/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "applypatch/applypatch.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "edify/expr.h" #include "otafault/ota_io.h" #include "otautil/paths.h" #include "otautil/print_sha1.h" static int LoadPartitionContents(const std::string& filename, FileContents* file); static size_t FileSink(const unsigned char* data, size_t len, int fd); static int GenerateTarget(const FileContents& source_file, const std::unique_ptr& patch, const std::string& target_filename, const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data); int LoadFileContents(const std::string& filename, FileContents* file) { // A special 'filename' beginning with "EMMC:" means to load the contents of a partition. if (android::base::StartsWith(filename, "EMMC:")) { return LoadPartitionContents(filename, file); } struct stat sb; if (stat(filename.c_str(), &sb) == -1) { PLOG(ERROR) << "Failed to stat \"" << filename << "\""; return -1; } std::vector data(sb.st_size); unique_file f(ota_fopen(filename.c_str(), "rb")); if (!f) { PLOG(ERROR) << "Failed to open \"" << filename << "\""; return -1; } size_t bytes_read = ota_fread(data.data(), 1, data.size(), f.get()); if (bytes_read != data.size()) { LOG(ERROR) << "Short read of \"" << filename << "\" (" << bytes_read << " bytes of " << data.size() << ")"; return -1; } file->data = std::move(data); SHA1(file->data.data(), file->data.size(), file->sha1); return 0; } // Loads the contents of an EMMC partition into the provided FileContents. filename should be a // string of the form "EMMC::...". The smallest size_n bytes for which that prefix // of the partition contents has the corresponding sha1 hash will be loaded. It is acceptable for a // size value to be repeated with different sha1s. Returns 0 on success. // // This complexity is needed because if an OTA installation is interrupted, the partition might // contain either the source or the target data, which might be of different lengths. We need to // know the length in order to read from a partition (there is no "end-of-file" marker), so the // caller must specify the possible lengths and the hash of the data, and we'll do the load // expecting to find one of those hashes. static int LoadPartitionContents(const std::string& filename, FileContents* file) { std::vector pieces = android::base::Split(filename, ":"); if (pieces.size() < 4 || pieces.size() % 2 != 0 || pieces[0] != "EMMC") { LOG(ERROR) << "LoadPartitionContents called with bad filename \"" << filename << "\""; return -1; } size_t pair_count = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename std::vector> pairs; for (size_t i = 0; i < pair_count; ++i) { size_t size; if (!android::base::ParseUint(pieces[i * 2 + 2], &size) || size == 0) { LOG(ERROR) << "LoadPartitionContents called with bad size \"" << pieces[i * 2 + 2] << "\""; return -1; } pairs.push_back({ size, pieces[i * 2 + 3] }); } // Sort the pairs array so that they are in order of increasing size. std::sort(pairs.begin(), pairs.end()); const char* partition = pieces[1].c_str(); unique_file dev(ota_fopen(partition, "rb")); if (!dev) { PLOG(ERROR) << "Failed to open eMMC partition \"" << partition << "\""; return -1; } SHA_CTX sha_ctx; SHA1_Init(&sha_ctx); // Allocate enough memory to hold the largest size. std::vector buffer(pairs[pair_count - 1].first); unsigned char* buffer_ptr = buffer.data(); size_t buffer_size = 0; // # bytes read so far bool found = false; for (const auto& pair : pairs) { size_t current_size = pair.first; const std::string& current_sha1 = pair.second; // Read enough additional bytes to get us up to the next size. (Again, // we're trying the possibilities in order of increasing size). size_t next = current_size - buffer_size; if (next > 0) { size_t read = ota_fread(buffer_ptr, 1, next, dev.get()); if (next != read) { LOG(ERROR) << "Short read (" << read << " bytes of " << next << ") for partition \"" << partition << "\""; return -1; } SHA1_Update(&sha_ctx, buffer_ptr, read); buffer_size += read; buffer_ptr += read; } // Duplicate the SHA context and finalize the duplicate so we can // check it against this pair's expected hash. SHA_CTX temp_ctx; memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX)); uint8_t sha_so_far[SHA_DIGEST_LENGTH]; SHA1_Final(sha_so_far, &temp_ctx); uint8_t parsed_sha[SHA_DIGEST_LENGTH]; if (ParseSha1(current_sha1, parsed_sha) != 0) { LOG(ERROR) << "Failed to parse SHA-1 \"" << current_sha1 << "\" in " << filename; return -1; } if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) { // We have a match. Stop reading the partition; we'll return the data we've read so far. LOG(INFO) << "Partition read matched size " << current_size << " SHA-1 " << current_sha1; found = true; break; } } if (!found) { // Ran off the end of the list of (size, sha1) pairs without finding a match. LOG(ERROR) << "Contents of partition \"" << partition << "\" didn't match " << filename; return -1; } SHA1_Final(file->sha1, &sha_ctx); buffer.resize(buffer_size); file->data = std::move(buffer); return 0; } int SaveFileContents(const std::string& filename, const FileContents* file) { unique_fd fd( ota_open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR)); if (fd == -1) { PLOG(ERROR) << "Failed to open \"" << filename << "\" for write"; return -1; } size_t bytes_written = FileSink(file->data.data(), file->data.size(), fd); if (bytes_written != file->data.size()) { PLOG(ERROR) << "Short write of \"" << filename << "\" (" << bytes_written << " bytes of " << file->data.size(); return -1; } if (ota_fsync(fd) != 0) { PLOG(ERROR) << "Failed to fsync \"" << filename << "\""; return -1; } if (ota_close(fd) != 0) { PLOG(ERROR) << "Failed to close \"" << filename << "\""; return -1; } return 0; } // Writes a memory buffer to 'target' partition, a string of the form // "EMMC:[:...]". The target name might contain multiple colons, but // WriteToPartition() only uses the first two and ignores the rest. Returns 0 on success. static int WriteToPartition(const unsigned char* data, size_t len, const std::string& target) { std::vector pieces = android::base::Split(target, ":"); if (pieces.size() < 2 || pieces[0] != "EMMC") { LOG(ERROR) << "WriteToPartition called with bad target \"" << target << "\""; return -1; } const char* partition = pieces[1].c_str(); unique_fd fd(ota_open(partition, O_RDWR)); if (fd == -1) { PLOG(ERROR) << "Failed to open \"" << partition << "\""; return -1; } size_t start = 0; bool success = false; for (size_t attempt = 0; attempt < 2; ++attempt) { if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) { PLOG(ERROR) << "Failed to seek to " << start << " on \"" << partition << "\""; return -1; } while (start < len) { size_t to_write = len - start; if (to_write > 1 << 20) to_write = 1 << 20; ssize_t written = TEMP_FAILURE_RETRY(ota_write(fd, data + start, to_write)); if (written == -1) { PLOG(ERROR) << "Failed to write to \"" << partition << "\""; return -1; } start += written; } if (ota_fsync(fd) != 0) { PLOG(ERROR) << "Failed to sync \"" << partition << "\""; return -1; } if (ota_close(fd) != 0) { PLOG(ERROR) << "Failed to close \"" << partition << "\""; return -1; } fd.reset(ota_open(partition, O_RDONLY)); if (fd == -1) { PLOG(ERROR) << "Failed to reopen \"" << partition << "\" for verification"; return -1; } // Drop caches so our subsequent verification read won't just be reading the cache. sync(); unique_fd dc(ota_open("/proc/sys/vm/drop_caches", O_WRONLY)); if (TEMP_FAILURE_RETRY(ota_write(dc, "3\n", 2)) == -1) { PLOG(ERROR) << "Failed to write to /proc/sys/vm/drop_caches"; } else { LOG(INFO) << " caches dropped"; } ota_close(dc); sleep(1); // Verify. if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) { PLOG(ERROR) << "Failed to seek to 0 on " << partition; return -1; } unsigned char buffer[4096]; start = len; for (size_t p = 0; p < len; p += sizeof(buffer)) { size_t to_read = len - p; if (to_read > sizeof(buffer)) { to_read = sizeof(buffer); } size_t so_far = 0; while (so_far < to_read) { ssize_t read_count = TEMP_FAILURE_RETRY(ota_read(fd, buffer + so_far, to_read - so_far)); if (read_count == -1) { PLOG(ERROR) << "Failed to verify-read " << partition << " at " << p; return -1; } else if (read_count == 0) { LOG(ERROR) << "Verify-reading " << partition << " reached unexpected EOF at " << p; return -1; } if (static_cast(read_count) < to_read) { LOG(INFO) << "Short verify-read " << partition << " at " << p << ": expected " << to_read << " actual " << read_count; } so_far += read_count; } if (memcmp(buffer, data + p, to_read) != 0) { LOG(ERROR) << "Verification failed starting at " << p; start = p; break; } } if (start == len) { LOG(INFO) << "Verification read succeeded (attempt " << attempt + 1 << ")"; success = true; break; } if (ota_close(fd) != 0) { PLOG(ERROR) << "Failed to close " << partition; return -1; } fd.reset(ota_open(partition, O_RDWR)); if (fd == -1) { PLOG(ERROR) << "Failed to reopen " << partition << " for next attempt"; return -1; } } if (!success) { LOG(ERROR) << "Failed to verify after all attempts"; return -1; } if (ota_close(fd) == -1) { PLOG(ERROR) << "Failed to close " << partition; return -1; } sync(); return 0; } int ParseSha1(const std::string& str, uint8_t* digest) { const char* ps = str.c_str(); uint8_t* pd = digest; for (int i = 0; i < SHA_DIGEST_LENGTH * 2; ++i, ++ps) { int digit; if (*ps >= '0' && *ps <= '9') { digit = *ps - '0'; } else if (*ps >= 'a' && *ps <= 'f') { digit = *ps - 'a' + 10; } else if (*ps >= 'A' && *ps <= 'F') { digit = *ps - 'A' + 10; } else { return -1; } if (i % 2 == 0) { *pd = digit << 4; } else { *pd |= digit; ++pd; } } if (*ps != '\0') return -1; return 0; } // Searches a vector of SHA-1 strings for one matching the given SHA-1. Returns the index of the // match on success, or -1 if no match is found. static int FindMatchingPatch(const uint8_t* sha1, const std::vector& patch_sha1s) { for (size_t i = 0; i < patch_sha1s.size(); ++i) { uint8_t patch_sha1[SHA_DIGEST_LENGTH]; if (ParseSha1(patch_sha1s[i], patch_sha1) == 0 && memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) { return i; } } return -1; } int applypatch_check(const std::string& filename, const std::vector& sha1s) { if (!android::base::StartsWith(filename, "EMMC:")) { return 1; } // The check will pass if LoadPartitionContents is successful, because the filename already // encodes the desired SHA-1s. FileContents file; if (LoadPartitionContents(filename, &file) != 0) { LOG(INFO) << "\"" << filename << "\" doesn't have any of expected SHA-1 sums; checking cache"; // If the partition is corrupted, it might be because we were killed in the middle of patching // it. A copy should have been made in cache_temp_source. If that file exists and matches the // SHA-1 we're looking for, the check still passes. if (LoadFileContents(Paths::Get().cache_temp_source(), &file) != 0) { LOG(ERROR) << "Failed to load cache file"; return 1; } if (FindMatchingPatch(file.sha1, sha1s) < 0) { LOG(ERROR) << "The cache bits don't match any SHA-1 for \"" << filename << "\""; return 1; } } return 0; } int ShowLicenses() { ShowBSDiffLicense(); return 0; } static size_t FileSink(const unsigned char* data, size_t len, int fd) { size_t done = 0; while (done < len) { ssize_t wrote = TEMP_FAILURE_RETRY(ota_write(fd, data + done, len - done)); if (wrote == -1) { PLOG(ERROR) << "Failed to write " << len - done << " bytes"; return done; } done += wrote; } return done; } size_t FreeSpaceForFile(const std::string& filename) { struct statfs sf; if (statfs(filename.c_str(), &sf) != 0) { PLOG(ERROR) << "Failed to statfs " << filename; return -1; } return sf.f_bsize * sf.f_bavail; } int CacheSizeCheck(size_t bytes) { if (MakeFreeSpaceOnCache(bytes) < 0) { LOG(ERROR) << "Failed to make " << bytes << " bytes available on /cache"; return 1; } return 0; } int applypatch(const char* source_filename, const char* target_filename, const char* target_sha1_str, size_t /* target_size */, const std::vector& patch_sha1s, const std::vector>& patch_data, const Value* bonus_data) { LOG(INFO) << "Patching " << source_filename; if (target_filename[0] == '-' && target_filename[1] == '\0') { target_filename = source_filename; } if (strncmp(target_filename, "EMMC:", 5) != 0) { LOG(ERROR) << "Supporting patching EMMC targets only"; return 1; } uint8_t target_sha1[SHA_DIGEST_LENGTH]; if (ParseSha1(target_sha1_str, target_sha1) != 0) { LOG(ERROR) << "Failed to parse target SHA-1 \"" << target_sha1_str << "\""; return 1; } // We try to load the target file into the source_file object. FileContents source_file; if (LoadFileContents(target_filename, &source_file) == 0) { if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) { // The early-exit case: the patch was already applied, this file has the desired hash, nothing // for us to do. LOG(INFO) << " already " << short_sha1(target_sha1); return 0; } } if (source_file.data.empty() || (target_filename != source_filename && strcmp(target_filename, source_filename) != 0)) { // Need to load the source file: either we failed to load the target file, or we did but it's // different from the expected. source_file.data.clear(); LoadFileContents(source_filename, &source_file); } if (!source_file.data.empty()) { int to_use = FindMatchingPatch(source_file.sha1, patch_sha1s); if (to_use != -1) { return GenerateTarget(source_file, patch_data[to_use], target_filename, target_sha1, bonus_data); } } LOG(INFO) << "Source file is bad; trying copy"; FileContents copy_file; if (LoadFileContents(Paths::Get().cache_temp_source(), ©_file) < 0) { LOG(ERROR) << "Failed to read copy file"; return 1; } int to_use = FindMatchingPatch(copy_file.sha1, patch_sha1s); if (to_use == -1) { LOG(ERROR) << "The copy on /cache doesn't match source SHA-1s either"; return 1; } return GenerateTarget(copy_file, patch_data[to_use], target_filename, target_sha1, bonus_data); } int applypatch_flash(const char* source_filename, const char* target_filename, const char* target_sha1_str, size_t target_size) { LOG(INFO) << "Flashing " << target_filename; uint8_t target_sha1[SHA_DIGEST_LENGTH]; if (ParseSha1(target_sha1_str, target_sha1) != 0) { LOG(ERROR) << "Failed to parse target SHA-1 \"" << target_sha1_str << "\""; return 1; } std::string target_str(target_filename); std::vector pieces = android::base::Split(target_str, ":"); if (pieces.size() != 2 || pieces[0] != "EMMC") { LOG(ERROR) << "Invalid target name \"" << target_filename << "\""; return 1; } // Load the target into the source_file object to see if already applied. pieces.push_back(std::to_string(target_size)); pieces.push_back(target_sha1_str); std::string fullname = android::base::Join(pieces, ':'); FileContents source_file; if (LoadPartitionContents(fullname, &source_file) == 0 && memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) { // The early-exit case: the image was already applied, this partition has the desired hash, // nothing for us to do. LOG(INFO) << " already " << short_sha1(target_sha1); return 0; } if (LoadFileContents(source_filename, &source_file) == 0) { if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) { // The source doesn't have desired checksum. LOG(ERROR) << "source \"" << source_filename << "\" doesn't have expected SHA-1 sum"; LOG(ERROR) << "expected: " << short_sha1(target_sha1) << ", found: " << short_sha1(source_file.sha1); return 1; } } if (WriteToPartition(source_file.data.data(), target_size, target_filename) != 0) { LOG(ERROR) << "Failed to write copied data to " << target_filename; return 1; } return 0; } static int GenerateTarget(const FileContents& source_file, const std::unique_ptr& patch, const std::string& target_filename, const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data) { if (patch->type != Value::Type::BLOB) { LOG(ERROR) << "patch is not a blob"; return 1; } const char* header = &patch->data[0]; size_t header_bytes_read = patch->data.size(); bool use_bsdiff = false; if (header_bytes_read >= 8 && memcmp(header, "BSDIFF40", 8) == 0) { use_bsdiff = true; } else if (header_bytes_read >= 8 && memcmp(header, "IMGDIFF2", 8) == 0) { use_bsdiff = false; } else { LOG(ERROR) << "Unknown patch file format"; return 1; } CHECK(android::base::StartsWith(target_filename, "EMMC:")); // We still write the original source to cache, in case the partition write is interrupted. if (MakeFreeSpaceOnCache(source_file.data.size()) < 0) { LOG(ERROR) << "Not enough free space on /cache"; return 1; } if (SaveFileContents(Paths::Get().cache_temp_source(), &source_file) < 0) { LOG(ERROR) << "Failed to back up source file"; return 1; } // We store the decoded output in memory. std::string memory_sink_str; // Don't need to reserve space. SHA_CTX ctx; SHA1_Init(&ctx); SinkFn sink = [&memory_sink_str, &ctx](const unsigned char* data, size_t len) { SHA1_Update(&ctx, data, len); memory_sink_str.append(reinterpret_cast(data), len); return len; }; int result; if (use_bsdiff) { result = ApplyBSDiffPatch(source_file.data.data(), source_file.data.size(), *patch, 0, sink); } else { result = ApplyImagePatch(source_file.data.data(), source_file.data.size(), *patch, sink, bonus_data); } if (result != 0) { LOG(ERROR) << "Failed to apply the patch: " << result; return 1; } uint8_t current_target_sha1[SHA_DIGEST_LENGTH]; SHA1_Final(current_target_sha1, &ctx); if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) { LOG(ERROR) << "Patching did not produce the expected SHA-1 of " << short_sha1(target_sha1); LOG(ERROR) << "target size " << memory_sink_str.size() << " SHA-1 " << short_sha1(current_target_sha1); LOG(ERROR) << "source size " << source_file.data.size() << " SHA-1 " << short_sha1(source_file.sha1); uint8_t patch_digest[SHA_DIGEST_LENGTH]; SHA1(reinterpret_cast(patch->data.data()), patch->data.size(), patch_digest); LOG(ERROR) << "patch size " << patch->data.size() << " SHA-1 " << short_sha1(patch_digest); if (bonus_data != nullptr) { uint8_t bonus_digest[SHA_DIGEST_LENGTH]; SHA1(reinterpret_cast(bonus_data->data.data()), bonus_data->data.size(), bonus_digest); LOG(ERROR) << "bonus size " << bonus_data->data.size() << " SHA-1 " << short_sha1(bonus_digest); } return 1; } else { LOG(INFO) << " now " << short_sha1(target_sha1); } // Write back the temp file to the partition. if (WriteToPartition(reinterpret_cast(memory_sink_str.c_str()), memory_sink_str.size(), target_filename) != 0) { LOG(ERROR) << "Failed to write patched data to " << target_filename; return 1; } // Delete the backup copy of the source. unlink(Paths::Get().cache_temp_source().c_str()); // Success! return 0; }