/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* TO DO: * 1. Perhaps keep several copies of the encrypted key, in case something * goes horribly wrong? * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cryptfs.h" #define LOG_TAG "Cryptfs" #include "cutils/log.h" #include "cutils/properties.h" #include "hardware_legacy/power.h" //#include "VolumeManager.h" #define DM_CRYPT_BUF_SIZE 4096 #define DATA_MNT_POINT "/data" #define HASH_COUNT 2000 #ifdef TW_INCLUDE_CRYPTO_SAMSUNG #define KEY_LEN_BYTES_SAMSUNG (sizeof(edk_t)) #endif #define KEY_LEN_BYTES 16 #define IV_LEN_BYTES 16 #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" #define KEY_IN_FOOTER "footer" #define EXT4_FS 1 #define FAT_FS 2 #ifndef EXPAND #define STRINGIFY(x) #x #define EXPAND(x) STRINGIFY(x) #endif char *me = "cryptfs"; static char *saved_data_blkdev; static char *saved_mount_point; static int master_key_saved = 0; #ifdef TW_INCLUDE_CRYPTO_SAMSUNG static int using_samsung_encryption = 0; //static edk_t saved_master_key; static unsigned char saved_master_key[KEY_LEN_BYTES_SAMSUNG]; edk_payload_t edk_payload; #else static unsigned char saved_master_key[KEY_LEN_BYTES]; #endif int cryptfs_setup_volume(const char *label, const char *real_blkdev, char *crypto_blkdev); static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags) { memset(io, 0, dataSize); io->data_size = dataSize; io->data_start = sizeof(struct dm_ioctl); io->version[0] = 4; io->version[1] = 0; io->version[2] = 0; io->flags = flags; if (name) { strncpy(io->name, name, sizeof(io->name)); } } static unsigned int get_blkdev_size(int fd) { unsigned int nr_sec; if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) { nr_sec = 0; } return nr_sec; } /* key or salt can be NULL, in which case just skip writing that value. Useful to * update the failed mount count but not change the key. */ static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, unsigned char *key, unsigned char *salt) { // we don't need to update it... return 0; } static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr, unsigned char *key, unsigned char *salt) { int fd; unsigned int nr_sec, cnt; off64_t off; int rc = -1; char key_loc[PROPERTY_VALUE_MAX]; char *fname; struct stat statbuf; property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER); if (!strcmp(key_loc, KEY_IN_FOOTER)) { fname = real_blk_name; if ( (fd = open(fname, O_RDONLY)) < 0) { printf("Cannot open real block device %s\n", fname); return -1; } if ( (nr_sec = get_blkdev_size(fd)) == 0) { SLOGE("Cannot get size of block device %s\n", fname); goto errout; } /* If it's an encrypted Android partition, the last 16 Kbytes contain the * encryption info footer and key, and plenty of bytes to spare for future * growth. */ off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET; if (lseek64(fd, off, SEEK_SET) == -1) { printf("Cannot seek to real block device footer\n"); goto errout; } } else if (key_loc[0] == '/') { fname = key_loc; if ( (fd = open(fname, O_RDONLY)) < 0) { printf("Cannot open footer file %s\n", fname); return -1; } /* Make sure it's 16 Kbytes in length */ fstat(fd, &statbuf); if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000 #ifdef TW_INCLUDE_CRYPTO_SAMSUNG && statbuf.st_size != 0x8000 #endif )) { printf("footer file %s is not the expected size!\n", fname); goto errout; } } else { printf("Unexpected value for" KEY_LOC_PROP "\n"); return -1;; } if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) { printf("Cannot read real block device footer\n"); goto errout; } if (crypt_ftr->magic != CRYPT_MNT_MAGIC) { #ifdef TW_INCLUDE_CRYPTO_SAMSUNG if (crypt_ftr->magic != CRYPT_MNT_MAGIC_SAMSUNG) { printf("Bad magic for real block device %s\n", fname); goto errout; } else { printf("Using Samsung encryption.\n"); using_samsung_encryption = 1; if ( (cnt = read(fd, &edk_payload, sizeof(edk_payload_t))) != sizeof(edk_payload_t)) { printf("Cannot read EDK payload from real block device footer\n"); goto errout; } if (lseek64(fd, sizeof(__le32), SEEK_CUR) == -1) { printf("Cannot seek past unknown data from real block device footer\n"); goto errout; } memcpy(key, &edk_payload, sizeof(edk_payload_t)); } #else printf("Bad magic for real block device %s\n", fname); goto errout; #endif } if (crypt_ftr->major_version != 1) { printf("Cannot understand major version %d real block device footer\n", crypt_ftr->major_version); goto errout; } if (crypt_ftr->minor_version != 0) { printf("Warning: crypto footer minor version %d, expected 0, continuing...\n", crypt_ftr->minor_version); } if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) { /* the footer size is bigger than we expected. * Skip to it's stated end so we can read the key. */ if (lseek64(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr), SEEK_CUR) == -1) { printf("Cannot seek to start of key\n"); goto errout; } } if (crypt_ftr->keysize > sizeof(saved_master_key)) { printf("Keysize of %d bits not supported for real block device %s\n", crypt_ftr->keysize * 8, fname); goto errout; } if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) { printf("Cannot read key for real block device %s\n", fname); goto errout; } if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) { printf("Cannot seek to real block device salt\n"); goto errout; } if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) { printf("Cannot read salt for real block device %s\n", fname); goto errout; } /* Success! */ rc = 0; errout: close(fd); return rc; } /* Convert a binary key of specified length into an ascii hex string equivalent, * without the leading 0x and with null termination */ void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize, char *master_key_ascii) { unsigned int i, a; unsigned char nibble; for (i=0, a=0; i> 4) & 0xf; master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30); nibble = master_key[i] & 0xf; master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30); } /* Add the null termination */ master_key_ascii[a] = '\0'; } static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key, const char *real_blk_name, char *crypto_blk_name, const char *name) { char buffer[DM_CRYPT_BUF_SIZE]; char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */ char *crypt_params; struct dm_ioctl *io; struct dm_target_spec *tgt; unsigned int minor; int fd; int retval = -1; if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { printf("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_CREATE, io)) { printf("Cannot create dm-crypt device\n"); goto errout; } /* Get the device status, in particular, the name of it's device file */ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_STATUS, io)) { printf("Cannot retrieve dm-crypt device status\n"); goto errout; } minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00); snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor); /* Load the mapping table for this device */ tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)]; ioctl_init(io, 4096, name, 0); io->target_count = 1; tgt->status = 0; tgt->sector_start = 0; tgt->length = crypt_ftr->fs_size; strcpy(tgt->target_type, "crypt"); crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec); convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii); sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name, master_key_ascii, real_blk_name); //printf("cryptsetup params: '%s'\n", crypt_params); crypt_params += strlen(crypt_params) + 1; crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */ tgt->next = crypt_params - buffer; if (ioctl(fd, DM_TABLE_LOAD, io)) { printf("Cannot load dm-crypt mapping table.\n"); goto errout; } /* Resume this device to activate it */ ioctl_init(io, 4096, name, 0); if (ioctl(fd, DM_DEV_SUSPEND, io)) { printf("Cannot resume the dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } static int delete_crypto_blk_dev(const char *name) { int fd; char buffer[DM_CRYPT_BUF_SIZE]; struct dm_ioctl *io; int retval = -1; if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) { printf("Cannot open device-mapper\n"); goto errout; } io = (struct dm_ioctl *) buffer; ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0); if (ioctl(fd, DM_DEV_REMOVE, io)) { printf("Cannot remove dm-crypt device\n"); goto errout; } /* We made it here with no errors. Woot! */ retval = 0; errout: close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */ return retval; } static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey) { /* Turn the password into a key and IV that can decrypt the master key */ PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN, HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey); } static int decrypt_master_key(char *passwd, unsigned char *salt, unsigned char *encrypted_master_key, unsigned char *decrypted_master_key) { #ifdef TW_INCLUDE_CRYPTO_SAMSUNG if (using_samsung_encryption) { property_set("rw.km_fips_status", "ready"); return decrypt_EDK((dek_t*)decrypted_master_key, (edk_payload_t*)encrypted_master_key, passwd); } #endif unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */ EVP_CIPHER_CTX d_ctx; int decrypted_len, final_len; /* Turn the password into a key and IV that can decrypt the master key */ pbkdf2(passwd, salt, ikey); /* Initialize the decryption engine */ if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) { return -1; } EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */ /* Decrypt the master key */ if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len, encrypted_master_key, KEY_LEN_BYTES)) { return -1; } if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) { return -1; } if (decrypted_len + final_len != KEY_LEN_BYTES) { return -1; } else { return 0; } } static int get_orig_mount_parms( const char *mount_point, char *fs_type, char *real_blkdev, unsigned long *mnt_flags, char *fs_options) { char mount_point2[PROPERTY_VALUE_MAX]; char fs_flags[PROPERTY_VALUE_MAX]; property_get("ro.crypto.fs_type", fs_type, ""); property_get("ro.crypto.fs_real_blkdev", real_blkdev, ""); property_get("ro.crypto.fs_mnt_point", mount_point2, ""); property_get("ro.crypto.fs_options", fs_options, ""); property_get("ro.crypto.fs_flags", fs_flags, ""); *mnt_flags = strtol(fs_flags, 0, 0); if (strcmp(mount_point, mount_point2)) { /* Consistency check. These should match. If not, something odd happened. */ return -1; } return 0; } static int get_orig_mount_parms_sd( const char *mount_point, char *fs_type, char *real_blkdev) { char mount_point2[PROPERTY_VALUE_MAX]; property_get("ro.crypto.sd_fs_type", fs_type, ""); property_get("ro.crypto.sd_fs_real_blkdev", real_blkdev, ""); property_get("ro.crypto.sd_fs_mnt_point", mount_point2, ""); if (strcmp(mount_point, mount_point2)) { /* Consistency check. These should match. If not, something odd happened. */ return -1; } return 0; } static int test_mount_encrypted_fs( char *passwd, char *mount_point, char *label, char *crypto_blkdev) { struct crypt_mnt_ftr crypt_ftr; /* Allocate enough space for a 256 bit key, but we may use less */ unsigned char encrypted_master_key[256], decrypted_master_key[32]; unsigned char salt[SALT_LEN]; char real_blkdev[MAXPATHLEN]; char fs_type[PROPERTY_VALUE_MAX]; char fs_options[PROPERTY_VALUE_MAX]; char tmp_mount_point[MAXPATHLEN]; unsigned long mnt_flags; unsigned int orig_failed_decrypt_count; char encrypted_state[PROPERTY_VALUE_MAX]; int rc; property_get("ro.crypto.state", encrypted_state, ""); if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) { printf("encrypted fs already validated or not running with encryption, aborting %s\n", encrypted_state); return -1; } if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) { printf("Error reading original mount parms for mount point %s\n", mount_point); return -1; } if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) { printf("Error getting crypt footer and key\n"); return -1; } //printf("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size); orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count; if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) { decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key); } if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev, label)) { printf("Error creating decrypted block device\n"); return -1; } /* If init detects an encrypted filesystme, it writes a file for each such * encrypted fs into the tmpfs /data filesystem, and then the framework finds those * files and passes that data to me */ /* Create a tmp mount point to try mounting the decryptd fs * Since we're here, the mount_point should be a tmpfs filesystem, so make * a directory in it to test mount the decrypted filesystem. */ sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); mkdir(tmp_mount_point, 0755); if ( mount(crypto_blkdev, tmp_mount_point, fs_type, MS_RDONLY, "") ) { printf("Error temp mounting decrypted block device\n"); delete_crypto_blk_dev(label); crypt_ftr.failed_decrypt_count++; } else { /* Success, so just umount and we'll mount it properly when we restart * the framework. */ umount(tmp_mount_point); crypt_ftr.failed_decrypt_count = 0; } rmdir(tmp_mount_point); if (crypt_ftr.failed_decrypt_count) { /* We failed to mount the device, so return an error */ rc = crypt_ftr.failed_decrypt_count; } else { /* Woot! Success! Save the name of the crypto block device * so we can mount it when restarting the framework. */ property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev); /* Also save a the master key so we can reencrypted the key * the key when we want to change the password on it. */ memcpy(saved_master_key, decrypted_master_key, sizeof(saved_master_key)); saved_data_blkdev = strdup(real_blkdev); saved_mount_point = strdup(mount_point); master_key_saved = 1; rc = 0; } return rc; } static int test_mount_encrypted_fs_sd( const char *passwd, const char *mount_point, const char *label) { char real_blkdev[MAXPATHLEN]; char crypto_blkdev[MAXPATHLEN]; char tmp_mount_point[MAXPATHLEN]; char encrypted_state[PROPERTY_VALUE_MAX]; char fs_type[PROPERTY_VALUE_MAX]; int rc; property_get("ro.crypto.state", encrypted_state, ""); if ( !master_key_saved || strcmp(encrypted_state, "encrypted") ) { printf("encrypted fs not yet validated or not running with encryption, aborting\n"); return -1; } if (get_orig_mount_parms_sd(mount_point, fs_type, real_blkdev)) { printf("Error reading original mount parms for mount point %s\n", mount_point); return -1; } rc = cryptfs_setup_volume(label, real_blkdev, crypto_blkdev); if(rc){ printf("Error setting up cryptfs volume %s\n", real_blkdev); return -1; } sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point); mkdir(tmp_mount_point, 0755); if ( mount(crypto_blkdev, tmp_mount_point, fs_type, MS_RDONLY, "") ) { printf("Error temp mounting decrypted block device\n"); delete_crypto_blk_dev(label); } else { /* Success, so just umount and we'll mount it properly when we restart * the framework. */ umount(tmp_mount_point); property_set("ro.crypto.sd_fs_crypto_blkdev", crypto_blkdev); } rmdir(tmp_mount_point); return rc; } /* * Called by vold when it's asked to mount an encrypted, nonremovable volume. * Setup a dm-crypt mapping, use the saved master key from * setting up the /data mapping, and return the new device path. */ int cryptfs_setup_volume(const char *label, const char *real_blkdev, char *crypto_blkdev) { struct crypt_mnt_ftr sd_crypt_ftr; unsigned char key[256], salt[32]; struct stat statbuf; int nr_sec, fd, rc; /* Just want the footer, but gotta get it all */ get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt); /* Update the fs_size field to be the size of the volume */ fd = open(real_blkdev, O_RDONLY); nr_sec = get_blkdev_size(fd); close(fd); if (nr_sec == 0) { SLOGE("Cannot get size of volume %s\n", real_blkdev); return -1; } #ifdef TW_INCLUDE_CRYPTO_SAMSUNG if(using_samsung_encryption) { if(!access("/efs/essiv", R_OK)){ strcpy(sd_crypt_ftr.crypto_type_name, "aes-cbc-plain:sha1"); } else if(!access("/efs/cryptprop_essiv", R_OK)){ strcpy(sd_crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256"); } } #endif sd_crypt_ftr.fs_size = nr_sec; rc = create_crypto_blk_dev( &sd_crypt_ftr, saved_master_key, real_blkdev, crypto_blkdev, label); stat(crypto_blkdev, &statbuf); return rc; } int cryptfs_crypto_complete(void) { return -1; } int cryptfs_check_footer(void) { int rc = -1; char fs_type[PROPERTY_VALUE_MAX]; char real_blkdev[MAXPATHLEN]; char fs_options[PROPERTY_VALUE_MAX]; unsigned long mnt_flags; struct crypt_mnt_ftr crypt_ftr; /* Allocate enough space for a 256 bit key, but we may use less */ unsigned char encrypted_master_key[256]; unsigned char salt[SALT_LEN]; if (get_orig_mount_parms(DATA_MNT_POINT, fs_type, real_blkdev, &mnt_flags, fs_options)) { printf("Error reading original mount parms for mount point %s\n", DATA_MNT_POINT); return rc; } rc = get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt); return rc; } int cryptfs_check_passwd(const char *passwd) { char pwbuf[256]; char crypto_blkdev_data[MAXPATHLEN]; int rc = -1; strcpy(pwbuf, passwd); rc = test_mount_encrypted_fs(pwbuf, DATA_MNT_POINT, "userdata", crypto_blkdev_data); #ifdef TW_INCLUDE_CRYPTO_SAMSUNG if(using_samsung_encryption) { int rc2 = 1; #ifndef RECOVERY_SDCARD_ON_DATA #ifdef TW_INTERNAL_STORAGE_PATH // internal storage for non data/media devices if(!rc) { strcpy(pwbuf, passwd); rc2 = test_mount_encrypted_fs_sd( pwbuf, EXPAND(TW_INTERNAL_STORAGE_PATH), EXPAND(TW_INTERNAL_STORAGE_MOUNT_POINT)); } #endif #endif #ifdef TW_EXTERNAL_STORAGE_PATH printf("Temp mounting /data\n"); // mount data so mount_ecryptfs_drive can access edk in /data/system/ rc2 = mount(crypto_blkdev_data, DATA_MNT_POINT, CRYPTO_FS_TYPE, MS_RDONLY, ""); // external sd char decrypt_external[256], external_blkdev[256]; property_get("ro.crypto.external_encrypted", decrypt_external, "0"); // Mount the external storage as ecryptfs so that ecryptfs can act as a pass-through if (!rc2 && strcmp(decrypt_external, "1") == 0) { printf("Mounting external with ecryptfs...\n"); strcpy(pwbuf, passwd); rc2 = mount_ecryptfs_drive( pwbuf, EXPAND(TW_EXTERNAL_STORAGE_PATH), EXPAND(TW_EXTERNAL_STORAGE_PATH), 0); if (rc2 == 0) property_set("ro.crypto.external_use_ecryptfs", "1"); else property_set("ro.crypto.external_use_ecryptfs", "0"); } else { printf("Unable to mount external storage with ecryptfs.\n"); umount(EXPAND(TW_EXTERNAL_STORAGE_PATH)); } umount(DATA_MNT_POINT); } #endif // #ifdef TW_EXTERNAL_STORAGE_PATH #endif // #ifdef TW_INCLUDE_CRYPTO_SAMSUNG return rc; }