/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This program constructs binary patches for images -- such as boot.img * and recovery.img -- that consist primarily of large chunks of gzipped * data interspersed with uncompressed data. Doing a naive bsdiff of * these files is not useful because small changes in the data lead to * large changes in the compressed bitstream; bsdiff patches of gzipped * data are typically as large as the data itself. * * To patch these usefully, we break the source and target images up into * chunks of two types: "normal" and "gzip". Normal chunks are simply * patched using a plain bsdiff. Gzip chunks are first expanded, then a * bsdiff is applied to the uncompressed data, then the patched data is * gzipped using the same encoder parameters. Patched chunks are * concatenated together to create the output file; the output image * should be *exactly* the same series of bytes as the target image used * originally to generate the patch. * * To work well with this tool, the gzipped sections of the target * image must have been generated using the same deflate encoder that * is available in applypatch, namely, the one in the zlib library. * In practice this means that images should be compressed using the * "minigzip" tool included in the zlib distribution, not the GNU gzip * program. * * An "imgdiff" patch consists of a header describing the chunk structure * of the file and any encoding parameters needed for the gzipped * chunks, followed by N bsdiff patches, one per chunk. * * For a diff to be generated, the source and target images must have the * same "chunk" structure: that is, the same number of gzipped and normal * chunks in the same order. Android boot and recovery images currently * consist of five chunks: a small normal header, a gzipped kernel, a * small normal section, a gzipped ramdisk, and finally a small normal * footer. * * Caveats: we locate gzipped sections within the source and target * images by searching for the byte sequence 1f8b0800: 1f8b is the gzip * magic number; 08 specifies the "deflate" encoding [the only encoding * supported by the gzip standard]; and 00 is the flags byte. We do not * currently support any extra header fields (which would be indicated by * a nonzero flags byte). We also don't handle the case when that byte * sequence appears spuriously in the file. (Note that it would have to * occur spuriously within a normal chunk to be a problem.) * * * The imgdiff patch header looks like this: * * "IMGDIFF1" (8) [magic number and version] * chunk count (4) * for each chunk: * chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}] * if chunk type == CHUNK_NORMAL: * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * if chunk type == CHUNK_GZIP: (version 1 only) * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * source expanded len (8) [size of uncompressed source] * target expected len (8) [size of uncompressed target] * gzip level (4) * method (4) * windowBits (4) * memLevel (4) * strategy (4) * gzip header len (4) * gzip header (gzip header len) * gzip footer (8) * if chunk type == CHUNK_DEFLATE: (version 2 only) * source start (8) * source len (8) * bsdiff patch offset (8) [from start of patch file] * source expanded len (8) [size of uncompressed source] * target expected len (8) [size of uncompressed target] * gzip level (4) * method (4) * windowBits (4) * memLevel (4) * strategy (4) * if chunk type == RAW: (version 2 only) * target len (4) * data (target len) * * All integers are little-endian. "source start" and "source len" * specify the section of the input image that comprises this chunk, * including the gzip header and footer for gzip chunks. "source * expanded len" is the size of the uncompressed source data. "target * expected len" is the size of the uncompressed data after applying * the bsdiff patch. The next five parameters specify the zlib * parameters to be used when compressing the patched data, and the * next three specify the header and footer to be wrapped around the * compressed data to create the output chunk (so that header contents * like the timestamp are recreated exactly). * * After the header there are 'chunk count' bsdiff patches; the offset * of each from the beginning of the file is specified in the header. * * This tool can take an optional file of "bonus data". This is an * extra file of data that is appended to chunk #1 after it is * compressed (it must be a CHUNK_DEFLATE chunk). The same file must * be available (and passed to applypatch with -b) when applying the * patch. This is used to reduce the size of recovery-from-boot * patches by combining the boot image with recovery ramdisk * information that is stored on the system partition. */ #include "applypatch/imgdiff.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::get_unaligned; static constexpr auto BUFFER_SIZE = 0x8000; // If we use this function to write the offset and length (type size_t), their values should not // exceed 2^63; because the signed bit will be casted away. static inline bool Write8(int fd, int64_t value) { return android::base::WriteFully(fd, &value, sizeof(int64_t)); } // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk // size). static inline bool Write4(int fd, int32_t value) { return android::base::WriteFully(fd, &value, sizeof(int32_t)); } class ImageChunk { public: static constexpr auto WINDOWBITS = -15; // 32kb window; negative to indicate a raw stream. static constexpr auto MEMLEVEL = 8; // the default value. static constexpr auto METHOD = Z_DEFLATED; static constexpr auto STRATEGY = Z_DEFAULT_STRATEGY; ImageChunk(int type, size_t start, const std::vector* file_content, size_t raw_data_len, std::string entry_name = {}) : type_(type), start_(start), input_file_ptr_(file_content), raw_data_len_(raw_data_len), compress_level_(6), entry_name_(std::move(entry_name)) { CHECK(file_content != nullptr) << "input file container can't be nullptr"; } int GetType() const { return type_; } size_t GetRawDataLength() const { return raw_data_len_; } const std::string& GetEntryName() const { return entry_name_; } size_t GetStartOffset() const { return start_; } int GetCompressLevel() const { return compress_level_; } // CHUNK_DEFLATE will return the uncompressed data for diff, while other types will simply return // the raw data. const uint8_t * DataForPatch() const; size_t DataLengthForPatch() const; void Dump() const { printf("type: %d, start: %zu, len: %zu, name: %s\n", type_, start_, DataLengthForPatch(), entry_name_.c_str()); } void SetUncompressedData(std::vector data); bool SetBonusData(const std::vector& bonus_data); bool operator==(const ImageChunk& other) const; bool operator!=(const ImageChunk& other) const { return !(*this == other); } /* * Cause a gzip chunk to be treated as a normal chunk (ie, as a blob of uninterpreted data). * The resulting patch will likely be about as big as the target file, but it lets us handle * the case of images where some gzip chunks are reconstructible but others aren't (by treating * the ones that aren't as normal chunks). */ void ChangeDeflateChunkToNormal(); /* * Verify that we can reproduce exactly the same compressed data that we started with. Sets the * level, method, windowBits, memLevel, and strategy fields in the chunk to the encoding * parameters needed to produce the right output. */ bool ReconstructDeflateChunk(); bool IsAdjacentNormal(const ImageChunk& other) const; void MergeAdjacentNormal(const ImageChunk& other); /* * Compute a bsdiff patch between |src| and |tgt|; Store the result in the patch_data. * |bsdiff_cache| can be used to cache the suffix array if the same |src| chunk is used * repeatedly, pass nullptr if not needed. */ static bool MakePatch(const ImageChunk& tgt, const ImageChunk& src, std::vector* patch_data, saidx_t** bsdiff_cache); private: const uint8_t* GetRawData() const; bool TryReconstruction(int level); int type_; // CHUNK_NORMAL, CHUNK_DEFLATE, CHUNK_RAW size_t start_; // offset of chunk in the original input file const std::vector* input_file_ptr_; // ptr to the full content of original input file size_t raw_data_len_; // deflate encoder parameters int compress_level_; // --- for CHUNK_DEFLATE chunks only: --- std::vector uncompressed_data_; std::string entry_name_; // used for zip entries }; const uint8_t* ImageChunk::GetRawData() const { CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size()); return input_file_ptr_->data() + start_; } const uint8_t * ImageChunk::DataForPatch() const { if (type_ == CHUNK_DEFLATE) { return uncompressed_data_.data(); } return GetRawData(); } size_t ImageChunk::DataLengthForPatch() const { if (type_ == CHUNK_DEFLATE) { return uncompressed_data_.size(); } return raw_data_len_; } bool ImageChunk::operator==(const ImageChunk& other) const { if (type_ != other.type_) { return false; } return (raw_data_len_ == other.raw_data_len_ && memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0); } void ImageChunk::SetUncompressedData(std::vector data) { uncompressed_data_ = std::move(data); } bool ImageChunk::SetBonusData(const std::vector& bonus_data) { if (type_ != CHUNK_DEFLATE) { return false; } uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end()); return true; } void ImageChunk::ChangeDeflateChunkToNormal() { if (type_ != CHUNK_DEFLATE) return; type_ = CHUNK_NORMAL; // No need to clear the entry name. uncompressed_data_.clear(); } bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const { if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) { return false; } return (other.start_ == start_ + raw_data_len_); } void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) { CHECK(IsAdjacentNormal(other)); raw_data_len_ = raw_data_len_ + other.raw_data_len_; } bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src, std::vector* patch_data, saidx_t** bsdiff_cache) { #if defined(__ANDROID__) char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX"; #else char ptemp[] = "/tmp/imgdiff-patch-XXXXXX"; #endif int fd = mkstemp(ptemp); if (fd == -1) { printf("MakePatch failed to create a temporary file: %s\n", strerror(errno)); return false; } close(fd); int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(), tgt.DataLengthForPatch(), ptemp, bsdiff_cache); if (r != 0) { printf("bsdiff() failed: %d\n", r); return false; } android::base::unique_fd patch_fd(open(ptemp, O_RDONLY)); if (patch_fd == -1) { printf("failed to open %s: %s\n", ptemp, strerror(errno)); return false; } struct stat st; if (fstat(patch_fd, &st) != 0) { printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno)); return false; } size_t sz = static_cast(st.st_size); patch_data->resize(sz); if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) { printf("failed to read \"%s\" %s\n", ptemp, strerror(errno)); unlink(ptemp); return false; } unlink(ptemp); return true; } bool ImageChunk::ReconstructDeflateChunk() { if (type_ != CHUNK_DEFLATE) { printf("attempt to reconstruct non-deflate chunk\n"); return false; } // We only check two combinations of encoder parameters: level 6 (the default) and level 9 // (the maximum). for (int level = 6; level <= 9; level += 3) { if (TryReconstruction(level)) { compress_level_ = level; return true; } } return false; } /* * Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored * in the chunk, and checks that it matches exactly the compressed data we started with (also * stored in the chunk). */ bool ImageChunk::TryReconstruction(int level) { z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = uncompressed_data_.size(); strm.next_in = uncompressed_data_.data(); int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY); if (ret < 0) { printf("failed to initialize deflate: %d\n", ret); return false; } std::vector buffer(BUFFER_SIZE); size_t offset = 0; do { strm.avail_out = buffer.size(); strm.next_out = buffer.data(); ret = deflate(&strm, Z_FINISH); if (ret < 0) { printf("failed to deflate: %d\n", ret); return false; } size_t compressed_size = buffer.size() - strm.avail_out; if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) { // mismatch; data isn't the same. deflateEnd(&strm); return false; } offset += compressed_size; } while (ret != Z_STREAM_END); deflateEnd(&strm); if (offset != raw_data_len_) { // mismatch; ran out of data before we should have. return false; } return true; } // PatchChunk stores the patch data between a source chunk and a target chunk. It also keeps track // of the metadata of src&tgt chunks (e.g. offset, raw data length, uncompressed data length). class PatchChunk { public: PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector data) : type_(tgt.GetType()), source_start_(src.GetStartOffset()), source_len_(src.GetRawDataLength()), source_uncompressed_len_(src.DataLengthForPatch()), target_start_(tgt.GetStartOffset()), target_len_(tgt.GetRawDataLength()), target_uncompressed_len_(tgt.DataLengthForPatch()), target_compress_level_(tgt.GetCompressLevel()), data_(std::move(data)) {} // Construct a CHUNK_RAW patch from the target data directly. explicit PatchChunk(const ImageChunk& tgt) : type_(CHUNK_RAW), source_start_(0), source_len_(0), source_uncompressed_len_(0), target_start_(tgt.GetStartOffset()), target_len_(tgt.GetRawDataLength()), target_uncompressed_len_(tgt.DataLengthForPatch()), target_compress_level_(tgt.GetCompressLevel()), data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {} // Return true if raw data size is smaller than the patch size. static bool RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size); static bool WritePatchDataToFd(const std::vector& patch_chunks, int patch_fd); private: size_t GetHeaderSize() const; size_t WriteHeaderToFd(int fd, size_t offset) const; // The patch chunk type is the same as the target chunk type. The only exception is we change // the |type_| to CHUNK_RAW if target length is smaller than the patch size. int type_; size_t source_start_; size_t source_len_; size_t source_uncompressed_len_; size_t target_start_; // offset of the target chunk within the target file size_t target_len_; size_t target_uncompressed_len_; size_t target_compress_level_; // the deflate compression level of the target chunk. std::vector data_; // storage for the patch data }; // Return true if raw data is smaller than the patch size. bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) { size_t target_len = tgt.GetRawDataLength(); return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size)); } // Header size: // header_type 4 bytes // CHUNK_NORMAL 8*3 = 24 bytes // CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes // CHUNK_RAW 4 bytes + patch_size size_t PatchChunk::GetHeaderSize() const { switch (type_) { case CHUNK_NORMAL: return 4 + 8 * 3; case CHUNK_DEFLATE: return 4 + 8 * 5 + 4 * 5; case CHUNK_RAW: return 4 + 4 + data_.size(); default: CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here. return 0; } } // Return the offset of the next patch into the patch data. size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset) const { Write4(fd, type_); switch (type_) { case CHUNK_NORMAL: printf("normal (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size()); Write8(fd, static_cast(source_start_)); Write8(fd, static_cast(source_len_)); Write8(fd, static_cast(offset)); return offset + data_.size(); case CHUNK_DEFLATE: printf("deflate (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size()); Write8(fd, static_cast(source_start_)); Write8(fd, static_cast(source_len_)); Write8(fd, static_cast(offset)); Write8(fd, static_cast(source_uncompressed_len_)); Write8(fd, static_cast(target_uncompressed_len_)); Write4(fd, target_compress_level_); Write4(fd, ImageChunk::METHOD); Write4(fd, ImageChunk::WINDOWBITS); Write4(fd, ImageChunk::MEMLEVEL); Write4(fd, ImageChunk::STRATEGY); return offset + data_.size(); case CHUNK_RAW: printf("raw (%10zu, %10zu)\n", target_start_, target_len_); Write4(fd, static_cast(data_.size())); if (!android::base::WriteFully(fd, data_.data(), data_.size())) { CHECK(false) << "failed to write " << data_.size() << " bytes patch"; } return offset; default: CHECK(false) << "unexpected chunk type: " << type_; return offset; } } // Write the contents of |patch_chunks| to |patch_fd|. bool PatchChunk::WritePatchDataToFd(const std::vector& patch_chunks, int patch_fd) { // Figure out how big the imgdiff file header is going to be, so that we can correctly compute // the offset of each bsdiff patch within the file. size_t total_header_size = 12; for (const auto& patch : patch_chunks) { total_header_size += patch.GetHeaderSize(); } size_t offset = total_header_size; // Write out the headers. if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) { printf("failed to write \"IMGDIFF2\": %s\n", strerror(errno)); return false; } Write4(patch_fd, static_cast(patch_chunks.size())); for (size_t i = 0; i < patch_chunks.size(); ++i) { printf("chunk %zu: ", i); offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset); } // Append each chunk's bsdiff patch, in order. for (const auto& patch : patch_chunks) { if (patch.type_ == CHUNK_RAW) { continue; } if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) { printf("failed to write %zu bytes patch to patch_fd\n", patch.data_.size()); return false; } } return true; } // Interface for zip_mode and image_mode images. We initialize the image from an input file and // split the file content into a list of image chunks. class Image { public: explicit Image(bool is_source) : is_source_(is_source) {} virtual ~Image() {} // Create a list of image chunks from input file. virtual bool Initialize(const std::string& filename) = 0; // Look for runs of adjacent normal chunks and compress them down into a single chunk. (Such // runs can be produced when deflate chunks are changed to normal chunks.) void MergeAdjacentNormalChunks(); // In zip mode, find the matching deflate source chunk by entry name. Search for normal chunks // also if |find_normal| is true. ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false); const ImageChunk* FindChunkByName(const std::string& name, bool find_normal = false) const; void DumpChunks() const; // Non const iterators to access the stored ImageChunks. std::vector::iterator begin() { return chunks_.begin(); } std::vector::iterator end() { return chunks_.end(); } ImageChunk& operator[](size_t i) { CHECK_LT(i, chunks_.size()); return chunks_[i]; } const ImageChunk& operator[](size_t i) const { CHECK_LT(i, chunks_.size()); return chunks_[i]; } size_t NumOfChunks() const { return chunks_.size(); } protected: bool ReadFile(const std::string& filename, std::vector* file_content); bool is_source_; // True if it's for source chunks. std::vector chunks_; // Internal storage of ImageChunk. std::vector file_content_; // Store the whole input file in memory. }; void Image::MergeAdjacentNormalChunks() { size_t merged_last = 0, cur = 0; while (cur < chunks_.size()) { // Look for normal chunks adjacent to the current one. If such chunk exists, extend the // length of the current normal chunk. size_t to_check = cur + 1; while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) { chunks_[cur].MergeAdjacentNormal(chunks_[to_check]); to_check++; } if (merged_last != cur) { chunks_[merged_last] = std::move(chunks_[cur]); } merged_last++; cur = to_check; } if (merged_last < chunks_.size()) { chunks_.erase(chunks_.begin() + merged_last, chunks_.end()); } } const ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) const { if (name.empty()) { return nullptr; } for (auto& chunk : chunks_) { if ((chunk.GetType() == CHUNK_DEFLATE || find_normal) && chunk.GetEntryName() == name) { return &chunk; } } return nullptr; } ImageChunk* Image::FindChunkByName(const std::string& name, bool find_normal) { return const_cast( static_cast(this)->FindChunkByName(name, find_normal)); } void Image::DumpChunks() const { std::string type = is_source_ ? "source" : "target"; printf("Dumping chunks for %s\n", type.c_str()); for (size_t i = 0; i < chunks_.size(); ++i) { printf("chunk %zu: ", i); chunks_[i].Dump(); } } bool Image::ReadFile(const std::string& filename, std::vector* file_content) { CHECK(file_content != nullptr); android::base::unique_fd fd(open(filename.c_str(), O_RDONLY)); if (fd == -1) { printf("failed to open \"%s\" %s\n", filename.c_str(), strerror(errno)); return false; } struct stat st; if (fstat(fd, &st) != 0) { printf("failed to stat \"%s\": %s\n", filename.c_str(), strerror(errno)); return false; } size_t sz = static_cast(st.st_size); file_content->resize(sz); if (!android::base::ReadFully(fd, file_content->data(), sz)) { printf("failed to read \"%s\" %s\n", filename.c_str(), strerror(errno)); return false; } fd.reset(); return true; } class ZipModeImage : public Image { public: explicit ZipModeImage(bool is_source) : Image(is_source) {} bool Initialize(const std::string& filename) override; const ImageChunk& PseudoSource() const { CHECK(is_source_); CHECK(pseudo_source_ != nullptr); return *pseudo_source_; } // Verify that we can reconstruct the deflate chunks; also change the type to CHUNK_NORMAL if // src and tgt are identical. static bool CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image); // Compute the patch between tgt & src images, and write the data into |patch_name|. static bool GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image, const std::string& patch_name); private: // Initialize image chunks based on the zip entries. bool InitializeChunks(const std::string& filename, ZipArchiveHandle handle); // Add the a zip entry to the list. bool AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry); // Return the real size of the zip file. (omit the trailing zeros that used for alignment) bool GetZipFileSize(size_t* input_file_size); // The pesudo source chunk for bsdiff if there's no match for the given target chunk. It's in // fact the whole source file. std::unique_ptr pseudo_source_; }; bool ZipModeImage::Initialize(const std::string& filename) { if (!ReadFile(filename, &file_content_)) { return false; } // Omit the trailing zeros before we pass the file to ziparchive handler. size_t zipfile_size; if (!GetZipFileSize(&zipfile_size)) { printf("failed to parse the actual size of %s\n", filename.c_str()); return false; } ZipArchiveHandle handle; int err = OpenArchiveFromMemory(const_cast(file_content_.data()), zipfile_size, filename.c_str(), &handle); if (err != 0) { printf("failed to open zip file %s: %s\n", filename.c_str(), ErrorCodeString(err)); CloseArchive(handle); return false; } if (is_source_) { pseudo_source_ = std::make_unique(CHUNK_NORMAL, 0, &file_content_, zipfile_size); } if (!InitializeChunks(filename, handle)) { CloseArchive(handle); return false; } CloseArchive(handle); return true; } // Iterate the zip entries and compose the image chunks accordingly. bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) { void* cookie; int ret = StartIteration(handle, &cookie, nullptr, nullptr); if (ret != 0) { printf("failed to iterate over entries in %s: %s\n", filename.c_str(), ErrorCodeString(ret)); return false; } // Create a list of deflated zip entries, sorted by offset. std::vector> temp_entries; ZipString name; ZipEntry entry; while ((ret = Next(cookie, &entry, &name)) == 0) { if (entry.method == kCompressDeflated) { std::string entry_name(name.name, name.name + name.name_length); temp_entries.emplace_back(entry_name, entry); } } if (ret != -1) { printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret)); return false; } std::sort(temp_entries.begin(), temp_entries.end(), [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; }); EndIteration(cookie); // For source chunks, we don't need to compose chunks for the metadata. if (is_source_) { for (auto& entry : temp_entries) { if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) { printf("Failed to add %s to source chunks\n", entry.first.c_str()); return false; } } return true; } // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two // deflate entries as CHUNK_NORMAL. size_t pos = 0; size_t nextentry = 0; while (pos < file_content_.size()) { if (nextentry < temp_entries.size() && static_cast(pos) == temp_entries[nextentry].second.offset) { // Add the next zip entry. std::string entry_name = temp_entries[nextentry].first; if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) { printf("Failed to add %s to target chunks\n", entry_name.c_str()); return false; } pos += temp_entries[nextentry].second.compressed_length; ++nextentry; continue; } // Use a normal chunk to take all the data up to the start of the next entry. size_t raw_data_len; if (nextentry < temp_entries.size()) { raw_data_len = temp_entries[nextentry].second.offset - pos; } else { raw_data_len = file_content_.size() - pos; } chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len); pos += raw_data_len; } return true; } bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name, ZipEntry* entry) { size_t compressed_len = entry->compressed_length; if (entry->method == kCompressDeflated) { size_t uncompressed_len = entry->uncompressed_length; std::vector uncompressed_data(uncompressed_len); int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len); if (ret != 0) { printf("failed to extract %s with size %zu: %s\n", entry_name.c_str(), uncompressed_len, ErrorCodeString(ret)); return false; } ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name); curr.SetUncompressedData(std::move(uncompressed_data)); chunks_.push_back(std::move(curr)); } else { chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name); } return true; } // EOCD record // offset 0: signature 0x06054b50, 4 bytes // offset 4: number of this disk, 2 bytes // ... // offset 20: comment length, 2 bytes // offset 22: comment, n bytes bool ZipModeImage::GetZipFileSize(size_t* input_file_size) { if (file_content_.size() < 22) { printf("file is too small to be a zip file\n"); return false; } // Look for End of central directory record of the zip file, and calculate the actual // zip_file size. for (int i = file_content_.size() - 22; i >= 0; i--) { if (file_content_[i] == 0x50) { if (get_unaligned(&file_content_[i]) == 0x06054b50) { // double-check: this archive consists of a single "disk". CHECK_EQ(get_unaligned(&file_content_[i + 4]), 0); uint16_t comment_length = get_unaligned(&file_content_[i + 20]); size_t file_size = i + 22 + comment_length; CHECK_LE(file_size, file_content_.size()); *input_file_size = file_size; return true; } } } // EOCD not found, this file is likely not a valid zip file. return false; } bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) { for (auto& tgt_chunk : *tgt_image) { if (tgt_chunk.GetType() != CHUNK_DEFLATE) { continue; } ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName()); if (src_chunk == nullptr) { tgt_chunk.ChangeDeflateChunkToNormal(); } else if (tgt_chunk == *src_chunk) { // If two deflate chunks are identical (eg, the kernel has not changed between two builds), // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial // patch to the compressed data, rather than uncompressing and recompressing to apply the // trivial patch to the uncompressed data. tgt_chunk.ChangeDeflateChunkToNormal(); src_chunk->ChangeDeflateChunkToNormal(); } else if (!tgt_chunk.ReconstructDeflateChunk()) { // We cannot recompress the data and get exactly the same bits as are in the input target // image. Treat the chunk as a normal non-deflated chunk. printf("failed to reconstruct target deflate chunk [%s]; treating as normal\n", tgt_chunk.GetEntryName().c_str()); tgt_chunk.ChangeDeflateChunkToNormal(); src_chunk->ChangeDeflateChunkToNormal(); } } // For zips, we only need merge normal chunks for the target: deflated chunks are matched via // filename, and normal chunks are patched using the entire source file as the source. tgt_image->MergeAdjacentNormalChunks(); tgt_image->DumpChunks(); return true; } bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image, const std::string& patch_name) { printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks()); std::vector patch_chunks; patch_chunks.reserve(tgt_image.NumOfChunks()); saidx_t* bsdiff_cache = nullptr; for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) { const auto& tgt_chunk = tgt_image[i]; if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) { patch_chunks.emplace_back(tgt_chunk); continue; } const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE) ? nullptr : src_image.FindChunkByName(tgt_chunk.GetEntryName()); const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk; saidx_t** bsdiff_cache_ptr = (src_chunk == nullptr) ? &bsdiff_cache : nullptr; std::vector patch_data; if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) { printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str()); return false; } printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(), tgt_chunk.GetRawDataLength()); if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) { patch_chunks.emplace_back(tgt_chunk); } else { patch_chunks.emplace_back(tgt_chunk, src_ref, std::move(patch_data)); } } free(bsdiff_cache); CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size()); android::base::unique_fd patch_fd( open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); if (patch_fd == -1) { printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); return false; } return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); } class ImageModeImage : public Image { public: explicit ImageModeImage(bool is_source) : Image(is_source) {} // Initialize the image chunks list by searching the magic numbers in an image file. bool Initialize(const std::string& filename) override; bool SetBonusData(const std::vector& bonus_data); // In Image Mode, verify that the source and target images have the same chunk structure (ie, the // same sequence of deflate and normal chunks). static bool CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image); // In image mode, generate patches against the given source chunks and bonus_data; write the // result to |patch_name|. static bool GeneratePatches(const ImageModeImage& tgt_image, const ImageModeImage& src_image, const std::string& patch_name); }; bool ImageModeImage::Initialize(const std::string& filename) { if (!ReadFile(filename, &file_content_)) { return false; } size_t sz = file_content_.size(); size_t pos = 0; while (pos < sz) { // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number if (sz - pos >= 4 && get_unaligned(file_content_.data() + pos) == 0x00088b1f) { // 'pos' is the offset of the start of a gzip chunk. size_t chunk_offset = pos; // The remaining data is too small to be a gzip chunk; treat them as a normal chunk. if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) { chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos); break; } // We need three chunks for the deflated image in total, one normal chunk for the header, // one deflated chunk for the body, and another normal chunk for the footer. chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN); pos += GZIP_HEADER_LEN; // We must decompress this chunk in order to discover where it ends, and so we can update // the uncompressed_data of the image body and its length. z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = sz - pos; strm.next_in = file_content_.data() + pos; // -15 means we are decoding a 'raw' deflate stream; zlib will // not expect zlib headers. int ret = inflateInit2(&strm, -15); if (ret < 0) { printf("failed to initialize inflate: %d\n", ret); return false; } size_t allocated = BUFFER_SIZE; std::vector uncompressed_data(allocated); size_t uncompressed_len = 0, raw_data_len = 0; do { strm.avail_out = allocated - uncompressed_len; strm.next_out = uncompressed_data.data() + uncompressed_len; ret = inflate(&strm, Z_NO_FLUSH); if (ret < 0) { printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n", strm.msg, chunk_offset); break; } uncompressed_len = allocated - strm.avail_out; if (strm.avail_out == 0) { allocated *= 2; uncompressed_data.resize(allocated); } } while (ret != Z_STREAM_END); raw_data_len = sz - strm.avail_in - pos; inflateEnd(&strm); if (ret < 0) { continue; } // The footer contains the size of the uncompressed data. Double-check to make sure that it // matches the size of the data we got when we actually did the decompression. size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4; if (sz - footer_index < 4) { printf("Warning: invalid footer position; treating as a nomal chunk\n"); continue; } size_t footer_size = get_unaligned(file_content_.data() + footer_index); if (footer_size != uncompressed_len) { printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n", footer_size, uncompressed_len); continue; } ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len); uncompressed_data.resize(uncompressed_len); body.SetUncompressedData(std::move(uncompressed_data)); chunks_.push_back(std::move(body)); pos += raw_data_len; // create a normal chunk for the footer chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN); pos += GZIP_FOOTER_LEN; } else { // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect // the number of chunks to be small (5 for typical boot and recovery images). // Scan forward until we find a gzip header. size_t data_len = 0; while (data_len + pos < sz) { if (data_len + pos + 4 <= sz && get_unaligned(file_content_.data() + pos + data_len) == 0x00088b1f) { break; } data_len++; } chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len); pos += data_len; } } return true; } bool ImageModeImage::SetBonusData(const std::vector& bonus_data) { CHECK(is_source_); if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) { printf("Failed to set bonus data\n"); DumpChunks(); return false; } printf(" using %zu bytes of bonus data\n", bonus_data.size()); return true; } // In Image Mode, verify that the source and target images have the same chunk structure (ie, the // same sequence of deflate and normal chunks). bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) { // In image mode, merge the gzip header and footer in with any adjacent normal chunks. tgt_image->MergeAdjacentNormalChunks(); src_image->MergeAdjacentNormalChunks(); if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { printf("source and target don't have same number of chunks!\n"); tgt_image->DumpChunks(); src_image->DumpChunks(); return false; } for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) { printf("source and target don't have same chunk structure! (chunk %zu)\n", i); tgt_image->DumpChunks(); src_image->DumpChunks(); return false; } } for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) { auto& tgt_chunk = (*tgt_image)[i]; auto& src_chunk = (*src_image)[i]; if (tgt_chunk.GetType() != CHUNK_DEFLATE) { continue; } // If two deflate chunks are identical treat them as normal chunks. if (tgt_chunk == src_chunk) { tgt_chunk.ChangeDeflateChunkToNormal(); src_chunk.ChangeDeflateChunkToNormal(); } else if (!tgt_chunk.ReconstructDeflateChunk()) { // We cannot recompress the data and get exactly the same bits as are in the input target // image, fall back to normal printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i, tgt_chunk.GetEntryName().c_str()); tgt_chunk.ChangeDeflateChunkToNormal(); src_chunk.ChangeDeflateChunkToNormal(); } } // For images, we need to maintain the parallel structure of the chunk lists, so do the merging // in both the source and target lists. tgt_image->MergeAdjacentNormalChunks(); src_image->MergeAdjacentNormalChunks(); if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) { // This shouldn't happen. printf("merging normal chunks went awry\n"); return false; } return true; } // In image mode, generate patches against the given source chunks and bonus_data; write the // result to |patch_name|. bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image, const ImageModeImage& src_image, const std::string& patch_name) { printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks()); std::vector patch_chunks; patch_chunks.reserve(tgt_image.NumOfChunks()); for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) { const auto& tgt_chunk = tgt_image[i]; const auto& src_chunk = src_image[i]; if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) { patch_chunks.emplace_back(tgt_chunk); continue; } std::vector patch_data; if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) { printf("Failed to generate patch for target chunk %zu: ", i); return false; } printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(), tgt_chunk.GetRawDataLength()); if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) { patch_chunks.emplace_back(tgt_chunk); } else { patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data)); } } CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size()); android::base::unique_fd patch_fd( open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR)); if (patch_fd == -1) { printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno)); return false; } return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd); } int imgdiff(int argc, const char** argv) { bool zip_mode = false; std::vector bonus_data; int opt; optind = 1; // Reset the getopt state so that we can call it multiple times for test. while ((opt = getopt(argc, const_cast(argv), "zb:")) != -1) { switch (opt) { case 'z': zip_mode = true; break; case 'b': { android::base::unique_fd fd(open(optarg, O_RDONLY)); if (fd == -1) { printf("failed to open bonus file %s: %s\n", optarg, strerror(errno)); return 1; } struct stat st; if (fstat(fd, &st) != 0) { printf("failed to stat bonus file %s: %s\n", optarg, strerror(errno)); return 1; } size_t bonus_size = st.st_size; bonus_data.resize(bonus_size); if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) { printf("failed to read bonus file %s: %s\n", optarg, strerror(errno)); return 1; } break; } default: printf("unexpected opt: %s\n", optarg); return 2; } } if (argc - optind != 3) { printf("usage: %s [-z] [-b ] \n", argv[0]); return 2; } if (zip_mode) { ZipModeImage src_image(true); ZipModeImage tgt_image(false); if (!src_image.Initialize(argv[optind])) { return 1; } if (!tgt_image.Initialize(argv[optind + 1])) { return 1; } if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { return 1; } // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of // deflate chunks). if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) { return 1; } } else { ImageModeImage src_image(true); ImageModeImage tgt_image(false); if (!src_image.Initialize(argv[optind])) { return 1; } if (!tgt_image.Initialize(argv[optind + 1])) { return 1; } if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) { return 1; } if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) { return 1; } if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) { return 1; } } return 0; }