/// @ref gtc_matrix_transform /// @file glm/gtc/matrix_transform.inl #include "../geometric.hpp" #include "../trigonometric.hpp" #include "../matrix.hpp" namespace glm { template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> translate(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { mat<4, 4, T, Q> Result(m); Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v) { T const a = angle; T const c = cos(a); T const s = sin(a); vec<3, T, Q> axis(normalize(v)); vec<3, T, Q> temp((T(1) - c) * axis); mat<4, 4, T, Q> Rotate; Rotate[0][0] = c + temp[0] * axis[0]; Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; Rotate[1][0] = temp[1] * axis[0] - s * axis[2]; Rotate[1][1] = c + temp[1] * axis[1]; Rotate[1][2] = temp[1] * axis[2] + s * axis[0]; Rotate[2][0] = temp[2] * axis[0] + s * axis[1]; Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; Rotate[2][2] = c + temp[2] * axis[2]; mat<4, 4, T, Q> Result; Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; Result[3] = m[3]; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate_slow(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v) { T const a = angle; T const c = cos(a); T const s = sin(a); mat<4, 4, T, Q> Result; vec<3, T, Q> axis = normalize(v); Result[0][0] = c + (static_cast(1) - c) * axis.x * axis.x; Result[0][1] = (static_cast(1) - c) * axis.x * axis.y + s * axis.z; Result[0][2] = (static_cast(1) - c) * axis.x * axis.z - s * axis.y; Result[0][3] = static_cast(0); Result[1][0] = (static_cast(1) - c) * axis.y * axis.x - s * axis.z; Result[1][1] = c + (static_cast(1) - c) * axis.y * axis.y; Result[1][2] = (static_cast(1) - c) * axis.y * axis.z + s * axis.x; Result[1][3] = static_cast(0); Result[2][0] = (static_cast(1) - c) * axis.z * axis.x + s * axis.y; Result[2][1] = (static_cast(1) - c) * axis.z * axis.y - s * axis.x; Result[2][2] = c + (static_cast(1) - c) * axis.z * axis.z; Result[2][3] = static_cast(0); Result[3] = vec<4, T, Q>(0, 0, 0, 1); return m * Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { mat<4, 4, T, Q> Result; Result[0] = m[0] * v[0]; Result[1] = m[1] * v[1]; Result[2] = m[2] * v[2]; Result[3] = m[3]; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale_slow(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { mat<4, 4, T, Q> Result(T(1)); Result[0][0] = v.x; Result[1][1] = v.y; Result[2][2] = v.z; return m * Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top) { mat<4, 4, T, defaultp> Result(static_cast(1)); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) { mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = static_cast(1) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - zNear / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar) { mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = static_cast(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - (zFar + zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) { mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = - static_cast(1) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - zNear / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar) { mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); Result[2][2] = - static_cast(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); Result[3][2] = - (zFar + zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return orthoLH_ZO(left, right, bottom, top, zNear, zFar); # else return orthoRH_ZO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return orthoLH_NO(left, right, bottom, top, zNear, zFar); # else return orthoRH_NO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return orthoLH_ZO(left, right, bottom, top, zNear, zFar); # else return orthoLH_NO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return orthoRH_ZO(left, right, bottom, top, zNear, zFar); # else return orthoRH_NO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return orthoLH_ZO(left, right, bottom, top, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE return orthoLH_NO(left, right, bottom, top, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return orthoRH_ZO(left, right, bottom, top, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE return orthoRH_NO(left, right, bottom, top, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) { mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = farVal / (farVal - nearVal); Result[2][3] = static_cast(1); Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) { mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = (farVal + nearVal) / (farVal - nearVal); Result[2][3] = static_cast(1); Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) { mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = farVal / (nearVal - farVal); Result[2][3] = static_cast(-1); Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) { mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); Result[2][3] = static_cast(-1); Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # else return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return frustumLH_NO(left, right, bottom, top, nearVal, farVal); # else return frustumRH_NO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # else return frustumLH_NO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); # else return frustumRH_NO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE return frustumLH_NO(left, right, bottom, top, nearVal, farVal); # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE return frustumRH_NO(left, right, bottom, top, nearVal, farVal); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); Result[2][2] = zFar / (zNear - zFar); Result[2][3] = - static_cast(1); Result[3][2] = -(zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); Result[2][2] = - (zFar + zNear) / (zFar - zNear); Result[2][3] = - static_cast(1); Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); Result[2][2] = zFar / (zFar - zNear); Result[2][3] = static_cast(1); Result[3][2] = -(zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); Result[2][2] = (zFar + zNear) / (zFar - zNear); Result[2][3] = static_cast(1); Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return perspectiveLH_ZO(fovy, aspect, zNear, zFar); # else return perspectiveRH_ZO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return perspectiveLH_NO(fovy, aspect, zNear, zFar); # else return perspectiveRH_NO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return perspectiveLH_ZO(fovy, aspect, zNear, zFar); # else return perspectiveLH_NO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return perspectiveRH_ZO(fovy, aspect, zNear, zFar); # else return perspectiveRH_NO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return perspectiveLH_ZO(fovy, aspect, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE return perspectiveLH_NO(fovy, aspect, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return perspectiveRH_ZO(fovy, aspect, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE return perspectiveRH_NO(fovy, aspect, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = zFar / (zNear - zFar); Result[2][3] = - static_cast(1); Result[3][2] = -(zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = - (zFar + zNear) / (zFar - zNear); Result[2][3] = - static_cast(1); Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = zFar / (zFar - zNear); Result[2][3] = static_cast(1); Result[3][2] = -(zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; Result[2][2] = (zFar + zNear) / (zFar - zNear); Result[2][3] = static_cast(1); Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); # else return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return perspectiveFovLH_NO(fov, width, height, zNear, zFar); # else return perspectiveFovRH_NO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); # else return perspectiveFovLH_NO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); # else return perspectiveFovRH_NO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE return perspectiveFovLH_NO(fov, width, height, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); # elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE return perspectiveFovRH_NO(fov, width, height, zNear, zFar); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) { T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; T const right = range * aspect; T const bottom = -range; T const top = range; mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = - static_cast(1); Result[2][3] = - static_cast(1); Result[3][2] = - static_cast(2) * zNear; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) { T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; T const right = range * aspect; T const bottom = -range; T const top = range; mat<4, 4, T, defaultp> Result(T(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = static_cast(1); Result[2][3] = static_cast(1); Result[3][2] = - static_cast(2) * zNear; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return infinitePerspectiveLH(fovy, aspect, zNear); # else return infinitePerspectiveRH(fovy, aspect, zNear); # endif } // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) { T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; T const right = range * aspect; T const bottom = -range; T const top = range; mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = ep - static_cast(1); Result[2][3] = static_cast(-1); Result[3][2] = (ep - static_cast(2)) * zNear; return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) { return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon()); } template GLM_FUNC_QUALIFIER vec<3, T, Q> projectZO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast(1)); tmp = model * tmp; tmp = proj * tmp; tmp /= tmp.w; tmp.x = tmp.x * static_cast(0.5) + static_cast(0.5); tmp.y = tmp.y * static_cast(0.5) + static_cast(0.5); tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); return vec<3, T, Q>(tmp); } template GLM_FUNC_QUALIFIER vec<3, T, Q> projectNO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast(1)); tmp = model * tmp; tmp = proj * tmp; tmp /= tmp.w; tmp = tmp * static_cast(0.5) + static_cast(0.5); tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); return vec<3, T, Q>(tmp); } template GLM_FUNC_QUALIFIER vec<3, T, Q> project(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return projectZO(obj, model, proj, viewport); # else return projectNO(obj, model, proj, viewport); # endif } template GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectZO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { mat<4, 4, T, Q> Inverse = inverse(proj * model); vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); tmp.x = tmp.x * static_cast(2) - static_cast(1); tmp.y = tmp.y * static_cast(2) - static_cast(1); vec<4, T, Q> obj = Inverse * tmp; obj /= obj.w; return vec<3, T, Q>(obj); } template GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectNO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { mat<4, 4, T, Q> Inverse = inverse(proj * model); vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); tmp = tmp * static_cast(2) - static_cast(1); vec<4, T, Q> obj = Inverse * tmp; obj /= obj.w; return vec<3, T, Q>(obj); } template GLM_FUNC_QUALIFIER vec<3, T, Q> unProject(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE return unProjectZO(win, model, proj, viewport); # else return unProjectNO(win, model, proj, viewport); # endif } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport) { assert(delta.x > static_cast(0) && delta.y > static_cast(0)); mat<4, 4, T, Q> Result(static_cast(1)); if(!(delta.x > static_cast(0) && delta.y > static_cast(0))) return Result; // Error vec<3, T, Q> Temp( (static_cast(viewport[2]) - static_cast(2) * (center.x - static_cast(viewport[0]))) / delta.x, (static_cast(viewport[3]) - static_cast(2) * (center.y - static_cast(viewport[1]))) / delta.y, static_cast(0)); // Translate and scale the picked region to the entire window Result = translate(Result, Temp); return scale(Result, vec<3, T, Q>(static_cast(viewport[2]) / delta.x, static_cast(viewport[3]) / delta.y, static_cast(1))); } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtRH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) { vec<3, T, Q> const f(normalize(center - eye)); vec<3, T, Q> const s(normalize(cross(f, up))); vec<3, T, Q> const u(cross(s, f)); mat<4, 4, T, Q> Result(1); Result[0][0] = s.x; Result[1][0] = s.y; Result[2][0] = s.z; Result[0][1] = u.x; Result[1][1] = u.y; Result[2][1] = u.z; Result[0][2] =-f.x; Result[1][2] =-f.y; Result[2][2] =-f.z; Result[3][0] =-dot(s, eye); Result[3][1] =-dot(u, eye); Result[3][2] = dot(f, eye); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtLH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) { vec<3, T, Q> const f(normalize(center - eye)); vec<3, T, Q> const s(normalize(cross(up, f))); vec<3, T, Q> const u(cross(f, s)); mat<4, 4, T, Q> Result(1); Result[0][0] = s.x; Result[1][0] = s.y; Result[2][0] = s.z; Result[0][1] = u.x; Result[1][1] = u.y; Result[2][1] = u.z; Result[0][2] = f.x; Result[1][2] = f.y; Result[2][2] = f.z; Result[3][0] = -dot(s, eye); Result[3][1] = -dot(u, eye); Result[3][2] = -dot(f, eye); return Result; } template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAt(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED return lookAtLH(eye, center, up); # else return lookAtRH(eye, center, up); # endif } }//namespace glm