1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
|
/*
* Internal header for libusb
* Copyright (C) 2007-2009 Daniel Drake <dsd@gentoo.org>
* Copyright (c) 2001 Johannes Erdfelt <johannes@erdfelt.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __LIBUSBI_H__
#define __LIBUSBI_H__
#include <config.h>
#include <stddef.h>
#include <stdint.h>
#include <time.h>
#include <libusb.h>
#include "libusb_version.h"
/* Inside the libusb code, mark all public functions as follows:
* return_type API_EXPORTED function_name(params) { ... }
* But if the function returns a pointer, mark it as follows:
* DEFAULT_VISIBILITY return_type * LIBUSB_CALL function_name(params) { ... }
* In the libusb public header, mark all declarations as:
* return_type LIBUSB_CALL function_name(params);
*/
#define API_EXPORTED LIBUSB_CALL DEFAULT_VISIBILITY
#define DEVICE_DESC_LENGTH 18
#define USB_MAXENDPOINTS 32
#define USB_MAXINTERFACES 32
#define USB_MAXCONFIG 8
struct list_head {
struct list_head *prev, *next;
};
/* Get an entry from the list
* ptr - the address of this list_head element in "type"
* type - the data type that contains "member"
* member - the list_head element in "type"
*/
#define list_entry(ptr, type, member) \
((type *)((uintptr_t)(ptr) - (uintptr_t)(&((type *)0L)->member)))
/* Get each entry from a list
* pos - A structure pointer has a "member" element
* head - list head
* member - the list_head element in "pos"
* type - the type of the first parameter
*/
#define list_for_each_entry(pos, head, member, type) \
for (pos = list_entry((head)->next, type, member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, type, member))
#define list_for_each_entry_safe(pos, n, head, member, type) \
for (pos = list_entry((head)->next, type, member), \
n = list_entry(pos->member.next, type, member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, type, member))
#define list_empty(entry) ((entry)->next == (entry))
static inline void list_init(struct list_head *entry)
{
entry->prev = entry->next = entry;
}
static inline void list_add(struct list_head *entry, struct list_head *head)
{
entry->next = head->next;
entry->prev = head;
head->next->prev = entry;
head->next = entry;
}
static inline void list_add_tail(struct list_head *entry,
struct list_head *head)
{
entry->next = head;
entry->prev = head->prev;
head->prev->next = entry;
head->prev = entry;
}
static inline void list_del(struct list_head *entry)
{
entry->next->prev = entry->prev;
entry->prev->next = entry->next;
}
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define TIMESPEC_IS_SET(ts) ((ts)->tv_sec != 0 || (ts)->tv_nsec != 0)
enum usbi_log_level {
LOG_LEVEL_DEBUG,
LOG_LEVEL_INFO,
LOG_LEVEL_WARNING,
LOG_LEVEL_ERROR,
};
void usbi_log(struct libusb_context *ctx, enum usbi_log_level level,
const char *function, const char *format, ...);
#if !defined(_MSC_VER) || _MSC_VER > 1200
#ifdef ENABLE_LOGGING
#define _usbi_log(ctx, level, ...) usbi_log(ctx, level, __FUNCTION__, __VA_ARGS__)
#else
#define _usbi_log(ctx, level, ...)
#endif
#if defined(ENABLE_DEBUG_LOGGING) || defined(INCLUDE_DEBUG_LOGGING)
#define usbi_dbg(...) _usbi_log(NULL, LOG_LEVEL_DEBUG, __VA_ARGS__)
#else
#define usbi_dbg(...)
#endif
#define usbi_info(ctx, ...) _usbi_log(ctx, LOG_LEVEL_INFO, __VA_ARGS__)
#define usbi_warn(ctx, ...) _usbi_log(ctx, LOG_LEVEL_WARNING, __VA_ARGS__)
#define usbi_err(ctx, ...) _usbi_log(ctx, LOG_LEVEL_ERROR, __VA_ARGS__)
#else /* !defined(_MSC_VER) || _MSC_VER > 1200 */
void usbi_log_v(struct libusb_context *ctx, enum usbi_log_level level,
const char *function, const char *format, va_list args);
#ifdef ENABLE_LOGGING
#define LOG_BODY(ctxt, level) \
{ \
va_list args; \
va_start (args, format); \
usbi_log_v(ctxt, level, "", format, args); \
va_end(args); \
}
#else
#define LOG_BODY(ctxt, level) { }
#endif
static inline void usbi_info(struct libusb_context *ctx, const char *format,
...)
LOG_BODY(ctx,LOG_LEVEL_INFO)
static inline void usbi_warn(struct libusb_context *ctx, const char *format,
...)
LOG_BODY(ctx,LOG_LEVEL_WARNING)
static inline void usbi_err( struct libusb_context *ctx, const char *format,
...)
LOG_BODY(ctx,LOG_LEVEL_ERROR)
static inline void usbi_dbg(const char *format, ...)
#if defined(ENABLE_DEBUG_LOGGING) || defined(INCLUDE_DEBUG_LOGGING)
LOG_BODY(NULL,LOG_LEVEL_DEBUG)
#else
{ }
#endif
#endif /* !defined(_MSC_VER) || _MSC_VER > 1200 */
#define USBI_GET_CONTEXT(ctx) if (!(ctx)) (ctx) = usbi_default_context
#define DEVICE_CTX(dev) ((dev)->ctx)
#define HANDLE_CTX(handle) (DEVICE_CTX((handle)->dev))
#define TRANSFER_CTX(transfer) (HANDLE_CTX((transfer)->dev_handle))
#define ITRANSFER_CTX(transfer) \
(TRANSFER_CTX(__USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer)))
/* Internal abstractions for thread synchronization and poll */
#if defined(THREADS_POSIX)
#include <os/threads_posix.h>
#elif defined(OS_WINDOWS)
#include <os/threads_windows.h>
#endif
#if defined(OS_LINUX) || defined(OS_DARWIN)
#include <os/poll_posix.h>
#elif defined(OS_WINDOWS)
#include <os/poll_windows.h>
#endif
extern struct libusb_context *usbi_default_context;
struct libusb_context {
int debug;
int debug_fixed;
/* internal control pipe, used for interrupting event handling when
* something needs to modify poll fds. */
int ctrl_pipe[2];
struct list_head usb_devs;
usbi_mutex_t usb_devs_lock;
/* A list of open handles. Backends are free to traverse this if required.
*/
struct list_head open_devs;
usbi_mutex_t open_devs_lock;
/* this is a list of in-flight transfer handles, sorted by timeout
* expiration. URBs to timeout the soonest are placed at the beginning of
* the list, URBs that will time out later are placed after, and urbs with
* infinite timeout are always placed at the very end. */
struct list_head flying_transfers;
usbi_mutex_t flying_transfers_lock;
/* list of poll fds */
struct list_head pollfds;
usbi_mutex_t pollfds_lock;
/* a counter that is set when we want to interrupt event handling, in order
* to modify the poll fd set. and a lock to protect it. */
unsigned int pollfd_modify;
usbi_mutex_t pollfd_modify_lock;
/* user callbacks for pollfd changes */
libusb_pollfd_added_cb fd_added_cb;
libusb_pollfd_removed_cb fd_removed_cb;
void *fd_cb_user_data;
/* ensures that only one thread is handling events at any one time */
usbi_mutex_t events_lock;
/* used to see if there is an active thread doing event handling */
int event_handler_active;
/* used to wait for event completion in threads other than the one that is
* event handling */
usbi_mutex_t event_waiters_lock;
usbi_cond_t event_waiters_cond;
#ifdef USBI_TIMERFD_AVAILABLE
/* used for timeout handling, if supported by OS.
* this timerfd is maintained to trigger on the next pending timeout */
int timerfd;
#endif
};
#ifdef USBI_TIMERFD_AVAILABLE
#define usbi_using_timerfd(ctx) ((ctx)->timerfd >= 0)
#else
#define usbi_using_timerfd(ctx) (0)
#endif
struct libusb_device {
/* lock protects refcnt, everything else is finalized at initialization
* time */
usbi_mutex_t lock;
int refcnt;
struct libusb_context *ctx;
uint8_t bus_number;
uint8_t device_address;
uint8_t num_configurations;
struct list_head list;
unsigned long session_data;
unsigned char os_priv[0];
};
struct libusb_device_handle {
/* lock protects claimed_interfaces */
usbi_mutex_t lock;
unsigned long claimed_interfaces;
struct list_head list;
struct libusb_device *dev;
unsigned char os_priv[0];
};
#define USBI_TRANSFER_TIMED_OUT (1<<0)
enum {
USBI_CLOCK_MONOTONIC,
USBI_CLOCK_REALTIME
};
/* in-memory transfer layout:
*
* 1. struct usbi_transfer
* 2. struct libusb_transfer (which includes iso packets) [variable size]
* 3. os private data [variable size]
*
* from a libusb_transfer, you can get the usbi_transfer by rewinding the
* appropriate number of bytes.
* the usbi_transfer includes the number of allocated packets, so you can
* determine the size of the transfer and hence the start and length of the
* OS-private data.
*/
struct usbi_transfer {
int num_iso_packets;
struct list_head list;
struct timeval timeout;
int transferred;
uint8_t flags;
/* this lock is held during libusb_submit_transfer() and
* libusb_cancel_transfer() (allowing the OS backend to prevent duplicate
* cancellation, submission-during-cancellation, etc). the OS backend
* should also take this lock in the handle_events path, to prevent the user
* cancelling the transfer from another thread while you are processing
* its completion (presumably there would be races within your OS backend
* if this were possible). */
usbi_mutex_t lock;
};
#define __USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer) \
((struct libusb_transfer *)(((unsigned char *)(transfer)) \
+ sizeof(struct usbi_transfer)))
#define __LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer) \
((struct usbi_transfer *)(((unsigned char *)(transfer)) \
- sizeof(struct usbi_transfer)))
static inline void *usbi_transfer_get_os_priv(struct usbi_transfer *transfer)
{
return ((unsigned char *)transfer) + sizeof(struct usbi_transfer)
+ sizeof(struct libusb_transfer)
+ (transfer->num_iso_packets
* sizeof(struct libusb_iso_packet_descriptor));
}
/* bus structures */
/* All standard descriptors have these 2 fields in common */
struct usb_descriptor_header {
uint8_t bLength;
uint8_t bDescriptorType;
};
/* shared data and functions */
int usbi_io_init(struct libusb_context *ctx);
void usbi_io_exit(struct libusb_context *ctx);
struct libusb_device *usbi_alloc_device(struct libusb_context *ctx,
unsigned long session_id);
struct libusb_device *usbi_get_device_by_session_id(struct libusb_context *ctx,
unsigned long session_id);
int usbi_sanitize_device(struct libusb_device *dev);
void usbi_handle_disconnect(struct libusb_device_handle *handle);
int usbi_handle_transfer_completion(struct usbi_transfer *itransfer,
enum libusb_transfer_status status);
int usbi_handle_transfer_cancellation(struct usbi_transfer *transfer);
int usbi_parse_descriptor(unsigned char *source, char *descriptor, void *dest,
int host_endian);
int usbi_get_config_index_by_value(struct libusb_device *dev,
uint8_t bConfigurationValue, int *idx);
/* polling */
struct usbi_pollfd {
/* must come first */
struct libusb_pollfd pollfd;
struct list_head list;
};
int usbi_add_pollfd(struct libusb_context *ctx, int fd, short events);
void usbi_remove_pollfd(struct libusb_context *ctx, int fd);
void usbi_fd_notification(struct libusb_context *ctx);
/* device discovery */
/* we traverse usbfs without knowing how many devices we are going to find.
* so we create this discovered_devs model which is similar to a linked-list
* which grows when required. it can be freed once discovery has completed,
* eliminating the need for a list node in the libusb_device structure
* itself. */
struct discovered_devs {
size_t len;
size_t capacity;
struct libusb_device *devices[0];
};
struct discovered_devs *discovered_devs_append(
struct discovered_devs *discdevs, struct libusb_device *dev);
/* OS abstraction */
/* This is the interface that OS backends need to implement.
* All fields are mandatory, except ones explicitly noted as optional. */
struct usbi_os_backend {
/* A human-readable name for your backend, e.g. "Linux usbfs" */
const char *name;
/* Perform initialization of your backend. You might use this function
* to determine specific capabilities of the system, allocate required
* data structures for later, etc.
*
* This function is called when a libusb user initializes the library
* prior to use.
*
* Return 0 on success, or a LIBUSB_ERROR code on failure.
*/
int (*init)(struct libusb_context *ctx);
/* Deinitialization. Optional. This function should destroy anything
* that was set up by init.
*
* This function is called when the user deinitializes the library.
*/
void (*exit)(void);
/* Enumerate all the USB devices on the system, returning them in a list
* of discovered devices.
*
* Your implementation should enumerate all devices on the system,
* regardless of whether they have been seen before or not.
*
* When you have found a device, compute a session ID for it. The session
* ID should uniquely represent that particular device for that particular
* connection session since boot (i.e. if you disconnect and reconnect a
* device immediately after, it should be assigned a different session ID).
* If your OS cannot provide a unique session ID as described above,
* presenting a session ID of (bus_number << 8 | device_address) should
* be sufficient. Bus numbers and device addresses wrap and get reused,
* but that is an unlikely case.
*
* After computing a session ID for a device, call
* usbi_get_device_by_session_id(). This function checks if libusb already
* knows about the device, and if so, it provides you with a libusb_device
* structure for it.
*
* If usbi_get_device_by_session_id() returns NULL, it is time to allocate
* a new device structure for the device. Call usbi_alloc_device() to
* obtain a new libusb_device structure with reference count 1. Populate
* the bus_number and device_address attributes of the new device, and
* perform any other internal backend initialization you need to do. At
* this point, you should be ready to provide device descriptors and so
* on through the get_*_descriptor functions. Finally, call
* usbi_sanitize_device() to perform some final sanity checks on the
* device. Assuming all of the above succeeded, we can now continue.
* If any of the above failed, remember to unreference the device that
* was returned by usbi_alloc_device().
*
* At this stage we have a populated libusb_device structure (either one
* that was found earlier, or one that we have just allocated and
* populated). This can now be added to the discovered devices list
* using discovered_devs_append(). Note that discovered_devs_append()
* may reallocate the list, returning a new location for it, and also
* note that reallocation can fail. Your backend should handle these
* error conditions appropriately.
*
* This function should not generate any bus I/O and should not block.
* If I/O is required (e.g. reading the active configuration value), it is
* OK to ignore these suggestions :)
*
* This function is executed when the user wishes to retrieve a list
* of USB devices connected to the system.
*
* Return 0 on success, or a LIBUSB_ERROR code on failure.
*/
int (*get_device_list)(struct libusb_context *ctx,
struct discovered_devs **discdevs);
/* Open a device for I/O and other USB operations. The device handle
* is preallocated for you, you can retrieve the device in question
* through handle->dev.
*
* Your backend should allocate any internal resources required for I/O
* and other operations so that those operations can happen (hopefully)
* without hiccup. This is also a good place to inform libusb that it
* should monitor certain file descriptors related to this device -
* see the usbi_add_pollfd() function.
*
* This function should not generate any bus I/O and should not block.
*
* This function is called when the user attempts to obtain a device
* handle for a device.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_ACCESS if the user has insufficient permissions
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since
* discovery
* - another LIBUSB_ERROR code on other failure
*
* Do not worry about freeing the handle on failed open, the upper layers
* do this for you.
*/
int (*open)(struct libusb_device_handle *handle);
/* Close a device such that the handle cannot be used again. Your backend
* should destroy any resources that were allocated in the open path.
* This may also be a good place to call usbi_remove_pollfd() to inform
* libusb of any file descriptors associated with this device that should
* no longer be monitored.
*
* This function is called when the user closes a device handle.
*/
void (*close)(struct libusb_device_handle *handle);
/* Retrieve the device descriptor from a device.
*
* The descriptor should be retrieved from memory, NOT via bus I/O to the
* device. This means that you may have to cache it in a private structure
* during get_device_list enumeration. Alternatively, you may be able
* to retrieve it from a kernel interface (some Linux setups can do this)
* still without generating bus I/O.
*
* This function is expected to write DEVICE_DESC_LENGTH (18) bytes into
* buffer, which is guaranteed to be big enough.
*
* This function is called when sanity-checking a device before adding
* it to the list of discovered devices, and also when the user requests
* to read the device descriptor.
*
* This function is expected to return the descriptor in bus-endian format
* (LE). If it returns the multi-byte values in host-endian format,
* set the host_endian output parameter to "1".
*
* Return 0 on success or a LIBUSB_ERROR code on failure.
*/
int (*get_device_descriptor)(struct libusb_device *device,
unsigned char *buffer, int *host_endian);
/* Get the ACTIVE configuration descriptor for a device.
*
* The descriptor should be retrieved from memory, NOT via bus I/O to the
* device. This means that you may have to cache it in a private structure
* during get_device_list enumeration. You may also have to keep track
* of which configuration is active when the user changes it.
*
* This function is expected to write len bytes of data into buffer, which
* is guaranteed to be big enough. If you can only do a partial write,
* return an error code.
*
* This function is expected to return the descriptor in bus-endian format
* (LE). If it returns the multi-byte values in host-endian format,
* set the host_endian output parameter to "1".
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the device is in unconfigured state
* - another LIBUSB_ERROR code on other failure
*/
int (*get_active_config_descriptor)(struct libusb_device *device,
unsigned char *buffer, size_t len, int *host_endian);
/* Get a specific configuration descriptor for a device.
*
* The descriptor should be retrieved from memory, NOT via bus I/O to the
* device. This means that you may have to cache it in a private structure
* during get_device_list enumeration.
*
* The requested descriptor is expressed as a zero-based index (i.e. 0
* indicates that we are requesting the first descriptor). The index does
* not (necessarily) equal the bConfigurationValue of the configuration
* being requested.
*
* This function is expected to write len bytes of data into buffer, which
* is guaranteed to be big enough. If you can only do a partial write,
* return an error code.
*
* This function is expected to return the descriptor in bus-endian format
* (LE). If it returns the multi-byte values in host-endian format,
* set the host_endian output parameter to "1".
*
* Return 0 on success or a LIBUSB_ERROR code on failure.
*/
int (*get_config_descriptor)(struct libusb_device *device,
uint8_t config_index, unsigned char *buffer, size_t len,
int *host_endian);
/* Get the bConfigurationValue for the active configuration for a device.
* Optional. This should only be implemented if you can retrieve it from
* cache (don't generate I/O).
*
* If you cannot retrieve this from cache, either do not implement this
* function, or return LIBUSB_ERROR_NOT_SUPPORTED. This will cause
* libusb to retrieve the information through a standard control transfer.
*
* This function must be non-blocking.
* Return:
* - 0 on success
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - LIBUSB_ERROR_NOT_SUPPORTED if the value cannot be retrieved without
* blocking
* - another LIBUSB_ERROR code on other failure.
*/
int (*get_configuration)(struct libusb_device_handle *handle, int *config);
/* Set the active configuration for a device.
*
* A configuration value of -1 should put the device in unconfigured state.
*
* This function can block.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the configuration does not exist
* - LIBUSB_ERROR_BUSY if interfaces are currently claimed (and hence
* configuration cannot be changed)
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - another LIBUSB_ERROR code on other failure.
*/
int (*set_configuration)(struct libusb_device_handle *handle, int config);
/* Claim an interface. When claimed, the application can then perform
* I/O to an interface's endpoints.
*
* This function should not generate any bus I/O and should not block.
* Interface claiming is a logical operation that simply ensures that
* no other drivers/applications are using the interface, and after
* claiming, no other drivers/applicatiosn can use the interface because
* we now "own" it.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the interface does not exist
* - LIBUSB_ERROR_BUSY if the interface is in use by another driver/app
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*claim_interface)(struct libusb_device_handle *handle, int interface_number);
/* Release a previously claimed interface.
*
* This function should also generate a SET_INTERFACE control request,
* resetting the alternate setting of that interface to 0. It's OK for
* this function to block as a result.
*
* You will only ever be asked to release an interface which was
* successfully claimed earlier.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*release_interface)(struct libusb_device_handle *handle, int interface_number);
/* Set the alternate setting for an interface.
*
* You will only ever be asked to set the alternate setting for an
* interface which was successfully claimed earlier.
*
* It's OK for this function to block.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the alternate setting does not exist
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*set_interface_altsetting)(struct libusb_device_handle *handle,
int interface_number, int altsetting);
/* Clear a halt/stall condition on an endpoint.
*
* It's OK for this function to block.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if the endpoint does not exist
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*clear_halt)(struct libusb_device_handle *handle,
unsigned char endpoint);
/* Perform a USB port reset to reinitialize a device.
*
* If possible, the handle should still be usable after the reset
* completes, assuming that the device descriptors did not change during
* reset and all previous interface state can be restored.
*
* If something changes, or you cannot easily locate/verify the resetted
* device, return LIBUSB_ERROR_NOT_FOUND. This prompts the application
* to close the old handle and re-enumerate the device.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if re-enumeration is required, or if the device
* has been disconnected since it was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*reset_device)(struct libusb_device_handle *handle);
/* Determine if a kernel driver is active on an interface. Optional.
*
* The presence of a kernel driver on an interface indicates that any
* calls to claim_interface would fail with the LIBUSB_ERROR_BUSY code.
*
* Return:
* - 0 if no driver is active
* - 1 if a driver is active
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*kernel_driver_active)(struct libusb_device_handle *handle,
int interface_number);
/* Detach a kernel driver from an interface. Optional.
*
* After detaching a kernel driver, the interface should be available
* for claim.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if no kernel driver was active
* - LIBUSB_ERROR_INVALID_PARAM if the interface does not exist
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - another LIBUSB_ERROR code on other failure
*/
int (*detach_kernel_driver)(struct libusb_device_handle *handle,
int interface_number);
/* Attach a kernel driver to an interface. Optional.
*
* Reattach a kernel driver to the device.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NOT_FOUND if no kernel driver was active
* - LIBUSB_ERROR_INVALID_PARAM if the interface does not exist
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected since it
* was opened
* - LIBUSB_ERROR_BUSY if a program or driver has claimed the interface,
* preventing reattachment
* - another LIBUSB_ERROR code on other failure
*/
int (*attach_kernel_driver)(struct libusb_device_handle *handle,
int interface_number);
/* Destroy a device. Optional.
*
* This function is called when the last reference to a device is
* destroyed. It should free any resources allocated in the get_device_list
* path.
*/
void (*destroy_device)(struct libusb_device *dev);
/* Submit a transfer. Your implementation should take the transfer,
* morph it into whatever form your platform requires, and submit it
* asynchronously.
*
* This function must not block.
*
* Return:
* - 0 on success
* - LIBUSB_ERROR_NO_DEVICE if the device has been disconnected
* - another LIBUSB_ERROR code on other failure
*/
int (*submit_transfer)(struct usbi_transfer *itransfer);
/* Cancel a previously submitted transfer.
*
* This function must not block. The transfer cancellation must complete
* later, resulting in a call to usbi_handle_transfer_cancellation()
* from the context of handle_events.
*/
int (*cancel_transfer)(struct usbi_transfer *itransfer);
/* Clear a transfer as if it has completed or cancelled, but do not
* report any completion/cancellation to the library. You should free
* all private data from the transfer as if you were just about to report
* completion or cancellation.
*
* This function might seem a bit out of place. It is used when libusb
* detects a disconnected device - it calls this function for all pending
* transfers before reporting completion (with the disconnect code) to
* the user. Maybe we can improve upon this internal interface in future.
*/
void (*clear_transfer_priv)(struct usbi_transfer *itransfer);
/* Handle any pending events. This involves monitoring any active
* transfers and processing their completion or cancellation.
*
* The function is passed an array of pollfd structures (size nfds)
* as a result of the poll() system call. The num_ready parameter
* indicates the number of file descriptors that have reported events
* (i.e. the poll() return value). This should be enough information
* for you to determine which actions need to be taken on the currently
* active transfers.
*
* For any cancelled transfers, call usbi_handle_transfer_cancellation().
* For completed transfers, call usbi_handle_transfer_completion().
* For control/bulk/interrupt transfers, populate the "transferred"
* element of the appropriate usbi_transfer structure before calling the
* above functions. For isochronous transfers, populate the status and
* transferred fields of the iso packet descriptors of the transfer.
*
* This function should also be able to detect disconnection of the
* device, reporting that situation with usbi_handle_disconnect().
*
* When processing an event related to a transfer, you probably want to
* take usbi_transfer.lock to prevent races. See the documentation for
* the usbi_transfer structure.
*
* Return 0 on success, or a LIBUSB_ERROR code on failure.
*/
int (*handle_events)(struct libusb_context *ctx,
struct pollfd *fds, nfds_t nfds, int num_ready);
/* Get time from specified clock. At least two clocks must be implemented
by the backend: USBI_CLOCK_REALTIME, and USBI_CLOCK_MONOTONIC.
Description of clocks:
USBI_CLOCK_REALTIME : clock returns time since system epoch.
USBI_CLOCK_MONOTONIC: clock returns time since unspecified start
time (usually boot).
*/
int (*clock_gettime)(int clkid, struct timespec *tp);
#ifdef USBI_TIMERFD_AVAILABLE
/* clock ID of the clock that should be used for timerfd */
clockid_t (*get_timerfd_clockid)(void);
#endif
/* Number of bytes to reserve for per-device private backend data.
* This private data area is accessible through the "os_priv" field of
* struct libusb_device. */
size_t device_priv_size;
/* Number of bytes to reserve for per-handle private backend data.
* This private data area is accessible through the "os_priv" field of
* struct libusb_device. */
size_t device_handle_priv_size;
/* Number of bytes to reserve for per-transfer private backend data.
* This private data area is accessible by calling
* usbi_transfer_get_os_priv() on the appropriate usbi_transfer instance.
*/
size_t transfer_priv_size;
/* Mumber of additional bytes for os_priv for each iso packet.
* Can your backend use this? */
/* FIXME: linux can't use this any more. if other OS's cannot either,
* then remove this */
size_t add_iso_packet_size;
};
extern const struct usbi_os_backend * const usbi_backend;
extern const struct usbi_os_backend linux_usbfs_backend;
extern const struct usbi_os_backend darwin_backend;
extern const struct usbi_os_backend windows_backend;
#endif
|