/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* TO DO: * 1. Perhaps keep several copies of the encrypted key, in case something * goes horribly wrong? * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include //#include #include //#include #include #include //#include #include "cryptfs.h" //#include "secontext.h" #define LOG_TAG "Cryptfs" //#include "cutils/log.h" #include "cutils/properties.h" //#include "cutils/android_reboot.h" //#include "hardware_legacy/power.h" //#include //#include "ScryptParameters.h" //#include "VolumeManager.h" //#include "VoldUtil.h" //#include "Ext4Crypt.h" //#include "f2fs_sparseblock.h" //#include "EncryptInplace.h" //#include "Process.h" #if TW_KEYMASTER_MAX_API == 3 #include "../ext4crypt/Keymaster3.h" #endif #if TW_KEYMASTER_MAX_API == 4 #include "../ext4crypt/Keymaster4.h" #endif #if TW_KEYMASTER_MAX_API == 0 #include #else // so far, all trees that have keymaster >= 1 have keymaster 1 support #include #include #include #include #include #endif //#include "android-base/properties.h" //#include #ifdef CONFIG_HW_DISK_ENCRYPTION #include #endif extern "C" { #include } #include #include #define ALOGE(...) fprintf(stdout, "E:" __VA_ARGS__) #define SLOGE(...) fprintf(stdout, "E:" __VA_ARGS__) #define SLOGW(...) fprintf(stdout, "W:" __VA_ARGS__) #define SLOGI(...) fprintf(stdout, "I:" __VA_ARGS__) #define SLOGD(...) fprintf(stdout, "D:" __VA_ARGS__) #define UNUSED __attribute__((unused)) #define DM_CRYPT_BUF_SIZE 4096 #define HASH_COUNT 2000 #ifndef min /* already defined by windows.h */ #define min(a, b) ((a) < (b) ? (a) : (b)) #endif constexpr size_t INTERMEDIATE_KEY_LEN_BYTES = 16; constexpr size_t INTERMEDIATE_IV_LEN_BYTES = 16; constexpr size_t INTERMEDIATE_BUF_SIZE = (INTERMEDIATE_KEY_LEN_BYTES + INTERMEDIATE_IV_LEN_BYTES); // SCRYPT_LEN is used by struct crypt_mnt_ftr for its intermediate key. static_assert(INTERMEDIATE_BUF_SIZE == SCRYPT_LEN, "Mismatch of intermediate key sizes"); #define KEY_IN_FOOTER "footer" #define DEFAULT_HEX_PASSWORD "64656661756c745f70617373776f7264" #define DEFAULT_PASSWORD "default_password" #define CRYPTO_BLOCK_DEVICE "userdata" #define TABLE_LOAD_RETRIES 10 #define RSA_KEY_SIZE 2048 #define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8) #define RSA_EXPONENT 0x10001 #define KEYMASTER_CRYPTFS_RATE_LIMIT 1 // Maximum one try per second #define KEY_LEN_BYTES 16 #define RETRY_MOUNT_ATTEMPTS 10 #define RETRY_MOUNT_DELAY_SECONDS 1 #define CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE (1) static unsigned char saved_master_key[MAX_KEY_LEN]; static char *saved_mount_point; static int master_key_saved = 0; static struct crypt_persist_data *persist_data = NULL; static int previous_type; static char key_fname[PROPERTY_VALUE_MAX] = ""; static char real_blkdev[PROPERTY_VALUE_MAX] = ""; static char file_system[PROPERTY_VALUE_MAX] = ""; static void get_blkdev_size(int fd, unsigned long *nr_sec) { if ( (ioctl(fd, BLKGETSIZE, nr_sec)) == -1) { *nr_sec = 0; } } #if TW_KEYMASTER_MAX_API == 0 static int keymaster_init(keymaster_device_t **keymaster_dev) { int rc; const hw_module_t* mod; rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod); if (rc) { printf("could not find any keystore module\n"); goto out; } rc = keymaster_open(mod, keymaster_dev); if (rc) { printf("could not open keymaster device in %s (%s)\n", KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc)); goto out; } return 0; out: *keymaster_dev = NULL; return rc; } #else //TW_KEYMASTER_MAX_API == 0 static int keymaster_init(keymaster0_device_t **keymaster0_dev, keymaster1_device_t **keymaster1_dev) { int rc; const hw_module_t* mod; rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod); if (rc) { printf("could not find any keystore module\n"); goto err; } printf("keymaster module name is %s\n", mod->name); printf("keymaster version is %d\n", mod->module_api_version); *keymaster0_dev = NULL; *keymaster1_dev = NULL; if (mod->module_api_version == KEYMASTER_MODULE_API_VERSION_1_0) { printf("Found keymaster1 module, using keymaster1 API.\n"); rc = keymaster1_open(mod, keymaster1_dev); } else { printf("Found keymaster0 module, using keymaster0 API.\n"); rc = keymaster0_open(mod, keymaster0_dev); } if (rc) { printf("could not open keymaster device in %s (%s)\n", KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc)); goto err; } return 0; err: *keymaster0_dev = NULL; *keymaster1_dev = NULL; return rc; } #endif //TW_KEYMASTER_MAX_API == 0 #ifdef CONFIG_HW_DISK_ENCRYPTION static int scrypt_keymaster(const char *passwd, const unsigned char *salt, unsigned char *ikey, void *params); static void convert_key_to_hex_ascii(const unsigned char *master_key, unsigned int keysize, char *master_key_ascii); static int test_mount_hw_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, const char *passwd, const char *mount_point, const char *label); int cryptfs_check_passwd_hw(char *passwd); int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password, unsigned char* master_key); static void convert_key_to_hex_ascii_for_upgrade(const unsigned char *master_key, unsigned int keysize, char *master_key_ascii) { unsigned int i, a; unsigned char nibble; for (i = 0, a = 0; i < keysize; i++, a += 2) { /* For each byte, write out two ascii hex digits */ nibble = (master_key[i] >> 4) & 0xf; master_key_ascii[a] = nibble + (nibble > 9 ? 0x57 : 0x30); nibble = master_key[i] & 0xf; master_key_ascii[a + 1] = nibble + (nibble > 9 ? 0x57 : 0x30); } /* Add the null termination */ master_key_ascii[a] = '\0'; } static int get_keymaster_hw_fde_passwd(const char* passwd, unsigned char* newpw, unsigned char* salt, const struct crypt_mnt_ftr *ftr) { /* if newpw updated, return 0 * if newpw not updated return -1 */ int rc = -1; if (should_use_keymaster()) { if (scrypt_keymaster(passwd, salt, newpw, (void*)ftr)) { SLOGE("scrypt failed"); } else { rc = 0; } } return rc; } static int verify_hw_fde_passwd(const char *passwd, struct crypt_mnt_ftr* crypt_ftr) { unsigned char newpw[32] = {0}; int key_index; SLOGI("starting verify_hw_fde_passwd\n"); if (get_keymaster_hw_fde_passwd(passwd, newpw, crypt_ftr->salt, crypt_ftr)) key_index = set_hw_device_encryption_key(passwd, (char*) crypt_ftr->crypto_type_name); else key_index = set_hw_device_encryption_key((const char*)newpw, (char*) crypt_ftr->crypto_type_name); return key_index; } static int verify_and_update_hw_fde_passwd(const char *passwd, struct crypt_mnt_ftr* crypt_ftr) { char* new_passwd = NULL; unsigned char newpw[32] = {0}; int key_index = -1; int passwd_updated = -1; int ascii_passwd_updated = (crypt_ftr->flags & CRYPT_ASCII_PASSWORD_UPDATED); key_index = verify_hw_fde_passwd(passwd, crypt_ftr); if (key_index < 0) { ++crypt_ftr->failed_decrypt_count; if (ascii_passwd_updated) { SLOGI("Ascii password was updated"); } else { /* Code in else part would execute only once: * When device is upgraded from L->M release. * Once upgraded, code flow should never come here. * L release passed actual password in hex, so try with hex * Each nible of passwd was encoded as a byte, so allocate memory * twice of password len plus one more byte for null termination */ if (crypt_ftr->crypt_type == CRYPT_TYPE_DEFAULT) { new_passwd = (char*)malloc(strlen(DEFAULT_HEX_PASSWORD) + 1); if (new_passwd == NULL) { SLOGE("System out of memory. Password verification incomplete"); goto out; } strlcpy(new_passwd, DEFAULT_HEX_PASSWORD, strlen(DEFAULT_HEX_PASSWORD) + 1); } else { new_passwd = (char*)malloc(strlen(passwd) * 2 + 1); if (new_passwd == NULL) { SLOGE("System out of memory. Password verification incomplete"); goto out; } convert_key_to_hex_ascii_for_upgrade((const unsigned char*)passwd, strlen(passwd), new_passwd); } key_index = set_hw_device_encryption_key((const char*)new_passwd, (char*) crypt_ftr->crypto_type_name); if (key_index >=0) { crypt_ftr->failed_decrypt_count = 0; SLOGI("Hex password verified...will try to update with Ascii value"); /* Before updating password, tie that with keymaster to tie with ROT */ if (get_keymaster_hw_fde_passwd(passwd, newpw, crypt_ftr->salt, crypt_ftr)) { passwd_updated = update_hw_device_encryption_key(new_passwd, passwd, (char*)crypt_ftr->crypto_type_name); } else { passwd_updated = update_hw_device_encryption_key(new_passwd, (const char*)newpw, (char*)crypt_ftr->crypto_type_name); } if (passwd_updated >= 0) { crypt_ftr->flags |= CRYPT_ASCII_PASSWORD_UPDATED; SLOGI("Ascii password recorded and updated"); } else { SLOGI("Passwd verified, could not update...Will try next time"); } } else { ++crypt_ftr->failed_decrypt_count; } free(new_passwd); } } else { if (!ascii_passwd_updated) crypt_ftr->flags |= CRYPT_ASCII_PASSWORD_UPDATED; } out: // update footer before leaving //put_crypt_ftr_and_key(crypt_ftr); return key_index; } #endif void set_partition_data(const char* block_device, const char* key_location, const char* fs) { strcpy(key_fname, key_location); strcpy(real_blkdev, block_device); strcpy(file_system, fs); } /* This signs the given object using the keymaster key. */ static int keymaster_sign_object(struct crypt_mnt_ftr *ftr, const unsigned char *object, const size_t object_size, unsigned char **signature, size_t *signature_size) { SLOGI("TWRP keymaster max API: %i\n", TW_KEYMASTER_MAX_API); unsigned char to_sign[RSA_KEY_SIZE_BYTES]; size_t to_sign_size = sizeof(to_sign); memset(to_sign, 0, RSA_KEY_SIZE_BYTES); // To sign a message with RSA, the message must satisfy two // constraints: // // 1. The message, when interpreted as a big-endian numeric value, must // be strictly less than the public modulus of the RSA key. Note // that because the most significant bit of the public modulus is // guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit // key), an n-bit message with most significant bit 0 always // satisfies this requirement. // // 2. The message must have the same length in bits as the public // modulus of the RSA key. This requirement isn't mathematically // necessary, but is necessary to ensure consistency in // implementations. switch (ftr->kdf_type) { case KDF_SCRYPT_KEYMASTER_UNPADDED: // This is broken: It produces a message which is shorter than // the public modulus, failing criterion 2. memcpy(to_sign, object, object_size); to_sign_size = object_size; SLOGI("Signing unpadded object\n"); break; case KDF_SCRYPT_KEYMASTER_BADLY_PADDED: // This is broken: Since the value of object is uniformly // distributed, it produces a message that is larger than the // public modulus with probability 0.25. memcpy(to_sign, object, min(RSA_KEY_SIZE_BYTES, object_size)); SLOGI("Signing end-padded object\n"); break; case KDF_SCRYPT_KEYMASTER: // This ensures the most significant byte of the signed message // is zero. We could have zero-padded to the left instead, but // this approach is slightly more robust against changes in // object size. However, it's still broken (but not unusably // so) because we really should be using a proper deterministic // RSA padding function, such as PKCS1. memcpy(to_sign + 1, object, min((size_t)RSA_KEY_SIZE_BYTES - 1, object_size)); SLOGI("Signing safely-padded object"); break; default: SLOGE("Unknown KDF type %d", ftr->kdf_type); return -1; } int rc = -1; #if TW_KEYMASTER_MAX_API >= 1 keymaster0_device_t *keymaster0_dev = 0; keymaster1_device_t *keymaster1_dev = 0; if (keymaster_init(&keymaster0_dev, &keymaster1_dev)) { #else keymaster_device_t *keymaster0_dev = 0; if (keymaster_init(&keymaster0_dev)) { #endif printf("Failed to init keymaster 0/1\n"); goto initfail; } if (keymaster0_dev) { keymaster_rsa_sign_params_t params; params.digest_type = DIGEST_NONE; params.padding_type = PADDING_NONE; rc = keymaster0_dev->sign_data(keymaster0_dev, ¶ms, ftr->keymaster_blob, ftr->keymaster_blob_size, to_sign, to_sign_size, signature, signature_size); goto out; } #if TW_KEYMASTER_MAX_API >= 1 else if (keymaster1_dev) { keymaster_key_blob_t key = { ftr->keymaster_blob, ftr->keymaster_blob_size }; keymaster_key_param_t params[] = { keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE), keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE), }; keymaster_key_param_set_t param_set = { params, sizeof(params)/sizeof(*params) }; keymaster_operation_handle_t op_handle; keymaster_error_t error = keymaster1_dev->begin(keymaster1_dev, KM_PURPOSE_SIGN, &key, ¶m_set, NULL /* out_params */, &op_handle); if (error == KM_ERROR_KEY_RATE_LIMIT_EXCEEDED) { // Key usage has been rate-limited. Wait a bit and try again. sleep(KEYMASTER_CRYPTFS_RATE_LIMIT); error = keymaster1_dev->begin(keymaster1_dev, KM_PURPOSE_SIGN, &key, ¶m_set, NULL /* out_params */, &op_handle); } if (error != KM_ERROR_OK) { printf("Error starting keymaster signature transaction: %d\n", error); rc = -1; goto out; } keymaster_blob_t input = { to_sign, to_sign_size }; size_t input_consumed; error = keymaster1_dev->update(keymaster1_dev, op_handle, NULL /* in_params */, &input, &input_consumed, NULL /* out_params */, NULL /* output */); if (error != KM_ERROR_OK) { printf("Error sending data to keymaster signature transaction: %d\n", error); rc = -1; goto out; } if (input_consumed != to_sign_size) { // This should never happen. If it does, it's a bug in the keymaster implementation. printf("Keymaster update() did not consume all data.\n"); keymaster1_dev->abort(keymaster1_dev, op_handle); rc = -1; goto out; } keymaster_blob_t tmp_sig; error = keymaster1_dev->finish(keymaster1_dev, op_handle, NULL /* in_params */, NULL /* verify signature */, NULL /* out_params */, &tmp_sig); if (error != KM_ERROR_OK) { printf("Error finishing keymaster signature transaction: %d\n", error); rc = -1; goto out; } *signature = (uint8_t*)tmp_sig.data; *signature_size = tmp_sig.data_length; rc = 0; } #endif // TW_KEYMASTER_API >= 1 out: #if TW_KEYMASTER_MAX_API >= 1 if (keymaster1_dev) keymaster1_close(keymaster1_dev); #endif if (keymaster0_dev) #if TW_KEYMASTER_MAX_API >= 1 keymaster0_close(keymaster0_dev); #else keymaster_close(keymaster0_dev); #endif if (rc == 0) return 0; // otherwise we'll try for a newer keymaster API initfail: #if TW_KEYMASTER_MAX_API == 3 return keymaster_sign_object_for_cryptfs_scrypt(ftr->keymaster_blob, ftr->keymaster_blob_size, KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign, to_sign_size, signature, signature_size, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE, &ftr->keymaster_blob_size); #endif //TW_KEYMASTER_MAX_API == 3 #if TW_KEYMASTER_MAX_API >= 4 //for (;;) { auto result = keymaster_sign_object_for_cryptfs_scrypt( ftr->keymaster_blob, ftr->keymaster_blob_size, KEYMASTER_CRYPTFS_RATE_LIMIT, to_sign, to_sign_size, signature, signature_size); switch (result) { case KeymasterSignResult::ok: return 0; case KeymasterSignResult::upgrade: break; default: return -1; } SLOGD("Upgrading key\n"); if (keymaster_upgrade_key_for_cryptfs_scrypt( RSA_KEY_SIZE, RSA_EXPONENT, KEYMASTER_CRYPTFS_RATE_LIMIT, ftr->keymaster_blob, ftr->keymaster_blob_size, ftr->keymaster_blob, KEYMASTER_BLOB_SIZE, &ftr->keymaster_blob_size) != 0) { SLOGE("Failed to upgrade key\n"); return -1; } /*if (put_crypt_ftr_and_key(ftr) != 0) { SLOGE("Failed to write upgraded key to disk"); }*/ SLOGD("Key upgraded successfully\n"); return 0; //} #endif return -1; } static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) { memset(io, 0, dataSize); io->data_size = dataSize; io->data_start = sizeof(struct dm_ioctl); io->version[0] = 4; io->version[1] = 0; io->version[2] = 0; io->flags = flags; if (name) { strlcpy(io->name, name, sizeof(io->name)); } } namespace { struct CryptoType; // Use to get the CryptoType in use on this device. const CryptoType &get_crypto_type(); struct CryptoType { // We should only be constructing CryptoTypes as part of // supported_crypto_types[]. We do it via this pseudo-builder pattern, // which isn't pure or fully protected as a concession to being able to // do it all at compile time. Add new CryptoTypes in // supported_crypto_types[] below. constexpr CryptoType() : CryptoType(nullptr, nullptr, 0xFFFFFFFF) {} constexpr CryptoType set_keysize(uint32_t size) const { return CryptoType(this->property_name, this->crypto_name, size); } constexpr CryptoType set_property_name(const char *property) const { return CryptoType(property, this->crypto_name, this->keysize); } constexpr CryptoType set_crypto_name(const char *crypto) const { return CryptoType(this->property_name, crypto, this->keysize); } constexpr const char *get_property_name() const { return property_name; } constexpr const char *get_crypto_name() const { return crypto_name; } constexpr uint32_t get_keysize() const { return keysize; } private: const char *property_name; const char *crypto_name; uint32_t keysize; constexpr CryptoType(const char *property, const char *crypto, uint32_t ksize) : property_name(property), crypto_name(crypto), keysize(ksize) {} friend const CryptoType &get_crypto_type(); static const CryptoType &get_device_crypto_algorithm(); }; // We only want to parse this read-only property once. But we need to wait // until the system is initialized before we can read it. So we use a static // scoped within this function to get it only once. const CryptoType &get_crypto_type() { static CryptoType crypto_type = CryptoType::get_device_crypto_algorithm(); return crypto_type; } constexpr CryptoType default_crypto_type = CryptoType() .set_property_name("AES-128-CBC") .set_crypto_name("aes-cbc-essiv:sha256") .set_keysize(16); constexpr CryptoType supported_crypto_types[] = { default_crypto_type, CryptoType() .set_property_name("Speck128/128-XTS") .set_crypto_name("speck128-xts-plain64") .set_keysize(32), // Add new CryptoTypes here. Order is not important. }; // ---------- START COMPILE-TIME SANITY CHECK BLOCK ------------------------- // We confirm all supported_crypto_types have a small enough keysize and // had both set_property_name() and set_crypto_name() called. template constexpr size_t array_length(T (&)[N]) { return N; } constexpr bool indexOutOfBoundsForCryptoTypes(size_t index) { return (index >= array_length(supported_crypto_types)); } constexpr bool isValidCryptoType(const CryptoType &crypto_type) { return ((crypto_type.get_property_name() != nullptr) && (crypto_type.get_crypto_name() != nullptr) && (crypto_type.get_keysize() <= MAX_KEY_LEN)); } // Note in C++11 that constexpr functions can only have a single line. // So our code is a bit convoluted (using recursion instead of a loop), // but it's asserting at compile time that all of our key lengths are valid. constexpr bool validateSupportedCryptoTypes(size_t index) { return indexOutOfBoundsForCryptoTypes(index) || (isValidCryptoType(supported_crypto_types[index]) && validateSupportedCryptoTypes(index + 1)); } static_assert(validateSupportedCryptoTypes(0), "We have a CryptoType with keysize > MAX_KEY_LEN or which was " "incompletely constructed."); // ---------- END COMPILE-TIME SANITY CHECK BLOCK ------------------------- // Don't call this directly, use get_crypto_type(), which caches this result. const CryptoType &CryptoType::get_device_crypto_algorithm() { constexpr char CRYPT_ALGO_PROP[] = "ro.crypto.fde_algorithm"; char paramstr[PROPERTY_VALUE_MAX]; property_get(CRYPT_ALGO_PROP, paramstr, default_crypto_type.get_property_name()); for (auto const &ctype : supported_crypto_types) { if (strcmp(paramstr, ctype.get_property_name()) == 0) { return ctype; } } ALOGE("Invalid name (%s) for %s. Defaulting to %s\n", paramstr, CRYPT_ALGO_PROP, default_crypto_type.get_property_name()); return default_crypto_type; } } // namespace #define SCRYPT_PROP "ro.crypto.scrypt_params" #define SCRYPT_DEFAULTS "15:3:1" bool parse_scrypt_parameters(const char* paramstr, int *Nf, int *rf, int *pf) { int params[3] = {}; char *token; char *saveptr; int i; /* * The token we're looking for should be three integers separated by * colons (e.g., "12:8:1"). Scan the property to make sure it matches. */ for (i = 0, token = strtok_r(const_cast(paramstr), ":", &saveptr); token != nullptr && i < 3; i++, token = strtok_r(nullptr, ":", &saveptr)) { char *endptr; params[i] = strtol(token, &endptr, 10); /* * Check that there was a valid number and it's 8-bit. */ if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) { return false; } } if (token != nullptr) { return false; } *Nf = params[0]; *rf = params[1]; *pf = params[2]; return true; } uint32_t cryptfs_get_keysize() { return get_crypto_type().get_keysize(); } const char *cryptfs_get_crypto_name() { return get_crypto_type().get_crypto_name(); } static int get_crypt_ftr_info(char **metadata_fname, off64_t *off) { static int cached_data = 0; static off64_t cached_off = 0; static char cached_metadata_fname[PROPERTY_VALUE_MAX] = ""; int fd; //char key_loc[PROPERTY_VALUE_MAX]; //char real_blkdev[PROPERTY_VALUE_MAX]; int rc = -1; if (!cached_data) { //fs_mgr_get_crypt_info(fstab_default, key_loc, real_blkdev, sizeof(key_loc)); if (!strcmp(key_fname, KEY_IN_FOOTER)) { if ( (fd = open(real_blkdev, O_RDWR|O_CLOEXEC)) < 0) { SLOGE("Cannot open real block device %s\n", real_blkdev); return -1; } unsigned long nr_sec = 0; get_blkdev_size(fd, &nr_sec); if (nr_sec != 0) { /* If it's an encrypted Android partition, the last 16 Kbytes contain the * encryption info footer and key, and plenty of bytes to spare for future * growth. */ strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname)); cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; cached_data = 1; } else { SLOGE("Cannot get size of block device %s\n", real_blkdev); } close(fd); } else { strlcpy(cached_metadata_fname, key_fname, sizeof(cached_metadata_fname)); cached_off = 0; cached_data = 1; } } if (cached_data) { if (metadata_fname) { *metadata_fname = cached_metadata_fname; } if (off) { *off = cached_off; } rc = 0; } return rc; } static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr) { int fd; unsigned int cnt; off64_t starting_off; int rc = -1; char *fname = NULL; struct stat statbuf; if (get_crypt_ftr_info(&fname, &starting_off)) { SLOGE("Unable to get crypt_ftr_info\n"); return -1; } if (fname[0] != '/') { SLOGE("Unexpected value for crypto key location\n"); return -1; } if ( (fd = open(fname, O_RDWR|O_CLOEXEC)) < 0) { SLOGE("Cannot open footer file %s for get\n", fname); return -1; } /* Make sure it's 16 Kbytes in length */ fstat(fd, &statbuf); if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) { SLOGE("footer file %s is not the expected size!\n", fname); goto errout; } /* Seek to the start of the crypt footer */ if (lseek64(fd, starting_off, SEEK_SET) == -1) { SLOGE("Cannot seek to real block device footer\n"); goto errout; } if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { SLOGE("Cannot read real block device footer\n"); goto errout; } if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { SLOGE("Bad magic for real block device %s\n", fname); goto errout; } if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) { SLOGE("Cannot understand major version %d real block device footer; expected %d\n", crypt_ftr->major_version, CURRENT_MAJOR_VERSION); goto errout; } // We risk buffer overflows with oversized keys, so we just reject them. // 0-sized keys are problematic (essentially by-passing encryption), and // AES-CBC key wrapping only works for multiples of 16 bytes. if ((crypt_ftr->keysize == 0) || ((crypt_ftr->keysize % 16) != 0) || (crypt_ftr->keysize > MAX_KEY_LEN)) { SLOGE("Invalid keysize (%u) for block device %s; Must be non-zero, " "divisible by 16, and <= %d\n", crypt_ftr->keysize, fname, MAX_KEY_LEN); goto errout; } if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) { SLOGW("Warning: crypto footer minor version %d, expected <= %d, continuing...\n", crypt_ftr->minor_version, CURRENT_MINOR_VERSION); } /* Success! */ rc = 0; errout: close(fd); return rc; } int cryptfs_check_footer() { int rc = -1; struct crypt_mnt_ftr crypt_ftr; rc = get_crypt_ftr_and_key(&crypt_ftr); return rc; } /* Convert a binary key of specified length into an ascii hex string equivalent, * without the leading 0x and with null termination */ static void convert_key_to_hex_ascii(const unsigned char *master_key, unsigned int keysize, char *master_key_ascii) { unsigned int i, a; unsigned char nibble; for (i=0, a=0; i> 4) & 0xf; master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); nibble = master_key[i] & 0xf; master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); } /* Add the null termination */ master_key_ascii[a] = '\0'; } static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, const unsigned char *master_key, const char *real_blk_name, const char *name, int fd, const char *extra_params) { alignas(struct dm_ioctl) char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; struct dm_target_spec *tgt; char *crypt_params; // We need two ASCII characters to represent each byte, and need space for // the '\0' terminator. char master_key_ascii[MAX_KEY_LEN * 2 + 1]; size_t buff_offset; int i; io = (struct dm_ioctl *) buffer; /* Load the mapping table for this device */ tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); io->target_count = 1; tgt->status = 0; tgt->sector_start = 0; tgt->length = crypt_ftr->fs_size; crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); buff_offset = crypt_params - buffer; SLOGI("Extra parameters for dm_crypt: %s\n", extra_params); #ifdef CONFIG_HW_DISK_ENCRYPTION if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) { strlcpy(tgt->target_type, "req-crypt",DM_MAX_TYPE_NAME); if (is_ice_enabled()) convert_key_to_hex_ascii(master_key, sizeof(int), master_key_ascii); else convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); } else { convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME); } snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s 0", crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name, extra_params); SLOGI("target_type = %s", tgt->target_type); SLOGI("real_blk_name = %s, extra_params = %s", real_blk_name, extra_params); #else convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); strlcpy(tgt->target_type, "crypt", DM_MAX_TYPE_NAME); snprintf(crypt_params, sizeof(buffer) - buff_offset, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name, extra_params); #endif crypt_params += strlen(crypt_params) + 1; crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ tgt->next = crypt_params - buffer; for (i = 0; i < TABLE_LOAD_RETRIES; i++) { if (! ioctl(fd, DM_TABLE_LOAD, io)) { break; } usleep(500000); } if (i == TABLE_LOAD_RETRIES) { /* We failed to load the table, return an error */ return -1; } else { return i + 1; } } static int get_dm_crypt_version(int fd, const char *name, int *version) { char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; struct dm_target_versions *v; io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_LIST_VERSIONS, io)) { return -1; } /* Iterate over the returned versions, looking for name of "crypt". * When found, get and return the version. */ v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)]; while (v->next) { #ifdef CONFIG_HW_DISK_ENCRYPTION if (! strcmp(v->name, "crypt") || ! strcmp(v->name, "req-crypt")) { #else if (! strcmp(v->name, "crypt")) { #endif /* We found the crypt driver, return the version, and get out */ version[0] = v->version[0]; version[1] = v->version[1]; version[2] = v->version[2]; return 0; } v = (struct dm_target_versions *)(((char *)v) + v->next); } return -1; } #ifndef CONFIG_HW_DISK_ENCRYPTION static std::string extra_params_as_string(const std::vector& extra_params_vec) { if (extra_params_vec.empty()) return ""; char temp[10]; snprintf(temp, sizeof(temp), "%zd", extra_params_vec.size()); std::string extra_params = temp; //std::to_string(extra_params_vec.size()); for (const auto& p : extra_params_vec) { extra_params.append(" "); extra_params.append(p); } return extra_params; } #endif static int create_crypto_blk_dev(struct crypt_mnt_ftr* crypt_ftr, const unsigned char* master_key, const char* real_blk_name, char* crypto_blk_name, const char* name, uint32_t flags) { char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl* io; unsigned int minor; int fd = 0; int err; int retval = -1; int version[3]; int load_count; #ifdef CONFIG_HW_DISK_ENCRYPTION char encrypted_state[PROPERTY_VALUE_MAX] = {0}; char progress[PROPERTY_VALUE_MAX] = {0}; const char *extra_params; #else std::vector extra_params_vec; #endif if ((fd = open("/dev/device-mapper", O_RDWR | O_CLOEXEC)) < 0) { SLOGE("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl*)buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); err = ioctl(fd, DM_DEV_CREATE, io); if (err) { SLOGE("Cannot create dm-crypt device %s: %s\n", name, strerror(errno)); goto errout; } /* Get the device status, in particular, the name of it's device file */ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_STATUS, io)) { SLOGE("Cannot retrieve dm-crypt device status\n"); goto errout; } minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); #ifdef CONFIG_HW_DISK_ENCRYPTION if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) { /* Set fde_enabled if either FDE completed or in-progress */ property_get("ro.crypto.state", encrypted_state, ""); /* FDE completed */ property_get("vold.encrypt_progress", progress, ""); /* FDE in progress */ if (!strcmp(encrypted_state, "encrypted") || strcmp(progress, "")) { if (is_ice_enabled()) { if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) extra_params = "fde_enabled ice allow_encrypt_override"; else extra_params = "fde_enabled ice"; } else { if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) extra_params = "fde_enabled allow_encrypt_override"; else extra_params = "fde_enabled"; } } else { if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) extra_params = "fde_enabled allow_encrypt_override"; else extra_params = "fde_enabled"; } } else { extra_params = ""; if (! get_dm_crypt_version(fd, name, version)) { /* Support for allow_discards was added in version 1.11.0 */ if ((version[0] >= 2) || ((version[0] == 1) && (version[1] >= 11))) { if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) extra_params = "2 allow_discards allow_encrypt_override"; else extra_params = "1 allow_discards"; SLOGI("Enabling support for allow_discards in dmcrypt.\n"); } } } load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, fd, extra_params); #else if (!get_dm_crypt_version(fd, name, version)) { /* Support for allow_discards was added in version 1.11.0 */ if ((version[0] >= 2) || ((version[0] == 1) && (version[1] >= 11))) { extra_params_vec.push_back(std::string("allow_discards")); // Used to be extra_params_vec.emplace_back("allow_discards"); but this won't compile in 5.1 trees } } if (flags & CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE) { extra_params_vec.push_back(std::string("allow_encrypt_override")); // Used to be extra_params_vec.emplace_back("allow_encrypt_override"); but this won't compile in 5.1 trees } load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name, fd, extra_params_as_string(extra_params_vec).c_str()); #endif if (load_count < 0) { SLOGE("Cannot load dm-crypt mapping table.\n"); goto errout; } else if (load_count > 1) { SLOGI("Took %d tries to load dmcrypt table.\n", load_count); } /* Resume this device to activate it */ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_SUSPEND, io)) { SLOGE("Cannot resume the dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } int delete_crypto_blk_dev(const char *name) { int fd; char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; int retval = -1; if ((fd = open("/dev/device-mapper", O_RDWR|O_CLOEXEC)) < 0 ) { SLOGE("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_REMOVE, io)) { SLOGE("Cannot remove dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } static int pbkdf2(const char *passwd, const unsigned char *salt, unsigned char *ikey, void *params UNUSED) { SLOGI("Using pbkdf2 for cryptfs KDF\n"); /* Turn the password into a key and IV that can decrypt the master key */ return PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, HASH_COUNT, INTERMEDIATE_BUF_SIZE, ikey) != 1; } static int scrypt(const char *passwd, const unsigned char *salt, unsigned char *ikey, void *params) { SLOGI("Using scrypt for cryptfs KDF\n"); struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params; int N = 1 << ftr->N_factor; int r = 1 << ftr->r_factor; int p = 1 << ftr->p_factor; /* Turn the password into a key and IV that can decrypt the master key */ crypto_scrypt((const uint8_t*)passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey, INTERMEDIATE_BUF_SIZE); return 0; } static int scrypt_keymaster(const char *passwd, const unsigned char *salt, unsigned char *ikey, void *params) { SLOGI("Using scrypt with keymaster for cryptfs KDF\n"); int rc; size_t signature_size; unsigned char* signature; struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params; int N = 1 << ftr->N_factor; int r = 1 << ftr->r_factor; int p = 1 << ftr->p_factor; rc = crypto_scrypt((const uint8_t*)passwd, strlen(passwd), salt, SALT_LEN, N, r, p, ikey, INTERMEDIATE_BUF_SIZE); if (rc) { SLOGE("scrypt failed"); return -1; } if (keymaster_sign_object(ftr, ikey, INTERMEDIATE_BUF_SIZE, &signature, &signature_size)) { SLOGE("Keymaster signing failed"); return -1; } rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN, N, r, p, ikey, INTERMEDIATE_BUF_SIZE); free(signature); if (rc) { SLOGE("scrypt failed"); return -1; } return 0; } static int decrypt_master_key_aux(const char *passwd, unsigned char *salt, const unsigned char *encrypted_master_key, size_t keysize, unsigned char *decrypted_master_key, kdf_func kdf, void *kdf_params, unsigned char** intermediate_key, size_t* intermediate_key_size) { unsigned char ikey[INTERMEDIATE_BUF_SIZE] = { 0 }; EVP_CIPHER_CTX d_ctx; int decrypted_len, final_len; /* Turn the password into an intermediate key and IV that can decrypt the master key */ if (kdf(passwd, salt, ikey, kdf_params)) { SLOGE("kdf failed"); return -1; } /* Initialize the decryption engine */ EVP_CIPHER_CTX_init(&d_ctx); if (! EVP_DecryptInit_ex(&d_ctx, EVP_aes_128_cbc(), NULL, ikey, ikey+INTERMEDIATE_KEY_LEN_BYTES)) { return -1; } EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ /* Decrypt the master key */ if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, encrypted_master_key, keysize)) { return -1; } if (! EVP_DecryptFinal_ex(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { return -1; } if (decrypted_len + final_len != static_cast(keysize)) { return -1; } /* Copy intermediate key if needed by params */ if (intermediate_key && intermediate_key_size) { *intermediate_key = (unsigned char*) malloc(INTERMEDIATE_KEY_LEN_BYTES); if (*intermediate_key) { memcpy(*intermediate_key, ikey, INTERMEDIATE_KEY_LEN_BYTES); *intermediate_key_size = INTERMEDIATE_KEY_LEN_BYTES; } } EVP_CIPHER_CTX_cleanup(&d_ctx); return 0; } static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params) { if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER) { *kdf = scrypt_keymaster; *kdf_params = ftr; } else if (ftr->kdf_type == KDF_SCRYPT) { *kdf = scrypt; *kdf_params = ftr; } else { *kdf = pbkdf2; *kdf_params = NULL; } } static int decrypt_master_key(const char *passwd, unsigned char *decrypted_master_key, struct crypt_mnt_ftr *crypt_ftr, unsigned char** intermediate_key, size_t* intermediate_key_size) { kdf_func kdf; void *kdf_params; int ret; get_kdf_func(crypt_ftr, &kdf, &kdf_params); ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key, crypt_ftr->keysize, decrypted_master_key, kdf, kdf_params, intermediate_key, intermediate_key_size); if (ret != 0) { SLOGW("failure decrypting master key"); } return ret; } #ifdef CONFIG_HW_DISK_ENCRYPTION static int test_mount_hw_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, const char *passwd, const char *mount_point, const char *label) { /* Allocate enough space for a 256 bit key, but we may use less */ unsigned char decrypted_master_key[32]; char crypto_blkdev[MAXPATHLEN]; //char real_blkdev[MAXPATHLEN]; unsigned int orig_failed_decrypt_count; int rc = 0; SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size); orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count; //fs_mgr_get_crypt_info(fstab_default, 0, real_blkdev, sizeof(real_blkdev)); int key_index = 0; if(is_hw_disk_encryption((char*)crypt_ftr->crypto_type_name)) { key_index = verify_and_update_hw_fde_passwd(passwd, crypt_ftr); if (key_index < 0) { rc = -1; goto errout; } else { if (is_ice_enabled()) { #ifndef CONFIG_HW_DISK_ENCRYPT_PERF if (create_crypto_blk_dev(crypt_ftr, (unsigned char*)&key_index, real_blkdev, crypto_blkdev, label, 0)) { SLOGE("Error creating decrypted block device"); rc = -1; goto errout; } #endif } else { if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, label, 0)) { SLOGE("Error creating decrypted block device"); rc = -1; goto errout; } } } } if (rc == 0) { /* Save the name of the crypto block device * so we can mount it when restarting the framework. */ #ifdef CONFIG_HW_DISK_ENCRYPT_PERF if (!is_ice_enabled()) #endif property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); master_key_saved = 1; } errout: return rc; } #endif static int try_mount_multiple_fs(const char *crypto_blkdev, const char *mount_point, const char *file_system) { if (!mount(crypto_blkdev, mount_point, file_system, 0, NULL)) return 0; if (strcmp(file_system, "ext4") && !mount(crypto_blkdev, mount_point, "ext4", 0, NULL)) return 0; if (strcmp(file_system, "f2fs") && !mount(crypto_blkdev, mount_point, "f2fs", 0, NULL)) return 0; return 1; } static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr, const char *passwd, const char *mount_point, const char *label) { unsigned char decrypted_master_key[MAX_KEY_LEN]; char crypto_blkdev[MAXPATHLEN]; //char real_blkdev[MAXPATHLEN]; char tmp_mount_point[64]; unsigned int orig_failed_decrypt_count; int rc; int use_keymaster = 0; unsigned char* intermediate_key = 0; size_t intermediate_key_size = 0; int N = 1 << crypt_ftr->N_factor; int r = 1 << crypt_ftr->r_factor; int p = 1 << crypt_ftr->p_factor; SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size); orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count; if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr, &intermediate_key, &intermediate_key_size)) { SLOGE("Failed to decrypt master key\n"); rc = -1; goto errout; } } //fs_mgr_get_crypt_info(fstab_default, 0, real_blkdev, sizeof(real_blkdev)); // Create crypto block device - all (non fatal) code paths // need it if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, label, 0)) { SLOGE("Error creating decrypted block device\n"); rc = -1; goto errout; } /* Work out if the problem is the password or the data */ unsigned char scrypted_intermediate_key[sizeof(crypt_ftr-> scrypted_intermediate_key)]; rc = crypto_scrypt(intermediate_key, intermediate_key_size, crypt_ftr->salt, sizeof(crypt_ftr->salt), N, r, p, scrypted_intermediate_key, sizeof(scrypted_intermediate_key)); // Does the key match the crypto footer? if (rc == 0 && memcmp(scrypted_intermediate_key, crypt_ftr->scrypted_intermediate_key, sizeof(scrypted_intermediate_key)) == 0) { SLOGI("Password matches"); rc = 0; } else { /* Try mounting the file system anyway, just in case the problem's with * the footer, not the key. */ snprintf(tmp_mount_point, sizeof(tmp_mount_point), "%s/tmp_mnt", mount_point); mkdir(tmp_mount_point, 0755); if (try_mount_multiple_fs(crypto_blkdev, tmp_mount_point, file_system)) { SLOGE("Error temp mounting decrypted block device\n"); delete_crypto_blk_dev(label); rc = -1; } else { /* Success! */ SLOGI("Password did not match but decrypted drive mounted - continue"); umount(tmp_mount_point); rc = 0; } } if (rc == 0) { /* Save the name of the crypto block device * so we can mount it when restarting the framework. */ property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); /* Also save a the master key so we can reencrypted the key * the key when we want to change the password on it. */ memcpy(saved_master_key, decrypted_master_key, crypt_ftr->keysize); saved_mount_point = strdup(mount_point); master_key_saved = 1; SLOGD("%s(): Master key saved\n", __FUNCTION__); rc = 0; } errout: if (intermediate_key) { memset(intermediate_key, 0, intermediate_key_size); free(intermediate_key); } return rc; } /* * Called by vold when it's asked to mount an encrypted external * storage volume. The incoming partition has no crypto header/footer, * as any metadata is been stored in a separate, small partition. We * assume it must be using our same crypt type and keysize. * * out_crypto_blkdev must be MAXPATHLEN. */ int cryptfs_setup_ext_volume(const char* label, const char* real_blkdev, const unsigned char* key, int keysize, char* out_crypto_blkdev) { int fd = open(real_blkdev, O_RDONLY|O_CLOEXEC); if (fd == -1) { SLOGE("Failed to open %s: %s", real_blkdev, strerror(errno)); return -1; } unsigned long nr_sec = 0; get_blkdev_size(fd, &nr_sec); close(fd); if (nr_sec == 0) { SLOGE("Failed to get size of %s: %s", real_blkdev, strerror(errno)); return -1; } struct crypt_mnt_ftr ext_crypt_ftr; memset(&ext_crypt_ftr, 0, sizeof(ext_crypt_ftr)); ext_crypt_ftr.fs_size = nr_sec; ext_crypt_ftr.keysize = cryptfs_get_keysize(); strlcpy((char*) ext_crypt_ftr.crypto_type_name, cryptfs_get_crypto_name(), MAX_CRYPTO_TYPE_NAME_LEN); uint32_t flags = 0; /*if (e4crypt_is_native() && android::base::GetBoolProperty("ro.crypto.allow_encrypt_override", false)) flags |= CREATE_CRYPTO_BLK_DEV_FLAGS_ALLOW_ENCRYPT_OVERRIDE;*/ return create_crypto_blk_dev(&ext_crypt_ftr, key, real_blkdev, out_crypto_blkdev, label, flags); } /* * Called by vold when it's asked to unmount an encrypted external * storage volume. */ int cryptfs_revert_ext_volume(const char* label) { return delete_crypto_blk_dev(label); } int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr) { char encrypted_state[PROPERTY_VALUE_MAX]; property_get("ro.crypto.state", encrypted_state, ""); if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) { SLOGE("encrypted fs already validated or not running with encryption," " aborting"); return -1; } if (get_crypt_ftr_and_key(crypt_ftr)) { SLOGE("Error getting crypt footer and key"); return -1; } return 0; } #ifdef CONFIG_HW_DISK_ENCRYPTION int cryptfs_check_passwd_hw(const char* passwd) { struct crypt_mnt_ftr crypt_ftr; int rc; unsigned char master_key[KEY_LEN_BYTES]; /* get key */ if (get_crypt_ftr_and_key(&crypt_ftr)) { SLOGE("Error getting crypt footer and key"); return -1; } /* * in case of manual encryption (from GUI), the encryption is done with * default password */ if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) { /* compare scrypted_intermediate_key with stored scrypted_intermediate_key * which was created with actual password before reboot. */ rc = cryptfs_get_master_key(&crypt_ftr, passwd, master_key); if (rc) { SLOGE("password doesn't match"); return rc; } rc = test_mount_hw_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD, DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); if (rc) { SLOGE("Default password did not match on reboot encryption"); return rc; } } else { rc = test_mount_hw_encrypted_fs(&crypt_ftr, passwd, DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); SLOGE("test mount returned %i\n", rc); } return rc; } #endif int cryptfs_check_passwd(const char *passwd) { /*if (e4crypt_is_native()) { SLOGE("cryptfs_check_passwd not valid for file encryption"); return -1; }*/ struct crypt_mnt_ftr crypt_ftr; int rc; rc = check_unmounted_and_get_ftr(&crypt_ftr); if (rc) { SLOGE("Could not get footer"); return rc; } #ifdef CONFIG_HW_DISK_ENCRYPTION if (is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name)) return cryptfs_check_passwd_hw(passwd); #endif rc = test_mount_encrypted_fs(&crypt_ftr, passwd, DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); if (rc) { SLOGE("Password did not match"); return rc; } if (crypt_ftr.flags & CRYPT_FORCE_COMPLETE) { // Here we have a default actual password but a real password // we must test against the scrypted value // First, we must delete the crypto block device that // test_mount_encrypted_fs leaves behind as a side effect delete_crypto_blk_dev(CRYPTO_BLOCK_DEVICE); rc = test_mount_encrypted_fs(&crypt_ftr, DEFAULT_PASSWORD, DATA_MNT_POINT, CRYPTO_BLOCK_DEVICE); if (rc) { SLOGE("Default password did not match on reboot encryption"); return rc; } } return rc; } int cryptfs_verify_passwd(const char *passwd) { struct crypt_mnt_ftr crypt_ftr; unsigned char decrypted_master_key[MAX_KEY_LEN]; char encrypted_state[PROPERTY_VALUE_MAX]; int rc; property_get("ro.crypto.state", encrypted_state, ""); if (strcmp(encrypted_state, "encrypted") ) { SLOGE("device not encrypted, aborting"); return -2; } if (!master_key_saved) { SLOGE("encrypted fs not yet mounted, aborting"); return -1; } if (!saved_mount_point) { SLOGE("encrypted fs failed to save mount point, aborting"); return -1; } if (get_crypt_ftr_and_key(&crypt_ftr)) { SLOGE("Error getting crypt footer and key\n"); return -1; } if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) { /* If the device has no password, then just say the password is valid */ rc = 0; } else { #ifdef CONFIG_HW_DISK_ENCRYPTION if(is_hw_disk_encryption((char*)crypt_ftr.crypto_type_name)) { if (verify_hw_fde_passwd(passwd, &crypt_ftr) >= 0) rc = 0; else rc = -1; } else { decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0); if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { /* They match, the password is correct */ rc = 0; } else { /* If incorrect, sleep for a bit to prevent dictionary attacks */ sleep(1); rc = 1; } } #else decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0); if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) { /* They match, the password is correct */ rc = 0; } else { /* If incorrect, sleep for a bit to prevent dictionary attacks */ sleep(1); rc = 1; } #endif } return rc; } /* Returns type of the password, default, pattern, pin or password. */ int cryptfs_get_password_type(void) { struct crypt_mnt_ftr crypt_ftr; if (get_crypt_ftr_and_key(&crypt_ftr)) { SLOGE("Error getting crypt footer and key\n"); return -1; } if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) { return -1; } return crypt_ftr.crypt_type; } int cryptfs_get_master_key(struct crypt_mnt_ftr* ftr, const char* password, unsigned char* master_key) { int rc; unsigned char* intermediate_key = 0; size_t intermediate_key_size = 0; if (password == 0 || *password == 0) { password = DEFAULT_PASSWORD; } rc = decrypt_master_key(password, master_key, ftr, &intermediate_key, &intermediate_key_size); if (rc) { SLOGE("Can't calculate intermediate key"); return rc; } int N = 1 << ftr->N_factor; int r = 1 << ftr->r_factor; int p = 1 << ftr->p_factor; unsigned char scrypted_intermediate_key[sizeof(ftr->scrypted_intermediate_key)]; rc = crypto_scrypt(intermediate_key, intermediate_key_size, ftr->salt, sizeof(ftr->salt), N, r, p, scrypted_intermediate_key, sizeof(scrypted_intermediate_key)); free(intermediate_key); if (rc) { SLOGE("Can't scrypt intermediate key"); return rc; } return memcmp(scrypted_intermediate_key, ftr->scrypted_intermediate_key, intermediate_key_size); }