/*++ Copyright (c) 1989 Microsoft Corporation Module Name: lockvm.c Abstract: This module contains the routines which implement the NtLockVirtualMemory service. Author: Lou Perazzoli (loup) 20-August-1989 Revision History: --*/ #include "mi.h" #ifdef ALLOC_PRAGMA #pragma alloc_text(PAGE,NtLockVirtualMemory) #pragma alloc_text(PAGE,NtUnlockVirtualMemory) #endif NTSTATUS NtLockVirtualMemory ( IN HANDLE ProcessHandle, IN OUT PVOID *BaseAddress, IN OUT PULONG RegionSize, IN ULONG MapType ) /*++ Routine Description: This function locks a region of pages within the working set list of a subject process. The caller of this function must have PROCESS_VM_OPERATION access to the target process. The caller must also have SeLockMemoryPrivilege. Arguments: ProcessHandle - Supplies an open handle to a process object. BaseAddress - The base address of the region of pages to be locked. This value is rounded down to the next host page address boundary. RegionSize - A pointer to a variable that will receive the actual size in bytes of the locked region of pages. The initial value of this argument is rounded up to the next host page size boundary. MapType - A set of flags that describe the type of locking to perform. One of MAP_PROCESS or MAP_SYSTEM. Return Value: Returns the status STATUS_PRIVILEGE_NOT_HELD - The caller did not have sufficient privilege to perform the requested operation. TBS --*/ { PVOID Va; PVOID EndingAddress; PMMPTE PointerPte; PMMPTE PointerPte1; PMMPFN Pfn1; PMMPTE PointerPde; ULONG CapturedRegionSize; PVOID CapturedBase; PEPROCESS TargetProcess; NTSTATUS Status; BOOLEAN WasLocked = FALSE; KPROCESSOR_MODE PreviousMode; ULONG Entry; ULONG SwapEntry; ULONG NumberOfAlreadyLocked; ULONG NumberToLock; ULONG WorkingSetIndex; PAGED_CODE(); // // Validate the flags in MapType. // if ((MapType & ~(MAP_PROCESS | MAP_SYSTEM)) != 0) { return STATUS_INVALID_PARAMETER; } if ((MapType & (MAP_PROCESS | MAP_SYSTEM)) == 0) { return STATUS_INVALID_PARAMETER; } PreviousMode = KeGetPreviousMode(); try { if (PreviousMode != KernelMode) { ProbeForWriteUlong ((PULONG)BaseAddress); ProbeForWriteUlong (RegionSize); } // // Capture the base address. // CapturedBase = *BaseAddress; // // Capture the region size. // CapturedRegionSize = *RegionSize; } except (ExSystemExceptionFilter()) { // // If an exception occurs during the probe or capture // of the initial values, then handle the exception and // return the exception code as the status value. // return GetExceptionCode(); } // // Make sure the specified starting and ending addresses are // within the user part of the virtual address space. // if (CapturedBase > MM_HIGHEST_USER_ADDRESS) { // // Invalid base address. // return STATUS_INVALID_PARAMETER; } if ((ULONG)MM_HIGHEST_USER_ADDRESS - (ULONG)CapturedBase < CapturedRegionSize) { // // Invalid region size; // return STATUS_INVALID_PARAMETER; } if (CapturedRegionSize == 0) { return STATUS_INVALID_PARAMETER; } // // Reference the specified process. // Status = ObReferenceObjectByHandle ( ProcessHandle, PROCESS_VM_OPERATION, PsProcessType, PreviousMode, (PVOID *)&TargetProcess, NULL ); if (!NT_SUCCESS(Status)) { return Status; } if ((MapType & MAP_SYSTEM) != 0) { // // In addition to PROCESS_VM_OPERATION access to the target // process, the caller must have SE_LOCK_MEMORY_PRIVILEGE. // if (!SeSinglePrivilegeCheck( SeLockMemoryPrivilege, PreviousMode )) { ObDereferenceObject( TargetProcess ); return( STATUS_PRIVILEGE_NOT_HELD ); } } // // Attach to the specified process. // KeAttachProcess (&TargetProcess->Pcb); // // Get address creation mutex, this prevents the // address range from being modified while it is examined. Raise // to APC level to prevent an APC routine from acquiring the // address creation mutex. Get the working set mutex so the // number of already locked pages in the request can be determined. // EndingAddress = PAGE_ALIGN((ULONG)CapturedBase + CapturedRegionSize - 1); Va = PAGE_ALIGN (CapturedBase); NumberOfAlreadyLocked = 0; NumberToLock = ((ULONG)EndingAddress - (ULONG)Va) >> PAGE_SHIFT; LOCK_WS_AND_ADDRESS_SPACE (TargetProcess); // // Make sure the address space was not deleted, if so, return an error. // if (TargetProcess->AddressSpaceDeleted != 0) { Status = STATUS_PROCESS_IS_TERMINATING; goto ErrorReturn; } if (NumberToLock + MM_FLUID_WORKING_SET > TargetProcess->Vm.MinimumWorkingSetSize) { Status = STATUS_WORKING_SET_QUOTA; goto ErrorReturn; } EndingAddress = PAGE_ALIGN((ULONG)CapturedBase + CapturedRegionSize - 1); Va = PAGE_ALIGN (CapturedBase); while (Va <= EndingAddress) { if (MmIsAddressValid (Va)) { // // The page is valid, therefore it is in the working set. // Locate the WSLE for the page and see if it is locked. // PointerPte1 = MiGetPteAddress (Va); Pfn1 = MI_PFN_ELEMENT (PointerPte1->u.Hard.PageFrameNumber); WorkingSetIndex = MiLocateWsle (Va, MmWorkingSetList, Pfn1->u1.WsIndex); ASSERT (WorkingSetIndex != WSLE_NULL_INDEX); if (WorkingSetIndex < MmWorkingSetList->FirstDynamic) { // // This page is locked in the working set. // NumberOfAlreadyLocked += 1; // // Check to see if the WAS_LOCKED status should be returned. // if ((MapType & MAP_PROCESS) && (MmWsle[WorkingSetIndex].u1.e1.LockedInWs == 1)) { WasLocked = TRUE; } if ((MapType & MAP_SYSTEM) && (MmWsle[WorkingSetIndex].u1.e1.LockedInMemory == 1)) { WasLocked = TRUE; } } } Va = (PVOID)((ULONG)Va + PAGE_SIZE); } UNLOCK_WS (TargetProcess); // // Check to ensure the working set list is still fluid after // the requested number of pages are locked. // if (TargetProcess->Vm.MinimumWorkingSetSize < ((MmWorkingSetList->FirstDynamic + NumberToLock + MM_FLUID_WORKING_SET) - NumberOfAlreadyLocked)) { Status = STATUS_WORKING_SET_QUOTA; goto ErrorReturn1; } Va = PAGE_ALIGN (CapturedBase); // // Set up an exception handler and touch each page in the specified // range. // try { while (Va <= EndingAddress) { *(volatile ULONG *)Va; Va = (PVOID)((ULONG)Va + PAGE_SIZE); } } except (EXCEPTION_EXECUTE_HANDLER) { Status = GetExceptionCode(); goto ErrorReturn1; } // // The complete address range is accessable, lock the pages into // the working set. // PointerPte = MiGetPteAddress (CapturedBase); Va = PAGE_ALIGN (CapturedBase); // // Acquire the working set mutex, no page faults are allowed. // LOCK_WS (TargetProcess); while (Va <= EndingAddress) { // // Make sure the PDE is valid. // PointerPde = MiGetPdeAddress (Va); (VOID)MiDoesPdeExistAndMakeValid(PointerPde, TargetProcess, FALSE); // // Make sure the page is in the working set. // while (PointerPte->u.Hard.Valid == 0) { // // Release the working set mutex and fault in the page. // UNLOCK_WS (TargetProcess); // // Page in the PDE and make the PTE valid. // *(volatile ULONG *)Va; // // Reacquire the working set mutex. // LOCK_WS (TargetProcess); // // Make sure the page table page is still valid. This could // occur if the page that was just made valid was removed // from the working set before the working set lock was // acquired. // (VOID)MiDoesPdeExistAndMakeValid(PointerPde, TargetProcess, FALSE); } // // The page is now in the working set, lock the page into // the working set. // PointerPte1 = MiGetPteAddress (Va); Pfn1 = MI_PFN_ELEMENT (PointerPte1->u.Hard.PageFrameNumber); Entry = MiLocateWsle (Va, MmWorkingSetList, Pfn1->u1.WsIndex); if (Entry >= MmWorkingSetList->FirstDynamic) { SwapEntry = MmWorkingSetList->FirstDynamic; if (Entry != MmWorkingSetList->FirstDynamic) { // // Swap this entry with the one at first dynamic. // MiSwapWslEntries (Entry, SwapEntry, &TargetProcess->Vm); } MmWorkingSetList->FirstDynamic += 1; } else { SwapEntry = Entry; } // // Indicate that the page is locked. // if (MapType & MAP_PROCESS) { MmWsle[SwapEntry].u1.e1.LockedInWs = 1; } if (MapType & MAP_SYSTEM) { MmWsle[SwapEntry].u1.e1.LockedInMemory = 1; } // // Increment to the next va and PTE. // PointerPte += 1; Va = (PVOID)((ULONG)Va + PAGE_SIZE); if (MmWorkingSetList->NextSlot < MmWorkingSetList->FirstDynamic) { MmWorkingSetList->NextSlot = MmWorkingSetList->FirstDynamic; } } UNLOCK_WS (TargetProcess); UNLOCK_ADDRESS_SPACE (TargetProcess); KeDetachProcess(); ObDereferenceObject (TargetProcess); // // Update return arguments. // // // Establish an exception handler and write the size and base // address. // try { *RegionSize = ((ULONG)EndingAddress - (ULONG)PAGE_ALIGN(CapturedBase)) + PAGE_SIZE; *BaseAddress = PAGE_ALIGN(CapturedBase); } except (EXCEPTION_EXECUTE_HANDLER) { return GetExceptionCode(); } if (WasLocked) { return STATUS_WAS_LOCKED; } return STATUS_SUCCESS; ErrorReturn: UNLOCK_WS (TargetProcess); ErrorReturn1: UNLOCK_ADDRESS_SPACE (TargetProcess); KeDetachProcess(); ObDereferenceObject (TargetProcess); return Status; } NTSTATUS NtUnlockVirtualMemory ( IN HANDLE ProcessHandle, IN OUT PVOID *BaseAddress, IN OUT PULONG RegionSize, IN ULONG MapType ) /*++ Routine Description: This function unlocks a region of pages within the working set list of a subject process. As a side effect, any pages which are not locked and are in the process's working set are removed from the process's working set. This allows NtUnlockVirtualMemory to remove a range of pages from the working set. The caller of this function must have PROCESS_VM_OPERATION access to the target process. The caller must also have SeLockMemoryPrivilege for MAP_SYSTEM. Arguments: ProcessHandle - Supplies an open handle to a process object. BaseAddress - The base address of the region of pages to be unlocked. This value is rounded down to the next host page address boundary. RegionSize - A pointer to a variable that will receive the actual size in bytes of the unlocked region of pages. The initial value of this argument is rounded up to the next host page size boundary. MapType - A set of flags that describe the type of unlocking to perform. One of MAP_PROCESS or MAP_SYSTEM. Return Value: Returns the status TBS --*/ { PVOID Va; PVOID EndingAddress; ULONG CapturedRegionSize; PVOID CapturedBase; PEPROCESS TargetProcess; NTSTATUS Status; KPROCESSOR_MODE PreviousMode; ULONG Entry; PMMPTE PointerPte; PMMPFN Pfn1; PAGED_CODE(); // // Validate the flags in MapType. // if ((MapType & ~(MAP_PROCESS | MAP_SYSTEM)) != 0) { return STATUS_INVALID_PARAMETER; } if ((MapType & (MAP_PROCESS | MAP_SYSTEM)) == 0) { return STATUS_INVALID_PARAMETER; } PreviousMode = KeGetPreviousMode(); try { if (PreviousMode != KernelMode) { ProbeForWriteUlong ((PULONG)BaseAddress); ProbeForWriteUlong (RegionSize); } // // Capture the base address. // CapturedBase = *BaseAddress; // // Capture the region size. // CapturedRegionSize = *RegionSize; } except (ExSystemExceptionFilter()) { // // If an exception occurs during the probe or capture // of the initial values, then handle the exception and // return the exception code as the status value. // return GetExceptionCode(); } // // Make sure the specified starting and ending addresses are // within the user part of the virtual address space. // if (CapturedBase > MM_HIGHEST_USER_ADDRESS) { // // Invalid base address. // return STATUS_INVALID_PARAMETER; } if ((ULONG)MM_HIGHEST_USER_ADDRESS - (ULONG)CapturedBase < CapturedRegionSize) { // // Invalid region size; // return STATUS_INVALID_PARAMETER; } if (CapturedRegionSize == 0) { return STATUS_INVALID_PARAMETER; } Status = ObReferenceObjectByHandle ( ProcessHandle, PROCESS_VM_OPERATION, PsProcessType, PreviousMode, (PVOID *)&TargetProcess, NULL ); if (!NT_SUCCESS(Status)) { return Status; } if ((MapType & MAP_SYSTEM) != 0) { // // In addition to PROCESS_VM_OPERATION access to the target // process, the caller must have SE_LOCK_MEMORY_PRIVILEGE. // if (!SeSinglePrivilegeCheck( SeLockMemoryPrivilege, PreviousMode )) { ObDereferenceObject( TargetProcess ); return( STATUS_PRIVILEGE_NOT_HELD ); } } // // Attach to the specified process. // KeAttachProcess (&TargetProcess->Pcb); // // Get address creation mutex, this prevents the // address range from being modified while it is examined. // Block APCs so an APC routine can't get a page fault and // corrupt the working set list, etc. // LOCK_WS_AND_ADDRESS_SPACE (TargetProcess); // // Make sure the address space was not deleted, if so, return an error. // if (TargetProcess->AddressSpaceDeleted != 0) { Status = STATUS_PROCESS_IS_TERMINATING; goto ErrorReturn; } EndingAddress = PAGE_ALIGN((ULONG)CapturedBase + CapturedRegionSize - 1); Va = PAGE_ALIGN (CapturedBase); while (Va <= EndingAddress) { // // Check to ensure all the specified pages are locked. // if (!MmIsAddressValid (Va)) { // // This page is not valid, therefore not in working set. // Status = STATUS_NOT_LOCKED; } else { PointerPte = MiGetPteAddress (Va); ASSERT (PointerPte->u.Hard.Valid != 0); Pfn1 = MI_PFN_ELEMENT (PointerPte->u.Hard.PageFrameNumber); Entry = MiLocateWsle (Va, MmWorkingSetList, Pfn1->u1.WsIndex); ASSERT (Entry != WSLE_NULL_INDEX); if ((MmWsle[Entry].u1.e1.LockedInWs == 0) && (MmWsle[Entry].u1.e1.LockedInMemory == 0)) { // // Not locked in memory or system, remove from working // set. // MiTakePageFromWorkingSet (Entry, &TargetProcess->Vm, PointerPte); Status = STATUS_NOT_LOCKED; } else if (MapType & MAP_PROCESS) { if (MmWsle[Entry].u1.e1.LockedInWs == 0) { // // This page is not locked. // Status = STATUS_NOT_LOCKED; } } else { if (MmWsle[Entry].u1.e1.LockedInMemory == 0) { // // This page is not locked. // Status = STATUS_NOT_LOCKED; } } } Va = (PVOID)((ULONG)Va + PAGE_SIZE); } // end while if (Status == STATUS_NOT_LOCKED) { goto ErrorReturn; } // // The complete address range is locked, unlock them. // Va = PAGE_ALIGN (CapturedBase); while (Va <= EndingAddress) { PointerPte = MiGetPteAddress (Va); ASSERT (PointerPte->u.Hard.Valid == 1); Pfn1 = MI_PFN_ELEMENT (PointerPte->u.Hard.PageFrameNumber); Entry = MiLocateWsle (Va, MmWorkingSetList, Pfn1->u1.WsIndex); if (MapType & MAP_PROCESS) { MmWsle[Entry].u1.e1.LockedInWs = 0; } if (MapType & MAP_SYSTEM) { MmWsle[Entry].u1.e1.LockedInMemory = 0; } if ((MmWsle[Entry].u1.e1.LockedInMemory == 0) && MmWsle[Entry].u1.e1.LockedInWs == 0) { // // The page is no longer should be locked, move // it to the dynamic part of the working set. // MmWorkingSetList->FirstDynamic -= 1; if (Entry != MmWorkingSetList->FirstDynamic) { // // Swap this element with the last locked page, making // this element the new first dynamic entry. // MiSwapWslEntries (Entry, MmWorkingSetList->FirstDynamic, &TargetProcess->Vm); } } Va = (PVOID)((ULONG)Va + PAGE_SIZE); } UNLOCK_WS (TargetProcess); UNLOCK_ADDRESS_SPACE (TargetProcess); KeDetachProcess(); ObDereferenceObject (TargetProcess); // // Update return arguments. // // // Establish an exception handler and write the size and base // address. // try { *RegionSize = ((ULONG)EndingAddress - (ULONG)PAGE_ALIGN(CapturedBase)) + PAGE_SIZE; *BaseAddress = PAGE_ALIGN(CapturedBase); } except (EXCEPTION_EXECUTE_HANDLER) { return GetExceptionCode(); } return STATUS_SUCCESS; ErrorReturn: UNLOCK_WS (TargetProcess); UNLOCK_ADDRESS_SPACE (TargetProcess); KeDetachProcess(); ObDereferenceObject (TargetProcess); return Status; }