/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // See imgdiff.cpp in this directory for a description of the patch file // format. #include #include #include #include #include #include #include #include #include #include #include #include #include #include static inline int64_t Read8(const void *address) { return android::base::get_unaligned(address); } static inline int32_t Read4(const void *address) { return android::base::get_unaligned(address); } int ApplyImagePatch(const unsigned char* old_data, size_t old_size, const unsigned char* patch_data, size_t patch_size, SinkFn sink) { Value patch(VAL_BLOB, std::string(reinterpret_cast(patch_data), patch_size)); return ApplyImagePatch(old_data, old_size, &patch, sink, nullptr, nullptr); } /* * Apply the patch given in 'patch_filename' to the source data given * by (old_data, old_size). Write the patched output to the 'output' * file, and update the SHA context with the output data as well. * Return 0 on success. */ int ApplyImagePatch(const unsigned char* old_data, size_t old_size, const Value* patch, SinkFn sink, SHA_CTX* ctx, const Value* bonus_data) { if (patch->data.size() < 12) { printf("patch too short to contain header\n"); return -1; } // IMGDIFF2 uses CHUNK_NORMAL, CHUNK_DEFLATE, and CHUNK_RAW. // (IMGDIFF1, which is no longer supported, used CHUNK_NORMAL and // CHUNK_GZIP.) size_t pos = 12; const char* header = &patch->data[0]; if (memcmp(header, "IMGDIFF2", 8) != 0) { printf("corrupt patch file header (magic number)\n"); return -1; } int num_chunks = Read4(header + 8); for (int i = 0; i < num_chunks; ++i) { // each chunk's header record starts with 4 bytes. if (pos + 4 > patch->data.size()) { printf("failed to read chunk %d record\n", i); return -1; } int type = Read4(&patch->data[pos]); pos += 4; if (type == CHUNK_NORMAL) { const char* normal_header = &patch->data[pos]; pos += 24; if (pos > patch->data.size()) { printf("failed to read chunk %d normal header data\n", i); return -1; } size_t src_start = static_cast(Read8(normal_header)); size_t src_len = static_cast(Read8(normal_header + 8)); size_t patch_offset = static_cast(Read8(normal_header + 16)); if (src_start + src_len > old_size) { printf("source data too short\n"); return -1; } if (ApplyBSDiffPatch(old_data + src_start, src_len, patch, patch_offset, sink, ctx) != 0) { printf("Failed to apply bsdiff patch.\n"); return -1; } } else if (type == CHUNK_RAW) { const char* raw_header = &patch->data[pos]; pos += 4; if (pos > patch->data.size()) { printf("failed to read chunk %d raw header data\n", i); return -1; } size_t data_len = static_cast(Read4(raw_header)); if (pos + data_len > patch->data.size()) { printf("failed to read chunk %d raw data\n", i); return -1; } if (ctx) SHA1_Update(ctx, &patch->data[pos], data_len); if (sink(reinterpret_cast(&patch->data[pos]), data_len) != data_len) { printf("failed to write chunk %d raw data\n", i); return -1; } pos += data_len; } else if (type == CHUNK_DEFLATE) { // deflate chunks have an additional 60 bytes in their chunk header. const char* deflate_header = &patch->data[pos]; pos += 60; if (pos > patch->data.size()) { printf("failed to read chunk %d deflate header data\n", i); return -1; } size_t src_start = static_cast(Read8(deflate_header)); size_t src_len = static_cast(Read8(deflate_header + 8)); size_t patch_offset = static_cast(Read8(deflate_header + 16)); size_t expanded_len = static_cast(Read8(deflate_header + 24)); size_t target_len = static_cast(Read8(deflate_header + 32)); int level = Read4(deflate_header + 40); int method = Read4(deflate_header + 44); int windowBits = Read4(deflate_header + 48); int memLevel = Read4(deflate_header + 52); int strategy = Read4(deflate_header + 56); if (src_start + src_len > old_size) { printf("source data too short\n"); return -1; } // Decompress the source data; the chunk header tells us exactly // how big we expect it to be when decompressed. // Note: expanded_len will include the bonus data size if // the patch was constructed with bonus data. The // deflation will come up 'bonus_size' bytes short; these // must be appended from the bonus_data value. size_t bonus_size = (i == 1 && bonus_data != NULL) ? bonus_data->data.size() : 0; std::vector expanded_source(expanded_len); // inflate() doesn't like strm.next_out being a nullptr even with // avail_out being zero (Z_STREAM_ERROR). if (expanded_len != 0) { z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = src_len; strm.next_in = old_data + src_start; strm.avail_out = expanded_len; strm.next_out = expanded_source.data(); int ret = inflateInit2(&strm, -15); if (ret != Z_OK) { printf("failed to init source inflation: %d\n", ret); return -1; } // Because we've provided enough room to accommodate the output // data, we expect one call to inflate() to suffice. ret = inflate(&strm, Z_SYNC_FLUSH); if (ret != Z_STREAM_END) { printf("source inflation returned %d\n", ret); return -1; } // We should have filled the output buffer exactly, except // for the bonus_size. if (strm.avail_out != bonus_size) { printf("source inflation short by %zu bytes\n", strm.avail_out - bonus_size); return -1; } inflateEnd(&strm); if (bonus_size) { memcpy(expanded_source.data() + (expanded_len - bonus_size), &bonus_data->data[0], bonus_size); } } // Next, apply the bsdiff patch (in memory) to the uncompressed data. std::vector uncompressed_target_data; // TODO: replace the custom sink function passed into ApplyBSDiffPatch so that it wraps the // given sink function to stream output to save memory. if (ApplyBSDiffPatch(expanded_source.data(), expanded_len, patch, patch_offset, [&uncompressed_target_data](const uint8_t* data, size_t len) { uncompressed_target_data.insert(uncompressed_target_data.end(), data, data + len); return len; }, nullptr) != 0) { return -1; } if (uncompressed_target_data.size() != target_len) { printf("expected target len to be %zu, but it's %zu\n", target_len, uncompressed_target_data.size()); return -1; } // Now compress the target data and append it to the output. // we're done with the expanded_source data buffer, so we'll // reuse that memory to receive the output of deflate. if (expanded_source.size() < 32768U) { expanded_source.resize(32768U); } { std::vector& temp_data = expanded_source; // now the deflate stream z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.avail_in = uncompressed_target_data.size(); strm.next_in = uncompressed_target_data.data(); int ret = deflateInit2(&strm, level, method, windowBits, memLevel, strategy); if (ret != Z_OK) { printf("failed to init uncompressed data deflation: %d\n", ret); return -1; } do { strm.avail_out = temp_data.size(); strm.next_out = temp_data.data(); ret = deflate(&strm, Z_FINISH); size_t have = temp_data.size() - strm.avail_out; if (sink(temp_data.data(), have) != have) { printf("failed to write %zd compressed bytes to output\n", have); return -1; } if (ctx) SHA1_Update(ctx, temp_data.data(), have); } while (ret != Z_STREAM_END); deflateEnd(&strm); } } else { printf("patch chunk %d is unknown type %d\n", i, type); return -1; } } return 0; }