/*
* xusb: libusb-winusb specific test program
* Copyright (c) 2009-2010 Pete Batard <pbatard@gmail.com>
* Based on lsusb, copyright (c) 2007 Daniel Drake <dsd@gentoo.org>
* With contributions to Mass Storage test by Alan Stern.
*
* This test program tries to access an USB device through WinUSB.
* To access your device, modify this source and add your VID/PID.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <config.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include "libusb.h"
#ifdef OS_WINDOWS
#define msleep(msecs) Sleep(msecs)
#else
#include <unistd.h>
#define msleep(msecs) usleep(1000*msecs)
#endif
#if !defined(_MSC_VER) || _MSC_VER<=1200
#define sscanf_s sscanf
#endif
#if !defined(bool)
#define bool int
#endif
#if !defined(true)
#define true (1 == 1)
#endif
#if !defined(false)
#define false (!true)
#endif
// Future versions of libusb will use usb_interface instead of interface
// in libusb_config_descriptor => catter for that
#define usb_interface interface
// Global variables
bool binary_dump = false;
char binary_name[64];
inline static int perr(char const *format, ...)
{
va_list args;
int r;
va_start (args, format);
r = vfprintf(stderr, format, args);
va_end(args);
return r;
}
#define ERR_EXIT(errcode) do { perr(" %s\n", libusb_strerror(errcode)); return -1; } while (0)
#define CALL_CHECK(fcall) do { r=fcall; if (r < 0) ERR_EXIT(r); } while (0);
#define B(x) (((x)!=0)?1:0)
#define be_to_int32(buf) (((buf)[0]<<24)|((buf)[1]<<16)|((buf)[2]<<8)|(buf)[3])
#define RETRY_MAX 5
#define REQUEST_SENSE_LENGTH 0x12
#define INQUIRY_LENGTH 0x24
#define READ_CAPACITY_LENGTH 0x08
// HID Class-Specific Requests values. See section 7.2 of the HID specifications
#define HID_GET_REPORT 0x01
#define HID_GET_IDLE 0x02
#define HID_GET_PROTOCOL 0x03
#define HID_SET_REPORT 0x09
#define HID_SET_IDLE 0x0A
#define HID_SET_PROTOCOL 0x0B
#define HID_REPORT_TYPE_INPUT 0x01
#define HID_REPORT_TYPE_OUTPUT 0x02
#define HID_REPORT_TYPE_FEATURE 0x03
// Mass Storage Requests values. See section 3 of the Bulk-Only Mass Storage Class specifications
#define BOMS_RESET 0xFF
#define BOMS_GET_MAX_LUN 0xFE
// Section 5.1: Command Block Wrapper (CBW)
struct command_block_wrapper {
uint8_t dCBWSignature[4];
uint32_t dCBWTag;
uint32_t dCBWDataTransferLength;
uint8_t bmCBWFlags;
uint8_t bCBWLUN;
uint8_t bCBWCBLength;
uint8_t CBWCB[16];
};
// Section 5.2: Command Status Wrapper (CSW)
struct command_status_wrapper {
uint8_t dCSWSignature[4];
uint32_t dCSWTag;
uint32_t dCSWDataResidue;
uint8_t bCSWStatus;
};
static uint8_t cdb_length[256] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
06,06,06,06,06,06,06,06,06,06,06,06,06,06,06,06, // 0
06,06,06,06,06,06,06,06,06,06,06,06,06,06,06,06, // 1
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 2
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 3
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 4
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 5
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // 6
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // 7
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, // 8
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, // 9
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, // A
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, // B
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // C
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // D
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // E
00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // F
};
enum test_type {
USE_XBOX,
USE_KEY,
USE_JTAG,
USE_HID,
} test_mode;
uint16_t VID, PID;
void display_buffer_hex(unsigned char *buffer, unsigned size)
{
unsigned i;
for (i=0; i<size; i++) {
if (!(i%0x10))
printf("\n ");
printf(" %02X", buffer[i]);
}
printf("\n");
}
// The XBOX Controller is really a HID device that got its HID Report Descriptors
// removed by Microsoft.
// Input/Output reports described at http://euc.jp/periphs/xbox-controller.ja.html
int display_xbox_status(libusb_device_handle *handle)
{
int r;
uint8_t input_report[20];
printf("\nReading XBox Input Report...\n");
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x00, 0, input_report, 20, 1000));
printf(" D-pad: %02X\n", input_report[2]&0x0F);
printf(" Start:%d, Back:%d, Left Stick Press:%d, Right Stick Press:%d\n", B(input_report[2]&0x10), B(input_report[2]&0x20),
B(input_report[2]&0x40), B(input_report[2]&0x80));
// A, B, X, Y, Black, White are pressure sensitive
printf(" A:%d, B:%d, X:%d, Y:%d, White:%d, Black:%d\n", input_report[4], input_report[5],
input_report[6], input_report[7], input_report[9], input_report[8]);
printf(" Left Trigger: %d, Right Trigger: %d\n", input_report[10], input_report[11]);
printf(" Left Analog (X,Y): (%d,%d)\n", (int16_t)((input_report[13]<<8)|input_report[12]),
(int16_t)((input_report[15]<<8)|input_report[14]));
printf(" Right Analog (X,Y): (%d,%d)\n", (int16_t)((input_report[17]<<8)|input_report[16]),
(int16_t)((input_report[19]<<8)|input_report[18]));
return 0;
}
int set_xbox_actuators(libusb_device_handle *handle, uint8_t left, uint8_t right)
{
int r;
uint8_t output_report[6];
printf("\nWriting XBox Controller Output Report...\n");
memset(output_report, 0, sizeof(output_report));
output_report[1] = sizeof(output_report);
output_report[3] = left;
output_report[5] = right;
CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_OUT|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_SET_REPORT, (HID_REPORT_TYPE_OUTPUT<<8)|0x00, 0, output_report, 06, 1000));
return 0;
}
int send_mass_storage_command(libusb_device_handle *handle, uint8_t endpoint, uint8_t lun,
uint8_t *cdb, uint8_t direction, int data_length, uint32_t *ret_tag)
{
static uint32_t tag = 1;
uint8_t cdb_len;
int i, r, size;
struct command_block_wrapper cbw;
if (cdb == NULL) {
return -1;
}
if (endpoint & LIBUSB_ENDPOINT_IN) {
perr("send_mass_storage_command: cannot send command on IN endpoint\n");
return -1;
}
cdb_len = cdb_length[cdb[0]];
if ((cdb_len == 0) || (cdb_len > sizeof(cbw.CBWCB))) {
perr("send_mass_storage_command: don't know how to handle this command (%02X, length %d)\n",
cdb[0], cdb_len);
return -1;
}
memset(&cbw, 0, sizeof(cbw));
cbw.dCBWSignature[0] = 'U';
cbw.dCBWSignature[1] = 'S';
cbw.dCBWSignature[2] = 'B';
cbw.dCBWSignature[3] = 'C';
*ret_tag = tag;
cbw.dCBWTag = tag++;
cbw.dCBWDataTransferLength = data_length;
cbw.bmCBWFlags = direction;
cbw.bCBWLUN = lun;
// Subclass is 1 or 6 => cdb_len
cbw.bCBWCBLength = cdb_len;
memcpy(cbw.CBWCB, cdb, cdb_len);
i = 0;
do {
// The transfer length must always be exactly 31 bytes.
r = libusb_bulk_transfer(handle, endpoint, (unsigned char*)&cbw, 31, &size, 1000);
if (r == LIBUSB_ERROR_PIPE) {
libusb_clear_halt(handle, endpoint);
}
i++;
} while ((r == LIBUSB_ERROR_PIPE) && (i<RETRY_MAX));
if (r != LIBUSB_SUCCESS) {
perr(" send_mass_storage_command: %s\n", libusb_strerror(r));
return -1;
}
printf(" sent %d CDB bytes\n", cdb_len);
return 0;
}
int get_mass_storage_status(libusb_device_handle *handle, uint8_t endpoint, uint32_t expected_tag)
{
int i, r, size;
struct command_status_wrapper csw;
// The device is allowed to STALL this transfer. If it does, you have to
// clear the stall and try again.
i = 0;
do {
r = libusb_bulk_transfer(handle, endpoint, (unsigned char*)&csw, 13, &size, 1000);
if (r == LIBUSB_ERROR_PIPE) {
libusb_clear_halt(handle, endpoint);
}
i++;
} while ((r == LIBUSB_ERROR_PIPE) && (i<RETRY_MAX));
if (r != LIBUSB_SUCCESS) {
perr(" get_mass_storage_status: %s\n", libusb_strerror(r));
return -1;
}
if (size != 13) {
perr(" get_mass_storage_status: received %d bytes (expected 13)\n", size);
return -1;
}
if (csw.dCSWTag != expected_tag) {
perr(" get_mass_storage_status: mismatched tags (expected %08X, received %08X)\n",
expected_tag, csw.dCSWTag);
return -1;
}
// For this test, we ignore the dCSWSignature check for validity...
printf(" Mass Storage Status: %02X (%s)\n", csw.bCSWStatus, csw.bCSWStatus?"FAILED":"Success");
if (csw.dCSWTag != expected_tag)
return -1;
if (csw.bCSWStatus) {
// REQUEST SENSE is appropriate only if bCSWStatus is 1, meaning that the
// command failed somehow. Larger values (2 in particular) mean that
// the command couldn't be understood.
if (csw.bCSWStatus == 1)
return -2; // request Get Sense
else
return -1;
}
// In theory we also should check dCSWDataResidue. But lots of devices
// set it wrongly.
return 0;
}
void get_sense(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
uint8_t cdb[16]; // SCSI Command Descriptor Block
uint8_t sense[18];
uint32_t expected_tag;
int size;
// Request Sense
printf("Request Sense:\n");
memset(sense, 0, sizeof(sense));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x03; // Request Sense
cdb[4] = REQUEST_SENSE_LENGTH;
send_mass_storage_command(handle, endpoint_out, 0, cdb, LIBUSB_ENDPOINT_IN, REQUEST_SENSE_LENGTH, &expected_tag);
libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&sense, REQUEST_SENSE_LENGTH, &size, 1000);
printf(" received %d bytes\n", size);
if ((sense[0] != 0x70) && (sense[0] != 0x71)) {
perr(" ERROR No sense data\n");
} else {
perr(" ERROR Sense: %02X %02X %02X\n", sense[2]&0x0F, sense[12], sense[13]);
}
// Strictly speaking, the get_mass_storage_status() call should come
// before these perr() lines. If the status is nonzero then we must
// assume there's no data in the buffer. For xusb it doesn't matter.
get_mass_storage_status(handle, endpoint_in, expected_tag);
}
// Mass Storage device to test bulk transfers (non destructive test)
int test_mass_storage(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
int r;
uint8_t lun;
uint32_t expected_tag;
uint32_t i, size, max_lba, block_size;
double device_size;
uint8_t cdb[16]; // SCSI Command Descriptor Block
uint8_t buffer[64];
char vid[9], pid[9], rev[5];
unsigned char *data;
FILE *fd;
size_t junk;
printf("Reading Max LUN:\n");
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
BOMS_GET_MAX_LUN, 0, 0, &lun, 1, 1000);
// Some devices send a STALL instead of the actual value.
// In such cases we should set lun to 0.
if (r == 0) {
lun = 0;
} else if (r < 0) {
perr(" Failed: %s", libusb_strerror(r));
}
printf(" Max LUN = %d\n", lun);
// Send Inquiry
printf("Sending Inquiry:\n");
memset(buffer, 0, sizeof(buffer));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x12; // Inquiry
cdb[4] = INQUIRY_LENGTH;
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, INQUIRY_LENGTH, &expected_tag);
CALL_CHECK(libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&buffer, INQUIRY_LENGTH, &size, 1000));
printf(" received %d bytes\n", size);
// The following strings are not zero terminated
for (i=0; i<8; i++) {
vid[i] = buffer[8+i];
pid[i] = buffer[16+i];
rev[i/2] = buffer[32+i/2]; // instead of another loop
}
vid[8] = 0;
pid[8] = 0;
rev[4] = 0;
printf(" VID:PID:REV \"%8s\":\"%8s\":\"%4s\"\n", vid, pid, rev);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
}
// Read capacity
printf("Reading Capacity:\n");
memset(buffer, 0, sizeof(buffer));
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x25; // Read Capacity
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, READ_CAPACITY_LENGTH, &expected_tag);
CALL_CHECK(libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&buffer, READ_CAPACITY_LENGTH, &size, 1000));
printf(" received %d bytes\n", size);
max_lba = be_to_int32(&buffer[0]);
block_size = be_to_int32(&buffer[4]);
device_size = ((double)(max_lba+1))*block_size/(1024*1024*1024);
printf(" Max LBA: %08X, Block Size: %08X (%.2f GB)\n", max_lba, block_size, device_size);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
}
data = malloc(block_size);
if (data == NULL) {
perr(" unable to allocate data buffer\n");
return -1;
}
// Send Read
printf("Attempting to read %d bytes:\n", block_size);
memset(data, 0, block_size);
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x28; // Read(10)
cdb[8] = 0x01; // 1 block
send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, block_size, &expected_tag);
libusb_bulk_transfer(handle, endpoint_in, data, block_size, &size, 5000);
printf(" READ: received %d bytes\n", size);
if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
get_sense(handle, endpoint_in, endpoint_out);
} else {
display_buffer_hex(data, size);
if ((binary_dump) && ((fd = fopen(binary_name, "w")) != NULL)) {
junk = fwrite(data, 1, size, fd);
fclose(fd);
}
}
return 0;
}
// HID
int get_hid_record_size(uint8_t *hid_report_descriptor, int size, int type)
{
uint8_t i, j = 0;
uint8_t offset;
int record_size[3] = {0, 0, 0};
int nb_bits = 0, nb_items = 0;
bool found_bits, found_items, found_record_marker;
found_bits = false;
found_items = false;
found_record_marker = false;
for (i = hid_report_descriptor[0]+1; i < size; i += offset) {
offset = (hid_report_descriptor[i]&0x03) + 1;
if (offset == 4)
offset = 5;
switch (hid_report_descriptor[i] & 0xFC) {
case 0x74: // bitsize
nb_bits = hid_report_descriptor[i+1];
found_bits = true;
break;
case 0x94: // count
nb_items = 0;
for (j=1; j<offset; j++) {
nb_items = ((uint32_t)hid_report_descriptor[i+j]) << (8*(j-1));
}
found_items = true;
break;
case 0x80: // input
found_record_marker = true;
j = 0;
break;
case 0x90: // output
found_record_marker = true;
j = 1;
break;
case 0xb0: // feature
found_record_marker = true;
j = 2;
break;
case 0xC0: // end of collection
nb_items = 0;
nb_bits = 0;
break;
default:
continue;
}
if (found_record_marker) {
found_bits = false;
found_items = false;
found_record_marker = false;
record_size[j] += nb_items*nb_bits;
}
}
if ((type < HID_REPORT_TYPE_INPUT) || (type > HID_REPORT_TYPE_FEATURE)) {
return 0;
} else {
return (record_size[type - HID_REPORT_TYPE_INPUT]+7)/8;
}
}
int test_hid(libusb_device_handle *handle, uint8_t endpoint_in)
{
int r, size, descriptor_size;
uint8_t hid_report_descriptor[256];
uint8_t *report_buffer;
FILE *fd;
size_t junk;
printf("\nReading HID Report Descriptors:\n");
descriptor_size = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_STANDARD|LIBUSB_RECIPIENT_INTERFACE,
LIBUSB_REQUEST_GET_DESCRIPTOR, LIBUSB_DT_REPORT<<8, 0, hid_report_descriptor, 256, 1000);
if (descriptor_size < 0) {
printf("failed\n");
return -1;
} else {
display_buffer_hex(hid_report_descriptor, descriptor_size);
if ((binary_dump) && ((fd = fopen(binary_name, "w")) != NULL)) {
junk = fwrite(hid_report_descriptor, 1, descriptor_size, fd);
fclose(fd);
}
size = get_hid_record_size(hid_report_descriptor, descriptor_size, HID_REPORT_TYPE_FEATURE);
}
if (size <= 0) {
printf("\nSkipping Feature Report readout (None detected)\n");
} else {
report_buffer = calloc(size, 1);
if (report_buffer == NULL) {
return -1;
}
printf("\nReading Feature Report (length %d)...\n", size);
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_FEATURE<<8)|0, 0, report_buffer, (uint16_t)size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, size);
} else {
switch(r) {
case LIBUSB_ERROR_NOT_FOUND:
printf(" No Feature Report available for this device\n");
break;
case LIBUSB_ERROR_PIPE:
printf(" Detected stall - resetting pipe...\n");
libusb_clear_halt(handle, 0);
break;
default:
printf(" Error: %s\n", libusb_strerror(r));
break;
}
}
free(report_buffer);
}
size = get_hid_record_size(hid_report_descriptor, descriptor_size, HID_REPORT_TYPE_INPUT);
if (size <= 0) {
printf("\nSkipping Input Report readout (None detected)\n");
} else {
report_buffer = calloc(size, 1);
if (report_buffer == NULL) {
return -1;
}
printf("\nReading Input Report (length %d)...\n", size);
r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x00, 0, report_buffer, (uint16_t)size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, size);
} else {
switch(r) {
case LIBUSB_ERROR_TIMEOUT:
printf(" Timeout! Please make sure you act on the device within the 5 seconds allocated...\n");
break;
case LIBUSB_ERROR_PIPE:
printf(" Detected stall - resetting pipe...\n");
libusb_clear_halt(handle, 0);
break;
default:
printf(" Error: %s\n", libusb_strerror(r));
break;
}
}
// Attempt a bulk read from endpoint 0 (this should just return a raw input report)
printf("\nTesting interrupt read using endpoint %02X...\n", endpoint_in);
r = libusb_interrupt_transfer(handle, endpoint_in, report_buffer, size, &size, 5000);
if (r >= 0) {
display_buffer_hex(report_buffer, size);
} else {
printf(" %s\n", libusb_strerror(r));
}
free(report_buffer);
}
return 0;
}
int test_device(uint16_t vid, uint16_t pid)
{
libusb_device_handle *handle;
libusb_device *dev;
struct libusb_config_descriptor *conf_desc;
const struct libusb_endpoint_descriptor *endpoint;
int i, j, k, r;
int iface, nb_ifaces;
#ifdef OS_LINUX
// Attaching/detaching the kernel driver is only relevant for Linux
int iface_detached = -1;
#endif
bool test_scsi = false;
struct libusb_device_descriptor dev_desc;
char string[128];
uint8_t string_index[3]; // indexes of the string descriptors
uint8_t endpoint_in = 0, endpoint_out = 0; // default IN and OUT endpoints
printf("Opening device...\n");
handle = libusb_open_device_with_vid_pid(NULL, vid, pid);
if (handle == NULL) {
perr(" Failed.\n");
return -1;
}
dev = libusb_get_device(handle);
printf("\nReading device descriptor:\n");
CALL_CHECK(libusb_get_device_descriptor(dev, &dev_desc));
printf(" length: %d\n", dev_desc.bLength);
printf(" device class: %d\n", dev_desc.bDeviceClass);
printf(" S/N: %d\n", dev_desc.iSerialNumber);
printf(" VID:PID: %04X:%04X\n", dev_desc.idVendor, dev_desc.idProduct);
printf(" bcdDevice: %04X\n", dev_desc.bcdDevice);
printf(" iMan:iProd:iSer: %d:%d:%d\n", dev_desc.iManufacturer, dev_desc.iProduct, dev_desc.iSerialNumber);
printf(" nb confs: %d\n", dev_desc.bNumConfigurations);
// Copy the string descriptors for easier parsing
string_index[0] = dev_desc.iManufacturer;
string_index[1] = dev_desc.iProduct;
string_index[2] = dev_desc.iSerialNumber;
printf("\nReading configuration descriptors:\n");
CALL_CHECK(libusb_get_config_descriptor(dev, 0, &conf_desc));
nb_ifaces = conf_desc->bNumInterfaces;
printf(" nb interfaces: %d\n", nb_ifaces);
for (i=0; i<conf_desc->bNumInterfaces; i++) {
for (j=0; j<conf_desc->usb_interface[i].num_altsetting; j++) {
printf("interface[%d].altsetting[%d]: num endpoints = %d\n",
i, j, conf_desc->usb_interface[i].altsetting[j].bNumEndpoints);
printf(" Class.SubClass.Protocol: %02X.%02X.%02X\n",
conf_desc->usb_interface[i].altsetting[j].bInterfaceClass,
conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass,
conf_desc->usb_interface[i].altsetting[j].bInterfaceProtocol);
if ( (conf_desc->usb_interface[i].altsetting[j].bInterfaceClass == LIBUSB_CLASS_MASS_STORAGE)
&& ( (conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass == 0x01)
|| (conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass == 0x06) )
&& (conf_desc->usb_interface[i].altsetting[j].bInterfaceProtocol == 0x50) ) {
// Mass storage devices that can use basic SCSI commands
test_scsi = true;
}
for (k=0; k<conf_desc->usb_interface[i].altsetting[j].bNumEndpoints; k++) {
endpoint = &conf_desc->usb_interface[i].altsetting[j].endpoint[k];
printf(" endpoint[%d].address: %02X\n", k, endpoint->bEndpointAddress);
// Use the last IN/OUT endpoints found as default for testing
if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) {
endpoint_in = endpoint->bEndpointAddress;
} else {
endpoint_out = endpoint->bEndpointAddress;
}
printf(" max packet size: %04X\n", endpoint->wMaxPacketSize);
printf(" polling interval: %02X\n", endpoint->bInterval);
}
}
}
libusb_free_config_descriptor(conf_desc);
for (iface = 0; iface < nb_ifaces; iface++)
{
printf("\nClaiming interface %d...\n", iface);
r = libusb_claim_interface(handle, iface);
#ifdef OS_LINUX
if ((r != LIBUSB_SUCCESS) && (iface == 0)) {
// Maybe we need to detach the driver
perr(" Failed. Trying to detach driver...\n");
libusb_detach_kernel_driver(handle, iface);
iface_detached = iface;
printf(" Claiming interface again...\n");
r = libusb_claim_interface(handle, iface);
}
#endif
if (r != LIBUSB_SUCCESS) {
perr(" Failed.\n");
}
}
printf("\nReading string descriptors:\n");
for (i=0; i<3; i++) {
if (string_index[i] == 0) {
continue;
}
if (libusb_get_string_descriptor_ascii(handle, string_index[i], string, 128) >= 0) {
printf(" String (0x%02X): \"%s\"\n", string_index[i], string);
}
}
switch(test_mode) {
case USE_XBOX:
CALL_CHECK(display_xbox_status(handle));
CALL_CHECK(set_xbox_actuators(handle, 128, 222));
msleep(2000);
CALL_CHECK(set_xbox_actuators(handle, 0, 0));
break;
case USE_HID:
test_hid(handle, endpoint_in);
break;
default:
break;
}
if (test_scsi) {
CALL_CHECK(test_mass_storage(handle, endpoint_in, endpoint_out));
}
printf("\n");
for (iface = 0; iface<nb_ifaces; iface++) {
printf("Releasing interface %d...\n", iface);
libusb_release_interface(handle, iface);
}
#ifdef OS_LINUX
if (iface_detached >= 0) {
printf("Re-attaching kernel driver...\n");
libusb_attach_kernel_driver(handle, iface_detached);
}
#endif
printf("Closing device...\n");
libusb_close(handle);
return 0;
}
int main(int argc, char** argv)
{
bool show_help = false;
bool got_vidpid = false;
bool debug_mode = false;
const struct libusb_version* version;
int j, r;
size_t i, arglen;
unsigned tmp_vid, tmp_pid;
uint16_t endian_test = 0xBE00;
// Default to HID, expecting VID:PID
VID = 0;
PID = 0;
test_mode = USE_HID;
if (((uint8_t*)&endian_test)[0] == 0xBE) {
printf("Despite their natural superiority for end users, big endian\n"
"CPUs are not supported with this program, sorry.\n");
return 0;
}
if (argc >= 2) {
for (j = 1; j<argc; j++) {
arglen = strlen(argv[j]);
if ( ((argv[j][0] == '-') || (argv[j][0] == '/'))
&& (arglen >= 2) ) {
switch(argv[j][1]) {
case 'd':
debug_mode = true;
break;
case 'b':
strcat(binary_name, "raw.bin");
if (j+1 < argc) {
strncpy(binary_name, argv[j+1], 64);
j++;
}
binary_dump = true;
break;
case 'i':
// IBM HID Optical mouse - 1 interface
if (!VID && !PID) {
VID = 0x04B3;
PID = 0x3108;
}
test_mode = USE_HID;
break;
case 'j':
// OLIMEX ARM-USB-TINY JTAG, 2 channel composite device - 2 interfaces
if (!VID && !PID) {
VID = 0x15BA;
PID = 0x0004;
}
test_mode = USE_JTAG;
break;
case 'k':
// Generic 2 GB USB Key (SCSI Transparent/Bulk Only) - 1 interface
if (!VID && !PID) {
VID = 0x0204;
PID = 0x6025;
}
test_mode = USE_KEY;
break;
// The following tests will force VID:PID if already provided
case 'l':
// Plantronics DSP 400, 2 channel HID composite device - 1 HID interface
VID = 0x047F;
PID = 0x0CA1;
test_mode = USE_HID;
break;
case 's':
// Microsoft Sidewinder Precision Pro Joystick - 1 HID interface
VID = 0x045E;
PID = 0x0008;
test_mode = USE_HID;
break;
case 'x':
// Microsoft XBox Controller Type S - 1 interface
VID = 0x045E;
PID = 0x0289;
test_mode = USE_XBOX;
break;
default:
show_help = true;
break;
}
} else {
for (i=0; i<arglen; i++) {
if (argv[j][i] == ':')
break;
}
if (i != arglen) {
if (sscanf_s(argv[j], "%x:%x" , &tmp_vid, &tmp_pid) != 2) {
printf(" Please specify VID & PID as \"vid:pid\" in hexadecimal format\n");
return 1;
}
VID = (uint16_t)tmp_vid;
PID = (uint16_t)tmp_pid;
got_vidpid = true;
} else {
show_help = true;
}
}
}
}
if ((show_help) || (argc == 1) || (argc > 7)) {
printf("usage: %s [-d] [-b [file]] [-h] [-i] [-j] [-k] [-l] [-s] [-x] [vid:pid]\n", argv[0]);
printf(" -h: display usage\n");
printf(" -d: enable debug output (if library was compiled with debug enabled)\n");
printf(" -b: dump raw HID report descriptor or Mass Storage first block to binary file\n");
printf(" -i: test generic HID device (default)\n");
printf(" -k: test generic Mass Storage USB device (using WinUSB)\n");
printf(" -j: test FTDI based JTAG device (using WinUSB)\n");
printf(" -l: test Plantronics Headset (using HID)\n");
printf(" -s: test Microsoft Sidewinder Precision Pro (using HID)\n");
printf(" -x: test Microsoft XBox Controller Type S (using WinUSB)\n");
return 0;
}
version = libusb_getversion();
printf("Using libusb v%d.%d.%d.%d\n\n", version->major, version->minor, version->micro, version->nano);
r = libusb_init(NULL);
if (r < 0)
return r;
// Warnings = 2, Debug = 4
libusb_set_debug(NULL, debug_mode?4:2);
test_device(VID, PID);
libusb_exit(NULL);
return 0;
}