//#pragma comment(exestr, "$Header: /usr4/winnt/SOURCES/halpcims/src/hal/halsnipm/mips/RCS/xxmemory.c,v 1.2 1996/02/23 17:55:12 pierre Exp $") /*++ Copyright (c) 1991 Microsoft Corporation Module Name: xxmemory.c Abstract: Provides routines to allow the HAL to map physical memory. Environment: Phase 0 initialization only. Changes: All stuff comes from the x86 HAL Sources (xxmemory.c) --*/ #include "halp.h" // // Put all code for HAL initialization in the INIT section. It will be // deallocated by memory management when phase 1 initialization is // completed. // #if defined(ALLOC_PRAGMA) #pragma alloc_text(INIT, HalpAllocPhysicalMemory) #endif MEMORY_ALLOCATION_DESCRIPTOR HalpExtraAllocationDescriptor; ULONG HalpAllocPhysicalMemory( IN PLOADER_PARAMETER_BLOCK LoaderBlock, IN ULONG MaxPhysicalAddress, IN ULONG NoPages, IN BOOLEAN bAlignOn64k ) /*++ Routine Description: Carves out N pages of physical memory from the memory descriptor list in the desired location. This function is to be called only during phase zero initialization. (ie, before the kernel's memory management system is running) Arguments: MaxPhysicalAddress - The max address where the physical memory can be NoPages - Number of pages to allocate Return Value: The pyhsical address or NULL if the memory could not be obtained. --*/ { PMEMORY_ALLOCATION_DESCRIPTOR Descriptor; PLIST_ENTRY NextMd; ULONG AlignmentOffset; ULONG MaxPageAddress; ULONG PhysicalAddress; MaxPageAddress = MaxPhysicalAddress >> PAGE_SHIFT; // // Scan the memory allocation descriptors and allocate map buffers // NextMd = LoaderBlock->MemoryDescriptorListHead.Flink; while (NextMd != &LoaderBlock->MemoryDescriptorListHead) { Descriptor = CONTAINING_RECORD(NextMd, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry); AlignmentOffset = bAlignOn64k ? ((Descriptor->BasePage + 0x0f) & ~0x0f) - Descriptor->BasePage : 0; // // Search for a block of memory which contains a memory chunk // that is greater than size pages, and has a physical address less // than MAXIMUM_PHYSICAL_ADDRESS. // if ((Descriptor->MemoryType == LoaderFree || Descriptor->MemoryType == MemoryFirmwareTemporary) && (Descriptor->BasePage) && (Descriptor->PageCount >= NoPages + AlignmentOffset) && (Descriptor->BasePage + NoPages + AlignmentOffset < MaxPageAddress)) { PhysicalAddress = (AlignmentOffset + Descriptor->BasePage) << PAGE_SHIFT; break; } NextMd = NextMd->Flink; } // // Use the extra descriptor to define the memory at the end of the // original block. // ASSERT(NextMd != &LoaderBlock->MemoryDescriptorListHead); if (NextMd == &LoaderBlock->MemoryDescriptorListHead) return (ULONG)NULL; // // Adjust the memory descriptors. // if (AlignmentOffset == 0) { Descriptor->BasePage += NoPages; Descriptor->PageCount -= NoPages; if (Descriptor->PageCount == 0) { // // The whole block was allocated, // Remove the entry from the list completely. // RemoveEntryList(&Descriptor->ListEntry); } } else { if (Descriptor->PageCount - NoPages - AlignmentOffset) { // // Currently we only allow one Align64K allocation // ASSERT (HalpExtraAllocationDescriptor.PageCount == 0); // // The extra descriptor is needed so intialize it and insert // it in the list. // HalpExtraAllocationDescriptor.PageCount = Descriptor->PageCount - NoPages - AlignmentOffset; HalpExtraAllocationDescriptor.BasePage = Descriptor->BasePage + NoPages + AlignmentOffset; HalpExtraAllocationDescriptor.MemoryType = MemoryFree; InsertTailList( &Descriptor->ListEntry, &HalpExtraAllocationDescriptor.ListEntry ); } // // Use the current entry as the descriptor for the first block. // Descriptor->PageCount = AlignmentOffset; } return PhysicalAddress; } #define MEMBASE 0x20000000 USHORT HalpComputeNum (phys_addr) UCHAR *phys_addr; { USHORT board_or_simm_num; ULONG i; struct bank *pbank =((SNI_PRIVATE_VECTOR *)(SYSTEM_BLOCK->VendorVector))->MemConfArea; ULONG nb_banks =((SNI_PRIVATE_VECTOR *)(SYSTEM_BLOCK->VendorVector))-> NbMemBanks; UCHAR *conf_addr; if (pbank == 0) return((USHORT)(-1)); // firmware revision < 4.5 --> function non implemented // Rebase phys_addr at 0x20000000 (ULONG)phys_addr |= MEMBASE; for (i = 0; i < nb_banks; i++, pbank++) { // Rebase conf_addr at 0x20000000 conf_addr =(UCHAR *)( (ULONG)pbank->first_addr | MEMBASE); if ((phys_addr >= conf_addr) && (phys_addr < (conf_addr + pbank->first_piece_size))){ break; } if (pbank->second_piece_size != 0) { // Rebase conf_addr at 0x20000000 conf_addr =(UCHAR *)((ULONG) pbank->second_addr | MEMBASE); if ((phys_addr >= conf_addr) && (phys_addr < (conf_addr + pbank->second_piece_size))) { break; } } } if (i == nb_banks) { // Unable to find the board or SIMM board_or_simm_num = (USHORT)(-1); } else { // On RM400 we have one board per bank from 1 to nb_banks if (HalpIsTowerPci) { board_or_simm_num = (USHORT)(i + 1); } // On RM200/RM300 we have two SIMM's per bank from 0 to 2*nb_banks - 1 else { board_or_simm_num = (USHORT)( (2*i) + (((ULONG)phys_addr >> 3) & 0x01)); } } return (board_or_simm_num); }