/*++ Copyright (c) 1989 Microsoft Corporation Copyright (c) 1996 International Business Machines Corporation Module Name: pxpcidat.c Abstract: Get/Set bus data routines for the PCI bus Author: Ken Reneris (kenr) 14-June-1994 Jim Wooldridge Port to PowerPC Environment: Kernel mode Revision History: Chris Karamatas (ckaramatas@vnet.ibm.com) - Updated and merged support for various PPC boxes. Jake Oshins (joshins@vnet.ibm.com) -- Further merging and generalization, support for more boxes. --*/ #include "halp.h" #include "pci.h" #include "pcip.h" #define PCI_DISPLAY_CONTROLLER 0x03 #define PCI_PRE_REV_2 0x0 #define IsVideoDevice(a) \ (((a->BaseClass == PCI_DISPLAY_CONTROLLER) && \ (a->SubClass == 0)) || \ (((a->BaseClass == PCI_PRE_REV_2) && \ (a->SubClass == 1)))) extern WCHAR rgzMultiFunctionAdapter[]; extern WCHAR rgzConfigurationData[]; extern WCHAR rgzIdentifier[]; extern WCHAR rgzPCIIdentifier[]; ULONG HalpPciMaxBuses = 0; extern ULONG HalpPciMaxSlots; #if defined(UNION) extern PVOID HalpPciConfigAddr[]; extern PVOID HalpPciConfigData[]; #endif typedef ULONG (*FncConfigIO) ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); typedef VOID (*FncSync) ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PKIRQL Irql, IN PVOID State ); typedef VOID (*FncReleaseSync) ( IN PBUS_HANDLER BusHandler, IN KIRQL Irql ); typedef struct _PCI_CONFIG_HANDLER { FncSync Synchronize; FncReleaseSync ReleaseSynchronzation; FncConfigIO ConfigRead[3]; FncConfigIO ConfigWrite[3]; } PCI_CONFIG_HANDLER, *PPCI_CONFIG_HANDLER; // // Prototypes // ULONG HalpGetPCIData ( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PCI_SLOT_NUMBER SlotNumber, IN PVOID Buffer, IN ULONG Offset, IN ULONG Length ); ULONG HalpSetPCIData ( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PCI_SLOT_NUMBER SlotNumber, IN PVOID Buffer, IN ULONG Offset, IN ULONG Length ); NTSTATUS HalpAssignPCISlotResources ( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PUNICODE_STRING RegistryPath, IN PUNICODE_STRING DriverClassName OPTIONAL, IN PDRIVER_OBJECT DriverObject, IN PDEVICE_OBJECT DeviceObject OPTIONAL, IN ULONG SlotNumber, IN OUT PCM_RESOURCE_LIST *AllocatedResources ); VOID HalpInitializePciBus ( VOID ); BOOLEAN HalpIsValidPCIDevice ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot ); BOOLEAN HalpValidPCISlot ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot ); //------------------------------------------------- VOID HalpPCISynchronizeType1 ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PKIRQL Irql, IN PVOID State ); VOID HalpPCIReleaseSynchronzationType1 ( IN PBUS_HANDLER BusHandler, IN KIRQL Irql ); ULONG HalpPCIReadUlongType1 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIReadUcharType1 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIReadUshortType1 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIWriteUlongType1 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIWriteUcharType1 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIWriteUshortType1 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); VOID HalpPCISynchronizeType2 ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PKIRQL Irql, IN PVOID State ); VOID HalpPCIReleaseSynchronzationType2 ( IN PBUS_HANDLER BusHandler, IN KIRQL Irql ); ULONG HalpPCIReadUlongType2 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIReadUcharType2 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIReadUshortType2 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIWriteUlongType2 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIWriteUcharType2 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); ULONG HalpPCIWriteUshortType2 ( IN PPCIPBUSDATA BusData, IN PVOID State, IN PUCHAR Buffer, IN ULONG Offset ); // // Globals // KSPIN_LOCK HalpPCIConfigLock; PCI_CONFIG_HANDLER PCIConfigHandler; PCI_CONFIG_HANDLER PCIConfigHandlerType1 = { HalpPCISynchronizeType1, HalpPCIReleaseSynchronzationType1, { HalpPCIReadUlongType1, // 0 HalpPCIReadUcharType1, // 1 HalpPCIReadUshortType1 // 2 }, { HalpPCIWriteUlongType1, // 0 HalpPCIWriteUcharType1, // 1 HalpPCIWriteUshortType1 // 2 } }; PCI_CONFIG_HANDLER PCIConfigHandlerType2 = { HalpPCISynchronizeType2, HalpPCIReleaseSynchronzationType2, { HalpPCIReadUlongType2, // 0 HalpPCIReadUcharType2, // 1 HalpPCIReadUshortType2 // 2 }, { HalpPCIWriteUlongType2, // 0 HalpPCIWriteUcharType2, // 1 HalpPCIWriteUshortType2 // 2 } }; UCHAR PCIDeref[4][4] = { {0,1,2,2},{1,1,1,1},{2,1,2,2},{1,1,1,1} }; VOID HalpPCIConfig ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PUCHAR Buffer, IN ULONG Offset, IN ULONG Length, IN FncConfigIO *ConfigIO ); #if DBG #define DBGMSG(a) DbgPrint(a) VOID HalpTestPci ( ULONG ); #else #define DBGMSG(a) #endif #ifdef ALLOC_PRAGMA #pragma alloc_text(INIT,HalpInitializePciBus) #pragma alloc_text(INIT,HalpAllocateAndInitPciBusHandler) #pragma alloc_text(INIT,HalpIsValidPCIDevice) #pragma alloc_text(PAGE,HalpAssignPCISlotResources) #endif VOID HalpInitializePciBus ( VOID ) { PPCI_REGISTRY_INFO PCIRegInfo; UNICODE_STRING unicodeString, ConfigName, IdentName; OBJECT_ATTRIBUTES objectAttributes; HANDLE hMFunc, hBus; NTSTATUS status; UCHAR buffer [sizeof(PPCI_REGISTRY_INFO) + 99]; PWSTR p; WCHAR wstr[8]; ULONG i, d, junk, HwType, BusNo, f; PBUS_HANDLER BusHandler; PCI_SLOT_NUMBER SlotNumber; PPCI_COMMON_CONFIG PciData; UCHAR iBuffer[PCI_COMMON_HDR_LENGTH]; PKEY_VALUE_FULL_INFORMATION ValueInfo; PCM_FULL_RESOURCE_DESCRIPTOR Desc; PCM_PARTIAL_RESOURCE_DESCRIPTOR PDesc; // // Search the hardware description looking for any reported // PCI bus. The first ARC entry for a PCI bus will contain // the PCI_REGISTRY_INFO. // RtlInitUnicodeString (&unicodeString, rgzMultiFunctionAdapter); InitializeObjectAttributes ( &objectAttributes, &unicodeString, OBJ_CASE_INSENSITIVE, NULL, // handle NULL); status = ZwOpenKey (&hMFunc, KEY_READ, &objectAttributes); if (!NT_SUCCESS(status)) { return ; } unicodeString.Buffer = wstr; unicodeString.MaximumLength = sizeof (wstr); RtlInitUnicodeString (&ConfigName, rgzConfigurationData); RtlInitUnicodeString (&IdentName, rgzIdentifier); ValueInfo = (PKEY_VALUE_FULL_INFORMATION) buffer; for (i=0; TRUE; i++) { RtlIntegerToUnicodeString (i, 10, &unicodeString); InitializeObjectAttributes ( &objectAttributes, &unicodeString, OBJ_CASE_INSENSITIVE, hMFunc, NULL); status = ZwOpenKey (&hBus, KEY_READ, &objectAttributes); if (!NT_SUCCESS(status)) { // // Out of Multifunction adapter entries... // ZwClose (hMFunc); return ; } // // Check the Indentifier to see if this is a PCI entry // status = ZwQueryValueKey ( hBus, &IdentName, KeyValueFullInformation, ValueInfo, sizeof (buffer), &junk ); if (!NT_SUCCESS (status)) { ZwClose (hBus); continue; } p = (PWSTR) ((PUCHAR) ValueInfo + ValueInfo->DataOffset); if (p[0] != L'P' || p[1] != L'C' || p[2] != L'I' || p[3] != 0) { ZwClose (hBus); continue; } // // The first PCI entry has the PCI_REGISTRY_INFO structure // attached to it. // status = ZwQueryValueKey ( hBus, &ConfigName, KeyValueFullInformation, ValueInfo, sizeof (buffer), &junk ); ZwClose (hBus); if (!NT_SUCCESS(status)) { continue ; } Desc = (PCM_FULL_RESOURCE_DESCRIPTOR) ((PUCHAR) ValueInfo + ValueInfo->DataOffset); PDesc = (PCM_PARTIAL_RESOURCE_DESCRIPTOR) ((PUCHAR) Desc->PartialResourceList.PartialDescriptors); if (PDesc->Type == CmResourceTypeDeviceSpecific) { // got it.. PCIRegInfo = (PPCI_REGISTRY_INFO) (PDesc+1); break; } } // // Initialize spinlock for synchronizing access to PCI space // KeInitializeSpinLock (&HalpPCIConfigLock); PciData = (PPCI_COMMON_CONFIG) iBuffer; // // PCIRegInfo describes the system's PCI support as indicated by the BIOS. // HwType = PCIRegInfo->HardwareMechanism & 0xf; // // Some AMI bioses claim machines are Type2 configuration when they // are really type1. If this is a Type2 with at least one bus, // try to verify it's not really a type1 bus // if (PCIRegInfo->NoBuses && HwType == 2) { // // Check each slot for a valid device. Which every style configuration // space shows a valid device first will be used // SlotNumber.u.bits.Reserved = 0; SlotNumber.u.bits.FunctionNumber = 0; for (d = 0; d < PCI_MAX_DEVICES; d++) { SlotNumber.u.bits.DeviceNumber = d; // // First try what the BIOS claims - type 2. Allocate type2 // test handle for PCI bus 0. // HwType = 2; BusHandler = HalpAllocateAndInitPciBusHandler (HwType, 0, TRUE); if (HalpIsValidPCIDevice (BusHandler, SlotNumber)) { break; } // // Valid device not found on Type2 access for this slot. // Reallocate the bus handler are Type1 and take a look. // HwType = 1; BusHandler = HalpAllocateAndInitPciBusHandler (HwType, 0, TRUE); if (HalpIsValidPCIDevice (BusHandler, SlotNumber)) { break; } HwType = 2; } // // Reset handler for PCI bus 0 to whatever style config space // was finally decided. // HalpAllocateAndInitPciBusHandler (HwType, 0, FALSE); } // // For each PCI bus present, allocate a handler structure and // fill in the dispatch functions // do { for (i=0; i < PCIRegInfo->NoBuses; i++) { // // If handler not already built, do it now // if (!HalpHandlerForBus (PCIBus, i)) { HalpAllocateAndInitPciBusHandler (HwType, i, FALSE); } } // // Bus handlers for all PCI buses have been allocated, go collect // pci bridge information. // } while (HalpGetPciBridgeConfig (HwType, &PCIRegInfo->NoBuses)) ; // // Fixup SUPPORTED_RANGES // HalpFixupPciSupportedRanges (PCIRegInfo->NoBuses); // // Look for PCI controllers which have known work-arounds, and make // sure they are applied. // SlotNumber.u.bits.Reserved = 0; for (BusNo=0; BusNo < PCIRegInfo->NoBuses; BusNo++) { BusHandler = HalpHandlerForBus (PCIBus, BusNo); for (d = 0; d < PCI_MAX_DEVICES; d++) { SlotNumber.u.bits.DeviceNumber = d; for (f = 0; f < PCI_MAX_FUNCTION; f++) { SlotNumber.u.bits.FunctionNumber = f; // // Read PCI configuration information // HalpReadPCIConfig (BusHandler, SlotNumber, PciData, 0, PCI_COMMON_HDR_LENGTH); // // Check for chips with known work-arounds to apply // if (PciData->VendorID == 0x8086 && PciData->DeviceID == 0x04A3 && PciData->RevisionID < 0x11) { // // 82430 PCMC controller // HalpReadPCIConfig (BusHandler, SlotNumber, buffer, 0x53, 2); buffer[0] &= ~0x08; // turn off bit 3 register 0x53 if (PciData->RevisionID == 0x10) { // on rev 0x10, also turn buffer[1] &= ~0x01; // bit 0 register 0x54 } HalpWritePCIConfig (BusHandler, SlotNumber, buffer, 0x53, 2); } if (PciData->VendorID == 0x8086 && PciData->DeviceID == 0x0484 && PciData->RevisionID <= 3) { // // 82378 ISA bridge & SIO // HalpReadPCIConfig (BusHandler, SlotNumber, buffer, 0x41, 1); buffer[0] &= ~0x1; // turn off bit 0 register 0x41 HalpWritePCIConfig (BusHandler, SlotNumber, buffer, 0x41, 1); } } // next function } // next device } // next bus // // Build a tree that shows the relationship of all the PCI busses // to be used when routing interrupts. // HalpMapPlugInPciBridges (PCIRegInfo->NoBuses); #if DBG HalpTestPci (0); #endif } PBUS_HANDLER HalpAllocateAndInitPciBusHandler ( IN ULONG HwType, IN ULONG BusNo, IN BOOLEAN TestAllocation ) { PBUS_HANDLER Bus; PPCIPBUSDATA BusData; Bus = HalpAllocateBusHandler ( PCIBus, // Interface type PCIConfiguration, // Has this configuration space BusNo, // bus # Internal, // child of this bus 0, // and number sizeof (PCIPBUSDATA) // sizeof bus specific buffer ); // // Fill in PCI handlers // Bus->GetBusData = (PGETSETBUSDATA) HalpGetPCIData; Bus->SetBusData = (PGETSETBUSDATA) HalpSetPCIData; Bus->GetInterruptVector = (PGETINTERRUPTVECTOR) HalpGetPCIIntOnISABus; Bus->AdjustResourceList = (PADJUSTRESOURCELIST) HalpAdjustPCIResourceList; Bus->AssignSlotResources = (PASSIGNSLOTRESOURCES) HalpAssignPCISlotResources; Bus->BusAddresses->Dma.Limit = 0; BusData = (PPCIPBUSDATA) Bus->BusData; // // Fill in common PCI data // BusData->CommonData.Tag = PCI_DATA_TAG; BusData->CommonData.Version = PCI_DATA_VERSION; BusData->CommonData.ReadConfig = (PciReadWriteConfig) HalpReadPCIConfig; BusData->CommonData.WriteConfig = (PciReadWriteConfig) HalpWritePCIConfig; BusData->CommonData.Pin2Line = (PciPin2Line) HalpPCIPin2ISALine; BusData->CommonData.Line2Pin = (PciLine2Pin) HalpPCIISALine2Pin; // set defaults Bus->BusAddresses->Memory.Limit = 0x3EFFFFFF; Bus->BusAddresses->IO.Limit = 0x3F7FFFFF; BusData->GetIrqRange = (PciIrqRange) HalpGetPCIIrq; RtlInitializeBitMap (&BusData->DeviceConfigured, BusData->ConfiguredBits, 256); switch (HwType) { case 1: // // Initialize access port information for Type1 handlers // RtlCopyMemory (&PCIConfigHandler, &PCIConfigHandlerType1, sizeof (PCIConfigHandler)); BusData->MaxDevice = HalpPciMaxSlots; break; case 2: // // Initialize access port information for Type2 handlers // RtlCopyMemory (&PCIConfigHandler, &PCIConfigHandlerType2, sizeof (PCIConfigHandler)); #if defined(UNION) BusData->Config.Type2.Address = HalpPciConfigAddr[BusNo >> 8]; BusData->Config.Type2.Data = HalpPciConfigData[BusNo >> 8]; #else BusData->Config.Type2.Address = (PUCHAR)HalpIoControlBase + 0xCF8; BusData->Config.Type2.Data = (PUCHAR)HalpIoControlBase + 0xCFC; #endif // // Early PCI machines didn't decode the last bit of // the device id. Shrink type 2 support max device. // BusData->MaxDevice = HalpPciMaxSlots; break; default: // unsupport type DBGMSG ("HAL: Unkown PCI type\n"); } if (!TestAllocation) { #ifdef SUBCLASSPCI HalpSubclassPCISupport (Bus, HwType); #endif } return Bus; } BOOLEAN HalpIsValidPCIDevice ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot ) /*++ Routine Description: Reads the device configuration data for the given slot and returns TRUE if the configuration data appears to be valid for a PCI device; otherwise returns FALSE. Arguments: BusHandler - Bus to check Slot - Slot to check --*/ { PPCI_COMMON_CONFIG PciData; UCHAR iBuffer[PCI_COMMON_HDR_LENGTH]; ULONG i, j; PciData = (PPCI_COMMON_CONFIG) iBuffer; // // Read device common header // HalpReadPCIConfig (BusHandler, Slot, PciData, 0, PCI_COMMON_HDR_LENGTH); // // Valid device header? // if (PciData->VendorID == PCI_INVALID_VENDORID || PCI_CONFIG_TYPE (PciData) != PCI_DEVICE_TYPE) { return FALSE; } // // Check fields for reasonable values // if ((PciData->u.type0.InterruptPin && PciData->u.type0.InterruptPin > 4) || (PciData->u.type0.InterruptLine & 0x70)) { return FALSE; } for (i=0; i < PCI_TYPE0_ADDRESSES; i++) { j = PciData->u.type0.BaseAddresses[i]; if (j & PCI_ADDRESS_IO_SPACE) { if (j > 0xffff) { // IO port > 64k? return FALSE; } } else { if (j > 0xf && j < 0x80000) { // Mem address < 0x8000h? return FALSE; } } if (Is64BitBaseAddress(j)) { i += 1; } } // // Guess it's a valid device.. // return TRUE; } ULONG HalpGetPCIData ( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PCI_SLOT_NUMBER Slot, IN PUCHAR Buffer, IN ULONG Offset, IN ULONG Length ) /*++ Routine Description: The function returns the Pci bus data for a device. Arguments: BusNumber - Indicates which bus. VendorSpecificDevice - The VendorID (low Word) and DeviceID (High Word) Buffer - Supplies the space to store the data. Length - Supplies a count in bytes of the maximum amount to return. Return Value: Returns the amount of data stored into the buffer. If this PCI slot has never been set, then the configuration information returned is zeroed. --*/ { PPCI_COMMON_CONFIG PciData; ULONG iBuffer[PCI_COMMON_HDR_LENGTH/sizeof(ULONG)]; PPCIPBUSDATA BusData; ULONG Len; ULONG i, bit; if (Length > sizeof (PCI_COMMON_CONFIG)) { Length = sizeof (PCI_COMMON_CONFIG); } Len = 0; PciData = (PPCI_COMMON_CONFIG) iBuffer; if (Offset >= PCI_COMMON_HDR_LENGTH) { // // The user did not request any data from the common // header. Verify the PCI device exists, then continue // in the device specific area. // HalpReadPCIConfig (BusHandler, Slot, PciData, 0, sizeof(ULONG)); if (PciData->VendorID == PCI_INVALID_VENDORID) { return 0; } } else { // // Caller requested at least some data within the // common header. Read the whole header, effect the // fields we need to and then copy the user's requested // bytes from the header // BusData = (PPCIPBUSDATA) BusHandler->BusData; // // Read this PCI devices slot data // Len = PCI_COMMON_HDR_LENGTH; HalpReadPCIConfig (BusHandler, Slot, PciData, 0, Len); if (PciData->VendorID == PCI_INVALID_VENDORID || PCI_CONFIG_TYPE (PciData) != PCI_DEVICE_TYPE) { PciData->VendorID = PCI_INVALID_VENDORID; Len = 2; // only return invalid id } else { BusData->CommonData.Pin2Line (BusHandler, RootHandler, Slot, PciData); } // // Copy whatever data overlaps into the callers buffer // if (Len < Offset) { // no data at caller's buffer return 0; } Len -= Offset; if (Len > Length) { Len = Length; } RtlMoveMemory(Buffer, iBuffer + Offset, Len); Offset += Len; Buffer += Len; Length -= Len; } if (Length) { if (Offset >= PCI_COMMON_HDR_LENGTH) { // // The remaining Buffer comes from the Device Specific // area - put on the kitten gloves and read from it. // // Specific read/writes to the PCI device specific area // are guarenteed: // // Not to read/write any byte outside the area specified // by the caller. (this may cause WORD or BYTE references // to the area in order to read the non-dword aligned // ends of the request) // // To use a WORD access if the requested length is exactly // a WORD long. // // To use a BYTE access if the requested length is exactly // a BYTE long. // //PLJTMP - no really, use kitten gloves! Until the wd90c24a driver is // fixed to NOT go read beyond common space on EVERYBODY's chips, // if this chip is an NCR 810, lie like a rug! if ( iBuffer[0] == 0x00011000 ) { // // NCR 810 // while ( Len < Length ) { *Buffer++ = 0xff; Len++; } return Len; } //PLJTMPend HalpReadPCIConfig (BusHandler, Slot, Buffer, Offset, Length); Len += Length; } } return Len; } ULONG HalpSetPCIData ( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PCI_SLOT_NUMBER Slot, IN PUCHAR Buffer, IN ULONG Offset, IN ULONG Length ) /*++ Routine Description: The function returns the Pci bus data for a device. Arguments: VendorSpecificDevice - The VendorID (low Word) and DeviceID (High Word) Buffer - Supplies the space to store the data. Length - Supplies a count in bytes of the maximum amount to return. Return Value: Returns the amount of data stored into the buffer. --*/ { PPCI_COMMON_CONFIG PciData, PciData2; UCHAR iBuffer[PCI_COMMON_HDR_LENGTH]; UCHAR iBuffer2[PCI_COMMON_HDR_LENGTH]; PPCIPBUSDATA BusData; ULONG Len, cnt; if (Length > sizeof (PCI_COMMON_CONFIG)) { Length = sizeof (PCI_COMMON_CONFIG); } Len = 0; PciData = (PPCI_COMMON_CONFIG) iBuffer; PciData2 = (PPCI_COMMON_CONFIG) iBuffer2; if (Offset >= PCI_COMMON_HDR_LENGTH) { // // The user did not request any data from the common // header. Verify the PCI device exists, then continue in // the device specific area. // HalpReadPCIConfig (BusHandler, Slot, PciData, 0, sizeof(ULONG)); if (PciData->VendorID == PCI_INVALID_VENDORID) { return 0; } } else { // // Caller requested to set at least some data within the // common header. // Len = PCI_COMMON_HDR_LENGTH; HalpReadPCIConfig (BusHandler, Slot, PciData, 0, Len); if (PciData->VendorID == PCI_INVALID_VENDORID || PCI_CONFIG_TYPE (PciData) != PCI_DEVICE_TYPE) { // no device, or header type unkown return 0; } // // Set this device as configured // BusData = (PPCIPBUSDATA) BusHandler->BusData; #if DBG cnt = PciBitIndex(Slot.u.bits.DeviceNumber, Slot.u.bits.FunctionNumber); RtlSetBits (&BusData->DeviceConfigured, cnt, 1); #endif // // Copy COMMON_HDR values to buffer2, then overlay callers changes. // RtlMoveMemory (iBuffer2, iBuffer, Len); BusData->CommonData.Pin2Line (BusHandler, RootHandler, Slot, PciData2); Len -= Offset; if (Len > Length) { Len = Length; } RtlMoveMemory (iBuffer2+Offset, Buffer, Len); // in case interrupt line or pin was editted BusData->CommonData.Line2Pin (BusHandler, RootHandler, Slot, PciData2, PciData); #if DBG // // Verify R/O fields haven't changed // if (PciData2->VendorID != PciData->VendorID || PciData2->DeviceID != PciData->DeviceID || PciData2->RevisionID != PciData->RevisionID || PciData2->ProgIf != PciData->ProgIf || PciData2->SubClass != PciData->SubClass || PciData2->BaseClass != PciData->BaseClass || PciData2->HeaderType != PciData->HeaderType || PciData2->BaseClass != PciData->BaseClass || PciData2->u.type0.MinimumGrant != PciData->u.type0.MinimumGrant || PciData2->u.type0.MaximumLatency != PciData->u.type0.MaximumLatency) { DbgPrint ("PCI SetBusData: Read-Only configuration value changed\n"); // DbgBreakPoint (); } #endif // // Set new PCI configuration // HalpWritePCIConfig (BusHandler, Slot, iBuffer2+Offset, Offset, Len); Offset += Len; Buffer += Len; Length -= Len; } if (Length) { if (Offset >= PCI_COMMON_HDR_LENGTH) { // // The remaining Buffer comes from the Device Specific // area - put on the kitten gloves and write it // // Specific read/writes to the PCI device specific area // are guarenteed: // // Not to read/write any byte outside the area specified // by the caller. (this may cause WORD or BYTE references // to the area in order to read the non-dword aligned // ends of the request) // // To use a WORD access if the requested length is exactly // a WORD long. // // To use a BYTE access if the requested length is exactly // a BYTE long. // HalpWritePCIConfig (BusHandler, Slot, Buffer, Offset, Length); Len += Length; } } return Len; } VOID HalpReadPCIConfig ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PVOID Buffer, IN ULONG Offset, IN ULONG Length ) { if (!HalpValidPCISlot (BusHandler, Slot)) { // // Invalid SlotID return no data // RtlFillMemory (Buffer, Length, (UCHAR) -1); return ; } HalpPCIConfig (BusHandler, Slot, (PUCHAR) Buffer, Offset, Length, PCIConfigHandler.ConfigRead); } VOID HalpWritePCIConfig ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PVOID Buffer, IN ULONG Offset, IN ULONG Length ) { if (!HalpValidPCISlot (BusHandler, Slot)) { // // Invalid SlotID do nothing // return ; } HalpPCIConfig (BusHandler, Slot, (PUCHAR) Buffer, Offset, Length, PCIConfigHandler.ConfigWrite); } BOOLEAN HalpValidPCISlot ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot ) { PCI_SLOT_NUMBER Slot2; PPCIPBUSDATA BusData; UCHAR HeaderType; ULONG i; BusData = (PPCIPBUSDATA) BusHandler->BusData; if (Slot.u.bits.Reserved != 0) { return FALSE; } if (Slot.u.bits.DeviceNumber >= BusData->MaxDevice) { //IBMCPK: added = return FALSE; } if (Slot.u.bits.FunctionNumber == 0) { return TRUE; } // // Sandalfoot doesn't support Multifunction adapters // // return FALSE; // // Non zero function numbers are only supported if the // device has the PCI_MULTIFUNCTION bit set in it's header // i = Slot.u.bits.DeviceNumber; // // Read DeviceNumber, Function zero, to determine if the // PCI supports multifunction devices // Slot2 = Slot; Slot2.u.bits.FunctionNumber = 0; HalpReadPCIConfig ( BusHandler, Slot2, &HeaderType, FIELD_OFFSET (PCI_COMMON_CONFIG, HeaderType), sizeof (UCHAR) ); if (!(HeaderType & PCI_MULTIFUNCTION) || HeaderType == 0xFF) { // this device doesn't exists or doesn't support MULTIFUNCTION types return FALSE; } return TRUE; } VOID HalpPCIConfig ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PUCHAR Buffer, IN ULONG Offset, IN ULONG Length, IN FncConfigIO *ConfigIO ) { KIRQL OldIrql; ULONG i; UCHAR State[20]; PPCIPBUSDATA BusData; BusData = (PPCIPBUSDATA) BusHandler->BusData; PCIConfigHandler.Synchronize (BusHandler, Slot, &OldIrql, State); while (Length) { i = PCIDeref[Offset % sizeof(ULONG)][Length % sizeof(ULONG)]; i = ConfigIO[i] (BusData, State, Buffer, Offset); Offset += i; Buffer += i; Length -= i; } PCIConfigHandler.ReleaseSynchronzation (BusHandler, OldIrql); } VOID HalpPCISynchronizeType1 ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PKIRQL Irql, IN PPCI_TYPE1_CFG_BITS PciCfg1 ) { // // Initialize PciCfg1 // PciCfg1->u.AsULONG = HalpTranslatePciSlotNumber(BusHandler->BusNumber, Slot.u.AsULONG); } VOID HalpPCIReleaseSynchronzationType1 ( IN PBUS_HANDLER BusHandler, IN KIRQL Irql ) { } ULONG HalpPCIReadUcharType1 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { ULONG i; i = Offset % sizeof(ULONG); PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); *Buffer = READ_PORT_UCHAR ((PUCHAR)(PciCfg1->u.AsULONG + i)); return sizeof (UCHAR); } ULONG HalpPCIReadUshortType1 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { ULONG i; i = Offset % sizeof(ULONG); PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); *((PUSHORT) Buffer) = READ_PORT_USHORT ((PUSHORT)(PciCfg1->u.AsULONG + i)); return sizeof (USHORT); } ULONG HalpPCIReadUlongType1 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); *((PULONG) Buffer) = READ_PORT_ULONG ((PULONG) (PciCfg1->u.AsULONG)); return sizeof (ULONG); } ULONG HalpPCIWriteUcharType1 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { ULONG i; i = Offset % sizeof(ULONG); PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_UCHAR (PciCfg1->u.AsULONG + i, *Buffer ); return sizeof (UCHAR); } ULONG HalpPCIWriteUshortType1 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { ULONG i; i = Offset % sizeof(ULONG); PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_USHORT (PciCfg1->u.AsULONG + i, *((PUSHORT) Buffer) ); return sizeof (USHORT); } ULONG HalpPCIWriteUlongType1 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_ULONG (PciCfg1->u.AsULONG, *((PULONG) Buffer) ); return sizeof (ULONG); } VOID HalpPCISynchronizeType2 ( IN PBUS_HANDLER BusHandler, IN PCI_SLOT_NUMBER Slot, IN PKIRQL Irql, IN PPCI_TYPE1_CFG_BITS PciCfg1 ) { // // Initialize PciCfg1 // PciCfg1->u.AsULONG = HalpTranslatePciSlotNumber(BusHandler->BusNumber, Slot.u.AsULONG); KeRaiseIrql (PROFILE_LEVEL, Irql); KiAcquireSpinLock (&HalpPCIConfigLock); } VOID HalpPCIReleaseSynchronzationType2 ( IN PBUS_HANDLER BusHandler, IN KIRQL Irql ) { KiReleaseSpinLock (&HalpPCIConfigLock); KeLowerIrql (Irql); } ULONG HalpPCIReadUcharType2 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { ULONG i; union { ULONG All; UCHAR Bytes[4]; } Tmp; i = Offset % sizeof(ULONG); PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_ULONG(BusData->Config.Type2.Address, PciCfg1->u.AsULONG); Tmp.All = READ_PORT_ULONG(BusData->Config.Type2.Data); *Buffer = Tmp.Bytes[i]; // WRITE_PORT_ULONG ((PUCHAR) HalpIoControlBase + 0xCF8, PciCfg1->u.AsULONG ); // *((PUCHAR) Buffer) = READ_PORT_UCHAR ((PUCHAR) HalpIoControlBase + 0xCFC + i); return sizeof (UCHAR); } ULONG HalpPCIReadUshortType2 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { ULONG i; union { ULONG All; UCHAR Bytes[4]; } Tmp; i = Offset % sizeof(ULONG); PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_ULONG(BusData->Config.Type2.Address, PciCfg1->u.AsULONG); Tmp.All = READ_PORT_ULONG(BusData->Config.Type2.Data); *Buffer++ = Tmp.Bytes[i++]; if ( i == sizeof(ULONG) ) { PciCfg1->u.bits.RegisterNumber++; WRITE_PORT_ULONG(BusData->Config.Type2.Address, PciCfg1->u.AsULONG); Tmp.All = READ_PORT_ULONG(BusData->Config.Type2.Data); i = 0; } *Buffer = Tmp.Bytes[i]; // WRITE_PORT_ULONG ((PUCHAR)HalpIoControlBase + 0xCF8, PciCfg1->u.AsULONG ); // *((PUSHORT) Buffer) = READ_PORT_USHORT ((PUCHAR)HalpIoControlBase + 0xCFC + i); return sizeof (USHORT); } ULONG HalpPCIReadUlongType2 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_ULONG(BusData->Config.Type2.Address, PciCfg1->u.AsULONG); *((PULONG) Buffer) = READ_PORT_ULONG(BusData->Config.Type2.Data); // WRITE_PORT_ULONG ((PUCHAR)HalpIoControlBase + 0xCF8, PciCfg1->u.AsULONG); // *((PULONG) Buffer) = READ_PORT_ULONG ((PUCHAR)HalpIoControlBase + 0xCFC); return sizeof(ULONG); } ULONG HalpPCIWriteUcharType2 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { ULONG i; union { ULONG All; UCHAR Bytes[4]; } Tmp; i = Offset % sizeof(ULONG); PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_ULONG(BusData->Config.Type2.Address, PciCfg1->u.AsULONG); Tmp.All = READ_PORT_ULONG(BusData->Config.Type2.Data); Tmp.Bytes[i] = *Buffer; WRITE_PORT_ULONG(BusData->Config.Type2.Data, Tmp.All); // WRITE_PORT_ULONG ((PUCHAR)HalpIoControlBase + 0xCF8, PciCfg1->u.AsULONG ); // WRITE_PORT_UCHAR ((PUCHAR)HalpIoControlBase + 0xCFC + i,*Buffer); return sizeof (UCHAR); } ULONG HalpPCIWriteUshortType2 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { ULONG i; union { ULONG All; UCHAR Bytes[4]; } Tmp; i = Offset % sizeof(ULONG); PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_ULONG(BusData->Config.Type2.Address, PciCfg1->u.AsULONG); Tmp.All = READ_PORT_ULONG(BusData->Config.Type2.Data); Tmp.Bytes[i++] = *Buffer++; if ( i == sizeof(ULONG) ) { WRITE_PORT_ULONG(BusData->Config.Type2.Data, Tmp.All); PciCfg1->u.bits.RegisterNumber++; WRITE_PORT_ULONG(BusData->Config.Type2.Address, PciCfg1->u.AsULONG); Tmp.All = READ_PORT_ULONG(BusData->Config.Type2.Data); i = 0; } Tmp.Bytes[i] = *Buffer; WRITE_PORT_ULONG(BusData->Config.Type2.Data, Tmp.All); // WRITE_PORT_ULONG ((PUCHAR)HalpIoControlBase + 0xCF8, PciCfg1->u.AsULONG ); // WRITE_PORT_USHORT ((PUCHAR)HalpIoControlBase + 0xCFC + (USHORT) i,*((PUSHORT)Buffer)); return sizeof (USHORT); } ULONG HalpPCIWriteUlongType2 ( IN PPCIPBUSDATA BusData, IN PPCI_TYPE1_CFG_BITS PciCfg1, IN PUCHAR Buffer, IN ULONG Offset ) { PciCfg1->u.bits.RegisterNumber = Offset / sizeof(ULONG); WRITE_PORT_ULONG(BusData->Config.Type2.Address, PciCfg1->u.AsULONG); WRITE_PORT_ULONG(BusData->Config.Type2.Data, *((PULONG)Buffer)); // WRITE_PORT_ULONG ((PUCHAR)HalpIoControlBase + 0xCF8, PciCfg1->u.AsULONG); // WRITE_PORT_ULONG ((PUCHAR)HalpIoControlBase + 0xCFC,*((PULONG)Buffer)); return sizeof(ULONG); } NTSTATUS HalpAssignPCISlotResources ( IN PBUS_HANDLER BusHandler, IN PBUS_HANDLER RootHandler, IN PUNICODE_STRING RegistryPath, IN PUNICODE_STRING DriverClassName OPTIONAL, IN PDRIVER_OBJECT DriverObject, IN PDEVICE_OBJECT DeviceObject OPTIONAL, IN ULONG Slot, IN OUT PCM_RESOURCE_LIST *pAllocatedResources ) /*++ Routine Description: Reads the targeted device to determine it's required resources. Calls IoAssignResources to allocate them. Sets the targeted device with it's assigned resoruces and returns the assignments to the caller. Arguments: Return Value: STATUS_SUCCESS or error --*/ { NTSTATUS status; PUCHAR WorkingPool; PPCI_COMMON_CONFIG PciData, PciOrigData, PciData2; PCI_SLOT_NUMBER PciSlot; PPCIPBUSDATA BusData; PIO_RESOURCE_REQUIREMENTS_LIST CompleteList; PIO_RESOURCE_DESCRIPTOR Descriptor; PCM_PARTIAL_RESOURCE_DESCRIPTOR CmDescriptor; ULONG BusNumber; ULONG i, j, m, length, memtype; ULONG NoBaseAddress, RomIndex, Option; PULONG BaseAddress[PCI_TYPE0_ADDRESSES + 1]; PULONG OrigAddress[PCI_TYPE0_ADDRESSES + 1]; BOOLEAN Match, EnableRomBase; *pAllocatedResources = NULL; PciSlot = *((PPCI_SLOT_NUMBER) &Slot); BusNumber = BusHandler->BusNumber; BusData = (PPCIPBUSDATA) BusHandler->BusData; // // Allocate some pool for working space // i = sizeof (IO_RESOURCE_REQUIREMENTS_LIST) + sizeof (IO_RESOURCE_DESCRIPTOR) * (PCI_TYPE0_ADDRESSES + 2) * 2 + PCI_COMMON_HDR_LENGTH * 3; WorkingPool = (PUCHAR) ExAllocatePool (PagedPool, i); if (!WorkingPool) { return STATUS_INSUFFICIENT_RESOURCES; } // // Zero initialize pool, and get pointers into memory // RtlZeroMemory (WorkingPool, i); CompleteList = (PIO_RESOURCE_REQUIREMENTS_LIST) WorkingPool; PciData = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 3); PciData2 = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 2); PciOrigData = (PPCI_COMMON_CONFIG) (WorkingPool + i - PCI_COMMON_HDR_LENGTH * 1); // // Read the PCI device's configuration // HalpReadPCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH); if (PciData->VendorID == PCI_INVALID_VENDORID) { ExFreePool (WorkingPool); return STATUS_NO_SUCH_DEVICE; } // // Make a copy of the device's current settings // RtlMoveMemory (PciOrigData, PciData, PCI_COMMON_HDR_LENGTH); // // Initialize base addresses base on configuration data type // switch (PCI_CONFIG_TYPE(PciData)) { case 0 : NoBaseAddress = PCI_TYPE0_ADDRESSES+1; for (j=0; j < PCI_TYPE0_ADDRESSES; j++) { BaseAddress[j] = &PciData->u.type0.BaseAddresses[j]; OrigAddress[j] = &PciOrigData->u.type0.BaseAddresses[j]; } BaseAddress[j] = &PciData->u.type0.ROMBaseAddress; OrigAddress[j] = &PciOrigData->u.type0.ROMBaseAddress; RomIndex = j; break; case 1: NoBaseAddress = PCI_TYPE1_ADDRESSES+1; for (j=0; j < PCI_TYPE1_ADDRESSES; j++) { BaseAddress[j] = &PciData->u.type1.BaseAddresses[j]; OrigAddress[j] = &PciOrigData->u.type1.BaseAddresses[j]; } BaseAddress[j] = &PciData->u.type1.ROMBaseAddress; OrigAddress[j] = &PciOrigData->u.type1.ROMBaseAddress; RomIndex = j; break; default: ExFreePool (WorkingPool); return STATUS_NO_SUCH_DEVICE; } // // If the BIOS doesn't have the device's ROM enabled, then we won't // enable it either. Remove it from the list. // EnableRomBase = TRUE; if (!(*BaseAddress[RomIndex] & PCI_ROMADDRESS_ENABLED)) { ASSERT (RomIndex+1 == NoBaseAddress); EnableRomBase = FALSE; NoBaseAddress -= 1; } // // Set resources to all bits on to see what type of resources // are required. // for (j=0; j < NoBaseAddress; j++) { *BaseAddress[j] = 0xFFFFFFFF; } PciData->Command &= ~(PCI_ENABLE_IO_SPACE | PCI_ENABLE_MEMORY_SPACE); *BaseAddress[RomIndex] &= ~PCI_ROMADDRESS_ENABLED; HalpWritePCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH); HalpReadPCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH); // note type0 & type1 overlay ROMBaseAddress, InterruptPin, and InterruptLine BusData->CommonData.Pin2Line (BusHandler, RootHandler, PciSlot, PciData); // // Build an IO_RESOURCE_REQUIREMENTS_LIST for the PCI device // CompleteList->InterfaceType = PCIBus; CompleteList->BusNumber = BusNumber; CompleteList->SlotNumber = Slot; CompleteList->AlternativeLists = 1; CompleteList->List[0].Version = 1; CompleteList->List[0].Revision = 1; Descriptor = CompleteList->List[0].Descriptors; // // If PCI device has an interrupt resource, add it // if (PciData->u.type0.InterruptPin) { CompleteList->List[0].Count++; Descriptor->Option = 0; Descriptor->Type = CmResourceTypeInterrupt; Descriptor->ShareDisposition = CmResourceShareShared; Descriptor->Flags = CM_RESOURCE_INTERRUPT_LEVEL_SENSITIVE; // Fill in any vector here - we'll pick it back up in // HalAdjustResourceList and adjust it to it's allowed settings Descriptor->u.Interrupt.MinimumVector = 0; Descriptor->u.Interrupt.MaximumVector = 0xff; Descriptor++; } // // Add a memory/port resoruce for each PCI resource // // Clear ROM reserved bits *BaseAddress[RomIndex] &= ~0x7FF; for (j=0; j < NoBaseAddress; j++) { if (*BaseAddress[j]) { i = *BaseAddress[j]; // scan for first set bit, that's the length & alignment length = 1 << (i & PCI_ADDRESS_IO_SPACE ? 2 : 4); while (!(i & length) && length) { length <<= 1; } // scan for last set bit, that's the maxaddress + 1 for (m = length; i & m; m <<= 1) ; m--; // check for hosed PCI configuration requirements if (length & ~m) { #if DBG DbgPrint ("PCI: defective device! Bus %d, Slot %d, Function %d\n", BusNumber, PciSlot.u.bits.DeviceNumber, PciSlot.u.bits.FunctionNumber ); DbgPrint ("PCI: BaseAddress[%d] = %08lx\n", j, i); #endif // the device is in error - punt. don't allow this // resource any option - it either gets set to whatever // bits it was able to return, or it doesn't get set. if (i & PCI_ADDRESS_IO_SPACE) { m = i & ~0x3; Descriptor->u.Port.MinimumAddress.LowPart = m; } else { m = i & ~0xf; Descriptor->u.Memory.MinimumAddress.LowPart = m; } m += length; // max address is min address + length } // // Add requested resource // Descriptor->Option = 0; if (i & PCI_ADDRESS_IO_SPACE) { memtype = 0; if (!Is64BitBaseAddress(i) && PciOrigData->Command & PCI_ENABLE_IO_SPACE) { // // The IO range is/was already enabled at some location, add that // as it's preferred setting. // Descriptor->Type = CmResourceTypePort; Descriptor->ShareDisposition = CmResourceShareDeviceExclusive; Descriptor->Flags = CM_RESOURCE_PORT_IO; Descriptor->Option = IO_RESOURCE_PREFERRED; Descriptor->u.Port.Length = length; Descriptor->u.Port.Alignment = length; Descriptor->u.Port.MinimumAddress.LowPart = *OrigAddress[j] & ~0x3; Descriptor->u.Port.MaximumAddress.LowPart = Descriptor->u.Port.MinimumAddress.LowPart + length - 1; //IBMCPK:added -1 CompleteList->List[0].Count++; Descriptor++; Descriptor->Option = IO_RESOURCE_ALTERNATIVE; } // // Add this IO range // Descriptor->Type = CmResourceTypePort; Descriptor->ShareDisposition = CmResourceShareDeviceExclusive; Descriptor->Flags = CM_RESOURCE_PORT_IO; Descriptor->u.Port.Length = length; Descriptor->u.Port.Alignment = length; Descriptor->u.Port.MaximumAddress.LowPart = m; } else { memtype = i & PCI_ADDRESS_MEMORY_TYPE_MASK; Descriptor->Flags = CM_RESOURCE_MEMORY_READ_WRITE; if (j == RomIndex) { // this is a ROM address Descriptor->Flags = CM_RESOURCE_MEMORY_READ_ONLY; } if (i & PCI_ADDRESS_MEMORY_PREFETCHABLE) { Descriptor->Flags |= CM_RESOURCE_MEMORY_PREFETCHABLE; } if (!Is64BitBaseAddress(i) && (j == RomIndex || PciOrigData->Command & PCI_ENABLE_MEMORY_SPACE)) { // // The memory range is/was already enabled at some location, add that // as it's preferred setting. // Descriptor->Type = CmResourceTypeMemory; Descriptor->ShareDisposition = CmResourceShareDeviceExclusive; Descriptor->Option = IO_RESOURCE_PREFERRED; Descriptor->u.Port.Length = length; Descriptor->u.Port.Alignment = length; Descriptor->u.Port.MinimumAddress.LowPart = *OrigAddress[j] & ~0xF; Descriptor->u.Port.MaximumAddress.LowPart = Descriptor->u.Port.MinimumAddress.LowPart + length - 1; //IBMCPK: added -1 CompleteList->List[0].Count++; Descriptor++; Descriptor->Flags = Descriptor[-1].Flags; Descriptor->Option = IO_RESOURCE_ALTERNATIVE; } // // Add this memory range // Descriptor->Type = CmResourceTypeMemory; Descriptor->ShareDisposition = CmResourceShareDeviceExclusive; Descriptor->u.Memory.Length = length; Descriptor->u.Memory.Alignment = length; Descriptor->u.Memory.MaximumAddress.LowPart = m; if (memtype == PCI_TYPE_20BIT && m > 0xFFFFF) { // limit to 20 bit address Descriptor->u.Memory.MaximumAddress.LowPart = 0xFFFFF; } } CompleteList->List[0].Count++; Descriptor++; if (Is64BitBaseAddress(i)) { // skip upper half of 64 bit address since this processor // only supports 32 bits of address space j++; } } } CompleteList->ListSize = (ULONG) ((PUCHAR) Descriptor - (PUCHAR) CompleteList); // // Restore the device settings as we found them, enable memory // and io decode after setting base addresses. This is done in // case HalAdjustResourceList wants to read the current settings // in the device. // HalpWritePCIConfig ( BusHandler, PciSlot, &PciOrigData->Status, FIELD_OFFSET (PCI_COMMON_CONFIG, Status), PCI_COMMON_HDR_LENGTH - FIELD_OFFSET (PCI_COMMON_CONFIG, Status) ); HalpWritePCIConfig ( BusHandler, PciSlot, PciOrigData, 0, FIELD_OFFSET (PCI_COMMON_CONFIG, Status) ); // // Have the IO system allocate resource assignments // status = IoAssignResources ( RegistryPath, DriverClassName, DriverObject, DeviceObject, CompleteList, pAllocatedResources ); if (!NT_SUCCESS(status)) { goto CleanUp; } // // Slurp the assigments back into the PciData structure and // perform them // CmDescriptor = (*pAllocatedResources)->List[0].PartialResourceList.PartialDescriptors; // // If PCI device has an interrupt resource then that was // passed in as the first requested resource // if (PciData->u.type0.InterruptPin) { PciData->u.type0.InterruptLine = (UCHAR) CmDescriptor->u.Interrupt.Vector; BusData->CommonData.Line2Pin (BusHandler, RootHandler, PciSlot, PciData, PciOrigData); CmDescriptor++; } // // Pull out resources in the order they were passed to IoAssignResources // for (j=0; j < NoBaseAddress; j++) { i = *BaseAddress[j]; if (i) { if (i & PCI_ADDRESS_IO_SPACE) { *BaseAddress[j] = CmDescriptor->u.Port.Start.LowPart; } else { *BaseAddress[j] = CmDescriptor->u.Memory.Start.LowPart; } CmDescriptor++; } if (Is64BitBaseAddress(i)) { // skip upper 32 bits j++; } } // // Turn off decodes, then set new addresses // HalpWritePCIConfig (BusHandler, PciSlot, PciData, 0, PCI_COMMON_HDR_LENGTH); // // Read configuration back and verify address settings took // HalpReadPCIConfig(BusHandler, PciSlot, PciData2, 0, PCI_COMMON_HDR_LENGTH); Match = TRUE; if (PciData->u.type0.InterruptLine != PciData2->u.type0.InterruptLine || PciData->u.type0.InterruptPin != PciData2->u.type0.InterruptPin || PciData->u.type0.ROMBaseAddress != PciData2->u.type0.ROMBaseAddress) { Match = FALSE; } for (j=0; j < NoBaseAddress; j++) { if (*BaseAddress[j]) { if (*BaseAddress[j] & PCI_ADDRESS_IO_SPACE) { i = (ULONG) ~0x3; } else { i = (ULONG) ~0xF; } if ((*BaseAddress[j] & i) != *((PULONG) ((PUCHAR) BaseAddress[j] - (PUCHAR) PciData + (PUCHAR) PciData2)) & i) { Match = FALSE; } if (Is64BitBaseAddress(*BaseAddress[j])) { // skip upper 32 bits j++; } } } if (!Match) { #if DBG DbgPrint ("PCI: defective device! Bus %d, Slot %d, Function %d\n", BusNumber, PciSlot.u.bits.DeviceNumber, PciSlot.u.bits.FunctionNumber ); #endif status = STATUS_DEVICE_PROTOCOL_ERROR; goto CleanUp; } // // Settings took - turn on the appropiate decodes // if (EnableRomBase && *BaseAddress[RomIndex]) { // a rom address was allocated and should be enabled *BaseAddress[RomIndex] |= PCI_ROMADDRESS_ENABLED; HalpWritePCIConfig ( BusHandler, PciSlot, BaseAddress[RomIndex], (ULONG) ((PUCHAR) BaseAddress[RomIndex] - (PUCHAR) PciData), sizeof (ULONG) ); } // // Enable IO, Memory, and BUS_MASTER decodes // (use HalSetBusData since valid settings now set) // // But don't change video devices, they will be enabled or // disabled by HalpInitializeDisplay() // // (For the moment, that means we are shutting off the // S3 chip so that a plug-in Weitek card can get a chance // to talk to GDI. if (!(IsVideoDevice(PciData))) { PciData->Command |= PCI_ENABLE_IO_SPACE | PCI_ENABLE_MEMORY_SPACE | PCI_ENABLE_BUS_MASTER; } else { PciData->Command = PciOrigData->Command; } HalSetBusDataByOffset ( PCIConfiguration, BusHandler->BusNumber, PciSlot.u.AsULONG, &PciData->Command, FIELD_OFFSET (PCI_COMMON_CONFIG, Command), sizeof (PciData->Command) ); CleanUp: if (!NT_SUCCESS(status)) { // // Failure, if there are any allocated resources free them // if (*pAllocatedResources) { IoAssignResources ( RegistryPath, DriverClassName, DriverObject, DeviceObject, NULL, NULL ); ExFreePool (*pAllocatedResources); *pAllocatedResources = NULL; } // // Restore the device settings as we found them, enable memory // and io decode after setting base addresses // HalpWritePCIConfig ( BusHandler, PciSlot, &PciOrigData->Status, FIELD_OFFSET (PCI_COMMON_CONFIG, Status), PCI_COMMON_HDR_LENGTH - FIELD_OFFSET (PCI_COMMON_CONFIG, Status) ); HalpWritePCIConfig ( BusHandler, PciSlot, PciOrigData, 0, FIELD_OFFSET (PCI_COMMON_CONFIG, Status) ); } ExFreePool (WorkingPool); return status; } VOID HalpPhase0DiscoverPciBuses( IN PCONFIGURATION_COMPONENT_DATA Component ) /* This function looks down the LoaderBlock looking for nodes that correspond to PCI buses. When it has found them all, it sets HalpPciMaxBuses. */ { // Check to see if this component would look like a "multi(x)" // entry in ARC. if ((Component->ComponentEntry.Class == AdapterClass) && (Component->ComponentEntry.Type == MultiFunctionAdapter)) { // // First check to see if Identifier is valid, then // check the string it points to. // if (Component->ComponentEntry.Identifier) { if ((Component->ComponentEntry.Identifier[0] == 'P') && (Component->ComponentEntry.Identifier[1] == 'C') && (Component->ComponentEntry.Identifier[2] == 'I')) { HalpPciMaxBuses++; // Increment the number of PCI buses } } } // // Look at the Siblings of this component // if (Component->Sibling) { HalpPhase0DiscoverPciBuses(Component->Sibling); } // // Look at the Children of this component // if (Component->Child) { HalpPhase0DiscoverPciBuses(Component->Child); } } #if DBG VOID HalpTestPci (ULONG flag2) { PCI_SLOT_NUMBER SlotNumber; PCI_COMMON_CONFIG PciData, OrigData; ULONG i, f, j, k, bus; BOOLEAN flag; if (!flag2) { return ; } DbgBreakPoint (); SlotNumber.u.bits.Reserved = 0; // // Read every possible PCI Device/Function and display it's // default info. // // (note this destories it's current settings) // flag = TRUE; for (bus = 0; flag; bus++) { for (i = 0; i < PCI_MAX_DEVICES; i++) { SlotNumber.u.bits.DeviceNumber = i; for (f = 0; f < PCI_MAX_FUNCTION; f++) { SlotNumber.u.bits.FunctionNumber = f; // // Note: This is reading the DeviceSpecific area of // the device's configuration - normally this should // only be done on device for which the caller understands. // I'm doing it here only for debugging. // j = HalGetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, sizeof (PciData) ); if (j == 0) { // out of buses flag = FALSE; break; } if (j < PCI_COMMON_HDR_LENGTH) { continue; } HalSetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, 1 ); HalGetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, sizeof (PciData) ); memcpy (&OrigData, &PciData, sizeof PciData); for (j=0; j < PCI_TYPE0_ADDRESSES; j++) { PciData.u.type0.BaseAddresses[j] = 0xFFFFFFFF; } PciData.u.type0.ROMBaseAddress = 0xFFFFFFFF; HalSetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, sizeof (PciData) ); HalGetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, sizeof (PciData) ); DbgPrint ("PCI Bus %d Slot %2d %2d ID:%04lx-%04lx Rev:%04lx", bus, i, f, PciData.VendorID, PciData.DeviceID, PciData.RevisionID); if (PciData.u.type0.InterruptPin) { DbgPrint (" IntPin:%x", PciData.u.type0.InterruptPin); } if (PciData.u.type0.InterruptLine) { DbgPrint (" IntLine:%x", PciData.u.type0.InterruptLine); } if (PciData.u.type0.ROMBaseAddress) { DbgPrint (" ROM:%08lx", PciData.u.type0.ROMBaseAddress); } DbgPrint ("\n Cmd:%04x Status:%04x ProgIf:%04x SubClass:%04x BaseClass:%04lx\n", PciData.Command, PciData.Status, PciData.ProgIf, PciData.SubClass, PciData.BaseClass); k = 0; for (j=0; j < PCI_TYPE0_ADDRESSES; j++) { if (PciData.u.type0.BaseAddresses[j]) { DbgPrint (" Ad%d:%08lx", j, PciData.u.type0.BaseAddresses[j]); k = 1; } } if (PciData.u.type0.ROMBaseAddress == 0xC08001) { PciData.u.type0.ROMBaseAddress = 0xC00001; HalSetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, sizeof (PciData) ); HalGetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &PciData, sizeof (PciData) ); DbgPrint ("\n Bogus rom address, edit yields:%08lx", PciData.u.type0.ROMBaseAddress); } if (k) { DbgPrint ("\n"); } if (PciData.VendorID == 0x8086) { // dump complete buffer DbgPrint ("Command %x, Status %x, BIST %x\n", PciData.Command, PciData.Status, PciData.BIST ); DbgPrint ("CacheLineSz %x, LatencyTimer %x", PciData.CacheLineSize, PciData.LatencyTimer ); for (j=0; j < 192; j++) { if ((j & 0xf) == 0) { DbgPrint ("\n%02x: ", j + 0x40); } DbgPrint ("%02x ", PciData.DeviceSpecific[j]); } DbgPrint ("\n"); } // // now print original data // if (OrigData.u.type0.ROMBaseAddress) { DbgPrint (" oROM:%08lx", OrigData.u.type0.ROMBaseAddress); } DbgPrint ("\n"); k = 0; for (j=0; j < PCI_TYPE0_ADDRESSES; j++) { if (OrigData.u.type0.BaseAddresses[j]) { DbgPrint (" oAd%d:%08lx", j, OrigData.u.type0.BaseAddresses[j]); k = 1; } } // // Restore original settings // HalSetBusData ( PCIConfiguration, bus, SlotNumber.u.AsULONG, &OrigData, sizeof (PciData) ); // // Next // if (k) { DbgPrint ("\n\n"); } } } } DbgBreakPoint (); } #endif