/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include struct boot_control_private_t { // The base struct needs to be first in the list. boot_control_module_t base; // Whether this struct was initialized with data from the bootloader message // that doesn't change until next reboot. bool initialized; // The path to the misc_device as reported in the fstab. const char* misc_device; // The number of slots present on the device. unsigned int num_slots; // The slot where we are running from. unsigned int current_slot; }; namespace { // The number of boot attempts that should be made from a new slot before // rolling back to the previous slot. constexpr unsigned int kDefaultBootAttempts = 7; static_assert(kDefaultBootAttempts < 8, "tries_remaining field only has 3 bits"); constexpr unsigned int kMaxNumSlots = sizeof(bootloader_control::slot_info) / sizeof(bootloader_control::slot_info[0]); constexpr const char* kSlotSuffixes[kMaxNumSlots] = { "_a", "_b", "_c", "_d" }; constexpr off_t kBootloaderControlOffset = offsetof(bootloader_message_ab, slot_suffix); static uint32_t CRC32(const uint8_t* buf, size_t size) { static uint32_t crc_table[256]; // Compute the CRC-32 table only once. if (!crc_table[1]) { for (uint32_t i = 0; i < 256; ++i) { uint32_t crc = i; for (uint32_t j = 0; j < 8; ++j) { uint32_t mask = -(crc & 1); crc = (crc >> 1) ^ (0xEDB88320 & mask); } crc_table[i] = crc; } } uint32_t ret = -1; for (size_t i = 0; i < size; ++i) { ret = (ret >> 8) ^ crc_table[(ret ^ buf[i]) & 0xFF]; } return ~ret; } // Return the little-endian representation of the CRC-32 of the first fields // in |boot_ctrl| up to the crc32_le field. uint32_t BootloaderControlLECRC(const bootloader_control* boot_ctrl) { return htole32( CRC32(reinterpret_cast(boot_ctrl), offsetof(bootloader_control, crc32_le))); } bool LoadBootloaderControl(const char* misc_device, bootloader_control* buffer) { android::base::unique_fd fd(open(misc_device, O_RDONLY)); if (fd.get() == -1) { PLOG(ERROR) << "failed to open " << misc_device; return false; } if (lseek(fd, kBootloaderControlOffset, SEEK_SET) != kBootloaderControlOffset) { PLOG(ERROR) << "failed to lseek " << misc_device; return false; } if (!android::base::ReadFully(fd.get(), buffer, sizeof(bootloader_control))) { PLOG(ERROR) << "failed to read " << misc_device; return false; } return true; } bool UpdateAndSaveBootloaderControl(const char* misc_device, bootloader_control* buffer) { buffer->crc32_le = BootloaderControlLECRC(buffer); android::base::unique_fd fd(open(misc_device, O_WRONLY | O_SYNC)); if (fd.get() == -1) { PLOG(ERROR) << "failed to open " << misc_device; return false; } if (lseek(fd.get(), kBootloaderControlOffset, SEEK_SET) != kBootloaderControlOffset) { PLOG(ERROR) << "failed to lseek " << misc_device; return false; } if (!android::base::WriteFully(fd.get(), buffer, sizeof(bootloader_control))) { PLOG(ERROR) << "failed to write " << misc_device; return false; } return true; } void InitDefaultBootloaderControl(const boot_control_private_t* module, bootloader_control* boot_ctrl) { memset(boot_ctrl, 0, sizeof(*boot_ctrl)); if (module->current_slot < kMaxNumSlots) { strlcpy(boot_ctrl->slot_suffix, kSlotSuffixes[module->current_slot], sizeof(boot_ctrl->slot_suffix)); } boot_ctrl->magic = BOOT_CTRL_MAGIC; boot_ctrl->version = BOOT_CTRL_VERSION; // Figure out the number of slots by checking if the partitions exist, // otherwise assume the maximum supported by the header. boot_ctrl->nb_slot = kMaxNumSlots; std::string base_path = module->misc_device; size_t last_path_sep = base_path.rfind('/'); if (last_path_sep != std::string::npos) { // We test the existence of the "boot" partition on each possible slot, // which is a partition required by Android Bootloader Requirements. base_path = base_path.substr(0, last_path_sep + 1) + "boot"; int last_existing_slot = -1; int first_missing_slot = -1; for (unsigned int slot = 0; slot < kMaxNumSlots; ++slot) { std::string partition_path = base_path + kSlotSuffixes[slot]; struct stat part_stat; int err = stat(partition_path.c_str(), &part_stat); if (!err) { last_existing_slot = slot; LOG(INFO) << "Found slot: " << kSlotSuffixes[slot]; } else if (err < 0 && errno == ENOENT && first_missing_slot == -1) { first_missing_slot = slot; } } // We only declare that we found the actual number of slots if we found all // the boot partitions up to the number of slots, and no boot partition // after that. Not finding any of the boot partitions implies a problem so // we just leave the number of slots in the maximum value. if ((last_existing_slot != -1 && last_existing_slot + 1 == first_missing_slot) || (first_missing_slot == -1 && last_existing_slot + 1 == kMaxNumSlots)) { boot_ctrl->nb_slot = last_existing_slot + 1; LOG(INFO) << "Found a system with " << last_existing_slot + 1 << " slots."; } } for (unsigned int slot = 0; slot < kMaxNumSlots; ++slot) { slot_metadata entry = {}; if (slot < boot_ctrl->nb_slot) { entry.priority = 7; entry.tries_remaining = kDefaultBootAttempts; entry.successful_boot = 0; } else { entry.priority = 0; // Unbootable } // When the boot_control stored on disk is invalid, we assume that the // current slot is successful. The bootloader should repair this situation // before booting and write a valid boot_control slot, so if we reach this // stage it means that the misc partition was corrupted since boot. if (module->current_slot == slot) { entry.successful_boot = 1; } boot_ctrl->slot_info[slot] = entry; } boot_ctrl->recovery_tries_remaining = 0; boot_ctrl->crc32_le = BootloaderControlLECRC(boot_ctrl); } // Return the index of the slot suffix passed or -1 if not a valid slot suffix. int SlotSuffixToIndex(const char* suffix) { for (unsigned int slot = 0; slot < kMaxNumSlots; ++slot) { if (!strcmp(kSlotSuffixes[slot], suffix)) return slot; } return -1; } // Initialize the boot_control_private struct with the information from // the bootloader_message buffer stored in |boot_ctrl|. Returns whether the // initialization succeeded. bool BootControl_lazyInitialization(boot_control_private_t* module) { if (module->initialized) return true; // Initialize the current_slot from the read-only property. If the property // was not set (from either the command line or the device tree), we can later // initialize it from the bootloader_control struct. std::string suffix_prop = android::base::GetProperty("ro.boot.slot_suffix", ""); module->current_slot = SlotSuffixToIndex(suffix_prop.c_str()); std::string err; std::string device = get_bootloader_message_blk_device(&err); if (device.empty()) return false; bootloader_control boot_ctrl; if (!LoadBootloaderControl(device.c_str(), &boot_ctrl)) return false; // Note that since there isn't a module unload function this memory is leaked. module->misc_device = strdup(device.c_str()); module->initialized = true; // Validate the loaded data, otherwise we will destroy it and re-initialize it // with the current information. uint32_t computed_crc32 = BootloaderControlLECRC(&boot_ctrl); if (boot_ctrl.crc32_le != computed_crc32) { LOG(WARNING) << "Invalid boot control found, expected CRC-32 0x" << std::hex << computed_crc32 << " but found 0x" << std::hex << boot_ctrl.crc32_le << ". Re-initializing."; InitDefaultBootloaderControl(module, &boot_ctrl); UpdateAndSaveBootloaderControl(device.c_str(), &boot_ctrl); } module->num_slots = boot_ctrl.nb_slot; return true; } void BootControl_init(boot_control_module_t* module) { BootControl_lazyInitialization(reinterpret_cast(module)); } unsigned int BootControl_getNumberSlots(boot_control_module_t* module) { return reinterpret_cast(module)->num_slots; } unsigned int BootControl_getCurrentSlot(boot_control_module_t* module) { return reinterpret_cast(module)->current_slot; } int BootControl_markBootSuccessful(boot_control_module_t* module) { boot_control_private_t* const bootctrl_module = reinterpret_cast(module); bootloader_control bootctrl; if (!LoadBootloaderControl(bootctrl_module->misc_device, &bootctrl)) return -1; bootctrl.slot_info[bootctrl_module->current_slot].successful_boot = 1; // tries_remaining == 0 means that the slot is not bootable anymore, make // sure we mark the current slot as bootable if it succeeds in the last // attempt. bootctrl.slot_info[bootctrl_module->current_slot].tries_remaining = 1; if (!UpdateAndSaveBootloaderControl(bootctrl_module->misc_device, &bootctrl)) return -1; return 0; } int BootControl_setActiveBootSlot(boot_control_module_t* module, unsigned int slot) { boot_control_private_t* const bootctrl_module = reinterpret_cast(module); if (slot >= kMaxNumSlots || slot >= bootctrl_module->num_slots) { // Invalid slot number. return -1; } bootloader_control bootctrl; if (!LoadBootloaderControl(bootctrl_module->misc_device, &bootctrl)) return -1; // Set every other slot with a lower priority than the new "active" slot. const unsigned int kActivePriority = 15; const unsigned int kActiveTries = 6; for (unsigned int i = 0; i < bootctrl_module->num_slots; ++i) { if (i != slot) { if (bootctrl.slot_info[i].priority >= kActivePriority) bootctrl.slot_info[i].priority = kActivePriority - 1; } } // Note that setting a slot as active doesn't change the successful bit. // The successful bit will only be changed by setSlotAsUnbootable(). bootctrl.slot_info[slot].priority = kActivePriority; bootctrl.slot_info[slot].tries_remaining = kActiveTries; // Setting the current slot as active is a way to revert the operation that // set *another* slot as active at the end of an updater. This is commonly // used to cancel the pending update. We should only reset the verity_corrpted // bit when attempting a new slot, otherwise the verity bit on the current // slot would be flip. if (slot != bootctrl_module->current_slot) bootctrl.slot_info[slot].verity_corrupted = 0; if (!UpdateAndSaveBootloaderControl(bootctrl_module->misc_device, &bootctrl)) return -1; return 0; } int BootControl_setSlotAsUnbootable(struct boot_control_module* module, unsigned int slot) { boot_control_private_t* const bootctrl_module = reinterpret_cast(module); if (slot >= kMaxNumSlots || slot >= bootctrl_module->num_slots) { // Invalid slot number. return -1; } bootloader_control bootctrl; if (!LoadBootloaderControl(bootctrl_module->misc_device, &bootctrl)) return -1; // The only way to mark a slot as unbootable, regardless of the priority is to // set the tries_remaining to 0. bootctrl.slot_info[slot].successful_boot = 0; bootctrl.slot_info[slot].tries_remaining = 0; if (!UpdateAndSaveBootloaderControl(bootctrl_module->misc_device, &bootctrl)) return -1; return 0; } int BootControl_isSlotBootable(struct boot_control_module* module, unsigned int slot) { boot_control_private_t* const bootctrl_module = reinterpret_cast(module); if (slot >= kMaxNumSlots || slot >= bootctrl_module->num_slots) { // Invalid slot number. return -1; } bootloader_control bootctrl; if (!LoadBootloaderControl(bootctrl_module->misc_device, &bootctrl)) return -1; return bootctrl.slot_info[slot].tries_remaining; } int BootControl_isSlotMarkedSuccessful(struct boot_control_module* module, unsigned int slot) { boot_control_private_t* const bootctrl_module = reinterpret_cast(module); if (slot >= kMaxNumSlots || slot >= bootctrl_module->num_slots) { // Invalid slot number. return -1; } bootloader_control bootctrl; if (!LoadBootloaderControl(bootctrl_module->misc_device, &bootctrl)) return -1; return bootctrl.slot_info[slot].successful_boot && bootctrl.slot_info[slot].tries_remaining; } const char* BootControl_getSuffix(boot_control_module_t* module, unsigned int slot) { if (slot >= kMaxNumSlots || slot >= reinterpret_cast(module)->num_slots) { return NULL; } return kSlotSuffixes[slot]; } static int BootControl_open(const hw_module_t* module __unused, const char* id __unused, hw_device_t** device __unused) { /* Nothing to do currently. */ return 0; } struct hw_module_methods_t BootControl_methods = { .open = BootControl_open, }; } // namespace boot_control_private_t HAL_MODULE_INFO_SYM = { .base = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = BOOT_CONTROL_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = BOOT_CONTROL_HARDWARE_MODULE_ID, .name = "AOSP reference bootctrl HAL", .author = "The Android Open Source Project", .methods = &BootControl_methods, }, .init = BootControl_init, .getNumberSlots = BootControl_getNumberSlots, .getCurrentSlot = BootControl_getCurrentSlot, .markBootSuccessful = BootControl_markBootSuccessful, .setActiveBootSlot = BootControl_setActiveBootSlot, .setSlotAsUnbootable = BootControl_setSlotAsUnbootable, .isSlotBootable = BootControl_isSlotBootable, .getSuffix = BootControl_getSuffix, .isSlotMarkedSuccessful = BootControl_isSlotMarkedSuccessful, }, .initialized = false, .misc_device = nullptr, .num_slots = 0, .current_slot = 0, };