actualthread) + : basic_thread(L, lua_thread_state{ actualthread }) { + } + basic_thread(lua_State* L, this_state actualthread) + : basic_thread(L, lua_thread_state{ actualthread.L }) { + } + basic_thread(lua_State* L, lua_thread_state actualthread) + : base_t(L, -stack::push(L, actualthread)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_thread>(lua_state(), -1, handler); +#endif // Safety + if (!is_stack_based<base_t>::value) { + lua_pop(lua_state(), 1); + } + } + + state_view state() const { + return state_view(this->thread_state()); + } + + bool is_main_thread() const { + return stack::is_main_thread(this->thread_state()); + } + + lua_State* thread_state() const { + auto pp = stack::push_pop(*this); + lua_State* lthread = lua_tothread(lua_state(), -1); + return lthread; + } + + thread_status status() const { + lua_State* lthread = thread_state(); + auto lstat = static_cast<thread_status>(lua_status(lthread)); + if (lstat == thread_status::ok) { + lua_Debug ar; + if (lua_getstack(lthread, 0, &ar) > 0) + return thread_status::ok; + else if (lua_gettop(lthread) == 0) + return thread_status::dead; + else + return thread_status::yielded; + } + return lstat; + } + + basic_thread create() { + return create(lua_state()); + } + + static basic_thread create(lua_State* L) { + lua_newthread(L); + basic_thread result(L); + if (!is_stack_based<base_t>::value) { + lua_pop(L, 1); + } + return result; + } + }; + + typedef basic_thread<reference> thread; + typedef basic_thread<stack_reference> stack_thread; +} // namespace sol + +// end of sol/thread.hpp + +namespace sol { + + class state : private std::unique_ptr<lua_State, detail::state_deleter>, public state_view { + private: + typedef std::unique_ptr<lua_State, detail::state_deleter> unique_base; + + public: + state(lua_CFunction panic = default_at_panic) + : unique_base(luaL_newstate()), state_view(unique_base::get()) { + set_default_state(unique_base::get(), panic); + } + + state(lua_CFunction panic, lua_Alloc alfunc, void* alpointer = nullptr) + : unique_base(lua_newstate(alfunc, alpointer)), state_view(unique_base::get()) { + set_default_state(unique_base::get(), panic); + } + + state(const state&) = delete; + state(state&&) = default; + state& operator=(const state&) = delete; + state& operator=(state&& that) { + state_view::operator=(std::move(that)); + unique_base::operator=(std::move(that)); + return *this; + } + + using state_view::get; + + ~state() { + } + }; +} // namespace sol + +// end of sol/state.hpp + +// beginning of sol/coroutine.hpp + +namespace sol { + template <typename base_t> + class basic_coroutine : public base_t { + public: + typedef reference handler_t; + handler_t error_handler; + + private: + call_status stats = call_status::yielded; + + void luacall(std::ptrdiff_t argcount, std::ptrdiff_t) { +#if SOL_LUA_VERSION >= 504 + int nres; + stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount), &nres)); +#else + stats = static_cast<call_status>(lua_resume(lua_state(), nullptr, static_cast<int>(argcount))); +#endif + } + + template <std::size_t... I, typename... Ret> + auto invoke(types<Ret...>, std::index_sequence<I...>, std::ptrdiff_t n) { + luacall(n, sizeof...(Ret)); + return stack::pop<std::tuple<Ret...>>(lua_state()); + } + + template <std::size_t I, typename Ret> + Ret invoke(types<Ret>, std::index_sequence<I>, std::ptrdiff_t n) { + luacall(n, 1); + return stack::pop<Ret>(lua_state()); + } + + template <std::size_t I> + void invoke(types<void>, std::index_sequence<I>, std::ptrdiff_t n) { + luacall(n, 0); + } + + protected_function_result invoke(types<>, std::index_sequence<>, std::ptrdiff_t n) { + int firstreturn = 1; + luacall(n, LUA_MULTRET); + int poststacksize = lua_gettop(this->lua_state()); + int returncount = poststacksize - (firstreturn - 1); + if (error()) { + if (error_handler.valid()) { + string_view err = stack::get<string_view>(this->lua_state(), poststacksize); + error_handler.push(); + stack::push(this->lua_state(), err); + lua_call(lua_state(), 1, 1); + } + return protected_function_result(this->lua_state(), lua_absindex(this->lua_state(), -1), 1, returncount, status()); + } + return protected_function_result(this->lua_state(), firstreturn, returncount, returncount, status()); + } + + public: + using base_t::lua_state; + + basic_coroutine() = default; + template <typename T, meta::enable<meta::neg<std::is_same<meta::unqualified_t<T>, basic_coroutine>>, meta::neg<std::is_base_of<proxy_base_tag, meta::unqualified_t<T>>>, meta::neg<std::is_same<base_t, stack_reference>>, meta::neg<std::is_same<lua_nil_t, meta::unqualified_t<T>>>, is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_coroutine(T&& r) noexcept + : base_t(std::forward<T>(r)), error_handler(detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + if (!is_function<meta::unqualified_t<T>>::value) { + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_coroutine>(lua_state(), -1, handler); + } +#endif // Safety + } + basic_coroutine(const basic_coroutine&) = default; + basic_coroutine& operator=(const basic_coroutine&) = default; + basic_coroutine(basic_coroutine&&) = default; + basic_coroutine& operator=(basic_coroutine&&) = default; + basic_coroutine(const basic_function<base_t>& b) + : basic_coroutine(b, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) { + } + basic_coroutine(basic_function<base_t>&& b) + : basic_coroutine(std::move(b), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(b.lua_state())) { + } + basic_coroutine(const basic_function<base_t>& b, handler_t eh) + : base_t(b), error_handler(std::move(eh)) { + } + basic_coroutine(basic_function<base_t>&& b, handler_t eh) + : base_t(std::move(b)), error_handler(std::move(eh)) { + } + basic_coroutine(const stack_reference& r) + : basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { + } + basic_coroutine(stack_reference&& r) + : basic_coroutine(r.lua_state(), r.stack_index(), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(r.lua_state())) { + } + basic_coroutine(const stack_reference& r, handler_t eh) + : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) { + } + basic_coroutine(stack_reference&& r, handler_t eh) + : basic_coroutine(r.lua_state(), r.stack_index(), std::move(eh)) { + } + + template <typename Super> + basic_coroutine(const proxy_base<Super>& p) + : basic_coroutine(p, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) { + } + template <typename Super> + basic_coroutine(proxy_base<Super>&& p) + : basic_coroutine(std::move(p), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(p.lua_state())) { + } + template <typename Proxy, typename Handler, meta::enable<std::is_base_of<proxy_base_tag, meta::unqualified_t<Proxy>>, meta::neg<is_lua_index<meta::unqualified_t<Handler>>>> = meta::enabler> + basic_coroutine(Proxy&& p, Handler&& eh) + : basic_coroutine(detail::force_cast<base_t>(p), std::forward<Handler>(eh)) { + } + + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_coroutine(lua_State* L, T&& r) + : basic_coroutine(L, std::forward<T>(r), detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + template <typename T, meta::enable<is_lua_reference<meta::unqualified_t<T>>> = meta::enabler> + basic_coroutine(lua_State* L, T&& r, handler_t eh) + : base_t(L, std::forward<T>(r)), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_coroutine>(lua_state(), -1, handler); +#endif // Safety + } + + basic_coroutine(lua_nil_t n) + : base_t(n), error_handler(n) { + } + + basic_coroutine(lua_State* L, int index = -1) + : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + basic_coroutine(lua_State* L, int index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#ifdef SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_coroutine>(L, index, handler); +#endif // Safety + } + basic_coroutine(lua_State* L, absolute_index index) + : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + basic_coroutine(lua_State* L, absolute_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_coroutine>(L, index, handler); +#endif // Safety + } + basic_coroutine(lua_State* L, raw_index index) + : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + basic_coroutine(lua_State* L, raw_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + constructor_handler handler{}; + stack::check<basic_coroutine>(L, index, handler); +#endif // Safety + } + basic_coroutine(lua_State* L, ref_index index) + : basic_coroutine(L, index, detail::get_default_handler<reference, is_main_threaded<base_t>::value>(L)) { + } + basic_coroutine(lua_State* L, ref_index index, handler_t eh) + : base_t(L, index), error_handler(std::move(eh)) { +#if defined(SOL_SAFE_REFERENCES) && SOL_SAFE_REFERENCES + auto pp = stack::push_pop(*this); + constructor_handler handler{}; + stack::check<basic_coroutine>(lua_state(), -1, handler); +#endif // Safety + } + + call_status status() const noexcept { + return stats; + } + + bool error() const noexcept { + call_status cs = status(); + return cs != call_status::ok && cs != call_status::yielded; + } + + bool runnable() const noexcept { + return base_t::valid() + && (status() == call_status::yielded); + } + + explicit operator bool() const noexcept { + return runnable(); + } + + template <typename... Args> + protected_function_result operator()(Args&&... args) { + return call<>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) operator()(types<Ret...>, Args&&... args) { + return call<Ret...>(std::forward<Args>(args)...); + } + + template <typename... Ret, typename... Args> + decltype(auto) call(Args&&... args) { + // some users screw up coroutine.create + // and try to use it with sol::coroutine without ever calling the first resume in Lua + // this makes the stack incompatible with other kinds of stacks: protect against this + // make sure coroutines don't screw us over + base_t::push(); + int pushcount = stack::multi_push_reference(lua_state(), std::forward<Args>(args)...); + return invoke(types<Ret...>(), std::make_index_sequence<sizeof...(Ret)>(), pushcount); + } + }; +} // namespace sol + +// end of sol/coroutine.hpp + +// beginning of sol/variadic_results.hpp + +// beginning of sol/as_returns.hpp + +namespace sol { + template <typename T> + struct as_returns_t { + T src; + }; + + template <typename Source> + auto as_returns(Source&& source) { + return as_returns_t<std::decay_t<Source>>{ std::forward<Source>(source) }; + } + + namespace stack { + template <typename T> + struct pusher<as_returns_t<T>> { + int push(lua_State* L, const as_returns_t<T>& e) { + auto& src = detail::unwrap(e.src); + int p = 0; + for (const auto& i : src) { + p += stack::push(L, i); + } + return p; + } + }; + } // namespace stack +} // namespace sol + +// end of sol/as_returns.hpp + +namespace sol { + + struct variadic_results : public std::vector<object> { + using std::vector<object>::vector; + }; + + namespace stack { + template <> + struct pusher<variadic_results> { + int push(lua_State* L, const variadic_results& e) { + int p = 0; + for (const auto& i : e) { + p += stack::push(L, i); + } + return p; + } + }; + } // namespace stack + +} // namespace sol + +// end of sol/variadic_results.hpp + +#if defined(__GNUC__) +#pragma GCC diagnostic pop +#elif defined _MSC_VER +#pragma warning( push ) +#endif // g++ + +#if defined(SOL_INSIDE_UNREAL) && SOL_INSIDE_UNREAL +#if defined(SOL_INSIDE_UNREAL_REMOVED_CHECK) && SOL_INSIDE_UNREAL_REMOVED_CHECK +#if defined(DO_CHECK) && DO_CHECK +#define check(expr) { if(UNLIKELY(!(expr))) { FDebug::LogAssertFailedMessage( #expr, __FILE__, __LINE__ ); _DebugBreakAndPromptForRemote(); FDebug::AssertFailed( #expr, __FILE__, __LINE__ ); CA_ASSUME(false); } } +#else +#define check(expr) { CA_ASSUME(expr); } +#endif +#endif +#endif // Unreal Engine 4 Bullshit + +#endif // SOL_HPP +// end of sol.hpp + +#endif // SOL_SINGLE_INCLUDE_HPP |