/* Copyright 2012 bigbiff/Dees_Troy TeamWin This file is part of TWRP/TeamWin Recovery Project. TWRP is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. TWRP is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with TWRP. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "variables.h" #include "twcommon.h" #include "partitions.hpp" #include "data.hpp" #include "twrp-functions.hpp" #include "fixPermissions.hpp" #include "twrpDigest.hpp" #include "twrpDU.hpp" #ifdef TW_HAS_MTP #include "mtp/mtp_MtpServer.hpp" #include "mtp/twrpMtp.hpp" #endif extern "C" { #include "cutils/properties.h" } #ifdef TW_INCLUDE_CRYPTO #ifdef TW_INCLUDE_JB_CRYPTO #include "crypto/jb/cryptfs.h" #else #include "crypto/ics/cryptfs.h" #endif #endif extern bool datamedia; TWPartitionManager::TWPartitionManager(void) { mtp_was_enabled = false; } int TWPartitionManager::Process_Fstab(string Fstab_Filename, bool Display_Error) { FILE *fstabFile; char fstab_line[MAX_FSTAB_LINE_LENGTH]; TWPartition* settings_partition = NULL; TWPartition* andsec_partition = NULL; fstabFile = fopen(Fstab_Filename.c_str(), "rt"); if (fstabFile == NULL) { LOGERR("Critical Error: Unable to open fstab at '%s'.\n", Fstab_Filename.c_str()); return false; } while (fgets(fstab_line, sizeof(fstab_line), fstabFile) != NULL) { if (fstab_line[0] != '/') continue; if (fstab_line[strlen(fstab_line) - 1] != '\n') fstab_line[strlen(fstab_line)] = '\n'; TWPartition* partition = new TWPartition(); string line = fstab_line; memset(fstab_line, 0, sizeof(fstab_line)); if (partition->Process_Fstab_Line(line, Display_Error)) { if (!settings_partition && partition->Is_Settings_Storage && partition->Is_Present) { settings_partition = partition; } else { partition->Is_Settings_Storage = false; } if (!andsec_partition && partition->Has_Android_Secure && partition->Is_Present) { andsec_partition = partition; } else { partition->Has_Android_Secure = false; } Partitions.push_back(partition); } else { delete partition; } } fclose(fstabFile); if (!datamedia && !settings_partition && Find_Partition_By_Path("/sdcard") == NULL && Find_Partition_By_Path("/internal_sd") == NULL && Find_Partition_By_Path("/internal_sdcard") == NULL && Find_Partition_By_Path("/emmc") == NULL) { // Attempt to automatically identify /data/media emulated storage devices TWPartition* Dat = Find_Partition_By_Path("/data"); if (Dat) { LOGINFO("Using automatic handling for /data/media emulated storage device.\n"); datamedia = true; Dat->Setup_Data_Media(); settings_partition = Dat; } } if (!settings_partition) { std::vector::iterator iter; for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Is_Storage) { settings_partition = (*iter); break; } } if (!settings_partition) LOGERR("Unable to locate storage partition for storing settings file.\n"); } if (!Write_Fstab()) { if (Display_Error) LOGERR("Error creating fstab\n"); else LOGINFO("Error creating fstab\n"); } if (andsec_partition) { Setup_Android_Secure_Location(andsec_partition); } else if (settings_partition) { Setup_Android_Secure_Location(settings_partition); } if (settings_partition) { Setup_Settings_Storage_Partition(settings_partition); } Update_System_Details(); UnMount_Main_Partitions(); return true; } int TWPartitionManager::Write_Fstab(void) { FILE *fp; std::vector::iterator iter; string Line; fp = fopen("/etc/fstab", "w"); if (fp == NULL) { LOGINFO("Can not open /etc/fstab.\n"); return false; } for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Can_Be_Mounted) { Line = (*iter)->Actual_Block_Device + " " + (*iter)->Mount_Point + " " + (*iter)->Current_File_System + " rw\n"; fputs(Line.c_str(), fp); } // Handle subpartition tracking if ((*iter)->Is_SubPartition) { TWPartition* ParentPartition = Find_Partition_By_Path((*iter)->SubPartition_Of); if (ParentPartition) ParentPartition->Has_SubPartition = true; else LOGERR("Unable to locate parent partition '%s' of '%s'\n", (*iter)->SubPartition_Of.c_str(), (*iter)->Mount_Point.c_str()); } } fclose(fp); return true; } void TWPartitionManager::Setup_Settings_Storage_Partition(TWPartition* Part) { DataManager::SetValue("tw_settings_path", Part->Storage_Path); DataManager::SetValue("tw_storage_path", Part->Storage_Path); LOGINFO("Settings storage is '%s'\n", Part->Storage_Path.c_str()); } void TWPartitionManager::Setup_Android_Secure_Location(TWPartition* Part) { if (Part->Has_Android_Secure) Part->Setup_AndSec(); else if (!datamedia) Part->Setup_AndSec(); } void TWPartitionManager::Output_Partition_Logging(void) { std::vector::iterator iter; printf("\n\nPartition Logs:\n"); for (iter = Partitions.begin(); iter != Partitions.end(); iter++) Output_Partition((*iter)); } void TWPartitionManager::Output_Partition(TWPartition* Part) { unsigned long long mb = 1048576; printf("%s | %s | Size: %iMB", Part->Mount_Point.c_str(), Part->Actual_Block_Device.c_str(), (int)(Part->Size / mb)); if (Part->Can_Be_Mounted) { printf(" Used: %iMB Free: %iMB Backup Size: %iMB", (int)(Part->Used / mb), (int)(Part->Free / mb), (int)(Part->Backup_Size / mb)); } printf("\n Flags: "); if (Part->Can_Be_Mounted) printf("Can_Be_Mounted "); if (Part->Can_Be_Wiped) printf("Can_Be_Wiped "); if (Part->Use_Rm_Rf) printf("Use_Rm_Rf "); if (Part->Can_Be_Backed_Up) printf("Can_Be_Backed_Up "); if (Part->Wipe_During_Factory_Reset) printf("Wipe_During_Factory_Reset "); if (Part->Wipe_Available_in_GUI) printf("Wipe_Available_in_GUI "); if (Part->Is_SubPartition) printf("Is_SubPartition "); if (Part->Has_SubPartition) printf("Has_SubPartition "); if (Part->Removable) printf("Removable "); if (Part->Is_Present) printf("IsPresent "); if (Part->Can_Be_Encrypted) printf("Can_Be_Encrypted "); if (Part->Is_Encrypted) printf("Is_Encrypted "); if (Part->Is_Decrypted) printf("Is_Decrypted "); if (Part->Has_Data_Media) printf("Has_Data_Media "); if (Part->Can_Encrypt_Backup) printf("Can_Encrypt_Backup "); if (Part->Use_Userdata_Encryption) printf("Use_Userdata_Encryption "); if (Part->Has_Android_Secure) printf("Has_Android_Secure "); if (Part->Is_Storage) printf("Is_Storage "); if (Part->Is_Settings_Storage) printf("Is_Settings_Storage "); if (Part->Ignore_Blkid) printf("Ignore_Blkid "); if (Part->Retain_Layout_Version) printf("Retain_Layout_Version "); printf("\n"); if (!Part->SubPartition_Of.empty()) printf(" SubPartition_Of: %s\n", Part->SubPartition_Of.c_str()); if (!Part->Symlink_Path.empty()) printf(" Symlink_Path: %s\n", Part->Symlink_Path.c_str()); if (!Part->Symlink_Mount_Point.empty()) printf(" Symlink_Mount_Point: %s\n", Part->Symlink_Mount_Point.c_str()); if (!Part->Primary_Block_Device.empty()) printf(" Primary_Block_Device: %s\n", Part->Primary_Block_Device.c_str()); if (!Part->Alternate_Block_Device.empty()) printf(" Alternate_Block_Device: %s\n", Part->Alternate_Block_Device.c_str()); if (!Part->Decrypted_Block_Device.empty()) printf(" Decrypted_Block_Device: %s\n", Part->Decrypted_Block_Device.c_str()); if (Part->Length != 0) printf(" Length: %i\n", Part->Length); if (!Part->Display_Name.empty()) printf(" Display_Name: %s\n", Part->Display_Name.c_str()); if (!Part->Storage_Name.empty()) printf(" Storage_Name: %s\n", Part->Storage_Name.c_str()); if (!Part->Backup_Path.empty()) printf(" Backup_Path: %s\n", Part->Backup_Path.c_str()); if (!Part->Backup_Name.empty()) printf(" Backup_Name: %s\n", Part->Backup_Name.c_str()); if (!Part->Backup_Display_Name.empty()) printf(" Backup_Display_Name: %s\n", Part->Backup_Display_Name.c_str()); if (!Part->Backup_FileName.empty()) printf(" Backup_FileName: %s\n", Part->Backup_FileName.c_str()); if (!Part->Storage_Path.empty()) printf(" Storage_Path: %s\n", Part->Storage_Path.c_str()); if (!Part->Current_File_System.empty()) printf(" Current_File_System: %s\n", Part->Current_File_System.c_str()); if (!Part->Fstab_File_System.empty()) printf(" Fstab_File_System: %s\n", Part->Fstab_File_System.c_str()); if (Part->Format_Block_Size != 0) printf(" Format_Block_Size: %i\n", Part->Format_Block_Size); if (!Part->MTD_Name.empty()) printf(" MTD_Name: %s\n", Part->MTD_Name.c_str()); string back_meth = Part->Backup_Method_By_Name(); printf(" Backup_Method: %s\n", back_meth.c_str()); if (Part->Mount_Flags || !Part->Mount_Options.empty()) printf(" Mount_Flags=0x%8x, Mount_Options=%s\n", Part->Mount_Flags, Part->Mount_Options.c_str()); printf("\n"); } int TWPartitionManager::Mount_By_Path(string Path, bool Display_Error) { std::vector::iterator iter; int ret = false; bool found = false; string Local_Path = TWFunc::Get_Root_Path(Path); if (Local_Path == "/tmp" || Local_Path == "/") return true; // Iterate through all partitions for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) { ret = (*iter)->Mount(Display_Error); found = true; } else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) { (*iter)->Mount(Display_Error); } } if (found) { return ret; } else if (Display_Error) { LOGERR("Mount: Unable to find partition for path '%s'\n", Local_Path.c_str()); } else { LOGINFO("Mount: Unable to find partition for path '%s'\n", Local_Path.c_str()); } return false; } int TWPartitionManager::UnMount_By_Path(string Path, bool Display_Error) { std::vector::iterator iter; int ret = false; bool found = false; string Local_Path = TWFunc::Get_Root_Path(Path); // Iterate through all partitions for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) { ret = (*iter)->UnMount(Display_Error); found = true; } else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) { (*iter)->UnMount(Display_Error); } } if (found) { return ret; } else if (Display_Error) { LOGERR("UnMount: Unable to find partition for path '%s'\n", Local_Path.c_str()); } else { LOGINFO("UnMount: Unable to find partition for path '%s'\n", Local_Path.c_str()); } return false; } int TWPartitionManager::Is_Mounted_By_Path(string Path) { TWPartition* Part = Find_Partition_By_Path(Path); if (Part) return Part->Is_Mounted(); else LOGINFO("Is_Mounted: Unable to find partition for path '%s'\n", Path.c_str()); return false; } int TWPartitionManager::Mount_Current_Storage(bool Display_Error) { string current_storage_path = DataManager::GetCurrentStoragePath(); if (Mount_By_Path(current_storage_path, Display_Error)) { TWPartition* FreeStorage = Find_Partition_By_Path(current_storage_path); if (FreeStorage) DataManager::SetValue(TW_STORAGE_FREE_SIZE, (int)(FreeStorage->Free / 1048576LLU)); return true; } return false; } int TWPartitionManager::Mount_Settings_Storage(bool Display_Error) { return Mount_By_Path(DataManager::GetSettingsStoragePath(), Display_Error); } TWPartition* TWPartitionManager::Find_Partition_By_Path(string Path) { std::vector::iterator iter; string Local_Path = TWFunc::Get_Root_Path(Path); for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) return (*iter); } return NULL; } int TWPartitionManager::Check_Backup_Name(bool Display_Error) { // Check the backup name to ensure that it is the correct size and contains only valid characters // and that a backup with that name doesn't already exist char backup_name[MAX_BACKUP_NAME_LEN]; char backup_loc[255], tw_image_dir[255]; int copy_size; int index, cur_char; string Backup_Name, Backup_Loc; DataManager::GetValue(TW_BACKUP_NAME, Backup_Name); copy_size = Backup_Name.size(); // Check size if (copy_size > MAX_BACKUP_NAME_LEN) { if (Display_Error) LOGERR("Backup name is too long.\n"); return -2; } // Check each character strncpy(backup_name, Backup_Name.c_str(), copy_size); if (copy_size == 1 && strncmp(backup_name, "0", 1) == 0) return 0; // A "0" (zero) means to use the current timestamp for the backup name for (index=0; index= 48 && cur_char <= 57) || (cur_char >= 65 && cur_char <= 91) || cur_char == 93 || cur_char == 95 || (cur_char >= 97 && cur_char <= 123) || cur_char == 125 || cur_char == 45 || cur_char == 46) { // These are valid characters // Numbers // Upper case letters // Lower case letters // Space // and -_.{}[] } else { if (Display_Error) LOGERR("Backup name '%s' contains invalid character: '%c'\n", backup_name, (char)cur_char); return -3; } } // Check to make sure that a backup with this name doesn't already exist DataManager::GetValue(TW_BACKUPS_FOLDER_VAR, Backup_Loc); strcpy(backup_loc, Backup_Loc.c_str()); sprintf(tw_image_dir,"%s/%s", backup_loc, Backup_Name.c_str()); if (TWFunc::Path_Exists(tw_image_dir)) { if (Display_Error) LOGERR("A backup with this name already exists.\n"); return -4; } // No problems found, return 0 return 0; } bool TWPartitionManager::Make_MD5(bool generate_md5, string Backup_Folder, string Backup_Filename) { string command; string Full_File = Backup_Folder + Backup_Filename; string result; twrpDigest md5sum; if (!generate_md5) return true; TWFunc::GUI_Operation_Text(TW_GENERATE_MD5_TEXT, "Generating MD5"); gui_print(" * Generating md5...\n"); if (TWFunc::Path_Exists(Full_File)) { md5sum.setfn(Backup_Folder + Backup_Filename); if (md5sum.computeMD5() == 0) if (md5sum.write_md5digest() == 0) gui_print(" * MD5 Created.\n"); else return -1; else gui_print(" * MD5 Error!\n"); } else { char filename[512]; int index = 0; string strfn; sprintf(filename, "%s%03i", Full_File.c_str(), index); strfn = filename; while (index < 1000) { md5sum.setfn(filename); if (TWFunc::Path_Exists(filename)) { if (md5sum.computeMD5() == 0) { if (md5sum.write_md5digest() != 0) { gui_print(" * MD5 Error.\n"); return false; } } else { gui_print(" * Error computing MD5.\n"); return false; } } index++; sprintf(filename, "%s%03i", Full_File.c_str(), index); strfn = filename; } if (index == 0) { LOGERR("Backup file: '%s' not found!\n", filename); return false; } gui_print(" * MD5 Created.\n"); } return true; } bool TWPartitionManager::Backup_Partition(TWPartition* Part, string Backup_Folder, bool generate_md5, unsigned long long* img_bytes_remaining, unsigned long long* file_bytes_remaining, unsigned long *img_time, unsigned long *file_time, unsigned long long *img_bytes, unsigned long long *file_bytes) { time_t start, stop; int img_bps; unsigned long long file_bps; unsigned long total_time, remain_time, section_time; int use_compression, backup_time; float pos; unsigned long long total_size, current_size; if (Part == NULL) return true; DataManager::GetValue(TW_BACKUP_AVG_IMG_RATE, img_bps); DataManager::GetValue(TW_USE_COMPRESSION_VAR, use_compression); if (use_compression) DataManager::GetValue(TW_BACKUP_AVG_FILE_COMP_RATE, file_bps); else DataManager::GetValue(TW_BACKUP_AVG_FILE_RATE, file_bps); // We know the speed for both, how far into the whole backup are we, based on time total_time = (*img_bytes / (unsigned long)img_bps) + (*file_bytes / (unsigned long)file_bps); remain_time = (*img_bytes_remaining / (unsigned long)img_bps) + (*file_bytes_remaining / (unsigned long)file_bps); //pos = (total_time - remain_time) / (float) total_time; total_size = *file_bytes + *img_bytes; current_size = *file_bytes + *img_bytes - *file_bytes_remaining - *img_bytes_remaining; pos = ((float)(current_size) / (float)(total_size)); DataManager::SetProgress(pos); LOGINFO("Estimated total time: %lu\nEstimated remaining time: %lu\n", total_time, remain_time); // And get the time if (Part->Backup_Method == 1) section_time = Part->Backup_Size / file_bps; else section_time = Part->Backup_Size / img_bps; // Set the position pos = section_time / (float) total_time; //DataManager::ShowProgress(pos, section_time); TWFunc::SetPerformanceMode(true); time(&start); if (Part->Backup(Backup_Folder, &total_size, ¤t_size)) { bool md5Success = false; current_size += Part->Backup_Size; pos = (float)((float)(current_size) / (float)(total_size)); DataManager::SetProgress(pos); if (Part->Has_SubPartition) { std::vector::iterator subpart; for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) { if ((*subpart)->Can_Be_Backed_Up && (*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point) { if (!(*subpart)->Backup(Backup_Folder, &total_size, ¤t_size)) { TWFunc::SetPerformanceMode(false); return false; } sync(); sync(); if (!Make_MD5(generate_md5, Backup_Folder, (*subpart)->Backup_FileName)) { TWFunc::SetPerformanceMode(false); return false; } if (Part->Backup_Method == 1) { *file_bytes_remaining -= (*subpart)->Backup_Size; } else { *img_bytes_remaining -= (*subpart)->Backup_Size; } current_size += Part->Backup_Size; pos = (float)(current_size / total_size); DataManager::SetProgress(pos); } } } time(&stop); backup_time = (int) difftime(stop, start); LOGINFO("Partition Backup time: %d\n", backup_time); if (Part->Backup_Method == 1) { *file_bytes_remaining -= Part->Backup_Size; *file_time += backup_time; } else { *img_bytes_remaining -= Part->Backup_Size; *img_time += backup_time; } md5Success = Make_MD5(generate_md5, Backup_Folder, Part->Backup_FileName); TWFunc::SetPerformanceMode(false); return md5Success; } else { TWFunc::SetPerformanceMode(false); return false; } } int TWPartitionManager::Run_Backup(void) { int check, do_md5, partition_count = 0; string Backup_Folder, Backup_Name, Full_Backup_Path, Backup_List, backup_path; unsigned long long total_bytes = 0, file_bytes = 0, img_bytes = 0, free_space = 0, img_bytes_remaining, file_bytes_remaining, subpart_size; unsigned long img_time = 0, file_time = 0; TWPartition* backup_part = NULL; TWPartition* storage = NULL; std::vector::iterator subpart; struct tm *t; time_t start, stop, seconds, total_start, total_stop; size_t start_pos = 0, end_pos = 0; seconds = time(0); t = localtime(&seconds); time(&total_start); Update_System_Details(); if (!Mount_Current_Storage(true)) return false; DataManager::GetValue(TW_SKIP_MD5_GENERATE_VAR, do_md5); if (do_md5 == 0) do_md5 = true; else do_md5 = false; DataManager::GetValue(TW_BACKUPS_FOLDER_VAR, Backup_Folder); DataManager::GetValue(TW_BACKUP_NAME, Backup_Name); if (Backup_Name == "(Current Date)") { Backup_Name = TWFunc::Get_Current_Date(); } else if (Backup_Name == "(Auto Generate)" || Backup_Name == "0" || Backup_Name.empty()) { TWFunc::Auto_Generate_Backup_Name(); DataManager::GetValue(TW_BACKUP_NAME, Backup_Name); } LOGINFO("Backup Name is: '%s'\n", Backup_Name.c_str()); Full_Backup_Path = Backup_Folder + "/" + Backup_Name + "/"; LOGINFO("Full_Backup_Path is: '%s'\n", Full_Backup_Path.c_str()); LOGINFO("Calculating backup details...\n"); DataManager::GetValue("tw_backup_list", Backup_List); if (!Backup_List.empty()) { end_pos = Backup_List.find(";", start_pos); while (end_pos != string::npos && start_pos < Backup_List.size()) { backup_path = Backup_List.substr(start_pos, end_pos - start_pos); backup_part = Find_Partition_By_Path(backup_path); if (backup_part != NULL) { partition_count++; if (backup_part->Backup_Method == 1) file_bytes += backup_part->Backup_Size; else img_bytes += backup_part->Backup_Size; if (backup_part->Has_SubPartition) { std::vector::iterator subpart; for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) { if ((*subpart)->Can_Be_Backed_Up && (*subpart)->Is_Present && (*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == backup_part->Mount_Point) { partition_count++; if ((*subpart)->Backup_Method == 1) file_bytes += (*subpart)->Backup_Size; else img_bytes += (*subpart)->Backup_Size; } } } } else { LOGERR("Unable to locate '%s' partition for backup calculations.\n", backup_path.c_str()); } start_pos = end_pos + 1; end_pos = Backup_List.find(";", start_pos); } } if (partition_count == 0) { gui_print("No partitions selected for backup.\n"); return false; } total_bytes = file_bytes + img_bytes; gui_print(" * Total number of partitions to back up: %d\n", partition_count); gui_print(" * Total size of all data: %lluMB\n", total_bytes / 1024 / 1024); storage = Find_Partition_By_Path(DataManager::GetCurrentStoragePath()); if (storage != NULL) { free_space = storage->Free; gui_print(" * Available space: %lluMB\n", free_space / 1024 / 1024); } else { LOGERR("Unable to locate storage device.\n"); return false; } if (free_space - (32 * 1024 * 1024) < total_bytes) { // We require an extra 32MB just in case LOGERR("Not enough free space on storage.\n"); return false; } img_bytes_remaining = img_bytes; file_bytes_remaining = file_bytes; gui_print("\n[BACKUP STARTED]\n"); gui_print(" * Backup Folder: %s\n", Full_Backup_Path.c_str()); if (!TWFunc::Recursive_Mkdir(Full_Backup_Path)) { LOGERR("Failed to make backup folder.\n"); return false; } DataManager::SetProgress(0.0); start_pos = 0; end_pos = Backup_List.find(";", start_pos); while (end_pos != string::npos && start_pos < Backup_List.size()) { backup_path = Backup_List.substr(start_pos, end_pos - start_pos); backup_part = Find_Partition_By_Path(backup_path); if (backup_part != NULL) { if (!Backup_Partition(backup_part, Full_Backup_Path, do_md5, &img_bytes_remaining, &file_bytes_remaining, &img_time, &file_time, &img_bytes, &file_bytes)) return false; } else { LOGERR("Unable to locate '%s' partition for backup process.\n", backup_path.c_str()); } start_pos = end_pos + 1; end_pos = Backup_List.find(";", start_pos); } // Average BPS if (img_time == 0) img_time = 1; if (file_time == 0) file_time = 1; int img_bps = (int)img_bytes / (int)img_time; unsigned long long file_bps = file_bytes / (int)file_time; gui_print("Average backup rate for file systems: %llu MB/sec\n", (file_bps / (1024 * 1024))); gui_print("Average backup rate for imaged drives: %lu MB/sec\n", (img_bps / (1024 * 1024))); time(&total_stop); int total_time = (int) difftime(total_stop, total_start); uint64_t actual_backup_size = du.Get_Folder_Size(Full_Backup_Path); actual_backup_size /= (1024LLU * 1024LLU); int prev_img_bps, use_compression; unsigned long long prev_file_bps; DataManager::GetValue(TW_BACKUP_AVG_IMG_RATE, prev_img_bps); img_bps += (prev_img_bps * 4); img_bps /= 5; DataManager::GetValue(TW_USE_COMPRESSION_VAR, use_compression); if (use_compression) DataManager::GetValue(TW_BACKUP_AVG_FILE_COMP_RATE, prev_file_bps); else DataManager::GetValue(TW_BACKUP_AVG_FILE_RATE, prev_file_bps); file_bps += (prev_file_bps * 4); file_bps /= 5; DataManager::SetValue(TW_BACKUP_AVG_IMG_RATE, img_bps); if (use_compression) DataManager::SetValue(TW_BACKUP_AVG_FILE_COMP_RATE, file_bps); else DataManager::SetValue(TW_BACKUP_AVG_FILE_RATE, file_bps); gui_print("[%llu MB TOTAL BACKED UP]\n", actual_backup_size); Update_System_Details(); UnMount_Main_Partitions(); gui_print_color("highlight", "[BACKUP COMPLETED IN %d SECONDS]\n\n", total_time); // the end string backup_log = Full_Backup_Path + "recovery.log"; TWFunc::copy_file("/tmp/recovery.log", backup_log, 0644); return true; } bool TWPartitionManager::Restore_Partition(TWPartition* Part, string Restore_Name, int partition_count, const unsigned long long *total_restore_size, unsigned long long *already_restored_size) { time_t Start, Stop; TWFunc::SetPerformanceMode(true); time(&Start); //DataManager::ShowProgress(1.0 / (float)partition_count, 150); if (!Part->Restore(Restore_Name, total_restore_size, already_restored_size)) { TWFunc::SetPerformanceMode(false); return false; } if (Part->Has_SubPartition) { std::vector::iterator subpart; for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) { if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == Part->Mount_Point) { if (!(*subpart)->Restore(Restore_Name, total_restore_size, already_restored_size)) { TWFunc::SetPerformanceMode(false); return false; } } } } time(&Stop); TWFunc::SetPerformanceMode(false); gui_print("[%s done (%d seconds)]\n\n", Part->Backup_Display_Name.c_str(), (int)difftime(Stop, Start)); return true; } int TWPartitionManager::Run_Restore(string Restore_Name) { int check_md5, check, partition_count = 0; TWPartition* restore_part = NULL; time_t rStart, rStop; time(&rStart); string Restore_List, restore_path; size_t start_pos = 0, end_pos; unsigned long long total_restore_size = 0, already_restored_size = 0; gui_print("\n[RESTORE STARTED]\n\n"); gui_print("Restore folder: '%s'\n", Restore_Name.c_str()); if (!Mount_Current_Storage(true)) return false; DataManager::GetValue(TW_SKIP_MD5_CHECK_VAR, check_md5); if (check_md5 > 0) { // Check MD5 files first before restoring to ensure that all of them match before starting a restore TWFunc::GUI_Operation_Text(TW_VERIFY_MD5_TEXT, "Verifying MD5"); gui_print("Verifying MD5...\n"); } else { gui_print("Skipping MD5 check based on user setting.\n"); } gui_print("Calculating restore details...\n"); DataManager::GetValue("tw_restore_selected", Restore_List); if (!Restore_List.empty()) { end_pos = Restore_List.find(";", start_pos); while (end_pos != string::npos && start_pos < Restore_List.size()) { restore_path = Restore_List.substr(start_pos, end_pos - start_pos); restore_part = Find_Partition_By_Path(restore_path); if (restore_part != NULL) { partition_count++; if (check_md5 > 0 && !restore_part->Check_MD5(Restore_Name)) return false; total_restore_size += restore_part->Get_Restore_Size(Restore_Name); if (restore_part->Has_SubPartition) { std::vector::iterator subpart; for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) { if ((*subpart)->Is_SubPartition && (*subpart)->SubPartition_Of == restore_part->Mount_Point) { if (check_md5 > 0 && !(*subpart)->Check_MD5(Restore_Name)) return false; total_restore_size += (*subpart)->Get_Restore_Size(Restore_Name); } } } } else { LOGERR("Unable to locate '%s' partition for restoring (restore list).\n", restore_path.c_str()); } start_pos = end_pos + 1; end_pos = Restore_List.find(";", start_pos); } } if (partition_count == 0) { LOGERR("No partitions selected for restore.\n"); return false; } gui_print("Restoring %i partitions...\n", partition_count); gui_print("Total restore size is %lluMB\n", total_restore_size / 1048576); DataManager::SetProgress(0.0); start_pos = 0; if (!Restore_List.empty()) { end_pos = Restore_List.find(";", start_pos); while (end_pos != string::npos && start_pos < Restore_List.size()) { restore_path = Restore_List.substr(start_pos, end_pos - start_pos); restore_part = Find_Partition_By_Path(restore_path); if (restore_part != NULL) { partition_count++; if (!Restore_Partition(restore_part, Restore_Name, partition_count, &total_restore_size, &already_restored_size)) return false; } else { LOGERR("Unable to locate '%s' partition for restoring.\n", restore_path.c_str()); } start_pos = end_pos + 1; end_pos = Restore_List.find(";", start_pos); } } TWFunc::GUI_Operation_Text(TW_UPDATE_SYSTEM_DETAILS_TEXT, "Updating System Details"); Update_System_Details(); UnMount_Main_Partitions(); time(&rStop); gui_print_color("highlight", "[RESTORE COMPLETED IN %d SECONDS]\n\n",(int)difftime(rStop,rStart)); DataManager::SetValue("tw_file_progress", ""); return true; } void TWPartitionManager::Set_Restore_Files(string Restore_Name) { // Start with the default values string Restore_List; bool get_date = true, check_encryption = true; DataManager::SetValue("tw_restore_encrypted", 0); DIR* d; d = opendir(Restore_Name.c_str()); if (d == NULL) { LOGERR("Error opening %s\n", Restore_Name.c_str()); return; } struct dirent* de; while ((de = readdir(d)) != NULL) { // Strip off three components char str[256]; char* label; char* fstype = NULL; char* extn = NULL; char* ptr; strcpy(str, de->d_name); if (strlen(str) <= 2) continue; if (get_date) { char file_path[255]; struct stat st; strcpy(file_path, Restore_Name.c_str()); strcat(file_path, "/"); strcat(file_path, str); stat(file_path, &st); string backup_date = ctime((const time_t*)(&st.st_mtime)); DataManager::SetValue(TW_RESTORE_FILE_DATE, backup_date); get_date = false; } label = str; ptr = label; while (*ptr && *ptr != '.') ptr++; if (*ptr == '.') { *ptr = 0x00; ptr++; fstype = ptr; } while (*ptr && *ptr != '.') ptr++; if (*ptr == '.') { *ptr = 0x00; ptr++; extn = ptr; } if (fstype == NULL || extn == NULL || strcmp(fstype, "log") == 0) continue; int extnlength = strlen(extn); if (extnlength != 3 && extnlength != 6) continue; if (extnlength >= 3 && strncmp(extn, "win", 3) != 0) continue; //if (extnlength == 6 && strncmp(extn, "win000", 6) != 0) continue; if (check_encryption) { string filename = Restore_Name + "/"; filename += de->d_name; if (TWFunc::Get_File_Type(filename) == 2) { LOGINFO("'%s' is encrypted\n", filename.c_str()); DataManager::SetValue("tw_restore_encrypted", 1); } } if (extnlength == 6 && strncmp(extn, "win000", 6) != 0) continue; TWPartition* Part = Find_Partition_By_Path(label); if (Part == NULL) { LOGERR(" Unable to locate partition by backup name: '%s'\n", label); continue; } Part->Backup_FileName = de->d_name; if (strlen(extn) > 3) { Part->Backup_FileName.resize(Part->Backup_FileName.size() - strlen(extn) + 3); } Restore_List += Part->Backup_Path + ";"; } closedir(d); // Set the final value DataManager::SetValue("tw_restore_list", Restore_List); DataManager::SetValue("tw_restore_selected", Restore_List); return; } int TWPartitionManager::Wipe_By_Path(string Path) { std::vector::iterator iter; int ret = false; bool found = false; string Local_Path = TWFunc::Get_Root_Path(Path); // Iterate through all partitions for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) { if (Path == "/and-sec") ret = (*iter)->Wipe_AndSec(); else ret = (*iter)->Wipe(); found = true; } else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) { (*iter)->Wipe(); } } if (found) { return ret; } else LOGERR("Wipe: Unable to find partition for path '%s'\n", Local_Path.c_str()); return false; } int TWPartitionManager::Wipe_By_Path(string Path, string New_File_System) { std::vector::iterator iter; int ret = false; bool found = false; string Local_Path = TWFunc::Get_Root_Path(Path); // Iterate through all partitions for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) { if (Path == "/and-sec") ret = (*iter)->Wipe_AndSec(); else ret = (*iter)->Wipe(New_File_System); found = true; } else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) { (*iter)->Wipe(New_File_System); } } if (found) { return ret; } else LOGERR("Wipe: Unable to find partition for path '%s'\n", Local_Path.c_str()); return false; } int TWPartitionManager::Factory_Reset(void) { std::vector::iterator iter; int ret = true; for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Wipe_During_Factory_Reset && (*iter)->Is_Present) { if (!(*iter)->Wipe()) ret = false; } else if ((*iter)->Has_Android_Secure) { if (!(*iter)->Wipe_AndSec()) ret = false; } } return ret; } int TWPartitionManager::Wipe_Dalvik_Cache(void) { struct stat st; vector dir; if (!Mount_By_Path("/data", true)) return false; if (!Mount_By_Path("/cache", true)) return false; dir.push_back("/data/dalvik-cache"); dir.push_back("/cache/dalvik-cache"); dir.push_back("/cache/dc"); gui_print("\nWiping Dalvik Cache Directories...\n"); for (unsigned i = 0; i < dir.size(); ++i) { if (stat(dir.at(i).c_str(), &st) == 0) { TWFunc::removeDir(dir.at(i), false); gui_print("Cleaned: %s...\n", dir.at(i).c_str()); } } TWPartition* sdext = Find_Partition_By_Path("/sd-ext"); if (sdext && sdext->Is_Present && sdext->Mount(false)) { if (stat("/sd-ext/dalvik-cache", &st) == 0) { TWFunc::removeDir("/sd-ext/dalvik-cache", false); gui_print("Cleaned: /sd-ext/dalvik-cache...\n"); } } gui_print("-- Dalvik Cache Directories Wipe Complete!\n\n"); return true; } int TWPartitionManager::Wipe_Rotate_Data(void) { if (!Mount_By_Path("/data", true)) return false; unlink("/data/misc/akmd*"); unlink("/data/misc/rild*"); gui_print("Rotation data wiped.\n"); return true; } int TWPartitionManager::Wipe_Battery_Stats(void) { struct stat st; if (!Mount_By_Path("/data", true)) return false; if (0 != stat("/data/system/batterystats.bin", &st)) { gui_print("No Battery Stats Found. No Need To Wipe.\n"); } else { remove("/data/system/batterystats.bin"); gui_print("Cleared battery stats.\n"); } return true; } int TWPartitionManager::Wipe_Android_Secure(void) { std::vector::iterator iter; int ret = false; bool found = false; // Iterate through all partitions for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Has_Android_Secure) { ret = (*iter)->Wipe_AndSec(); found = true; } } if (found) { return ret; } else { LOGERR("No android secure partitions found.\n"); } return false; } int TWPartitionManager::Format_Data(void) { TWPartition* dat = Find_Partition_By_Path("/data"); if (dat != NULL) { if (!dat->UnMount(true)) return false; return dat->Wipe_Encryption(); } else { LOGERR("Unable to locate /data.\n"); return false; } return false; } int TWPartitionManager::Wipe_Media_From_Data(void) { TWPartition* dat = Find_Partition_By_Path("/data"); if (dat != NULL) { if (!dat->Has_Data_Media) { LOGERR("This device does not have /data/media\n"); return false; } if (!dat->Mount(true)) return false; gui_print("Wiping internal storage -- /data/media...\n"); mtp_was_enabled = TWFunc::Toggle_MTP(false); TWFunc::removeDir("/data/media", false); if (mkdir("/data/media", S_IRWXU | S_IRWXG | S_IWGRP | S_IXGRP) != 0) { if (mtp_was_enabled) { if (!Enable_MTP()) Disable_MTP(); } return false; } if (dat->Has_Data_Media) { dat->Recreate_Media_Folder(); // Unmount and remount - slightly hackish way to ensure that the "/sdcard" folder is still mounted properly after wiping dat->UnMount(false); dat->Mount(false); } if (mtp_was_enabled) { if (!Enable_MTP()) Disable_MTP(); } return true; } else { LOGERR("Unable to locate /data.\n"); return false; } return false; } int TWPartitionManager::Repair_By_Path(string Path, bool Display_Error) { std::vector::iterator iter; int ret = false; bool found = false; string Local_Path = TWFunc::Get_Root_Path(Path); if (Local_Path == "/tmp" || Local_Path == "/") return true; // Iterate through all partitions for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Mount_Point == Local_Path || (!(*iter)->Symlink_Mount_Point.empty() && (*iter)->Symlink_Mount_Point == Local_Path)) { ret = (*iter)->Repair(); found = true; } else if ((*iter)->Is_SubPartition && (*iter)->SubPartition_Of == Local_Path) { (*iter)->Repair(); } } if (found) { return ret; } else if (Display_Error) { LOGERR("Repair: Unable to find partition for path '%s'\n", Local_Path.c_str()); } else { LOGINFO("Repair: Unable to find partition for path '%s'\n", Local_Path.c_str()); } return false; } void TWPartitionManager::Update_System_Details(void) { std::vector::iterator iter; int data_size = 0; gui_print("Updating partition details...\n"); for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Can_Be_Mounted) { (*iter)->Update_Size(true); if ((*iter)->Mount_Point == "/system") { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_SYSTEM_SIZE, backup_display_size); } else if ((*iter)->Mount_Point == "/data" || (*iter)->Mount_Point == "/datadata") { data_size += (int)((*iter)->Backup_Size / 1048576LLU); } else if ((*iter)->Mount_Point == "/cache") { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_CACHE_SIZE, backup_display_size); } else if ((*iter)->Mount_Point == "/sd-ext") { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_SDEXT_SIZE, backup_display_size); if ((*iter)->Backup_Size == 0) { DataManager::SetValue(TW_HAS_SDEXT_PARTITION, 0); DataManager::SetValue(TW_BACKUP_SDEXT_VAR, 0); } else DataManager::SetValue(TW_HAS_SDEXT_PARTITION, 1); } else if ((*iter)->Has_Android_Secure) { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_ANDSEC_SIZE, backup_display_size); if ((*iter)->Backup_Size == 0) { DataManager::SetValue(TW_HAS_ANDROID_SECURE, 0); DataManager::SetValue(TW_BACKUP_ANDSEC_VAR, 0); } else DataManager::SetValue(TW_HAS_ANDROID_SECURE, 1); } else if ((*iter)->Mount_Point == "/boot") { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_BOOT_SIZE, backup_display_size); if ((*iter)->Backup_Size == 0) { DataManager::SetValue("tw_has_boot_partition", 0); DataManager::SetValue(TW_BACKUP_BOOT_VAR, 0); } else DataManager::SetValue("tw_has_boot_partition", 1); } #ifdef SP1_NAME if ((*iter)->Backup_Name == EXPAND(SP1_NAME)) { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_SP1_SIZE, backup_display_size); } #endif #ifdef SP2_NAME if ((*iter)->Backup_Name == EXPAND(SP2_NAME)) { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_SP2_SIZE, backup_display_size); } #endif #ifdef SP3_NAME if ((*iter)->Backup_Name == EXPAND(SP3_NAME)) { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_SP3_SIZE, backup_display_size); } #endif } else { // Handle unmountable partitions in case we reset defaults if ((*iter)->Mount_Point == "/boot") { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_BOOT_SIZE, backup_display_size); if ((*iter)->Backup_Size == 0) { DataManager::SetValue(TW_HAS_BOOT_PARTITION, 0); DataManager::SetValue(TW_BACKUP_BOOT_VAR, 0); } else DataManager::SetValue(TW_HAS_BOOT_PARTITION, 1); } else if ((*iter)->Mount_Point == "/recovery") { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_RECOVERY_SIZE, backup_display_size); if ((*iter)->Backup_Size == 0) { DataManager::SetValue(TW_HAS_RECOVERY_PARTITION, 0); DataManager::SetValue(TW_BACKUP_RECOVERY_VAR, 0); } else DataManager::SetValue(TW_HAS_RECOVERY_PARTITION, 1); } else if ((*iter)->Mount_Point == "/data") { data_size += (int)((*iter)->Backup_Size / 1048576LLU); } #ifdef SP1_NAME if ((*iter)->Backup_Name == EXPAND(SP1_NAME)) { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_SP1_SIZE, backup_display_size); } #endif #ifdef SP2_NAME if ((*iter)->Backup_Name == EXPAND(SP2_NAME)) { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_SP2_SIZE, backup_display_size); } #endif #ifdef SP3_NAME if ((*iter)->Backup_Name == EXPAND(SP3_NAME)) { int backup_display_size = (int)((*iter)->Backup_Size / 1048576LLU); DataManager::SetValue(TW_BACKUP_SP3_SIZE, backup_display_size); } #endif } } gui_print("...done\n"); DataManager::SetValue(TW_BACKUP_DATA_SIZE, data_size); string current_storage_path = DataManager::GetCurrentStoragePath(); TWPartition* FreeStorage = Find_Partition_By_Path(current_storage_path); if (FreeStorage != NULL) { // Attempt to mount storage if (!FreeStorage->Mount(false)) { // We couldn't mount storage... check to see if we have dual storage int has_dual_storage; DataManager::GetValue(TW_HAS_DUAL_STORAGE, has_dual_storage); if (has_dual_storage == 1) { // We have dual storage, see if we're using the internal storage that should always be present if (current_storage_path == DataManager::GetSettingsStoragePath()) { if (!FreeStorage->Is_Encrypted) { // Not able to use internal, so error! LOGERR("Unable to mount internal storage.\n"); } DataManager::SetValue(TW_STORAGE_FREE_SIZE, 0); } else { // We were using external, flip to internal DataManager::SetValue(TW_USE_EXTERNAL_STORAGE, 0); current_storage_path = DataManager::GetCurrentStoragePath(); FreeStorage = Find_Partition_By_Path(current_storage_path); if (FreeStorage != NULL) { DataManager::SetValue(TW_STORAGE_FREE_SIZE, (int)(FreeStorage->Free / 1048576LLU)); } else { LOGERR("Unable to locate internal storage partition.\n"); DataManager::SetValue(TW_STORAGE_FREE_SIZE, 0); } } } else { // No dual storage and unable to mount storage, error! LOGERR("Unable to mount storage.\n"); DataManager::SetValue(TW_STORAGE_FREE_SIZE, 0); } } else { DataManager::SetValue(TW_STORAGE_FREE_SIZE, (int)(FreeStorage->Free / 1048576LLU)); } } else { LOGINFO("Unable to find storage partition '%s'.\n", current_storage_path.c_str()); } if (!Write_Fstab()) LOGERR("Error creating fstab\n"); return; } int TWPartitionManager::Decrypt_Device(string Password) { #ifdef TW_INCLUDE_CRYPTO int ret_val, password_len; char crypto_blkdev[255], cPassword[255]; size_t result; property_set("ro.crypto.state", "encrypted"); #ifdef TW_INCLUDE_JB_CRYPTO // No extra flags needed #else property_set("ro.crypto.fs_type", CRYPTO_FS_TYPE); property_set("ro.crypto.fs_real_blkdev", CRYPTO_REAL_BLKDEV); property_set("ro.crypto.fs_mnt_point", CRYPTO_MNT_POINT); property_set("ro.crypto.fs_options", CRYPTO_FS_OPTIONS); property_set("ro.crypto.fs_flags", CRYPTO_FS_FLAGS); property_set("ro.crypto.keyfile.userdata", CRYPTO_KEY_LOC); #ifdef CRYPTO_SD_FS_TYPE property_set("ro.crypto.sd_fs_type", CRYPTO_SD_FS_TYPE); property_set("ro.crypto.sd_fs_real_blkdev", CRYPTO_SD_REAL_BLKDEV); property_set("ro.crypto.sd_fs_mnt_point", EXPAND(TW_INTERNAL_STORAGE_PATH)); #endif property_set("rw.km_fips_status", "ready"); #endif // some samsung devices store "footer" on efs partition TWPartition *efs = Find_Partition_By_Path("/efs"); if(efs && !efs->Is_Mounted()) efs->Mount(false); else efs = 0; #ifdef TW_EXTERNAL_STORAGE_PATH #ifdef TW_INCLUDE_CRYPTO_SAMSUNG TWPartition* sdcard = Find_Partition_By_Path(EXPAND(TW_EXTERNAL_STORAGE_PATH)); if (sdcard && sdcard->Mount(false)) { property_set("ro.crypto.external_encrypted", "1"); property_set("ro.crypto.external_blkdev", sdcard->Actual_Block_Device.c_str()); } else { property_set("ro.crypto.external_encrypted", "0"); } #endif #endif strcpy(cPassword, Password.c_str()); int pwret = cryptfs_check_passwd(cPassword); if (pwret != 0) { LOGERR("Failed to decrypt data.\n"); return -1; } if(efs) efs->UnMount(false); property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "error"); if (strcmp(crypto_blkdev, "error") == 0) { LOGERR("Error retrieving decrypted data block device.\n"); } else { TWPartition* dat = Find_Partition_By_Path("/data"); if (dat != NULL) { DataManager::SetValue(TW_DATA_BLK_DEVICE, dat->Primary_Block_Device); DataManager::SetValue(TW_IS_DECRYPTED, 1); dat->Is_Decrypted = true; dat->Decrypted_Block_Device = crypto_blkdev; dat->Setup_File_System(false); dat->Current_File_System = dat->Fstab_File_System; // Needed if we're ignoring blkid because encrypted devices start out as emmc gui_print("Data successfully decrypted, new block device: '%s'\n", crypto_blkdev); #ifdef CRYPTO_SD_FS_TYPE char crypto_blkdev_sd[255]; property_get("ro.crypto.sd_fs_crypto_blkdev", crypto_blkdev_sd, "error"); if (strcmp(crypto_blkdev_sd, "error") == 0) { LOGERR("Error retrieving decrypted data block device.\n"); } else if(TWPartition* emmc = Find_Partition_By_Path(EXPAND(TW_INTERNAL_STORAGE_PATH))){ emmc->Is_Decrypted = true; emmc->Decrypted_Block_Device = crypto_blkdev_sd; emmc->Setup_File_System(false); gui_print("Internal SD successfully decrypted, new block device: '%s'\n", crypto_blkdev_sd); } #endif //ifdef CRYPTO_SD_FS_TYPE #ifdef TW_EXTERNAL_STORAGE_PATH #ifdef TW_INCLUDE_CRYPTO_SAMSUNG char is_external_decrypted[255]; property_get("ro.crypto.external_use_ecryptfs", is_external_decrypted, "0"); if (strcmp(is_external_decrypted, "1") == 0) { sdcard->Is_Decrypted = true; sdcard->EcryptFS_Password = Password; sdcard->Decrypted_Block_Device = sdcard->Actual_Block_Device; string MetaEcfsFile = EXPAND(TW_EXTERNAL_STORAGE_PATH); MetaEcfsFile += "/.MetaEcfsFile"; if (!TWFunc::Path_Exists(MetaEcfsFile)) { // External storage isn't actually encrypted so unmount and remount without ecryptfs sdcard->UnMount(false); sdcard->Mount(false); } } else { LOGINFO("External storage '%s' is not encrypted.\n", sdcard->Mount_Point.c_str()); sdcard->Is_Decrypted = false; sdcard->Decrypted_Block_Device = ""; } #endif #endif //ifdef TW_EXTERNAL_STORAGE_PATH // Sleep for a bit so that the device will be ready sleep(1); if (dat->Has_Data_Media && dat->Mount(false) && TWFunc::Path_Exists("/data/media/0")) { dat->Storage_Path = "/data/media/0"; dat->Symlink_Path = dat->Storage_Path; DataManager::SetValue("tw_storage_path", "/data/media/0"); dat->UnMount(false); Output_Partition(dat); } Update_System_Details(); UnMount_Main_Partitions(); } else LOGERR("Unable to locate data partition.\n"); } return 0; #else LOGERR("No crypto support was compiled into this build.\n"); return -1; #endif return 1; } int TWPartitionManager::Fix_Permissions(void) { int result = 0; if (!Mount_By_Path("/data", true)) return false; if (!Mount_By_Path("/system", true)) return false; Mount_By_Path("/sd-ext", false); fixPermissions perms; result = perms.fixPerms(true, false); UnMount_Main_Partitions(); gui_print("Done.\n\n"); return result; } TWPartition* TWPartitionManager::Find_Next_Storage(string Path, string Exclude) { std::vector::iterator iter = Partitions.begin(); if (!Path.empty()) { string Search_Path = TWFunc::Get_Root_Path(Path); for (; iter != Partitions.end(); iter++) { if ((*iter)->Mount_Point == Search_Path) { iter++; break; } } } for (; iter != Partitions.end(); iter++) { if ((*iter)->Is_Storage && (*iter)->Is_Present && (*iter)->Mount_Point != Exclude) { return (*iter); } } return NULL; } int TWPartitionManager::Open_Lun_File(string Partition_Path, string Lun_File) { TWPartition* Part = Find_Partition_By_Path(Partition_Path); if (Part == NULL) { LOGERR("Unable to locate '%s' for USB storage mode.", Partition_Path.c_str()); return false; } LOGINFO("USB mount '%s', '%s' > '%s'\n", Partition_Path.c_str(), Part->Actual_Block_Device.c_str(), Lun_File.c_str()); if (!Part->UnMount(true) || !Part->Is_Present) return false; if (TWFunc::write_file(Lun_File, Part->Actual_Block_Device)) { LOGERR("Unable to write to ums lunfile '%s': (%s)\n", Lun_File.c_str(), strerror(errno)); return false; } return true; } int TWPartitionManager::usb_storage_enable(void) { int has_dual, has_data_media; char lun_file[255]; bool has_multiple_lun = false; DataManager::GetValue(TW_HAS_DATA_MEDIA, has_data_media); string Lun_File_str = CUSTOM_LUN_FILE; size_t found = Lun_File_str.find("%"); if (found != string::npos) { sprintf(lun_file, CUSTOM_LUN_FILE, 1); if (TWFunc::Path_Exists(lun_file)) has_multiple_lun = true; } mtp_was_enabled = TWFunc::Toggle_MTP(false); if (!has_multiple_lun) { LOGINFO("Device doesn't have multiple lun files, mount current storage\n"); sprintf(lun_file, CUSTOM_LUN_FILE, 0); if (TWFunc::Get_Root_Path(DataManager::GetCurrentStoragePath()) == "/data") { TWPartition* Mount = Find_Next_Storage("", "/data"); if (Mount) { if (!Open_Lun_File(Mount->Mount_Point, lun_file)) { goto error_handle; } } else { LOGERR("Unable to find storage partition to mount to USB\n"); goto error_handle; } } else if (!Open_Lun_File(DataManager::GetCurrentStoragePath(), lun_file)) { goto error_handle; } } else { LOGINFO("Device has multiple lun files\n"); TWPartition* Mount1; TWPartition* Mount2; sprintf(lun_file, CUSTOM_LUN_FILE, 0); Mount1 = Find_Next_Storage("", "/data"); if (Mount1) { if (!Open_Lun_File(Mount1->Mount_Point, lun_file)) { goto error_handle; } sprintf(lun_file, CUSTOM_LUN_FILE, 1); Mount2 = Find_Next_Storage(Mount1->Mount_Point, "/data"); if (Mount2) { Open_Lun_File(Mount2->Mount_Point, lun_file); } } else { LOGERR("Unable to find storage partition to mount to USB\n"); goto error_handle; } } property_set("sys.storage.ums_enabled", "1"); return true; error_handle: if (mtp_was_enabled) if (!Enable_MTP()) Disable_MTP(); return false; } int TWPartitionManager::usb_storage_disable(void) { int index, ret; char lun_file[255], ch[2] = {0, 0}; string str = ch; for (index=0; index<2; index++) { sprintf(lun_file, CUSTOM_LUN_FILE, index); ret = TWFunc::write_file(lun_file, str); if (ret < 0) { break; } } Mount_All_Storage(); Update_System_Details(); UnMount_Main_Partitions(); property_set("sys.storage.ums_enabled", "0"); if (mtp_was_enabled) if (!Enable_MTP()) Disable_MTP(); if (ret < 0 && index == 0) { LOGERR("Unable to write to ums lunfile '%s'.", lun_file); return false; } else { return true; } return true; } void TWPartitionManager::Mount_All_Storage(void) { std::vector::iterator iter; for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Is_Storage) (*iter)->Mount(false); } } void TWPartitionManager::UnMount_Main_Partitions(void) { // Unmounts system and data if data is not data/media // Also unmounts boot if boot is mountable LOGINFO("Unmounting main partitions...\n"); TWPartition* Boot_Partition = Find_Partition_By_Path("/boot"); UnMount_By_Path("/system", true); if (!datamedia) UnMount_By_Path("/data", true); if (Boot_Partition != NULL && Boot_Partition->Can_Be_Mounted) Boot_Partition->UnMount(true); } int TWPartitionManager::Partition_SDCard(void) { char mkdir_path[255], temp[255], line[512]; string Command, Device, fat_str, ext_str, swap_str, start_loc, end_loc, ext_format, sd_path, tmpdevice; int ext, swap, total_size = 0, fat_size; FILE* fp; gui_print("Partitioning SD Card...\n"); #ifdef TW_EXTERNAL_STORAGE_PATH TWPartition* SDCard = Find_Partition_By_Path(EXPAND(TW_EXTERNAL_STORAGE_PATH)); #else TWPartition* SDCard = Find_Partition_By_Path("/sdcard"); #endif if (SDCard == NULL || !SDCard->Removable || SDCard->Has_Data_Media) { LOGERR("Unable to locate device to partition.\n"); return false; } if (!SDCard->UnMount(true)) return false; TWPartition* SDext = Find_Partition_By_Path("/sd-ext"); if (SDext != NULL) { if (!SDext->UnMount(true)) return false; } TWFunc::Exec_Cmd("umount \"$SWAPPATH\""); Device = SDCard->Actual_Block_Device; // Just use the root block device Device.resize(strlen("/dev/block/mmcblkX")); // Find the size of the block device: fp = fopen("/proc/partitions", "rt"); if (fp == NULL) { LOGERR("Unable to open /proc/partitions\n"); return false; } while (fgets(line, sizeof(line), fp) != NULL) { unsigned long major, minor, blocks; char device[512]; char tmpString[64]; if (strlen(line) < 7 || line[0] == 'm') continue; sscanf(line + 1, "%lu %lu %lu %s", &major, &minor, &blocks, device); tmpdevice = "/dev/block/"; tmpdevice += device; if (tmpdevice == Device) { // Adjust block size to byte size total_size = (int)(blocks * 1024ULL / 1000000LLU); break; } } fclose(fp); DataManager::GetValue("tw_sdext_size", ext); DataManager::GetValue("tw_swap_size", swap); DataManager::GetValue("tw_sdpart_file_system", ext_format); fat_size = total_size - ext - swap; LOGINFO("sd card block device is '%s', sdcard size is: %iMB, fat size: %iMB, ext size: %iMB, ext system: '%s', swap size: %iMB\n", Device.c_str(), total_size, fat_size, ext, ext_format.c_str(), swap); memset(temp, 0, sizeof(temp)); sprintf(temp, "%i", fat_size); fat_str = temp; memset(temp, 0, sizeof(temp)); sprintf(temp, "%i", fat_size + ext); ext_str = temp; memset(temp, 0, sizeof(temp)); sprintf(temp, "%i", fat_size + ext + swap); swap_str = temp; if (ext + swap > total_size) { LOGERR("EXT + Swap size is larger than sdcard size.\n"); return false; } gui_print("Removing partition table...\n"); Command = "parted -s " + Device + " mklabel msdos"; LOGINFO("Command is: '%s'\n", Command.c_str()); if (TWFunc::Exec_Cmd(Command) != 0) { LOGERR("Unable to remove partition table.\n"); Update_System_Details(); return false; } gui_print("Creating FAT32 partition...\n"); Command = "parted " + Device + " mkpartfs primary fat32 0 " + fat_str + "MB"; LOGINFO("Command is: '%s'\n", Command.c_str()); if (TWFunc::Exec_Cmd(Command) != 0) { LOGERR("Unable to create FAT32 partition.\n"); return false; } if (ext > 0) { gui_print("Creating EXT partition...\n"); Command = "parted " + Device + " mkpartfs primary ext2 " + fat_str + "MB " + ext_str + "MB"; LOGINFO("Command is: '%s'\n", Command.c_str()); if (TWFunc::Exec_Cmd(Command) != 0) { LOGERR("Unable to create EXT partition.\n"); Update_System_Details(); return false; } } if (swap > 0) { gui_print("Creating swap partition...\n"); Command = "parted " + Device + " mkpartfs primary linux-swap " + ext_str + "MB " + swap_str + "MB"; LOGINFO("Command is: '%s'\n", Command.c_str()); if (TWFunc::Exec_Cmd(Command) != 0) { LOGERR("Unable to create swap partition.\n"); Update_System_Details(); return false; } } // recreate TWRP folder and rewrite settings - these will be gone after sdcard is partitioned #ifdef TW_EXTERNAL_STORAGE_PATH Mount_By_Path(EXPAND(TW_EXTERNAL_STORAGE_PATH), 1); DataManager::GetValue(TW_EXTERNAL_PATH, sd_path); memset(mkdir_path, 0, sizeof(mkdir_path)); sprintf(mkdir_path, "%s/TWRP", sd_path.c_str()); #else Mount_By_Path("/sdcard", 1); strcpy(mkdir_path, "/sdcard/TWRP"); #endif mkdir(mkdir_path, 0777); DataManager::Flush(); #ifdef TW_EXTERNAL_STORAGE_PATH DataManager::SetValue(TW_ZIP_EXTERNAL_VAR, EXPAND(TW_EXTERNAL_STORAGE_PATH)); if (DataManager::GetIntValue(TW_USE_EXTERNAL_STORAGE) == 1) DataManager::SetValue(TW_ZIP_LOCATION_VAR, EXPAND(TW_EXTERNAL_STORAGE_PATH)); #else DataManager::SetValue(TW_ZIP_EXTERNAL_VAR, "/sdcard"); if (DataManager::GetIntValue(TW_USE_EXTERNAL_STORAGE) == 1) DataManager::SetValue(TW_ZIP_LOCATION_VAR, "/sdcard"); #endif if (ext > 0) { if (SDext == NULL) { LOGERR("Unable to locate sd-ext partition.\n"); return false; } Command = "mke2fs -t " + ext_format + " -m 0 " + SDext->Actual_Block_Device; gui_print("Formatting sd-ext as %s...\n", ext_format.c_str()); LOGINFO("Formatting sd-ext after partitioning, command: '%s'\n", Command.c_str()); TWFunc::Exec_Cmd(Command); } Update_System_Details(); gui_print("Partitioning complete.\n"); return true; } void TWPartitionManager::Get_Partition_List(string ListType, std::vector *Partition_List) { std::vector::iterator iter; if (ListType == "mount") { for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Can_Be_Mounted && !(*iter)->Is_SubPartition) { struct PartitionList part; part.Display_Name = (*iter)->Display_Name; part.Mount_Point = (*iter)->Mount_Point; part.selected = (*iter)->Is_Mounted(); Partition_List->push_back(part); } } } else if (ListType == "storage") { char free_space[255]; string Current_Storage = DataManager::GetCurrentStoragePath(); for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Is_Storage) { struct PartitionList part; sprintf(free_space, "%llu", (*iter)->Free / 1024 / 1024); part.Display_Name = (*iter)->Storage_Name + " ("; part.Display_Name += free_space; part.Display_Name += "MB)"; part.Mount_Point = (*iter)->Storage_Path; if ((*iter)->Storage_Path == Current_Storage) part.selected = 1; else part.selected = 0; Partition_List->push_back(part); } } } else if (ListType == "backup") { char backup_size[255]; unsigned long long Backup_Size; for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Can_Be_Backed_Up && !(*iter)->Is_SubPartition && (*iter)->Is_Present) { struct PartitionList part; Backup_Size = (*iter)->Backup_Size; if ((*iter)->Has_SubPartition) { std::vector::iterator subpart; for (subpart = Partitions.begin(); subpart != Partitions.end(); subpart++) { if ((*subpart)->Is_SubPartition && (*subpart)->Can_Be_Backed_Up && (*subpart)->Is_Present && (*subpart)->SubPartition_Of == (*iter)->Mount_Point) Backup_Size += (*subpart)->Backup_Size; } } sprintf(backup_size, "%llu", Backup_Size / 1024 / 1024); part.Display_Name = (*iter)->Backup_Display_Name + " ("; part.Display_Name += backup_size; part.Display_Name += "MB)"; part.Mount_Point = (*iter)->Backup_Path; part.selected = 0; Partition_List->push_back(part); } } } else if (ListType == "restore") { string Restore_List, restore_path; TWPartition* restore_part = NULL; DataManager::GetValue("tw_restore_list", Restore_List); if (!Restore_List.empty()) { size_t start_pos = 0, end_pos = Restore_List.find(";", start_pos); while (end_pos != string::npos && start_pos < Restore_List.size()) { restore_path = Restore_List.substr(start_pos, end_pos - start_pos); if ((restore_part = Find_Partition_By_Path(restore_path)) != NULL) { if ((restore_part->Backup_Name == "recovery" && !restore_part->Can_Be_Backed_Up) || restore_part->Is_SubPartition) { // Don't allow restore of recovery (causes problems on some devices) // Don't add subpartitions to the list of items } else { struct PartitionList part; part.Display_Name = restore_part->Backup_Display_Name; part.Mount_Point = restore_part->Backup_Path; part.selected = 1; Partition_List->push_back(part); } } else { LOGERR("Unable to locate '%s' partition for restore.\n", restore_path.c_str()); } start_pos = end_pos + 1; end_pos = Restore_List.find(";", start_pos); } } } else if (ListType == "wipe") { struct PartitionList dalvik; dalvik.Display_Name = "Dalvik Cache"; dalvik.Mount_Point = "DALVIK"; dalvik.selected = 0; Partition_List->push_back(dalvik); for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Wipe_Available_in_GUI && !(*iter)->Is_SubPartition) { struct PartitionList part; part.Display_Name = (*iter)->Display_Name; part.Mount_Point = (*iter)->Mount_Point; part.selected = 0; Partition_List->push_back(part); } if ((*iter)->Has_Android_Secure) { struct PartitionList part; part.Display_Name = (*iter)->Backup_Display_Name; part.Mount_Point = (*iter)->Backup_Path; part.selected = 0; Partition_List->push_back(part); } if ((*iter)->Has_Data_Media) { struct PartitionList datamedia; datamedia.Display_Name = (*iter)->Storage_Name; datamedia.Mount_Point = "INTERNAL"; datamedia.selected = 0; Partition_List->push_back(datamedia); } } } else { LOGERR("Unknown list type '%s' requested for TWPartitionManager::Get_Partition_List\n", ListType.c_str()); } } int TWPartitionManager::Fstab_Processed(void) { return Partitions.size(); } void TWPartitionManager::Output_Storage_Fstab(void) { std::vector::iterator iter; char storage_partition[255]; string Temp; FILE *fp = fopen("/cache/recovery/storage.fstab", "w"); if (fp == NULL) { LOGERR("Unable to open '/cache/recovery/storage.fstab'.\n"); return; } // Iterate through all partitions for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Is_Storage) { Temp = (*iter)->Storage_Path + ";" + (*iter)->Storage_Name + ";\n"; strcpy(storage_partition, Temp.c_str()); fwrite(storage_partition, sizeof(storage_partition[0]), strlen(storage_partition) / sizeof(storage_partition[0]), fp); } } fclose(fp); } TWPartition *TWPartitionManager::Get_Default_Storage_Partition() { TWPartition *res = NULL; for (std::vector::iterator iter = Partitions.begin(); iter != Partitions.end(); ++iter) { if(!(*iter)->Is_Storage) continue; if((*iter)->Is_Settings_Storage) return *iter; if(!res) res = *iter; } return res; } bool TWPartitionManager::Enable_MTP(void) { #ifdef TW_HAS_MTP if (mtppid) { LOGERR("MTP already enabled\n"); return true; } //Launch MTP Responder LOGINFO("Starting MTP\n"); char vendor[PROPERTY_VALUE_MAX]; char product[PROPERTY_VALUE_MAX]; int count = 0; property_set("sys.usb.config", "none"); property_get("usb.vendor", vendor, "18D1"); property_get("usb.product.mtpadb", product, "4EE2"); string vendorstr = vendor; string productstr = product; TWFunc::write_file("/sys/class/android_usb/android0/idVendor", vendorstr); TWFunc::write_file("/sys/class/android_usb/android0/idProduct", productstr); property_set("sys.usb.config", "mtp,adb"); std::vector::iterator iter; /* To enable MTP debug, use the twrp command line feature to * twrp set tw_mtp_debug 1 */ twrpMtp *mtp = new twrpMtp(DataManager::GetIntValue("tw_mtp_debug")); unsigned int storageid = 1 << 16; // upper 16 bits are for physical storage device, we pretend to have only one for (iter = Partitions.begin(); iter != Partitions.end(); iter++) { if ((*iter)->Is_Storage && (*iter)->Is_Present && (*iter)->Mount(false)) { ++storageid; printf("twrp addStorage %s, mtpstorageid: %u\n", (*iter)->Storage_Path.c_str(), storageid); mtp->addStorage((*iter)->Storage_Name, (*iter)->Storage_Path, storageid); count++; } } if (count) { mtppid = mtp->forkserver(); if (mtppid) { DataManager::SetValue("tw_mtp_enabled", 1); return true; } else { LOGERR("Failed to enable MTP\n"); return false; } } LOGERR("No valid storage partitions found for MTP.\n"); #else LOGERR("MTP support not included\n"); #endif DataManager::SetValue("tw_mtp_enabled", 0); return false; } bool TWPartitionManager::Disable_MTP(void) { #ifdef TW_HAS_MTP char vendor[PROPERTY_VALUE_MAX]; char product[PROPERTY_VALUE_MAX]; property_set("sys.usb.config", "none"); property_get("usb.vendor", vendor, "18D1"); property_get("usb.product.adb", product, "D002"); string vendorstr = vendor; string productstr = product; TWFunc::write_file("/sys/class/android_usb/android0/idVendor", vendorstr); TWFunc::write_file("/sys/class/android_usb/android0/idProduct", productstr); if (mtppid) { LOGINFO("Disabling MTP\n"); int status; kill(mtppid, SIGKILL); mtppid = 0; // We don't care about the exit value, but this prevents a zombie process waitpid(mtppid, &status, 0); } property_set("sys.usb.config", "adb"); DataManager::SetValue("tw_mtp_enabled", 0); return true; #else LOGERR("MTP support not included\n"); DataManager::SetValue("tw_mtp_enabled", 0); return false; #endif }