/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This program constructs binary patches for images -- such as boot.img * and recovery.img -- that consist primarily of large chunks of gzipped * data interspersed with uncompressed data. Doing a naive bsdiff of * these files is not useful because small changes in the data lead to * large changes in the compressed bitstream; bsdiff patches of gzipped * data are typically as large as the data itself. * * To patch these usefully, we break the source and target images up into * chunks of two types: "normal" and "gzip". Normal chunks are simply * patched using a plain bsdiff. Gzip chunks are first expanded, then a * bsdiff is applied to the uncompressed data, then the patched data is * gzipped using the same encoder parameters. Patched chunks are * concatenated together to create the output file; the output image * should be *exactly* the same series of bytes as the target image used * originally to generate the patch. * * To work well with this tool, the gzipped sections of the target * image must have been generated using the same deflate encoder that * is available in applypatch, namely, the one in the zlib library. * In practice this means that images should be compressed using the * "minigzip" tool included in the zlib distribution, not the GNU gzip * program. * * An "imgdiff" patch consists of a header describing the chunk structure * of the file and any encoding parameters needed for the gzipped * chunks, followed by N bsdiff patches, one per chunk. * * For a diff to be generated, the source and target images must have the * same "chunk" structure: that is, the same number of gzipped and normal * chunks in the same order. Android boot and recovery images currently * consist of five chunks: a small normal header, a gzipped kernel, a * small normal section, a gzipped ramdisk, and finally a small normal * footer. * * Caveats: we locate gzipped sections within the source and target * images by searching for the byte sequence 1f8b0800: 1f8b is the gzip * magic number; 08 specifies the "deflate" encoding [the only encoding * supported by the gzip standard]; and 00 is the flags byte. We do not * currently support any extra header fields (which would be indicated by * a nonzero flags byte). We also don't handle the case when that byte * sequence appears spuriously in the file. (Note that it would have to * occur spuriously within a normal chunk to be a problem.) * * * The imgdiff patch header looks like this: * * "IMGDIFF1" (8) [magic number and version] * chunk count (4) * for each chunk: * chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}] * if chunk type == CHUNK_NORMAL: * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * if chunk type == CHUNK_GZIP: (version 1 only) * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * source expanded len (8) [size of uncompressed source] * target expected len (8) [size of uncompressed target] * gzip level (4) * method (4) * windowBits (4) * memLevel (4) * strategy (4) * gzip header len (4) * gzip header (gzip header len) * gzip footer (8) * if chunk type == CHUNK_DEFLATE: (version 2 only) * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * source expanded len (8) [size of uncompressed source] * target expected len (8) [size of uncompressed target] * gzip level (4) * method (4) * windowBits (4) * memLevel (4) * strategy (4) * if chunk type == RAW: (version 2 only) * target len (4) * data (target len) * * All integers are little-endian. "source start" and "source len" * specify the section of the input image that comprises this chunk, * including the gzip header and footer for gzip chunks. "source * expanded len" is the size of the uncompressed source data. "target * expected len" is the size of the uncompressed data after applying * the bsdiff patch. The next five parameters specify the zlib * parameters to be used when compressing the patched data, and the * next three specify the header and footer to be wrapped around the * compressed data to create the output chunk (so that header contents * like the timestamp are recreated exactly). * * After the header there are 'chunk count' bsdiff patches; the offset * of each from the beginning of the file is specified in the header. * * This tool can take an optional file of "bonus data". This is an * extra file of data that is appended to chunk #1 after it is * compressed (it must be a CHUNK_DEFLATE chunk). The same file must * be available (and passed to applypatch with -b) when applying the * patch. This is used to reduce the size of recovery-from-boot * patches by combining the boot image with recovery ramdisk * information that is stored on the system partition. */ #include "applypatch/imgdiff.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::get_unaligned; static constexpr auto BUFFER_SIZE = 0x8000; // If we use this function to write the offset and length (type size_t), their values should not // exceed 2^63; because the signed bit will be casted away. static inline bool Write8(int fd, int64_t value) { return android::base::WriteFully(fd, &value, sizeof(int64_t)); } // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk // size). static inline bool Write4(int fd, int32_t value) { return android::base::WriteFully(fd, &value, sizeof(int32_t)); } class ImageChunk { public: static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream. static constexpr auto MEMLEVEL = 8; // the default value. static constexpr auto METHOD = Z_DEFLATED; static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY; ImageChunk(int type, size_t start, const std::vector* file_content, size_t raw_data_len) : type_(type), start_(start), input_file_ptr_(file_content), raw_data_len_(raw_data_len), compress_level_(6), source_start_(0), source_len_(0), source_uncompressed_len_(0) { CHECK(file_content != nullptr) << "input file container can't be nullptr"; } int GetType() const { return type_; } size_t GetRawDataLength() const { return raw_data_len_; } const std::string& GetEntryName() const { return entry_name_; } // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return // the raw data. const uint8_t * DataForPatch() const; size_t DataLengthForPatch() const; void Dump() const { printf("type %d start %zu len %zu\n", type_, start_, DataLengthForPatch()); } void SetSourceInfo(const ImageChunk& other); void SetEntryName(std::string entryname); void SetUncompressedData(std::vector data); bool SetBonusData(const std::vector& bonus_data); bool operator==(const ImageChunk& other) const; bool operator!=(const ImageChunk& other) const { return !(*this == other); } size_t GetHeaderSize(size_t patch_size) const; // Return the offset of the next patch into the patch data. size_t WriteHeaderToFd(int fd, const std::vector& patch, size_t offset); /* * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob * of uninterpreted data). The resulting patch will likely be about * as big as the target file, but it lets us handle the case of images * where some gzip chunks are reconstructible but others aren't (by * treating the ones that aren't as normal chunks). */ void ChangeDeflateChunkToNormal(); bool ChangeChunkToRaw(size_t patch_size); /* * Verify that we can reproduce exactly the same compressed data that * we started with. Sets the level, method, windowBits, memLevel, and * strategy fields in the chunk to the encoding parameters needed to * produce the right output. */ bool ReconstructDeflateChunk(); bool IsAdjacentNormal(const ImageChunk& other) const; void MergeAdjacentNormal(const ImageChunk& other); private: int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW size_t start_; // offset of chunk in the original input file const std::vector* input_file_ptr_; // ptr to the full content of original input file size_t raw_data_len_; // --- for CHUNK_DEFLATE chunks only: --- std::vector uncompressed_data_; std::string entry_name_; // used for zip entries // deflate encoder parameters int compress_level_; size_t source_start_; size_t source_len_; size_t source_uncompressed_len_; const uint8_t* GetRawData() const; bool TryReconstruction(int level); }; const uint8_t* ImageChunk::GetRawData() const { CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size()); return input_file_ptr_->data() + start_; } const uint8_t * ImageChunk::DataForPatch() const { if (type_ == CHUNK_DEFLATE) { return uncompressed_data_.data(); } return GetRawData(); } size_t ImageChunk::DataLengthForPatch() const { if (type_ == CHUNK_DEFLATE) { return uncompressed_data_.size(); } return raw_data_len_; } bool ImageChunk::operator==(const ImageChunk& other) const { if (type_ != other.type_) { return false; } return (raw_data_len_ == other.raw_data_len_ && memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0); } void ImageChunk::SetSourceInfo(const ImageChunk& src) { source_start_ = src.start_; if (type_ == CHUNK_NORMAL) { source_len_ = src.raw_data_len_; } else if (type_ == CHUNK_DEFLATE) { source_len_ = src.raw_data_len_; source_uncompressed_len_ = src.uncompressed_data_.size(); } } void ImageChunk::SetEntryName(std::string entryname) { entry_name_ = std::move(entryname); } void ImageChunk::SetUncompressedData(std::vector data) { uncompressed_data_ = std::move(data); } bool ImageChunk::SetBonusData(const std::vector& bonus_data) { if (type_ != CHUNK_DEFLATE) { return false; } uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end()); return true; } // Convert CHUNK_NORMAL & CHUNK_DEFLATE to CHUNK_RAW if the target size is // smaller. Also take the header size into account during size comparison. bool ImageChunk::ChangeChunkToRaw(size_t patch_size) { if (type_ == CHUNK_RAW) { return true; } else if (type_ == CHUNK_NORMAL && (raw_data_len_ <= 160 || raw_data_len_ < patch_size)) { type_ = CHUNK_RAW; return true; } return false; } void ImageChunk::ChangeDeflateChunkToNormal() { if (type_ != CHUNK_DEFLATE) return; type_ = CHUNK_NORMAL; entry_name_.clear(); uncompressed_data_.clear(); } // Header size: // header_type 4 bytes // CHUNK_NORMAL 8*3 = 24 bytes // CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes // CHUNK_RAW 4 bytes + patch_size size_t ImageChunk::GetHeaderSize(size_t patch_size) const { switch (type_) { case CHUNK_NORMAL: return 4 + 8 * 3; case CHUNK_DEFLATE: return 4 + 8 * 5 + 4 * 5; case CHUNK_RAW: return 4 + 4 + patch_size; default: CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here. return 0; } } size_t ImageChunk::WriteHeaderToFd(int fd, const std::vector& patch, size_t offset) { Write4(fd, type_); switch (type_) { case CHUNK_NORMAL: printf("normal (%10zu, %10zu) %10zu\n", start_, raw_data_len_, patch.size()); Write8(fd, static_cast(source_start_)); Write8(fd, static_cast(source_len_)); Write8(fd, static_cast(offset)); return offset + patch.size(); case CHUNK_DEFLATE: printf("deflate (%10zu, %10zu) %10zu %s\n", start_, raw_data_len_, patch.size(), entry_name_.c_str()); Write8(fd, static_cast(source_start_)); Write8(fd, static_cast(source_len_)); Write8(fd, static_cast(offset)); Write8(fd, static_cast(source_uncompressed_len_)); Write8(fd, static_cast(uncompressed_data_.size())); Write4(fd, compress_level_); Write4(fd, METHOD); Write4(fd, WINDOWBITS); Write4(fd, MEMLEVEL); Write4(fd, STRATEGY); return offset + patch.size(); case CHUNK_RAW: printf("raw (%10zu, %10zu)\n", start_, raw_data_len_); Write4(fd, static_cast(patch.size())); if (!android::base::WriteFully(fd, patch.data(), patch.size())) { CHECK(false) << "failed to write " << patch.size() <<" bytes patch"; } return offset; default: CHECK(false) << "unexpected chunk type: " << type_; return offset; } } bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const { if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) { return false; } return (other.start_ == start_ + raw_data_len_); } void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) { CHECK(IsAdjacentNormal(other)); raw_data_len_ = raw_data_len_ + other.raw_data_len_; } bool ImageChunk::ReconstructDeflateChunk() { if (type_ != CHUNK_DEFLATE) { printf("attempt to reconstruct non-deflate chunk\n"); return false; } // We only check two combinations of encoder parameters: level 6 // (the default) and level 9 (the maximum). for (int level = 6; level <= 9; level += 3) { if (TryReconstruction(level)) { compress_level_ = level; return true; } } return false; } /* * Takes the uncompressed data stored in the chunk, compresses it * using the zlib parameters stored in the chunk, and checks that it * matches exactly the compressed data we started with (also stored in * the chunk). */ bool ImageChunk::TryReconstruction(int level) { z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = uncompressed_data_.size(); strm.next_in = uncompressed_data_.data(); int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY); if (ret < 0) { printf("failed to initialize deflate: %d\n", ret); return false; } std::vector buffer(BUFFER_SIZE); size_t offset = 0; do { strm.avail_out = buffer.size(); strm.next_out = buffer.data(); ret = deflate(&strm, Z_FINISH); if (ret < 0) { printf("failed to deflate: %d\n", ret); return false; } size_t compressed_size = buffer.size() - strm.avail_out; if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) { // mismatch; data isn't the same. deflateEnd(&strm); return false; } offset += compressed_size; } while (ret != Z_STREAM_END); deflateEnd(&strm); if (offset != raw_data_len_) { // mismatch; ran out of data before we should have. return false; } return true; } // EOCD record // offset 0: signature 0x06054b50, 4 bytes // offset 4: number of this disk, 2 bytes // ... // offset 20: comment length, 2 bytes // offset 22: comment, n bytes static bool GetZipFileSize(const std::vector& zip_file, size_t* input_file_size) { if (zip_file.size() < 22) { printf("file is too small to be a zip file\n"); return false; } // Look for End of central directory record of the zip file, and calculate the actual // zip_file size. for (int i = zip_file.size() - 22; i >= 0; i--) { if (zip_file[i] == 0x50) { if (get_unaligned(&zip_file[i]) == 0x06054b50) { // double-check: this archive consists of a single "disk". CHECK_EQ(get_unaligned(&zip_file[i + 4]), 0); uint16_t comment_length = get_unaligned(&zip_file[i + 20]); size_t file_size = i + 22 + comment_length; CHECK_LE(file_size, zip_file.size()); *input_file_size = file_size; return true; } } } // EOCD not found, this file is likely not a valid zip file. return false; } static bool ReadZip(const char* filename, std::vector* chunks, std::vector* zip_file, bool include_pseudo_chunk) { CHECK(chunks != nullptr && zip_file != nullptr); android::base::unique_fd fd(open(filename, O_RDONLY)); if (fd == -1) { printf("failed to open \"%s\" %s\n", filename, strerror(errno)); return false; } struct stat st; if (fstat(fd, &st) != 0) { printf("failed to stat \"%s\": %s\n", filename, strerror(errno)); return false; } size_t sz = static_cast(st.st_size); zip_file->resize(sz); if (!android::base::ReadFully(fd, zip_file->data(), sz)) { printf("failed to read \"%s\" %s\n", filename, strerror(errno)); return false; } fd.reset(); // Trim the trailing zeros before we pass the file to ziparchive handler. size_t zipfile_size; if (!GetZipFileSize(*zip_file, &zipfile_size)) { printf("failed to parse the actual size of %s\n", filename); return false; } ZipArchiveHandle handle; int err = OpenArchiveFromMemory(zip_file->data(), zipfile_size, filename, &handle); if (err != 0) { printf("failed to open zip file %s: %s\n", filename, ErrorCodeString(err)); CloseArchive(handle); return false; } // Create a list of deflated zip entries, sorted by offset. std::vector> temp_entries; void* cookie; int ret = StartIteration(handle, &cookie, nullptr, nullptr); if (ret != 0) { printf("failed to iterate over entries in %s: %s\n", filename, ErrorCodeString(ret)); CloseArchive(handle); return false; } ZipString name; ZipEntry entry; while ((ret = Next(cookie, &entry, &name)) == 0) { if (entry.method == kCompressDeflated) { std::string entryname(name.name, name.name + name.name_length); temp_entries.push_back(std::make_pair(entryname, entry)); } } if (ret != -1) { printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret)); CloseArchive(handle); return false; } std::sort(temp_entries.begin(), temp_entries.end(), [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; }); EndIteration(cookie); if (include_pseudo_chunk) { chunks->emplace_back(CHUNK_NORMAL, 0, zip_file, zip_file->size()); } size_t pos = 0; size_t nextentry = 0; while (pos < zip_file->size()) { if (nextentry < temp_entries.size() && static_cast(pos) == temp_entries[nextentry].second.offset) { // compose the next deflate chunk. std::string entryname = temp_entries[nextentry].first; size_t uncompressed_len = temp_entries[nextentry].second.uncompressed_length; std::vector uncompressed_data(uncompressed_len); if ((ret = ExtractToMemory(handle, &temp_entries[nextentry].second, uncompressed_data.data(), uncompressed_len)) != 0) { printf("failed to extract %s with size %zu: %s\n", entryname.c_str(), uncompressed_len, ErrorCodeString(ret)); CloseArchive(handle); return false; } size_t compressed_len = temp_entries[nextentry].second.compressed_length; ImageChunk curr(CHUNK_DEFLATE, pos, zip_file, compressed_len); curr.SetEntryName(std::move(entryname)); curr.SetUncompressedData(std::move(uncompressed_data)); chunks->push_back(curr); pos += compressed_len; ++nextentry; continue; } // Use a normal chunk to take all the data up to the start of the next deflate section. size_t raw_data_len; if (nextentry < temp_entries.size()) { raw_data_len = temp_entries[nextentry].second.offset - pos; } else { raw_data_len = zip_file->size() - pos; } chunks->emplace_back(CHUNK_NORMAL, pos, zip_file, raw_data_len); pos += raw_data_len; } CloseArchive(handle); return true; } // Read the given file and break it up into chunks, and putting the data in to a vector. static bool ReadImage(const char* filename, std::vector* chunks, std::vector* img) { CHECK(chunks != nullptr && img != nullptr); android::base::unique_fd fd(open(filename, O_RDONLY)); if (fd == -1) { printf("failed to open \"%s\" %s\n", filename, strerror(errno)); return false; } struct stat st; if (fstat(fd, &st) != 0) { printf("failed to stat \"%s\": %s\n", filename, strerror(errno)); return false; } size_t sz = static_cast(st.st_size); img->resize(sz); if (!android::base::ReadFully(fd, img->data(), sz)) { printf("failed to read \"%s\" %s\n", filename, strerror(errno)); return false; } size_t pos = 0; while (pos < sz) { // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number if (sz - pos >= 4 && get_unaligned(img->data() + pos) == 0x00088b1f) { // 'pos' is the offset of the start of a gzip chunk. size_t chunk_offset = pos; // The remaining data is too small to be a gzip chunk; treat them as a normal chunk. if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) { chunks->emplace_back(CHUNK_NORMAL, pos, img, sz - pos); break; } // We need three chunks for the deflated image in total, one normal chunk for the header, // one deflated chunk for the body, and another normal chunk for the footer. chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_HEADER_LEN); pos += GZIP_HEADER_LEN; // We must decompress this chunk in order to discover where it ends, and so we can update // the uncompressed_data of the image body and its length. z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = sz - pos; strm.next_in = img->data() + pos; // -15 means we are decoding a 'raw' deflate stream; zlib will // not expect zlib headers. int ret = inflateInit2(&strm, -15); if (ret < 0) { printf("failed to initialize inflate: %d\n", ret); return false; } size_t allocated = BUFFER_SIZE; std::vector uncompressed_data(allocated); size_t uncompressed_len = 0, raw_data_len = 0; do { strm.avail_out = allocated - uncompressed_len; strm.next_out = uncompressed_data.data() + uncompressed_len; ret = inflate(&strm, Z_NO_FLUSH); if (ret < 0) { printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n", strm.msg, chunk_offset); break; } uncompressed_len = allocated - strm.avail_out; if (strm.avail_out == 0) { allocated *= 2; uncompressed_data.resize(allocated); } } while (ret != Z_STREAM_END); raw_data_len = sz - strm.avail_in - pos; inflateEnd(&strm); if (ret < 0) { continue; } // The footer contains the size of the uncompressed data. Double-check to make sure that it // matches the size of the data we got when we actually did the decompression. size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4; if (sz - footer_index < 4) { printf("Warning: invalid footer position; treating as a nomal chunk\n"); continue; } size_t footer_size = get_unaligned(img->data() + footer_index); if (footer_size != uncompressed_len) { printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n", footer_size, uncompressed_len); continue; } ImageChunk body(CHUNK_DEFLATE, pos, img, raw_data_len); uncompressed_data.resize(uncompressed_len); body.SetUncompressedData(std::move(uncompressed_data)); chunks->push_back(body); pos += raw_data_len; // create a normal chunk for the footer chunks->emplace_back(CHUNK_NORMAL, pos, img, GZIP_FOOTER_LEN); pos += GZIP_FOOTER_LEN; } else { // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect // the number of chunks to be small (5 for typical boot and recovery images). // Scan forward until we find a gzip header. size_t data_len = 0; while (data_len + pos < sz) { if (data_len + pos + 4 <= sz && get_unaligned(img->data() + pos + data_len) == 0x00088b1f) { break; } data_len++; } chunks->emplace_back(CHUNK_NORMAL, pos, img, data_len); pos += data_len; } } return true; } /* * Given source and target chunks, compute a bsdiff patch between them. * Store the result in the patch_data. * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk * is used repeatedly, pass nullptr if not needed. */ static bool MakePatch(const ImageChunk* src, ImageChunk* tgt, std::vector* patch_data, saidx_t** bsdiff_cache) { if (tgt->ChangeChunkToRaw(0)) { size_t patch_size = tgt->DataLengthForPatch(); patch_data->resize(patch_size); std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin()); return true; } #if defined(__ANDROID__) char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX"; #else char ptemp[] = "/tmp/imgdiff-patch-XXXXXX"; #endif int fd = mkstemp(ptemp); if (fd == -1) { printf("MakePatch failed to create a temporary file: %s\n", strerror(errno)); return false; } close(fd); int r = bsdiff::bsdiff(src->DataForPatch(), src->DataLengthForPatch(), tgt->DataForPatch(), tgt->DataLengthForPatch(), ptemp, bsdiff_cache); if (r != 0) { printf("bsdiff() failed: %d\n", r); return false; } android::base::unique_fd patch_fd(open(ptemp, O_RDONLY)); if (patch_fd == -1) { printf("failed to open %s: %s\n", ptemp, strerror(errno)); return false; } struct stat st; if (fstat(patch_fd, &st) != 0) { printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno)); return false; } size_t sz = static_cast(st.st_size); // Change the chunk type to raw if the patch takes less space that way. if (tgt->ChangeChunkToRaw(sz)) { unlink(ptemp); size_t patch_size = tgt->DataLengthForPatch(); patch_data->resize(patch_size); std::copy(tgt->DataForPatch(), tgt->DataForPatch() + patch_size, patch_data->begin()); return true; } patch_data->resize(sz); if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) { printf("failed to read \"%s\" %s\n", ptemp, strerror(errno)); return false; } unlink(ptemp); tgt->SetSourceInfo(*src); return true; } /* * Look for runs of adjacent normal chunks and compress them down into * a single chunk. (Such runs can be produced when deflate chunks are * changed to normal chunks.) */ static void MergeAdjacentNormalChunks(std::vector* chunks) { size_t merged_last = 0, cur = 0; while (cur < chunks->size()) { // Look for normal chunks adjacent to the current one. If such chunk exists, extend the // length of the current normal chunk. size_t to_check = cur + 1; while (to_check < chunks->size() && chunks->at(cur).IsAdjacentNormal(chunks->at(to_check))) { chunks->at(cur).MergeAdjacentNormal(chunks->at(to_check)); to_check++; } if (merged_last != cur) { chunks->at(merged_last) = std::move(chunks->at(cur)); } merged_last++; cur = to_check; } if (merged_last < chunks->size()) { chunks->erase(chunks->begin() + merged_last, chunks->end()); } } static ImageChunk* FindChunkByName(const std::string& name, std::vector& chunks) { for (size_t i = 0; i < chunks.size(); ++i) { if (chunks[i].GetType() == CHUNK_DEFLATE && chunks[i].GetEntryName() == name) { return &chunks[i]; } } return nullptr; } static void DumpChunks(const std::vector& chunks) { for (size_t i = 0; i < chunks.size(); ++i) { printf("chunk %zu: ", i); chunks[i].Dump(); } } int imgdiff(int argc, const char** argv) { bool zip_mode = false; if (argc >= 2 && strcmp(argv[1], "-z") == 0) { zip_mode = true; --argc; ++argv; } std::vector bonus_data; if (argc >= 3 && strcmp(argv[1], "-b") == 0) { android::base::unique_fd fd(open(argv[2], O_RDONLY)); if (fd == -1) { printf("failed to open bonus file %s: %s\n", argv[2], strerror(errno)); return 1; } struct stat st; if (fstat(fd, &st) != 0) { printf("failed to stat bonus file %s: %s\n", argv[2], strerror(errno)); return 1; } size_t bonus_size = st.st_size; bonus_data.resize(bonus_size); if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) { printf("failed to read bonus file %s: %s\n", argv[2], strerror(errno)); return 1; } argc -= 2; argv += 2; } if (argc != 4) { printf("usage: %s [-z] [-b ] \n", argv[0]); return 2; } std::vector src_chunks; std::vector tgt_chunks; std::vector src_file; std::vector tgt_file; if (zip_mode) { if (!ReadZip(argv[1], &src_chunks, &src_file, true)) { printf("failed to break apart source zip file\n"); return 1; } if (!ReadZip(argv[2], &tgt_chunks, &tgt_file, false)) { printf("failed to break apart target zip file\n"); return 1; } } else { if (!ReadImage(argv[1], &src_chunks, &src_file)) { printf("failed to break apart source image\n"); return 1; } if (!ReadImage(argv[2], &tgt_chunks, &tgt_file)) { printf("failed to break apart target image\n"); return 1; } // Verify that the source and target images have the same chunk // structure (ie, the same sequence of deflate and normal chunks). // Merge the gzip header and footer in with any adjacent normal chunks. MergeAdjacentNormalChunks(&tgt_chunks); MergeAdjacentNormalChunks(&src_chunks); if (src_chunks.size() != tgt_chunks.size()) { printf("source and target don't have same number of chunks!\n"); printf("source chunks:\n"); DumpChunks(src_chunks); printf("target chunks:\n"); DumpChunks(tgt_chunks); return 1; } for (size_t i = 0; i < src_chunks.size(); ++i) { if (src_chunks[i].GetType() != tgt_chunks[i].GetType()) { printf("source and target don't have same chunk structure! (chunk %zu)\n", i); printf("source chunks:\n"); DumpChunks(src_chunks); printf("target chunks:\n"); DumpChunks(tgt_chunks); return 1; } } } for (size_t i = 0; i < tgt_chunks.size(); ++i) { if (tgt_chunks[i].GetType() == CHUNK_DEFLATE) { // Confirm that given the uncompressed chunk data in the target, we // can recompress it and get exactly the same bits as are in the // input target image. If this fails, treat the chunk as a normal // non-deflated chunk. if (!tgt_chunks[i].ReconstructDeflateChunk()) { printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i, tgt_chunks[i].GetEntryName().c_str()); tgt_chunks[i].ChangeDeflateChunkToNormal(); if (zip_mode) { ImageChunk* src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks); if (src != nullptr) { src->ChangeDeflateChunkToNormal(); } } else { src_chunks[i].ChangeDeflateChunkToNormal(); } continue; } // If two deflate chunks are identical (eg, the kernel has not // changed between two builds), treat them as normal chunks. // This makes applypatch much faster -- it can apply a trivial // patch to the compressed data, rather than uncompressing and // recompressing to apply the trivial patch to the uncompressed // data. ImageChunk* src; if (zip_mode) { src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks); } else { src = &src_chunks[i]; } if (src == nullptr) { tgt_chunks[i].ChangeDeflateChunkToNormal(); } else if (tgt_chunks[i] == *src) { tgt_chunks[i].ChangeDeflateChunkToNormal(); src->ChangeDeflateChunkToNormal(); } } } // Merging neighboring normal chunks. if (zip_mode) { // For zips, we only need to do this to the target: deflated // chunks are matched via filename, and normal chunks are patched // using the entire source file as the source. MergeAdjacentNormalChunks(&tgt_chunks); } else { // For images, we need to maintain the parallel structure of the // chunk lists, so do the merging in both the source and target // lists. MergeAdjacentNormalChunks(&tgt_chunks); MergeAdjacentNormalChunks(&src_chunks); if (src_chunks.size() != tgt_chunks.size()) { // This shouldn't happen. printf("merging normal chunks went awry\n"); return 1; } } // Compute bsdiff patches for each chunk's data (the uncompressed // data, in the case of deflate chunks). DumpChunks(src_chunks); printf("Construct patches for %zu chunks...\n", tgt_chunks.size()); std::vector> patch_data(tgt_chunks.size()); saidx_t* bsdiff_cache = nullptr; for (size_t i = 0; i < tgt_chunks.size(); ++i) { if (zip_mode) { ImageChunk* src; if (tgt_chunks[i].GetType() == CHUNK_DEFLATE && (src = FindChunkByName(tgt_chunks[i].GetEntryName(), src_chunks))) { if (!MakePatch(src, &tgt_chunks[i], &patch_data[i], nullptr)) { printf("Failed to generate patch for target chunk %zu: ", i); return 1; } } else { if (!MakePatch(&src_chunks[0], &tgt_chunks[i], &patch_data[i], &bsdiff_cache)) { printf("Failed to generate patch for target chunk %zu: ", i); return 1; } } } else { if (i == 1 && !bonus_data.empty()) { printf(" using %zu bytes of bonus data for chunk %zu\n", bonus_data.size(), i); src_chunks[i].SetBonusData(bonus_data); } if (!MakePatch(&src_chunks[i], &tgt_chunks[i], &patch_data[i], nullptr)) { printf("Failed to generate patch for target chunk %zu: ", i); return 1; } } printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data[i].size(), src_chunks[i].GetRawDataLength()); } if (bsdiff_cache != nullptr) { free(bsdiff_cache); } // Figure out how big the imgdiff file header is going to be, so // that we can correctly compute the offset of each bsdiff patch // within the file. size_t total_header_size = 12; for (size_t i = 0; i < tgt_chunks.size(); ++i) { total_header_size += tgt_chunks[i].GetHeaderSize(patch_data[i].size()); } size_t offset = total_header_size; android::base::unique_fd patch_fd(open(argv[3], O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); if (patch_fd == -1) { printf("failed to open \"%s\": %s\n", argv[3], strerror(errno)); return 1; } // Write out the headers. if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) { printf("failed to write \"IMGDIFF2\" to \"%s\": %s\n", argv[3], strerror(errno)); return 1; } Write4(patch_fd, static_cast(tgt_chunks.size())); for (size_t i = 0; i < tgt_chunks.size(); ++i) { printf("chunk %zu: ", i); offset = tgt_chunks[i].WriteHeaderToFd(patch_fd, patch_data[i], offset); } // Append each chunk's bsdiff patch, in order. for (size_t i = 0; i < tgt_chunks.size(); ++i) { if (tgt_chunks[i].GetType() != CHUNK_RAW) { if (!android::base::WriteFully(patch_fd, patch_data[i].data(), patch_data[i].size())) { CHECK(false) << "failed to write " << patch_data[i].size() << " bytes patch for chunk " << i; } } } return 0; }