/* node.c (09.10.09) exFAT file system implementation library. Free exFAT implementation. Copyright (C) 2010-2015 Andrew Nayenko This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "exfat.h" #include #include #include /* on-disk nodes iterator */ struct iterator { cluster_t cluster; loff_t offset; int contiguous; char* chunk; }; struct exfat_node* exfat_get_node(struct exfat_node* node) { /* if we switch to multi-threaded mode we will need atomic increment here and atomic decrement in exfat_put_node() */ node->references++; return node; } void exfat_put_node(struct exfat* ef, struct exfat_node* node) { char buffer[UTF8_BYTES(EXFAT_NAME_MAX) + 1]; --node->references; if (node->references < 0) { exfat_get_name(node, buffer, sizeof(buffer) - 1); exfat_bug("reference counter of '%s' is below zero", buffer); } else if (node->references == 0 && node != ef->root) { if (node->flags & EXFAT_ATTRIB_DIRTY) { exfat_get_name(node, buffer, sizeof(buffer) - 1); exfat_warn("dirty node '%s' with zero references", buffer); } } } /** * This function must be called on rmdir and unlink (after the last * exfat_put_node()) to free clusters. */ int exfat_cleanup_node(struct exfat* ef, struct exfat_node* node) { int rc = 0; if (node->references != 0) exfat_bug("unable to cleanup a node with %d references", node->references); if (node->flags & EXFAT_ATTRIB_UNLINKED) { /* free all clusters and node structure itself */ rc = exfat_truncate(ef, node, 0, true); /* free the node even in case of error or its memory will be lost */ free(node); } return rc; } /** * Cluster + offset from the beginning of the directory to absolute offset. */ static loff_t co2o(struct exfat* ef, cluster_t cluster, loff_t offset) { return exfat_c2o(ef, cluster) + offset % CLUSTER_SIZE(*ef->sb); } static int opendir(struct exfat* ef, const struct exfat_node* dir, struct iterator* it) { if (!(dir->flags & EXFAT_ATTRIB_DIR)) exfat_bug("not a directory"); it->cluster = dir->start_cluster; it->offset = 0; it->contiguous = IS_CONTIGUOUS(*dir); it->chunk = malloc(CLUSTER_SIZE(*ef->sb)); if (it->chunk == NULL) { exfat_error("out of memory"); return -ENOMEM; } if (exfat_pread(ef->dev, it->chunk, CLUSTER_SIZE(*ef->sb), exfat_c2o(ef, it->cluster)) < 0) { exfat_error("failed to read directory cluster %#x", it->cluster); return -EIO; } return 0; } static void closedir(struct iterator* it) { it->cluster = 0; it->offset = 0; it->contiguous = 0; free(it->chunk); it->chunk = NULL; } static bool fetch_next_entry(struct exfat* ef, const struct exfat_node* parent, struct iterator* it) { /* move iterator to the next entry in the directory */ it->offset += sizeof(struct exfat_entry); /* fetch the next cluster if needed */ if ((it->offset & (CLUSTER_SIZE(*ef->sb) - 1)) == 0) { /* reached the end of directory; the caller should check this condition too */ if (it->offset >= parent->size) return true; it->cluster = exfat_next_cluster(ef, parent, it->cluster); if (CLUSTER_INVALID(it->cluster)) { exfat_error("invalid cluster 0x%x while reading directory", it->cluster); return false; } if (exfat_pread(ef->dev, it->chunk, CLUSTER_SIZE(*ef->sb), exfat_c2o(ef, it->cluster)) < 0) { exfat_error("failed to read the next directory cluster %#x", it->cluster); return false; } } return true; } static struct exfat_node* allocate_node(void) { struct exfat_node* node = malloc(sizeof(struct exfat_node)); if (node == NULL) { exfat_error("failed to allocate node"); return NULL; } memset(node, 0, sizeof(struct exfat_node)); return node; } static void init_node_meta1(struct exfat_node* node, const struct exfat_entry_meta1* meta1) { node->flags = le16_to_cpu(meta1->attrib); node->mtime = exfat_exfat2unix(meta1->mdate, meta1->mtime, meta1->mtime_cs); /* there is no centiseconds field for atime */ node->atime = exfat_exfat2unix(meta1->adate, meta1->atime, 0); } static void init_node_meta2(struct exfat_node* node, const struct exfat_entry_meta2* meta2) { node->size = le64_to_cpu(meta2->size); node->start_cluster = le32_to_cpu(meta2->start_cluster); node->fptr_cluster = node->start_cluster; if (meta2->flags & EXFAT_FLAG_CONTIGUOUS) node->flags |= EXFAT_ATTRIB_CONTIGUOUS; } static const struct exfat_entry* get_entry_ptr(const struct exfat* ef, const struct iterator* it) { return (const struct exfat_entry*) (it->chunk + it->offset % CLUSTER_SIZE(*ef->sb)); } static bool check_node(const struct exfat_node* node, uint16_t actual_checksum, uint16_t reference_checksum, uint64_t valid_size) { char buffer[UTF8_BYTES(EXFAT_NAME_MAX) + 1]; /* Validate checksum first. If it's invalid all other fields probably contain just garbage. */ if (actual_checksum != reference_checksum) { exfat_get_name(node, buffer, sizeof(buffer) - 1); exfat_error("'%s' has invalid checksum (%#hx != %#hx)", buffer, actual_checksum, reference_checksum); return false; } /* exFAT does not support sparse files but allows files with uninitialized clusters. For such files valid_size means initialized data size and cannot be greater than file size. See SetFileValidData() function description in MSDN. */ if (valid_size > node->size) { exfat_get_name(node, buffer, sizeof(buffer) - 1); exfat_error("'%s' has valid size (%"PRIu64") greater than size " "(%"PRIu64")", buffer, valid_size, node->size); return false; } return true; } /* * Reads one entry in directory at position pointed by iterator and fills * node structure. */ static int readdir(struct exfat* ef, const struct exfat_node* parent, struct exfat_node** node, struct iterator* it) { int rc = -EIO; const struct exfat_entry* entry; const struct exfat_entry_meta1* meta1; const struct exfat_entry_meta2* meta2; const struct exfat_entry_name* file_name; const struct exfat_entry_upcase* upcase; const struct exfat_entry_bitmap* bitmap; const struct exfat_entry_label* label; uint8_t continuations = 0; le16_t* namep = NULL; uint16_t reference_checksum = 0; uint16_t actual_checksum = 0; uint64_t valid_size = 0; *node = NULL; for (;;) { if (it->offset >= parent->size) { if (continuations != 0) { exfat_error("expected %hhu continuations", continuations); goto error; } return -ENOENT; /* that's OK, means end of directory */ } entry = get_entry_ptr(ef, it); switch (entry->type) { case EXFAT_ENTRY_FILE: if (continuations != 0) { exfat_error("expected %hhu continuations before new entry", continuations); goto error; } meta1 = (const struct exfat_entry_meta1*) entry; continuations = meta1->continuations; /* each file entry must have at least 2 continuations: info and name */ if (continuations < 2) { exfat_error("too few continuations (%hhu)", continuations); goto error; } if (continuations > 1 + DIV_ROUND_UP(EXFAT_NAME_MAX, EXFAT_ENAME_MAX)) { exfat_error("too many continuations (%hhu)", continuations); goto error; } reference_checksum = le16_to_cpu(meta1->checksum); actual_checksum = exfat_start_checksum(meta1); *node = allocate_node(); if (*node == NULL) { rc = -ENOMEM; goto error; } /* new node has zero reference counter */ (*node)->entry_cluster = it->cluster; (*node)->entry_offset = it->offset; init_node_meta1(*node, meta1); namep = (*node)->name; break; case EXFAT_ENTRY_FILE_INFO: if (continuations < 2) { exfat_error("unexpected continuation (%hhu)", continuations); goto error; } meta2 = (const struct exfat_entry_meta2*) entry; if (meta2->flags & ~(EXFAT_FLAG_ALWAYS1 | EXFAT_FLAG_CONTIGUOUS)) { exfat_error("unknown flags in meta2 (0x%hhx)", meta2->flags); goto error; } init_node_meta2(*node, meta2); actual_checksum = exfat_add_checksum(entry, actual_checksum); valid_size = le64_to_cpu(meta2->valid_size); /* empty files must be marked as non-contiguous */ if ((*node)->size == 0 && (meta2->flags & EXFAT_FLAG_CONTIGUOUS)) { exfat_error("empty file marked as contiguous (0x%hhx)", meta2->flags); goto error; } /* directories must be aligned on at cluster boundary */ if (((*node)->flags & EXFAT_ATTRIB_DIR) && (*node)->size % CLUSTER_SIZE(*ef->sb) != 0) { exfat_error("directory has invalid size %"PRIu64" bytes", (*node)->size); goto error; } --continuations; break; case EXFAT_ENTRY_FILE_NAME: if (continuations == 0) { exfat_error("unexpected continuation"); goto error; } file_name = (const struct exfat_entry_name*) entry; actual_checksum = exfat_add_checksum(entry, actual_checksum); memcpy(namep, file_name->name, MIN(EXFAT_ENAME_MAX, ((*node)->name + EXFAT_NAME_MAX - namep)) * sizeof(le16_t)); namep += EXFAT_ENAME_MAX; if (--continuations == 0) { if (!check_node(*node, actual_checksum, reference_checksum, valid_size)) goto error; if (!fetch_next_entry(ef, parent, it)) goto error; return 0; /* entry completed */ } break; case EXFAT_ENTRY_UPCASE: if (ef->upcase != NULL) break; upcase = (const struct exfat_entry_upcase*) entry; if (CLUSTER_INVALID(le32_to_cpu(upcase->start_cluster))) { exfat_error("invalid cluster 0x%x in upcase table", le32_to_cpu(upcase->start_cluster)); goto error; } if (le64_to_cpu(upcase->size) == 0 || le64_to_cpu(upcase->size) > 0xffff * sizeof(uint16_t) || le64_to_cpu(upcase->size) % sizeof(uint16_t) != 0) { exfat_error("bad upcase table size (%"PRIu64" bytes)", le64_to_cpu(upcase->size)); goto error; } ef->upcase = malloc(le64_to_cpu(upcase->size)); if (ef->upcase == NULL) { exfat_error("failed to allocate upcase table (%"PRIu64" bytes)", le64_to_cpu(upcase->size)); rc = -ENOMEM; goto error; } ef->upcase_chars = le64_to_cpu(upcase->size) / sizeof(le16_t); if (exfat_pread(ef->dev, ef->upcase, le64_to_cpu(upcase->size), exfat_c2o(ef, le32_to_cpu(upcase->start_cluster))) < 0) { exfat_error("failed to read upper case table " "(%"PRIu64" bytes starting at cluster %#x)", le64_to_cpu(upcase->size), le32_to_cpu(upcase->start_cluster)); goto error; } break; case EXFAT_ENTRY_BITMAP: bitmap = (const struct exfat_entry_bitmap*) entry; ef->cmap.start_cluster = le32_to_cpu(bitmap->start_cluster); if (CLUSTER_INVALID(ef->cmap.start_cluster)) { exfat_error("invalid cluster 0x%x in clusters bitmap", ef->cmap.start_cluster); goto error; } ef->cmap.size = le32_to_cpu(ef->sb->cluster_count) - EXFAT_FIRST_DATA_CLUSTER; if (le64_to_cpu(bitmap->size) < DIV_ROUND_UP(ef->cmap.size, 8)) { exfat_error("invalid clusters bitmap size: %"PRIu64 " (expected at least %u)", le64_to_cpu(bitmap->size), DIV_ROUND_UP(ef->cmap.size, 8)); goto error; } /* FIXME bitmap can be rather big, up to 512 MB */ ef->cmap.chunk_size = ef->cmap.size; ef->cmap.chunk = malloc(BMAP_SIZE(ef->cmap.chunk_size)); if (ef->cmap.chunk == NULL) { exfat_error("failed to allocate clusters bitmap chunk " "(%"PRIu64" bytes)", le64_to_cpu(bitmap->size)); rc = -ENOMEM; goto error; } if (exfat_pread(ef->dev, ef->cmap.chunk, BMAP_SIZE(ef->cmap.chunk_size), exfat_c2o(ef, ef->cmap.start_cluster)) < 0) { exfat_error("failed to read clusters bitmap " "(%"PRIu64" bytes starting at cluster %#x)", le64_to_cpu(bitmap->size), ef->cmap.start_cluster); goto error; } break; case EXFAT_ENTRY_LABEL: label = (const struct exfat_entry_label*) entry; if (label->length > EXFAT_ENAME_MAX) { exfat_error("too long label (%hhu chars)", label->length); goto error; } if (utf16_to_utf8(ef->label, label->name, sizeof(ef->label) - 1, EXFAT_ENAME_MAX) != 0) goto error; break; default: if (!(entry->type & EXFAT_ENTRY_VALID)) break; /* deleted entry, ignore it */ if (!(entry->type & EXFAT_ENTRY_OPTIONAL)) { exfat_error("unknown entry type %#hhx", entry->type); goto error; } /* optional entry, warn and skip */ exfat_warn("unknown entry type %#hhx", entry->type); if (continuations == 0) { exfat_error("unexpected continuation"); goto error; } --continuations; break; } if (!fetch_next_entry(ef, parent, it)) goto error; } /* we never reach here */ error: free(*node); *node = NULL; return rc; } int exfat_cache_directory(struct exfat* ef, struct exfat_node* dir) { struct iterator it; int rc; struct exfat_node* node; struct exfat_node* current = NULL; if (dir->flags & EXFAT_ATTRIB_CACHED) return 0; /* already cached */ rc = opendir(ef, dir, &it); if (rc != 0) return rc; while ((rc = readdir(ef, dir, &node, &it)) == 0) { node->parent = dir; if (current != NULL) { current->next = node; node->prev = current; } else dir->child = node; current = node; } closedir(&it); if (rc != -ENOENT) { /* rollback */ for (current = dir->child; current; current = node) { node = current->next; free(current); } dir->child = NULL; return rc; } dir->flags |= EXFAT_ATTRIB_CACHED; return 0; } static void tree_attach(struct exfat_node* dir, struct exfat_node* node) { node->parent = dir; if (dir->child) { dir->child->prev = node; node->next = dir->child; } dir->child = node; } static void tree_detach(struct exfat_node* node) { if (node->prev) node->prev->next = node->next; else /* this is the first node in the list */ node->parent->child = node->next; if (node->next) node->next->prev = node->prev; node->parent = NULL; node->prev = NULL; node->next = NULL; } static void reset_cache(struct exfat* ef, struct exfat_node* node) { char buffer[UTF8_BYTES(EXFAT_NAME_MAX) + 1]; while (node->child) { struct exfat_node* p = node->child; reset_cache(ef, p); tree_detach(p); free(p); } node->flags &= ~EXFAT_ATTRIB_CACHED; if (node->references != 0) { exfat_get_name(node, buffer, sizeof(buffer) - 1); exfat_warn("non-zero reference counter (%d) for '%s'", node->references, buffer); } if (node != ef->root && (node->flags & EXFAT_ATTRIB_DIRTY)) { exfat_get_name(node, buffer, sizeof(buffer) - 1); exfat_bug("node '%s' is dirty", buffer); } while (node->references) exfat_put_node(ef, node); } void exfat_reset_cache(struct exfat* ef) { reset_cache(ef, ef->root); } static bool next_entry(struct exfat* ef, const struct exfat_node* parent, cluster_t* cluster, loff_t* offset) { *offset += sizeof(struct exfat_entry); if (*offset % CLUSTER_SIZE(*ef->sb) == 0) { *cluster = exfat_next_cluster(ef, parent, *cluster); if (CLUSTER_INVALID(*cluster)) { exfat_error("invalid cluster %#x while getting next entry", *cluster); return false; } } return true; } int exfat_flush_node(struct exfat* ef, struct exfat_node* node) { cluster_t cluster; loff_t offset; loff_t meta1_offset, meta2_offset; struct exfat_entry_meta1 meta1; struct exfat_entry_meta2 meta2; if (!(node->flags & EXFAT_ATTRIB_DIRTY)) return 0; /* no need to flush */ if (ef->ro) exfat_bug("unable to flush node to read-only FS"); if (node->parent == NULL) return 0; /* do not flush unlinked node */ cluster = node->entry_cluster; offset = node->entry_offset; meta1_offset = co2o(ef, cluster, offset); if (!next_entry(ef, node->parent, &cluster, &offset)) return -EIO; meta2_offset = co2o(ef, cluster, offset); if (exfat_pread(ef->dev, &meta1, sizeof(meta1), meta1_offset) < 0) { exfat_error("failed to read meta1 entry on flush"); return -EIO; } if (meta1.type != EXFAT_ENTRY_FILE) exfat_bug("invalid type of meta1: 0x%hhx", meta1.type); meta1.attrib = cpu_to_le16(node->flags); exfat_unix2exfat(node->mtime, &meta1.mdate, &meta1.mtime, &meta1.mtime_cs); exfat_unix2exfat(node->atime, &meta1.adate, &meta1.atime, NULL); if (exfat_pread(ef->dev, &meta2, sizeof(meta2), meta2_offset) < 0) { exfat_error("failed to read meta2 entry on flush"); return -EIO; } if (meta2.type != EXFAT_ENTRY_FILE_INFO) exfat_bug("invalid type of meta2: 0x%hhx", meta2.type); meta2.size = meta2.valid_size = cpu_to_le64(node->size); meta2.start_cluster = cpu_to_le32(node->start_cluster); meta2.flags = EXFAT_FLAG_ALWAYS1; /* empty files must not be marked as contiguous */ if (node->size != 0 && IS_CONTIGUOUS(*node)) meta2.flags |= EXFAT_FLAG_CONTIGUOUS; /* name hash remains unchanged, no need to recalculate it */ meta1.checksum = exfat_calc_checksum(&meta1, &meta2, node->name); if (exfat_pwrite(ef->dev, &meta1, sizeof(meta1), meta1_offset) < 0) { exfat_error("failed to write meta1 entry on flush"); return -EIO; } if (exfat_pwrite(ef->dev, &meta2, sizeof(meta2), meta2_offset) < 0) { exfat_error("failed to write meta2 entry on flush"); return -EIO; } node->flags &= ~EXFAT_ATTRIB_DIRTY; return exfat_flush(ef); } static bool erase_entry(struct exfat* ef, struct exfat_node* node) { cluster_t cluster = node->entry_cluster; loff_t offset = node->entry_offset; int name_entries = DIV_ROUND_UP(utf16_length(node->name), EXFAT_ENAME_MAX); uint8_t entry_type; entry_type = EXFAT_ENTRY_FILE & ~EXFAT_ENTRY_VALID; if (exfat_pwrite(ef->dev, &entry_type, 1, co2o(ef, cluster, offset)) < 0) { exfat_error("failed to erase meta1 entry"); return false; } if (!next_entry(ef, node->parent, &cluster, &offset)) return false; entry_type = EXFAT_ENTRY_FILE_INFO & ~EXFAT_ENTRY_VALID; if (exfat_pwrite(ef->dev, &entry_type, 1, co2o(ef, cluster, offset)) < 0) { exfat_error("failed to erase meta2 entry"); return false; } while (name_entries--) { if (!next_entry(ef, node->parent, &cluster, &offset)) return false; entry_type = EXFAT_ENTRY_FILE_NAME & ~EXFAT_ENTRY_VALID; if (exfat_pwrite(ef->dev, &entry_type, 1, co2o(ef, cluster, offset)) < 0) { exfat_error("failed to erase name entry"); return false; } } return true; } static int shrink_directory(struct exfat* ef, struct exfat_node* dir, loff_t deleted_offset) { const struct exfat_node* node; const struct exfat_node* last_node; uint64_t entries = 0; uint64_t new_size; if (!(dir->flags & EXFAT_ATTRIB_DIR)) exfat_bug("attempted to shrink a file"); if (!(dir->flags & EXFAT_ATTRIB_CACHED)) exfat_bug("attempted to shrink uncached directory"); for (last_node = node = dir->child; node; node = node->next) { if (deleted_offset < node->entry_offset) { /* there are other entries after the removed one, no way to shrink this directory */ return 0; } if (last_node->entry_offset < node->entry_offset) last_node = node; } if (last_node) { /* offset of the last entry */ entries += last_node->entry_offset / sizeof(struct exfat_entry); /* two subentries with meta info */ entries += 2; /* subentries with file name */ entries += DIV_ROUND_UP(utf16_length(last_node->name), EXFAT_ENAME_MAX); } new_size = DIV_ROUND_UP(entries * sizeof(struct exfat_entry), CLUSTER_SIZE(*ef->sb)) * CLUSTER_SIZE(*ef->sb); if (new_size == 0) /* directory always has at least 1 cluster */ new_size = CLUSTER_SIZE(*ef->sb); if (new_size == dir->size) return 0; return exfat_truncate(ef, dir, new_size, true); } static int delete(struct exfat* ef, struct exfat_node* node) { struct exfat_node* parent = node->parent; loff_t deleted_offset = node->entry_offset; int rc; exfat_get_node(parent); if (!erase_entry(ef, node)) { exfat_put_node(ef, parent); return -EIO; } exfat_update_mtime(parent); tree_detach(node); rc = shrink_directory(ef, parent, deleted_offset); node->flags |= EXFAT_ATTRIB_UNLINKED; if (rc != 0) { exfat_flush_node(ef, parent); exfat_put_node(ef, parent); return rc; } rc = exfat_flush_node(ef, parent); exfat_put_node(ef, parent); return rc; } int exfat_unlink(struct exfat* ef, struct exfat_node* node) { if (node->flags & EXFAT_ATTRIB_DIR) return -EISDIR; return delete(ef, node); } int exfat_rmdir(struct exfat* ef, struct exfat_node* node) { int rc; if (!(node->flags & EXFAT_ATTRIB_DIR)) return -ENOTDIR; /* check that directory is empty */ rc = exfat_cache_directory(ef, node); if (rc != 0) return rc; if (node->child) return -ENOTEMPTY; return delete(ef, node); } static int grow_directory(struct exfat* ef, struct exfat_node* dir, uint64_t asize, uint32_t difference) { return exfat_truncate(ef, dir, DIV_ROUND_UP(asize + difference, CLUSTER_SIZE(*ef->sb)) * CLUSTER_SIZE(*ef->sb), true); } static int find_slot(struct exfat* ef, struct exfat_node* dir, cluster_t* cluster, loff_t* offset, int subentries) { struct iterator it; int rc; const struct exfat_entry* entry; int contiguous = 0; rc = opendir(ef, dir, &it); if (rc != 0) return rc; for (;;) { if (contiguous == 0) { *cluster = it.cluster; *offset = it.offset; } entry = get_entry_ptr(ef, &it); if (entry->type & EXFAT_ENTRY_VALID) contiguous = 0; else contiguous++; if (contiguous == subentries) break; /* suitable slot is found */ if (it.offset + sizeof(struct exfat_entry) >= dir->size) { rc = grow_directory(ef, dir, dir->size, (subentries - contiguous) * sizeof(struct exfat_entry)); if (rc != 0) { closedir(&it); return rc; } } if (!fetch_next_entry(ef, dir, &it)) { closedir(&it); return -EIO; } } closedir(&it); return 0; } static int write_entry(struct exfat* ef, struct exfat_node* dir, const le16_t* name, cluster_t cluster, loff_t offset, uint16_t attrib) { struct exfat_node* node; struct exfat_entry_meta1 meta1; struct exfat_entry_meta2 meta2; const size_t name_length = utf16_length(name); const int name_entries = DIV_ROUND_UP(name_length, EXFAT_ENAME_MAX); int i; node = allocate_node(); if (node == NULL) return -ENOMEM; node->entry_cluster = cluster; node->entry_offset = offset; memcpy(node->name, name, name_length * sizeof(le16_t)); memset(&meta1, 0, sizeof(meta1)); meta1.type = EXFAT_ENTRY_FILE; meta1.continuations = 1 + name_entries; meta1.attrib = cpu_to_le16(attrib); exfat_unix2exfat(time(NULL), &meta1.crdate, &meta1.crtime, &meta1.crtime_cs); meta1.adate = meta1.mdate = meta1.crdate; meta1.atime = meta1.mtime = meta1.crtime; meta1.mtime_cs = meta1.crtime_cs; /* there is no atime_cs */ memset(&meta2, 0, sizeof(meta2)); meta2.type = EXFAT_ENTRY_FILE_INFO; meta2.flags = EXFAT_FLAG_ALWAYS1; meta2.name_length = name_length; meta2.name_hash = exfat_calc_name_hash(ef, node->name); meta2.start_cluster = cpu_to_le32(EXFAT_CLUSTER_FREE); meta1.checksum = exfat_calc_checksum(&meta1, &meta2, node->name); if (exfat_pwrite(ef->dev, &meta1, sizeof(meta1), co2o(ef, cluster, offset)) < 0) { exfat_error("failed to write meta1 entry"); return -EIO; } if (!next_entry(ef, dir, &cluster, &offset)) return -EIO; if (exfat_pwrite(ef->dev, &meta2, sizeof(meta2), co2o(ef, cluster, offset)) < 0) { exfat_error("failed to write meta2 entry"); return -EIO; } for (i = 0; i < name_entries; i++) { struct exfat_entry_name name_entry = {EXFAT_ENTRY_FILE_NAME, 0}; memcpy(name_entry.name, node->name + i * EXFAT_ENAME_MAX, MIN(EXFAT_ENAME_MAX, EXFAT_NAME_MAX - i * EXFAT_ENAME_MAX) * sizeof(le16_t)); if (!next_entry(ef, dir, &cluster, &offset)) return -EIO; if (exfat_pwrite(ef->dev, &name_entry, sizeof(name_entry), co2o(ef, cluster, offset)) < 0) { exfat_error("failed to write name entry"); return -EIO; } } init_node_meta1(node, &meta1); init_node_meta2(node, &meta2); tree_attach(dir, node); exfat_update_mtime(dir); return 0; } static int create(struct exfat* ef, const char* path, uint16_t attrib) { struct exfat_node* dir; struct exfat_node* existing; cluster_t cluster = EXFAT_CLUSTER_BAD; loff_t offset = -1; le16_t name[EXFAT_NAME_MAX + 1]; int rc; rc = exfat_split(ef, &dir, &existing, name, path); if (rc != 0) return rc; if (existing != NULL) { exfat_put_node(ef, existing); exfat_put_node(ef, dir); return -EEXIST; } rc = find_slot(ef, dir, &cluster, &offset, 2 + DIV_ROUND_UP(utf16_length(name), EXFAT_ENAME_MAX)); if (rc != 0) { exfat_put_node(ef, dir); return rc; } rc = write_entry(ef, dir, name, cluster, offset, attrib); if (rc != 0) { exfat_put_node(ef, dir); return rc; } rc = exfat_flush_node(ef, dir); exfat_put_node(ef, dir); return rc; } int exfat_mknod(struct exfat* ef, const char* path) { return create(ef, path, EXFAT_ATTRIB_ARCH); } int exfat_mkdir(struct exfat* ef, const char* path) { int rc; struct exfat_node* node; rc = create(ef, path, EXFAT_ATTRIB_DIR); if (rc != 0) return rc; rc = exfat_lookup(ef, &node, path); if (rc != 0) return 0; /* directories always have at least one cluster */ rc = exfat_truncate(ef, node, CLUSTER_SIZE(*ef->sb), true); if (rc != 0) { delete(ef, node); exfat_put_node(ef, node); return rc; } rc = exfat_flush_node(ef, node); if (rc != 0) { delete(ef, node); exfat_put_node(ef, node); return rc; } exfat_put_node(ef, node); return 0; } static int rename_entry(struct exfat* ef, struct exfat_node* dir, struct exfat_node* node, const le16_t* name, cluster_t new_cluster, loff_t new_offset) { struct exfat_entry_meta1 meta1; struct exfat_entry_meta2 meta2; cluster_t old_cluster = node->entry_cluster; loff_t old_offset = node->entry_offset; const size_t name_length = utf16_length(name); const int name_entries = DIV_ROUND_UP(name_length, EXFAT_ENAME_MAX); int i; if (exfat_pread(ef->dev, &meta1, sizeof(meta1), co2o(ef, old_cluster, old_offset)) < 0) { exfat_error("failed to read meta1 entry on rename"); return -EIO; } if (!next_entry(ef, node->parent, &old_cluster, &old_offset)) return -EIO; if (exfat_pread(ef->dev, &meta2, sizeof(meta2), co2o(ef, old_cluster, old_offset)) < 0) { exfat_error("failed to read meta2 entry on rename"); return -EIO; } meta1.continuations = 1 + name_entries; meta2.name_hash = exfat_calc_name_hash(ef, name); meta2.name_length = name_length; meta1.checksum = exfat_calc_checksum(&meta1, &meta2, name); if (!erase_entry(ef, node)) return -EIO; node->entry_cluster = new_cluster; node->entry_offset = new_offset; if (exfat_pwrite(ef->dev, &meta1, sizeof(meta1), co2o(ef, new_cluster, new_offset)) < 0) { exfat_error("failed to write meta1 entry on rename"); return -EIO; } if (!next_entry(ef, dir, &new_cluster, &new_offset)) return -EIO; if (exfat_pwrite(ef->dev, &meta2, sizeof(meta2), co2o(ef, new_cluster, new_offset)) < 0) { exfat_error("failed to write meta2 entry on rename"); return -EIO; } for (i = 0; i < name_entries; i++) { struct exfat_entry_name name_entry = {EXFAT_ENTRY_FILE_NAME, 0}; memcpy(name_entry.name, name + i * EXFAT_ENAME_MAX, EXFAT_ENAME_MAX * sizeof(le16_t)); if (!next_entry(ef, dir, &new_cluster, &new_offset)) return -EIO; if (exfat_pwrite(ef->dev, &name_entry, sizeof(name_entry), co2o(ef, new_cluster, new_offset)) < 0) { exfat_error("failed to write name entry on rename"); return -EIO; } } memcpy(node->name, name, (EXFAT_NAME_MAX + 1) * sizeof(le16_t)); tree_detach(node); tree_attach(dir, node); return 0; } int exfat_rename(struct exfat* ef, const char* old_path, const char* new_path) { struct exfat_node* node; struct exfat_node* existing; struct exfat_node* dir; cluster_t cluster = EXFAT_CLUSTER_BAD; loff_t offset = -1; le16_t name[EXFAT_NAME_MAX + 1]; int rc; rc = exfat_lookup(ef, &node, old_path); if (rc != 0) return rc; rc = exfat_split(ef, &dir, &existing, name, new_path); if (rc != 0) { exfat_put_node(ef, node); return rc; } /* check that target is not a subdirectory of the source */ if (node->flags & EXFAT_ATTRIB_DIR) { struct exfat_node* p; for (p = dir; p; p = p->parent) if (node == p) { if (existing != NULL) exfat_put_node(ef, existing); exfat_put_node(ef, dir); exfat_put_node(ef, node); return -EINVAL; } } if (existing != NULL) { /* remove target if it's not the same node as source */ if (existing != node) { if (existing->flags & EXFAT_ATTRIB_DIR) { if (node->flags & EXFAT_ATTRIB_DIR) rc = exfat_rmdir(ef, existing); else rc = -ENOTDIR; } else { if (!(node->flags & EXFAT_ATTRIB_DIR)) rc = exfat_unlink(ef, existing); else rc = -EISDIR; } exfat_put_node(ef, existing); if (rc != 0) { exfat_put_node(ef, dir); exfat_put_node(ef, node); return rc; } } else exfat_put_node(ef, existing); } rc = find_slot(ef, dir, &cluster, &offset, 2 + DIV_ROUND_UP(utf16_length(name), EXFAT_ENAME_MAX)); if (rc != 0) { exfat_put_node(ef, dir); exfat_put_node(ef, node); return rc; } rc = rename_entry(ef, dir, node, name, cluster, offset); exfat_put_node(ef, dir); exfat_put_node(ef, node); return rc; } void exfat_utimes(struct exfat_node* node, const struct timespec tv[2]) { node->atime = tv[0].tv_sec; node->mtime = tv[1].tv_sec; node->flags |= EXFAT_ATTRIB_DIRTY; } void exfat_update_atime(struct exfat_node* node) { node->atime = time(NULL); node->flags |= EXFAT_ATTRIB_DIRTY; } void exfat_update_mtime(struct exfat_node* node) { node->mtime = time(NULL); node->flags |= EXFAT_ATTRIB_DIRTY; } const char* exfat_get_label(struct exfat* ef) { return ef->label; } static int find_label(struct exfat* ef, cluster_t* cluster, loff_t* offset) { struct iterator it; int rc; rc = opendir(ef, ef->root, &it); if (rc != 0) return rc; for (;;) { if (it.offset >= ef->root->size) { closedir(&it); return -ENOENT; } if (get_entry_ptr(ef, &it)->type == EXFAT_ENTRY_LABEL) { *cluster = it.cluster; *offset = it.offset; closedir(&it); return 0; } if (!fetch_next_entry(ef, ef->root, &it)) { closedir(&it); return -EIO; } } } int exfat_set_label(struct exfat* ef, const char* label) { le16_t label_utf16[EXFAT_ENAME_MAX + 1]; int rc; cluster_t cluster; loff_t offset; struct exfat_entry_label entry; memset(label_utf16, 0, sizeof(label_utf16)); rc = utf8_to_utf16(label_utf16, label, EXFAT_ENAME_MAX, strlen(label)); if (rc != 0) return rc; rc = find_label(ef, &cluster, &offset); if (rc == -ENOENT) rc = find_slot(ef, ef->root, &cluster, &offset, 1); if (rc != 0) return rc; entry.type = EXFAT_ENTRY_LABEL; entry.length = utf16_length(label_utf16); memcpy(entry.name, label_utf16, sizeof(entry.name)); if (entry.length == 0) entry.type ^= EXFAT_ENTRY_VALID; if (exfat_pwrite(ef->dev, &entry, sizeof(struct exfat_entry_label), co2o(ef, cluster, offset)) < 0) { exfat_error("failed to write label entry"); return -EIO; } strcpy(ef->label, label); return 0; }