/*++ Copyright (c) 1990 Microsoft Corporation Module Name: cache.c Abstract: Author: Wesley Witt (wesw) 8-Mar-1992 Environment: NT 3.1 Revision History: --*/ #include "precomp.h" #pragma hdrstop typedef unsigned long DWORD; typedef int BOOL; #define NTINCLUDES #define MIN_READ_SIZE 0x80 #define MIN_CACHE_MISSES 3 ULONG KdMaxCacheSize = 100*1024; ULONG KdCacheMisses = 0; ULONG KdCachePurges = 0; ULONG KdCacheSize = 0; ULONG KdNodeCount = 0; BOOLEAN KdPurgeOverride = FALSE; BOOLEAN KdCacheDecodePTEs = TRUE; typedef struct { RTL_SPLAY_LINKS SplayLinks; ULONG Offset; USHORT Length; USHORT Flags; union { PUCHAR Data; NTSTATUS Status; } u; } CACHE, *PCACHE; #define C_ERROR 0x0001 // Cache of error code #define C_DONTEXTEND 0x0002 // Don't try to extend #define C_NONDISCARDABLE 0x0004 // never purge this node #define LARGECACHENODE 1024 // Size of large cache node PCACHE VirtCacheRoot; // Root of cache node tree // // Prototypes... // extern void DebugPrint(char *, ...); BOOLEAN KdConvertToPhysicalAddr ( PVOID, PPHYSICAL_ADDRESS ); PCACHE CacheLookup ( ULONG Offset, ULONG Length, PULONG LengthUsed ); VOID InsertCacheNode ( IN PCACHE node ); PUCHAR vcmalloc ( IN ULONG Length ); VOID vcfree ( IN PUCHAR Memory, IN ULONG Length ); NTSTATUS VCReadTranslatePTEAndReadMemory ( IN PVOID TargetBaseAddress, OUT PVOID UserInterfaceBuffer, IN ULONG TransferCount, OUT PULONG ActualBytesRead OPTIONAL ); VOID DmKdSetMaxCacheSize( IN ULONG MaxCacheSize ) { KdMaxCacheSize = MaxCacheSize; } ULONG DmKdReadCachedVirtualMemory ( IN ULONG BaseAddress, IN ULONG TransferCount, IN PUCHAR UserBuffer, IN PULONG BytesRead, IN ULONG NonDiscardable ) /*++ This function returns the specified data from the system being debugged using the current mapping of the processor. If the data is not in the cache, it will then be read from the target system. Arguments: TargetBaseAddress - Supplies the base address of the memory to be copied into the UserBuffer. TransferCount - Amount of data to be copied to the UserBuffer. UserBuffer - Address to copy the requested data. BytesRead - Number of bytes which could actually be copied Return Value: STATUS_SUCCESS - The specified read occured. other (see DmKdReadVirtualMemoryNow). --*/ { NTSTATUS st; PCACHE node, node2; ULONG nextlength; ULONG i, br; PUCHAR p; *BytesRead = 0; if (KdMaxCacheSize == 0) { // // Cache is off // goto ReadDirect; } // DebugPrint( "readcache %x %d\n", BaseAddress, TransferCount ); node = CacheLookup(BaseAddress, TransferCount, &nextlength); st = STATUS_SUCCESS; while( TRUE ) { // // Check if current command has been canceled. If yes, go back to // kd prompt. // if (node == NULL || node->Offset > BaseAddress) { // // We are missing the leading data, read it into the cache // if (node) { // // Only get (exactly) enough data to reach neighboring cache // node. If an overlapped read occurs between the two nodes, // the data will be concatenated then. // nextlength = node->Offset - BaseAddress; } //nextlength = max( nextlength, MIN_READ_SIZE ); p = vcmalloc (nextlength); node = (PCACHE) vcmalloc (sizeof (CACHE)); if (p == NULL || node == NULL) { // // Out of memory - just read directly to UserBuffer // if (p) { vcfree (p, nextlength); } if (node) { vcfree ((PUCHAR)node, sizeof (CACHE)); } goto ReadDirect; } // // Read missing data into cache node // node->Offset = BaseAddress; node->u.Data = p; node->Flags = 0; if (NonDiscardable) { node->Flags |= C_NONDISCARDABLE; } KdCacheMisses++; while( TRUE ) { st = DmKdReadVirtualMemoryNow( (PVOID) BaseAddress, (PVOID) node->u.Data, nextlength, &br ); if (NT_SUCCESS(st)) { break; } // // Before accepting the error, make sure request // didn't fail because it was enlarged for caching. // i = nextlength; //nextlength = TransferCount; // // If length crosses possible page boundry, shrink request // even furture. // if ((BaseAddress & ~0xfff) != ((BaseAddress+nextlength) & ~0xfff)) { nextlength = (BaseAddress | 0xfff) - BaseAddress + 1; } // // If nextlength is shorter then failed request, then loop // and try again // if (nextlength >= i) { // // If implicit decode of the pte is requested, go // try getting this memory by it's physical address // if (st == STATUS_UNSUCCESSFUL && KdCacheDecodePTEs) { st = VCReadTranslatePTEAndReadMemory ( (PVOID) BaseAddress, (PVOID) node->u.Data, nextlength, &br ); } break; } } if (!NT_SUCCESS(st)) { // // There was an error, cache the error for the starting // byte of this range // vcfree (p, nextlength); if (st != STATUS_UNSUCCESSFUL) { // // For now be safe, don't cache this error // vcfree ((PUCHAR)node, sizeof (CACHE)); return *BytesRead ? STATUS_SUCCESS : st; } node->Length = 1; node->Flags |= C_ERROR; node->u.Status = st; } else { node->Length = (USHORT) br; if (br != nextlength) { // // Some data was not transfered, cache what was returned // node->Flags |= C_DONTEXTEND; KdCacheSize -= (nextlength - br); } } // // Insert cache node into splay tree // InsertCacheNode (node); } if (node->Flags & C_ERROR) { // // Hit an error range, we're done // return *BytesRead ? STATUS_SUCCESS : node->u.Status; } // // Move available data to UserBuffer // i = BaseAddress - node->Offset; p = node->u.Data + i; i = (ULONG) node->Length - i; if (TransferCount < i) { i = TransferCount; } memcpy (UserBuffer, p, i); TransferCount -= i; BaseAddress += i; UserBuffer += i; *BytesRead += i; if (!TransferCount) { // // All of the users data has been transfered // return STATUS_SUCCESS; } // // Look for another cache node with more data // node2 = CacheLookup (BaseAddress, TransferCount, &nextlength); if (node2) { if ((node2->Flags & C_ERROR) == 0 && node2->Offset == BaseAddress && node2->Length + node->Length < LARGECACHENODE) { // // Data is continued in node2, adjoin the neigboring // cached data in node & node2 together. // p = vcmalloc (node->Length + node2->Length); if (p != NULL) { memcpy (p, node->u.Data, node->Length); memcpy (p+node->Length, node2->u.Data, node2->Length); vcfree (node->u.Data, node->Length); node->u.Data = p; node->Length += node2->Length; VirtCacheRoot = (PCACHE) RtlDelete ((PRTL_SPLAY_LINKS)node2); vcfree ((PUCHAR)node2->u.Data, node2->Length); vcfree ((PUCHAR)node2, sizeof (CACHE)); KdNodeCount--; continue; } } // // Only get enough data to reach the neighboring cache node2 // nextlength = node2->Offset - BaseAddress; if (nextlength == 0) { // // Data is continued in node2, go get it. // node = node2; continue; } } else { if (node->Length > LARGECACHENODE) { // // Current cache node is already big enough. Don't extend // it, add another cache node. // node = NULL; continue; } } // // Extend the current node to include missing data // if (node->Flags & C_DONTEXTEND) { node = NULL; continue; } //nextlength = max( nextlength, MIN_READ_SIZE ); p = vcmalloc (node->Length + nextlength); if (!p) { node = NULL; continue; } memcpy (p, node->u.Data, node->Length); vcfree (node->u.Data, node->Length); node->u.Data = p; // // Add new data to end of this node // KdCacheMisses++; while( TRUE ) { st = DmKdReadVirtualMemoryNow ( (PVOID) BaseAddress, (PVOID) (node->u.Data + node->Length), nextlength, &br ); if (NT_SUCCESS(st)) { break; } // // Before accepting the error, make sure request // didn't fail because it was enlarged for caching. // node->Flags |= C_DONTEXTEND; i = TransferCount; // // If length crosses possible page boundry, shrink request // even furture. // if ((BaseAddress & ~0xfff) != ((BaseAddress + i) & ~0xfff)) { i = (BaseAddress | 0xfff) - BaseAddress + 1; } // // If nextlength is shorter, then loop (try the read again) // if (i >= nextlength) { // // If implicit decode of the pte is requested, go // try getting this memory by it's physical address // if (st == STATUS_UNSUCCESSFUL && KdCacheDecodePTEs) { st = VCReadTranslatePTEAndReadMemory ( (PVOID) BaseAddress, (PVOID) (node->u.Data + node->Length), nextlength, &br ); } break; } // // Adjust counts for new transfer size // KdCacheSize -= (nextlength - i); nextlength = i; } if (!NT_SUCCESS(st)) { // // Return to error to the caller // node->Flags |= C_DONTEXTEND; KdCacheSize -= nextlength; return *BytesRead ? STATUS_SUCCESS : st; } if (br != nextlength) { node->Flags |= C_DONTEXTEND; KdCacheSize -= (nextlength - br); } node->Length += (USHORT) br; // Loop, and move data to user's buffer } ReadDirect: while (TransferCount) { nextlength = TransferCount; while( TRUE ) { st = DmKdReadVirtualMemoryNow ( (PVOID) BaseAddress, (PVOID) UserBuffer, nextlength, &br ); if (NT_SUCCESS(st)) { break; } if ((BaseAddress & ~0xfff) != ((BaseAddress+nextlength) & ~0xfff)) { // // Before accepting the error, make sure request // didn't fail because it crossed multiple pages // nextlength = (BaseAddress | 0xfff) - BaseAddress + 1; } else { if (st == STATUS_UNSUCCESSFUL && KdCacheDecodePTEs) { // // Try getting the memory by looking up the physical // location of the page // st = VCReadTranslatePTEAndReadMemory ( (PVOID) BaseAddress, (PVOID) UserBuffer, nextlength, &br ); if (NT_SUCCESS(st)) { break; } } // // Return to error to the caller // return *BytesRead ? STATUS_SUCCESS : st; } } TransferCount -= br; BaseAddress += br; UserBuffer += br; *BytesRead += br; } return STATUS_SUCCESS; } PCACHE CacheLookup ( ULONG Offset, ULONG Length, PULONG LengthUsed ) /*++ Routine Description: Walks the cache tree looking for a matching range closest to the supplied Offset. The length of the range searched is based on the past length, but may be adjusted slightly. This function will always search for the starting byte. Arguments: Offset - Starting byte being looked for in cache Length - Length of range being looked for in cache LengthUsed - Length of range which was really search for Return Value: NULL - data for returned range was not found PCACHE - leftmost cachenode which has data for returned range --*/ { PCACHE node, node2; ULONG SumOffsetLength; // DebugPrint( "CacheLookup\n" ); if (Length < MIN_READ_SIZE && KdCacheMisses > MIN_CACHE_MISSES) { // Try to cache more then tiny amount Length = MIN_READ_SIZE; } SumOffsetLength = Offset + Length; if (SumOffsetLength < Length) { // // Offset + Length wrapped. Adjust Length to be only // enough bytes before wrapping. // Length = 0 - Offset; SumOffsetLength = (ULONG) -1; } *LengthUsed = Length; // // Find leftmost cache node for BaseAddress thru BaseAddress+Length // node2 = NULL; node = VirtCacheRoot; while (node != NULL) { if (SumOffsetLength <= node->Offset) { node = (PCACHE) RtlLeftChild(&node->SplayLinks); } else if (node->Offset + node->Length <= Offset) { node = (PCACHE) RtlRightChild(&node->SplayLinks); } else { if (node->Offset <= Offset) { // // Found starting byte // return node; } // // Check to see if there's a node which has a match closer // to the start of the requested range // node2 = node; Length = node->Offset - Offset; node = (PCACHE) RtlLeftChild(&node->SplayLinks); } } return node2; } VOID InsertCacheNode ( IN PCACHE node ) { PCACHE node2; ULONG BaseAddress; // // Insert cache node into splay tree // // DebugPrint( "insertcache\n" ); RtlInitializeSplayLinks(&node->SplayLinks); KdNodeCount++; if (VirtCacheRoot == NULL) { VirtCacheRoot = node; return; } node2 = VirtCacheRoot; BaseAddress = node->Offset; while( TRUE ) { if (BaseAddress < node2->Offset) { if (RtlLeftChild(&node2->SplayLinks)) { node2 = (PCACHE) RtlLeftChild(&node2->SplayLinks); continue; } RtlInsertAsLeftChild(node2, node); break; } else { if (RtlRightChild(&node2->SplayLinks)) { node2 = (PCACHE) RtlRightChild(&node2->SplayLinks); continue; } RtlInsertAsRightChild(node2, node); break; } } VirtCacheRoot = (PCACHE) RtlSplay((PRTL_SPLAY_LINKS)node2); } VOID DmKdInitVirtualCacheEntry ( IN ULONG BaseAddress, IN ULONG Length, IN PUCHAR UserBuffer, IN ULONG NonDiscardable ) /*++ Routine Description: Insert some data into the virtual cache. Arguments: BaseAddress - Virtual address Length - length to cache UserBuffer - data to put into cache Return Value: --*/ { PCACHE node; PUCHAR p; ULONG LengthUsed; if (KdMaxCacheSize == 0) { // // Cache is off // return ; } // DebugPrint( "DmKdInitVirtualCacheEntry\n" ); node = CacheLookup( BaseAddress, Length, &LengthUsed ); if (node) { return; } // // Delete any cached info which hits range // DmKdWriteCachedVirtualMemory (BaseAddress, Length, UserBuffer); p = vcmalloc (Length); node = (PCACHE) vcmalloc (sizeof (CACHE)); if (p == NULL || node == NULL) { // // Out of memory - don't bother // if (p) { vcfree (p, Length); } if (node) { vcfree ((PUCHAR)node, sizeof (CACHE)); } return ; } // // Put data into cache node // node->Offset = BaseAddress; node->Length = (USHORT) Length; node->u.Data = p; node->Flags = 0; if (NonDiscardable) { node->Flags |= C_NONDISCARDABLE; } memcpy (p, UserBuffer, Length); InsertCacheNode (node); } PUCHAR vcmalloc ( IN ULONG Length ) /*++ Routine Description: Allocates memory for virtual cache, and tracks total memory usage. Arguments: Length - Amount of memory to allocate Return Value: NULL - too much memory is in use, or memory could not be allocated Otherwise, returns to address of the allocated memory --*/ { PUCHAR p; if (KdCacheSize + Length > KdMaxCacheSize) return NULL; if (!(p = (PUCHAR) malloc (Length))) { // // Out of memory - don't get any larger // KdCacheSize = KdMaxCacheSize+1; return NULL; } KdCacheSize += Length; return p; } VOID vcfree ( IN PUCHAR Memory, IN ULONG Length ) /*++ Routine Description: Free memory allocated with vcmalloc. Adjusts cache is use totals. Arguments: Memory - Address of allocated memory Length - Length of allocated memory Return Value: NONE --*/ { KdCacheSize -= Length; free (Memory); } NTSTATUS VCReadTranslatePTEAndReadMemory ( IN PVOID TargetBaseAddress, OUT PVOID UserInterfaceBuffer, IN ULONG TransferCount, OUT PULONG ActualBytesRead OPTIONAL ) /*++ --*/ { static BOOLEAN ConvertingAnAddress; NTSTATUS status; BOOLEAN converted; PHYSICAL_ADDRESS TargetPhysicalAddress; if (ConvertingAnAddress) { return STATUS_UNSUCCESSFUL; } // // Memory could not be read, try it's physical address. // ConvertingAnAddress = TRUE; converted = KdConvertToPhysicalAddr ( TargetBaseAddress, &TargetPhysicalAddress ); if (converted) { status = DmKdReadPhysicalMemory ( TargetPhysicalAddress, UserInterfaceBuffer, TransferCount, ActualBytesRead ); } else { status = STATUS_UNSUCCESSFUL; } ConvertingAnAddress = FALSE; return NT_SUCCESS(status) ? status : STATUS_UNSUCCESSFUL; } VOID DmKdWriteCachedVirtualMemory ( IN ULONG BaseAddress, IN ULONG TransferCount, IN PUCHAR UserBuffer ) /*++ Routine Description: Invalidates range from the cache. Arguments: BaseAddress - Starting address to purge TransferCount - Length of area to purge UserBuffer - not used Return Value: NONE --*/ { PCACHE node; ULONG bogus; // // Invalidate any data in the cache which covers this range // while (node = CacheLookup(BaseAddress, TransferCount, &bogus)) { // // For now just delete the entire cache node which hits the range // VirtCacheRoot = (PCACHE) RtlDelete (&node->SplayLinks); if (!(node->Flags & C_ERROR)) { vcfree (node->u.Data, node->Length); } vcfree ((PUCHAR)node, sizeof (CACHE)); KdNodeCount--; } } PCACHE WalkForDelete(PCACHE node) { PCACHE node2; if (!(node->Flags & C_NONDISCARDABLE)) { return node; } node2 = (PCACHE)RtlRightChild(&node->SplayLinks); if (node2) { if (!(node2->Flags & C_NONDISCARDABLE)) { return node2; } else { node2 = WalkForDelete( node2 ); if (node2) { return node2; } } } node2 = (PCACHE)RtlLeftChild(&node->SplayLinks); if (node2) { if (!(node2->Flags & C_NONDISCARDABLE)) { return node2; } else { node2 = WalkForDelete( node2 ); if (node2) { return node2; } } } return NULL; } VOID DmKdPurgeCachedVirtualMemory ( BOOL fPurgeNonDiscardable ) /*++ Routine Description: Purges to entire virtual memory cache Arguments: NONE Return Value: NONE --*/ { PCACHE node; PCACHE node2; if (KdPurgeOverride) { DMPrintShellMsg("** Warning: cache being help\n"); return; } node = VirtCacheRoot; KdCacheMisses = 0; KdCachePurges++; if (fPurgeNonDiscardable) { while( node ) { if (!(node->Flags & C_ERROR)) { free (node->u.Data); } KdNodeCount--; KdCacheSize -= node->Length; node = VirtCacheRoot = (PCACHE)RtlDelete((PRTL_SPLAY_LINKS)node); } KdCacheSize = 0; return; } while( node ) { node2 = WalkForDelete( node ); if (node2) { if (!(node2->Flags & C_ERROR)) { free (node2->u.Data); } KdNodeCount--; KdCacheSize -= node2->Length; node = VirtCacheRoot = (PCACHE)RtlDelete((PRTL_SPLAY_LINKS)node2); } else { node = node2; } } return; } void WalkForDump(PCACHE node) { PCACHE l,r; r = (PCACHE)RtlRightChild(&node->SplayLinks); l = (PCACHE)RtlLeftChild(&node->SplayLinks); DMPrintShellMsg( "%08x %8d (%c)\n", node->Offset, node->Length, (node->Flags&C_NONDISCARDABLE) ? 'Y' : 'N' ); if (r) { WalkForDump( r ); } if (l) { WalkForDump( l ); } } BOOLEAN KdConvertToPhysicalAddr ( IN PVOID uAddress, OUT PPHYSICAL_ADDRESS PhysicalAddress ) /*++ Routine Description: Convert a virtual address to a physical one. Note: that this function is called from within the virtual memory cache code. This function can read from the virtual memory cache so long as it only read's PDE's and PTE's and so long as it fails to convert a PDE or PTE virtual address. Arguments: uAddress - address to convert PhysicalAddress - returned physical address Return Value: TRUE - physical address was returned otherwise, FALSE --*/ { #define PDE_TOP 0xC03FFFFF #if defined( TARGET_i386 ) #define PTE_BASE 0xC0000000 #define PDE_BASE 0xC0300000 #define MM_PTE_PROTOTYPE_MASK 0x400 #define MM_PTE_TRANSITION_MASK 0x800 #define PTE_CONT 0x1 #elif defined( TARGET_PPC ) #define MM_PTE_PROTOTYPE_MASK 0x1 #define MM_PTE_TRANSITION_MASK 0x2 #define PTE_CONT 0x1 #elif defined( TARGET_MIPS ) #define MM_PTE_PROTOTYPE_MASK 0x4 #define MM_PTE_TRANSITION_MASK 0x100 #define PTE_CONT 0x2 #elif defined( TARGET_ALPHA ) #define MM_PTE_PROTOTYPE_MASK 0x2 #define MM_PTE_TRANSITION_MASK 0x4 #define PTE_CONT 0x1 #endif #define MiGetPdeAddress(va) ((ULONG)(((((ULONG)(va)) >> 22) << 2) + PDE_BASE)) #define MiGetPteAddress(va) ((ULONG)(((((ULONG)(va)) >> 12) << 2) + PTE_BASE)) ULONG Address; ULONG Pte; ULONG Pde; ULONG PdeContents; ULONG PteContents; NTSTATUS status; ULONG result; Address = (ULONG) uAddress; if (Address >= PTE_BASE && Address < PDE_TOP) { // // The address is the address of a PTE, rather than // a virtual address. DO NOT CONVERT IT. // return FALSE; } Pde = MiGetPdeAddress (Address); Pte = MiGetPteAddress (Address); status = DmKdReadVirtualMemoryNow((PVOID)Pde, &PdeContents, sizeof(ULONG), &result); if ((status != STATUS_SUCCESS) || (result < sizeof(ULONG))) { return FALSE; } if (!(PdeContents & PTE_CONT)) { return FALSE; } status = DmKdReadVirtualMemoryNow((PVOID)Pte, &PteContents, sizeof(ULONG), &result); if ((status != STATUS_SUCCESS) || (result < sizeof(ULONG))) { return FALSE; } if (!(PteContents & PTE_CONT)) { if ( (PteContents & MM_PTE_PROTOTYPE_MASK) || !(PteContents & MM_PTE_TRANSITION_MASK)) { return FALSE; } } // // This is a page which is either present or in transition. // Return the physical address for the request virtual address. // PhysicalAddress->LowPart = (PteContents & ~(0xFFF)) | (Address & 0xFFF); PhysicalAddress->HighPart = 0; return TRUE; } VOID ProcessCacheCmd( LPSTR pchCommand ) { ULONG CacheSize; ULONG Address; while (*pchCommand == ' ') { pchCommand++; } _strlwr (pchCommand); if (strcmp (pchCommand, "?") == 0) { usage: DMPrintShellMsg("\n.cache [{cachesize} | dump | hold | unhold | decodeptes | nodecodeptes]\n"); DMPrintShellMsg(".cache [flushall | flushu | flush addr]\n\n"); return; } else if (strcmp (pchCommand, "dump") == 0) { if (VirtCacheRoot) { DMPrintShellMsg("\n Address Length Discardable\n"); WalkForDump( VirtCacheRoot ); } } else if (strcmp (pchCommand, "hold") == 0) { KdPurgeOverride = TRUE; } else if (strcmp (pchCommand, "unhold") == 0) { KdPurgeOverride = FALSE; } else if (strcmp (pchCommand, "decodeptes") == 0) { DmKdPurgeCachedVirtualMemory(TRUE); KdCacheDecodePTEs = TRUE; } else if (strcmp (pchCommand, "nodecodeptes") == 0) { KdCacheDecodePTEs = FALSE; } else if (strcmp (pchCommand, "flushall") == 0) { DmKdPurgeCachedVirtualMemory(TRUE); } else if (strcmp (pchCommand, "flushu") == 0) { DmKdPurgeCachedVirtualMemory(TRUE); } else if (*pchCommand == 'f') { while (*pchCommand >= 'a' && *pchCommand <= 'z') { pchCommand++; } Address = strtoul(pchCommand,NULL,0); DmKdWriteCachedVirtualMemory (Address, 4096, NULL); // this is a flush DMPrintShellMsg("Cached info for address %lx for 4096 bytes was flushed\n", Address); } else if (*pchCommand) { if (*pchCommand < '0' || *pchCommand > '9') { goto usage; } else { CacheSize = strtoul(pchCommand,NULL,0); KdMaxCacheSize = CacheSize * 1024; if (CacheSize == 0) { DmKdPurgeCachedVirtualMemory(TRUE); KdCachePurges = 0; } } } DMPrintShellMsg("\n"); DMPrintShellMsg("Max cache size is....: %ld %s\n", KdMaxCacheSize, KdMaxCacheSize ? "" : "(cache is off)"); DMPrintShellMsg("Total memory in cache: %ld\n", KdCacheSize - KdNodeCount * sizeof (CACHE) ); DMPrintShellMsg("No of regions cached.: %ld\n", KdNodeCount); DMPrintShellMsg("Cache misses.........: %ld\n", KdCacheMisses); DMPrintShellMsg("Cache purges.........: %ld\n", KdCachePurges); if (KdCacheDecodePTEs) { DMPrintShellMsg("** Transition ptes are implicity decoded\n"); } if (KdPurgeOverride) { DMPrintShellMsg("** Implicit cache flushing disabled **\n"); } DMPrintShellMsg("\n"); }