/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "edify/expr.h" #include "edify/updater_interface.h" #include "otautil/dirutil.h" #include "otautil/error_code.h" #include "otautil/paths.h" #include "otautil/print_sha1.h" #include "otautil/rangeset.h" #include "private/commands.h" #include "updater/install.h" #ifdef __ANDROID__ #include // Set this to 0 to interpret 'erase' transfers to mean do a BLKDISCARD ioctl (the normal behavior). // Set to 1 to interpret erase to mean fill the region with zeroes. #define DEBUG_ERASE 0 #else #define DEBUG_ERASE 1 #define AID_SYSTEM -1 #endif // __ANDROID__ static constexpr size_t BLOCKSIZE = 4096; static constexpr mode_t STASH_DIRECTORY_MODE = 0700; static constexpr mode_t STASH_FILE_MODE = 0600; static constexpr mode_t MARKER_DIRECTORY_MODE = 0700; static CauseCode failure_type = kNoCause; static bool is_retry = false; static std::unordered_map stash_map; static void DeleteLastCommandFile() { const std::string& last_command_file = Paths::Get().last_command_file(); if (unlink(last_command_file.c_str()) == -1 && errno != ENOENT) { PLOG(ERROR) << "Failed to unlink: " << last_command_file; } } // Parse the last command index of the last update and save the result to |last_command_index|. // Return true if we successfully read the index. static bool ParseLastCommandFile(size_t* last_command_index) { const std::string& last_command_file = Paths::Get().last_command_file(); android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(last_command_file.c_str(), O_RDONLY))); if (fd == -1) { if (errno != ENOENT) { PLOG(ERROR) << "Failed to open " << last_command_file; return false; } LOG(INFO) << last_command_file << " doesn't exist."; return false; } // Now that the last_command file exists, parse the last command index of previous update. std::string content; if (!android::base::ReadFdToString(fd.get(), &content)) { LOG(ERROR) << "Failed to read: " << last_command_file; return false; } std::vector lines = android::base::Split(android::base::Trim(content), "\n"); if (lines.size() != 2) { LOG(ERROR) << "Unexpected line counts in last command file: " << content; return false; } if (!android::base::ParseUint(lines[0], last_command_index)) { LOG(ERROR) << "Failed to parse integer in: " << lines[0]; return false; } return true; } static bool FsyncDir(const std::string& dirname) { android::base::unique_fd dfd(TEMP_FAILURE_RETRY(open(dirname.c_str(), O_RDONLY | O_DIRECTORY))); if (dfd == -1) { failure_type = errno == EIO ? kEioFailure : kFileOpenFailure; PLOG(ERROR) << "Failed to open " << dirname; return false; } if (fsync(dfd) == -1) { failure_type = errno == EIO ? kEioFailure : kFsyncFailure; PLOG(ERROR) << "Failed to fsync " << dirname; return false; } return true; } // Update the last executed command index in the last_command_file. static bool UpdateLastCommandIndex(size_t command_index, const std::string& command_string) { const std::string& last_command_file = Paths::Get().last_command_file(); std::string last_command_tmp = last_command_file + ".tmp"; std::string content = std::to_string(command_index) + "\n" + command_string; android::base::unique_fd wfd( TEMP_FAILURE_RETRY(open(last_command_tmp.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0660))); if (wfd == -1 || !android::base::WriteStringToFd(content, wfd)) { PLOG(ERROR) << "Failed to update last command"; return false; } if (fsync(wfd) == -1) { PLOG(ERROR) << "Failed to fsync " << last_command_tmp; return false; } if (chown(last_command_tmp.c_str(), AID_SYSTEM, AID_SYSTEM) == -1) { PLOG(ERROR) << "Failed to change owner for " << last_command_tmp; return false; } if (rename(last_command_tmp.c_str(), last_command_file.c_str()) == -1) { PLOG(ERROR) << "Failed to rename" << last_command_tmp; return false; } if (!FsyncDir(android::base::Dirname(last_command_file))) { return false; } return true; } bool SetUpdatedMarker(const std::string& marker) { auto dirname = android::base::Dirname(marker); auto res = mkdir(dirname.c_str(), MARKER_DIRECTORY_MODE); if (res == -1 && errno != EEXIST) { PLOG(ERROR) << "Failed to create directory for marker: " << dirname; return false; } if (!android::base::WriteStringToFile("", marker)) { PLOG(ERROR) << "Failed to write to marker file " << marker; return false; } if (!FsyncDir(dirname)) { return false; } LOG(INFO) << "Wrote updated marker to " << marker; return true; } static bool discard_blocks(int fd, off64_t offset, uint64_t size, bool force = false) { // Don't discard blocks unless the update is a retry run or force == true if (!is_retry && !force) { return true; } uint64_t args[2] = { static_cast(offset), size }; if (ioctl(fd, BLKDISCARD, &args) == -1) { // On devices that does not support BLKDISCARD, ignore the error. if (errno == EOPNOTSUPP) { return true; } PLOG(ERROR) << "BLKDISCARD ioctl failed"; return false; } return true; } static bool check_lseek(int fd, off64_t offset, int whence) { off64_t rc = TEMP_FAILURE_RETRY(lseek64(fd, offset, whence)); if (rc == -1) { failure_type = kLseekFailure; PLOG(ERROR) << "lseek64 failed"; return false; } return true; } static void allocate(size_t size, std::vector* buffer) { // If the buffer's big enough, reuse it. if (size <= buffer->size()) return; buffer->resize(size); } /** * RangeSinkWriter reads data from the given FD, and writes them to the destination specified by the * given RangeSet. */ class RangeSinkWriter { public: RangeSinkWriter(int fd, const RangeSet& tgt) : fd_(fd), tgt_(tgt), next_range_(0), current_range_left_(0), bytes_written_(0) { CHECK_NE(tgt.size(), static_cast(0)); }; bool Finished() const { return next_range_ == tgt_.size() && current_range_left_ == 0; } size_t AvailableSpace() const { return tgt_.blocks() * BLOCKSIZE - bytes_written_; } // Return number of bytes written; and 0 indicates a writing failure. size_t Write(const uint8_t* data, size_t size) { if (Finished()) { LOG(ERROR) << "range sink write overrun; can't write " << size << " bytes"; return 0; } size_t written = 0; while (size > 0) { // Move to the next range as needed. if (!SeekToOutputRange()) { break; } size_t write_now = size; if (current_range_left_ < write_now) { write_now = current_range_left_; } if (!android::base::WriteFully(fd_, data, write_now)) { failure_type = errno == EIO ? kEioFailure : kFwriteFailure; PLOG(ERROR) << "Failed to write " << write_now << " bytes of data"; break; } data += write_now; size -= write_now; current_range_left_ -= write_now; written += write_now; } bytes_written_ += written; return written; } size_t BytesWritten() const { return bytes_written_; } private: // Set up the output cursor, move to next range if needed. bool SeekToOutputRange() { // We haven't finished the current range yet. if (current_range_left_ != 0) { return true; } // We can't write any more; let the write function return how many bytes have been written // so far. if (next_range_ >= tgt_.size()) { return false; } const Range& range = tgt_[next_range_]; off64_t offset = static_cast(range.first) * BLOCKSIZE; current_range_left_ = (range.second - range.first) * BLOCKSIZE; next_range_++; if (!discard_blocks(fd_, offset, current_range_left_)) { return false; } if (!check_lseek(fd_, offset, SEEK_SET)) { return false; } return true; } // The output file descriptor. int fd_; // The destination ranges for the data. const RangeSet& tgt_; // The next range that we should write to. size_t next_range_; // The number of bytes to write before moving to the next range. size_t current_range_left_; // Total bytes written by the writer. size_t bytes_written_; }; /** * All of the data for all the 'new' transfers is contained in one file in the update package, * concatenated together in the order in which transfers.list will need it. We want to stream it out * of the archive (it's compressed) without writing it to a temp file, but we can't write each * section until it's that transfer's turn to go. * * To achieve this, we expand the new data from the archive in a background thread, and block that * threads 'receive uncompressed data' function until the main thread has reached a point where we * want some new data to be written. We signal the background thread with the destination for the * data and block the main thread, waiting for the background thread to complete writing that * section. Then it signals the main thread to wake up and goes back to blocking waiting for a * transfer. * * NewThreadInfo is the struct used to pass information back and forth between the two threads. When * the main thread wants some data written, it sets writer to the destination location and signals * the condition. When the background thread is done writing, it clears writer and signals the * condition again. */ struct NewThreadInfo { ZipArchiveHandle za; ZipEntry64 entry{}; bool brotli_compressed; std::unique_ptr writer; BrotliDecoderState* brotli_decoder_state; bool receiver_available; pthread_mutex_t mu; pthread_cond_t cv; }; static bool receive_new_data(const uint8_t* data, size_t size, void* cookie) { NewThreadInfo* nti = static_cast(cookie); while (size > 0) { // Wait for nti->writer to be non-null, indicating some of this data is wanted. pthread_mutex_lock(&nti->mu); while (nti->writer == nullptr) { // End the new data receiver if we encounter an error when performing block image update. if (!nti->receiver_available) { pthread_mutex_unlock(&nti->mu); return false; } pthread_cond_wait(&nti->cv, &nti->mu); } pthread_mutex_unlock(&nti->mu); // At this point nti->writer is set, and we own it. The main thread is waiting for it to // disappear from nti. size_t write_now = std::min(size, nti->writer->AvailableSpace()); if (nti->writer->Write(data, write_now) != write_now) { LOG(ERROR) << "Failed to write " << write_now << " bytes."; return false; } data += write_now; size -= write_now; if (nti->writer->Finished()) { // We have written all the bytes desired by this writer. pthread_mutex_lock(&nti->mu); nti->writer = nullptr; pthread_cond_broadcast(&nti->cv); pthread_mutex_unlock(&nti->mu); } } return true; } static bool receive_brotli_new_data(const uint8_t* data, size_t size, void* cookie) { NewThreadInfo* nti = static_cast(cookie); while (size > 0 || BrotliDecoderHasMoreOutput(nti->brotli_decoder_state)) { // Wait for nti->writer to be non-null, indicating some of this data is wanted. pthread_mutex_lock(&nti->mu); while (nti->writer == nullptr) { // End the receiver if we encounter an error when performing block image update. if (!nti->receiver_available) { pthread_mutex_unlock(&nti->mu); return false; } pthread_cond_wait(&nti->cv, &nti->mu); } pthread_mutex_unlock(&nti->mu); // At this point nti->writer is set, and we own it. The main thread is waiting for it to // disappear from nti. size_t buffer_size = std::min(32768, nti->writer->AvailableSpace()); if (buffer_size == 0) { LOG(ERROR) << "No space left in output range"; return false; } uint8_t buffer[buffer_size]; size_t available_in = size; size_t available_out = buffer_size; uint8_t* next_out = buffer; // The brotli decoder will update |data|, |available_in|, |next_out| and |available_out|. BrotliDecoderResult result = BrotliDecoderDecompressStream( nti->brotli_decoder_state, &available_in, &data, &available_out, &next_out, nullptr); if (result == BROTLI_DECODER_RESULT_ERROR) { LOG(ERROR) << "Decompression failed with " << BrotliDecoderErrorString(BrotliDecoderGetErrorCode(nti->brotli_decoder_state)); return false; } LOG(DEBUG) << "bytes to write: " << buffer_size - available_out << ", bytes consumed " << size - available_in << ", decoder status " << result; size_t write_now = buffer_size - available_out; if (nti->writer->Write(buffer, write_now) != write_now) { LOG(ERROR) << "Failed to write " << write_now << " bytes."; return false; } // Update the remaining size. The input data ptr is already updated by brotli decoder function. size = available_in; if (nti->writer->Finished()) { // We have written all the bytes desired by this writer. pthread_mutex_lock(&nti->mu); nti->writer = nullptr; pthread_cond_broadcast(&nti->cv); pthread_mutex_unlock(&nti->mu); } } return true; } static void* unzip_new_data(void* cookie) { NewThreadInfo* nti = static_cast(cookie); if (nti->brotli_compressed) { ProcessZipEntryContents(nti->za, &nti->entry, receive_brotli_new_data, nti); } else { ProcessZipEntryContents(nti->za, &nti->entry, receive_new_data, nti); } pthread_mutex_lock(&nti->mu); nti->receiver_available = false; if (nti->writer != nullptr) { pthread_cond_broadcast(&nti->cv); } pthread_mutex_unlock(&nti->mu); return nullptr; } static int ReadBlocks(const RangeSet& src, std::vector* buffer, int fd) { size_t p = 0; for (const auto& [begin, end] : src) { if (!check_lseek(fd, static_cast(begin) * BLOCKSIZE, SEEK_SET)) { return -1; } size_t size = (end - begin) * BLOCKSIZE; if (!android::base::ReadFully(fd, buffer->data() + p, size)) { failure_type = errno == EIO ? kEioFailure : kFreadFailure; PLOG(ERROR) << "Failed to read " << size << " bytes of data"; return -1; } p += size; } return 0; } static int WriteBlocks(const RangeSet& tgt, const std::vector& buffer, int fd) { size_t written = 0; for (const auto& [begin, end] : tgt) { off64_t offset = static_cast(begin) * BLOCKSIZE; size_t size = (end - begin) * BLOCKSIZE; if (!discard_blocks(fd, offset, size)) { return -1; } if (!check_lseek(fd, offset, SEEK_SET)) { return -1; } if (!android::base::WriteFully(fd, buffer.data() + written, size)) { failure_type = errno == EIO ? kEioFailure : kFwriteFailure; PLOG(ERROR) << "Failed to write " << size << " bytes of data"; return -1; } written += size; } return 0; } // Parameters for transfer list command functions struct CommandParameters { std::vector tokens; size_t cpos; std::string cmdname; std::string cmdline; std::string freestash; std::string stashbase; bool canwrite; int createdstash; android::base::unique_fd fd; bool foundwrites; bool isunresumable; int version; size_t written; size_t stashed; NewThreadInfo nti; pthread_t thread; std::vector buffer; uint8_t* patch_start; bool target_verified; // The target blocks have expected contents already. }; // Print the hash in hex for corrupted source blocks (excluding the stashed blocks which is // handled separately). static void PrintHashForCorruptedSourceBlocks(const CommandParameters& params, const std::vector& buffer) { LOG(INFO) << "unexpected contents of source blocks in cmd:\n" << params.cmdline; CHECK(params.tokens[0] == "move" || params.tokens[0] == "bsdiff" || params.tokens[0] == "imgdiff"); size_t pos = 0; // Command example: // move [ ] // bsdiff // [ ] if (params.tokens[0] == "move") { // src_range for move starts at the 4th position. if (params.tokens.size() < 5) { LOG(ERROR) << "failed to parse source range in cmd:\n" << params.cmdline; return; } pos = 4; } else { // src_range for diff starts at the 7th position. if (params.tokens.size() < 8) { LOG(ERROR) << "failed to parse source range in cmd:\n" << params.cmdline; return; } pos = 7; } // Source blocks in stash only, no work to do. if (params.tokens[pos] == "-") { return; } RangeSet src = RangeSet::Parse(params.tokens[pos++]); if (!src) { LOG(ERROR) << "Failed to parse range in " << params.cmdline; return; } RangeSet locs; // If there's no stashed blocks, content in the buffer is consecutive and has the same // order as the source blocks. if (pos == params.tokens.size()) { locs = RangeSet(std::vector{ Range{ 0, src.blocks() } }); } else { // Otherwise, the next token is the offset of the source blocks in the target range. // Example: for the tokens <4,63946,63947,63948,63979> <4,6,7,8,39> ; // We want to print SHA-1 for the data in buffer[6], buffer[8], buffer[9] ... buffer[38]; // this corresponds to the 32 src blocks #63946, #63948, #63949 ... #63978. locs = RangeSet::Parse(params.tokens[pos++]); CHECK_EQ(src.blocks(), locs.blocks()); } LOG(INFO) << "printing hash in hex for " << src.blocks() << " source blocks"; for (size_t i = 0; i < src.blocks(); i++) { size_t block_num = src.GetBlockNumber(i); size_t buffer_index = locs.GetBlockNumber(i); CHECK_LE((buffer_index + 1) * BLOCKSIZE, buffer.size()); uint8_t digest[SHA_DIGEST_LENGTH]; SHA1(buffer.data() + buffer_index * BLOCKSIZE, BLOCKSIZE, digest); std::string hexdigest = print_sha1(digest); LOG(INFO) << " block number: " << block_num << ", SHA-1: " << hexdigest; } } // If the calculated hash for the whole stash doesn't match the stash id, print the SHA-1 // in hex for each block. static void PrintHashForCorruptedStashedBlocks(const std::string& id, const std::vector& buffer, const RangeSet& src) { LOG(INFO) << "printing hash in hex for stash_id: " << id; CHECK_EQ(src.blocks() * BLOCKSIZE, buffer.size()); for (size_t i = 0; i < src.blocks(); i++) { size_t block_num = src.GetBlockNumber(i); uint8_t digest[SHA_DIGEST_LENGTH]; SHA1(buffer.data() + i * BLOCKSIZE, BLOCKSIZE, digest); std::string hexdigest = print_sha1(digest); LOG(INFO) << " block number: " << block_num << ", SHA-1: " << hexdigest; } } // If the stash file doesn't exist, read the source blocks this stash contains and print the // SHA-1 for these blocks. static void PrintHashForMissingStashedBlocks(const std::string& id, int fd) { if (stash_map.find(id) == stash_map.end()) { LOG(ERROR) << "No stash saved for id: " << id; return; } LOG(INFO) << "print hash in hex for source blocks in missing stash: " << id; const RangeSet& src = stash_map[id]; std::vector buffer(src.blocks() * BLOCKSIZE); if (ReadBlocks(src, &buffer, fd) == -1) { LOG(ERROR) << "failed to read source blocks for stash: " << id; return; } PrintHashForCorruptedStashedBlocks(id, buffer, src); } static int VerifyBlocks(const std::string& expected, const std::vector& buffer, const size_t blocks, bool printerror) { uint8_t digest[SHA_DIGEST_LENGTH]; const uint8_t* data = buffer.data(); SHA1(data, blocks * BLOCKSIZE, digest); std::string hexdigest = print_sha1(digest); if (hexdigest != expected) { if (printerror) { LOG(ERROR) << "failed to verify blocks (expected " << expected << ", read " << hexdigest << ")"; } return -1; } return 0; } static std::string GetStashFileName(const std::string& base, const std::string& id, const std::string& postfix) { if (base.empty()) { return ""; } std::string filename = Paths::Get().stash_directory_base() + "/" + base; if (id.empty() && postfix.empty()) { return filename; } return filename + "/" + id + postfix; } // Does a best effort enumeration of stash files. Ignores possible non-file items in the stash // directory and continues despite of errors. Calls the 'callback' function for each file. static void EnumerateStash(const std::string& dirname, const std::function& callback) { if (dirname.empty()) return; std::unique_ptr directory(opendir(dirname.c_str()), closedir); if (directory == nullptr) { if (errno != ENOENT) { PLOG(ERROR) << "opendir \"" << dirname << "\" failed"; } return; } dirent* item; while ((item = readdir(directory.get())) != nullptr) { if (item->d_type != DT_REG) continue; callback(dirname + "/" + item->d_name); } } // Deletes the stash directory and all files in it. Assumes that it only // contains files. There is nothing we can do about unlikely, but possible // errors, so they are merely logged. static void DeleteFile(const std::string& fn) { if (fn.empty()) return; LOG(INFO) << "deleting " << fn; if (unlink(fn.c_str()) == -1 && errno != ENOENT) { PLOG(ERROR) << "unlink \"" << fn << "\" failed"; } } static void DeleteStash(const std::string& base) { if (base.empty()) return; LOG(INFO) << "deleting stash " << base; std::string dirname = GetStashFileName(base, "", ""); EnumerateStash(dirname, DeleteFile); if (rmdir(dirname.c_str()) == -1) { if (errno != ENOENT && errno != ENOTDIR) { PLOG(ERROR) << "rmdir \"" << dirname << "\" failed"; } } } static int LoadStash(const CommandParameters& params, const std::string& id, bool verify, std::vector* buffer, bool printnoent) { // In verify mode, if source range_set was saved for the given hash, check contents in the source // blocks first. If the check fails, search for the stashed files on /cache as usual. if (!params.canwrite) { if (stash_map.find(id) != stash_map.end()) { const RangeSet& src = stash_map[id]; allocate(src.blocks() * BLOCKSIZE, buffer); if (ReadBlocks(src, buffer, params.fd) == -1) { LOG(ERROR) << "failed to read source blocks in stash map."; return -1; } if (VerifyBlocks(id, *buffer, src.blocks(), true) != 0) { LOG(ERROR) << "failed to verify loaded source blocks in stash map."; if (!is_retry) { PrintHashForCorruptedStashedBlocks(id, *buffer, src); } return -1; } return 0; } } std::string fn = GetStashFileName(params.stashbase, id, ""); struct stat sb; if (stat(fn.c_str(), &sb) == -1) { if (errno != ENOENT || printnoent) { PLOG(ERROR) << "stat \"" << fn << "\" failed"; PrintHashForMissingStashedBlocks(id, params.fd); } return -1; } LOG(INFO) << " loading " << fn; if ((sb.st_size % BLOCKSIZE) != 0) { LOG(ERROR) << fn << " size " << sb.st_size << " not multiple of block size " << BLOCKSIZE; return -1; } android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(fn.c_str(), O_RDONLY))); if (fd == -1) { failure_type = errno == EIO ? kEioFailure : kFileOpenFailure; PLOG(ERROR) << "open \"" << fn << "\" failed"; return -1; } allocate(sb.st_size, buffer); if (!android::base::ReadFully(fd, buffer->data(), sb.st_size)) { failure_type = errno == EIO ? kEioFailure : kFreadFailure; PLOG(ERROR) << "Failed to read " << sb.st_size << " bytes of data"; return -1; } size_t blocks = sb.st_size / BLOCKSIZE; if (verify && VerifyBlocks(id, *buffer, blocks, true) != 0) { LOG(ERROR) << "unexpected contents in " << fn; if (stash_map.find(id) == stash_map.end()) { LOG(ERROR) << "failed to find source blocks number for stash " << id << " when executing command: " << params.cmdname; } else { const RangeSet& src = stash_map[id]; PrintHashForCorruptedStashedBlocks(id, *buffer, src); } DeleteFile(fn); return -1; } return 0; } static int WriteStash(const std::string& base, const std::string& id, int blocks, const std::vector& buffer, bool checkspace, bool* exists) { if (base.empty()) { return -1; } if (checkspace && !CheckAndFreeSpaceOnCache(blocks * BLOCKSIZE)) { LOG(ERROR) << "not enough space to write stash"; return -1; } std::string fn = GetStashFileName(base, id, ".partial"); std::string cn = GetStashFileName(base, id, ""); if (exists) { struct stat sb; int res = stat(cn.c_str(), &sb); if (res == 0) { // The file already exists and since the name is the hash of the contents, // it's safe to assume the contents are identical (accidental hash collisions // are unlikely) LOG(INFO) << " skipping " << blocks << " existing blocks in " << cn; *exists = true; return 0; } *exists = false; } LOG(INFO) << " writing " << blocks << " blocks to " << cn; android::base::unique_fd fd( TEMP_FAILURE_RETRY(open(fn.c_str(), O_WRONLY | O_CREAT | O_TRUNC, STASH_FILE_MODE))); if (fd == -1) { failure_type = errno == EIO ? kEioFailure : kFileOpenFailure; PLOG(ERROR) << "failed to create \"" << fn << "\""; return -1; } if (fchown(fd, AID_SYSTEM, AID_SYSTEM) != 0) { // system user PLOG(ERROR) << "failed to chown \"" << fn << "\""; return -1; } if (!android::base::WriteFully(fd, buffer.data(), blocks * BLOCKSIZE)) { failure_type = errno == EIO ? kEioFailure : kFwriteFailure; PLOG(ERROR) << "Failed to write " << blocks * BLOCKSIZE << " bytes of data"; return -1; } if (fsync(fd) == -1) { failure_type = errno == EIO ? kEioFailure : kFsyncFailure; PLOG(ERROR) << "fsync \"" << fn << "\" failed"; return -1; } if (rename(fn.c_str(), cn.c_str()) == -1) { PLOG(ERROR) << "rename(\"" << fn << "\", \"" << cn << "\") failed"; return -1; } std::string dname = GetStashFileName(base, "", ""); if (!FsyncDir(dname)) { return -1; } return 0; } // Creates a directory for storing stash files and checks if the /cache partition // hash enough space for the expected amount of blocks we need to store. Returns // >0 if we created the directory, zero if it existed already, and <0 of failure. static int CreateStash(State* state, size_t maxblocks, const std::string& base) { std::string dirname = GetStashFileName(base, "", ""); struct stat sb; int res = stat(dirname.c_str(), &sb); if (res == -1 && errno != ENOENT) { ErrorAbort(state, kStashCreationFailure, "stat \"%s\" failed: %s", dirname.c_str(), strerror(errno)); return -1; } size_t max_stash_size = maxblocks * BLOCKSIZE; if (res == -1) { LOG(INFO) << "creating stash " << dirname; res = mkdir_recursively(dirname, STASH_DIRECTORY_MODE, false, nullptr); if (res != 0) { ErrorAbort(state, kStashCreationFailure, "mkdir \"%s\" failed: %s", dirname.c_str(), strerror(errno)); return -1; } if (chown(dirname.c_str(), AID_SYSTEM, AID_SYSTEM) != 0) { // system user ErrorAbort(state, kStashCreationFailure, "chown \"%s\" failed: %s", dirname.c_str(), strerror(errno)); return -1; } if (!CheckAndFreeSpaceOnCache(max_stash_size)) { ErrorAbort(state, kStashCreationFailure, "not enough space for stash (%zu needed)", max_stash_size); return -1; } return 1; // Created directory } LOG(INFO) << "using existing stash " << dirname; // If the directory already exists, calculate the space already allocated to stash files and check // if there's enough for all required blocks. Delete any partially completed stash files first. EnumerateStash(dirname, [](const std::string& fn) { if (android::base::EndsWith(fn, ".partial")) { DeleteFile(fn); } }); size_t existing = 0; EnumerateStash(dirname, [&existing](const std::string& fn) { if (fn.empty()) return; struct stat sb; if (stat(fn.c_str(), &sb) == -1) { PLOG(ERROR) << "stat \"" << fn << "\" failed"; return; } existing += static_cast(sb.st_size); }); if (max_stash_size > existing) { size_t needed = max_stash_size - existing; if (!CheckAndFreeSpaceOnCache(needed)) { ErrorAbort(state, kStashCreationFailure, "not enough space for stash (%zu more needed)", needed); return -1; } } return 0; // Using existing directory } static int FreeStash(const std::string& base, const std::string& id) { if (base.empty() || id.empty()) { return -1; } DeleteFile(GetStashFileName(base, id, "")); return 0; } // Source contains packed data, which we want to move to the locations given in locs in the dest // buffer. source and dest may be the same buffer. static void MoveRange(std::vector& dest, const RangeSet& locs, const std::vector& source) { const uint8_t* from = source.data(); uint8_t* to = dest.data(); size_t start = locs.blocks(); // Must do the movement backward. for (auto it = locs.crbegin(); it != locs.crend(); it++) { size_t blocks = it->second - it->first; start -= blocks; memmove(to + (it->first * BLOCKSIZE), from + (start * BLOCKSIZE), blocks * BLOCKSIZE); } } /** * We expect to parse the remainder of the parameter tokens as one of: * * * (loads data from source image only) * * - <[stash_id:stash_range] ...> * (loads data from stashes only) * * <[stash_id:stash_range] ...> * (loads data from both source image and stashes) * * On return, params.buffer is filled with the loaded source data (rearranged and combined with * stashed data as necessary). buffer may be reallocated if needed to accommodate the source data. * tgt is the target RangeSet for detecting overlaps. Any stashes required are loaded using * LoadStash. */ static int LoadSourceBlocks(CommandParameters& params, const RangeSet& tgt, size_t* src_blocks, bool* overlap) { CHECK(src_blocks != nullptr); CHECK(overlap != nullptr); // const std::string& token = params.tokens[params.cpos++]; if (!android::base::ParseUint(token, src_blocks)) { LOG(ERROR) << "invalid src_block_count \"" << token << "\""; return -1; } allocate(*src_blocks * BLOCKSIZE, ¶ms.buffer); // "-" or [] if (params.tokens[params.cpos] == "-") { // no source ranges, only stashes params.cpos++; } else { RangeSet src = RangeSet::Parse(params.tokens[params.cpos++]); CHECK(static_cast(src)); *overlap = src.Overlaps(tgt); if (ReadBlocks(src, ¶ms.buffer, params.fd) == -1) { return -1; } if (params.cpos >= params.tokens.size()) { // no stashes, only source range return 0; } RangeSet locs = RangeSet::Parse(params.tokens[params.cpos++]); CHECK(static_cast(locs)); MoveRange(params.buffer, locs, params.buffer); } // <[stash_id:stash_range]> while (params.cpos < params.tokens.size()) { // Each word is a an index into the stash table, a colon, and then a RangeSet describing where // in the source block that stashed data should go. std::vector tokens = android::base::Split(params.tokens[params.cpos++], ":"); if (tokens.size() != 2) { LOG(ERROR) << "invalid parameter"; return -1; } std::vector stash; if (LoadStash(params, tokens[0], false, &stash, true) == -1) { // These source blocks will fail verification if used later, but we // will let the caller decide if this is a fatal failure LOG(ERROR) << "failed to load stash " << tokens[0]; continue; } RangeSet locs = RangeSet::Parse(tokens[1]); CHECK(static_cast(locs)); MoveRange(params.buffer, locs, stash); } return 0; } /** * Do a source/target load for move/bsdiff/imgdiff in version 3. * * We expect to parse the remainder of the parameter tokens as one of: * * * (loads data from source image only) * * - <[stash_id:stash_range] ...> * (loads data from stashes only) * * <[stash_id:stash_range] ...> * (loads data from both source image and stashes) * * 'onehash' tells whether to expect separate source and targe block hashes, or if they are both the * same and only one hash should be expected. params.isunresumable will be set to true if block * verification fails in a way that the update cannot be resumed anymore. * * If the function is unable to load the necessary blocks or their contents don't match the hashes, * the return value is -1 and the command should be aborted. * * If the return value is 1, the command has already been completed according to the contents of the * target blocks, and should not be performed again. * * If the return value is 0, source blocks have expected content and the command can be performed. */ static int LoadSrcTgtVersion3(CommandParameters& params, RangeSet* tgt, size_t* src_blocks, bool onehash) { CHECK(src_blocks != nullptr); if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing source hash"; return -1; } std::string srchash = params.tokens[params.cpos++]; std::string tgthash; if (onehash) { tgthash = srchash; } else { if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing target hash"; return -1; } tgthash = params.tokens[params.cpos++]; } // At least it needs to provide three parameters: , and // "-"/. if (params.cpos + 2 >= params.tokens.size()) { LOG(ERROR) << "invalid parameters"; return -1; } // *tgt = RangeSet::Parse(params.tokens[params.cpos++]); CHECK(static_cast(*tgt)); std::vector tgtbuffer(tgt->blocks() * BLOCKSIZE); if (ReadBlocks(*tgt, &tgtbuffer, params.fd) == -1) { return -1; } // Return now if target blocks already have expected content. if (VerifyBlocks(tgthash, tgtbuffer, tgt->blocks(), false) == 0) { return 1; } // Load source blocks. bool overlap = false; if (LoadSourceBlocks(params, *tgt, src_blocks, &overlap) == -1) { return -1; } if (VerifyBlocks(srchash, params.buffer, *src_blocks, true) == 0) { // If source and target blocks overlap, stash the source blocks so we can resume from possible // write errors. In verify mode, we can skip stashing because the source blocks won't be // overwritten. if (overlap && params.canwrite) { LOG(INFO) << "stashing " << *src_blocks << " overlapping blocks to " << srchash; bool stash_exists = false; if (WriteStash(params.stashbase, srchash, *src_blocks, params.buffer, true, &stash_exists) != 0) { LOG(ERROR) << "failed to stash overlapping source blocks"; return -1; } params.stashed += *src_blocks; // Can be deleted when the write has completed. if (!stash_exists) { params.freestash = srchash; } } // Source blocks have expected content, command can proceed. return 0; } if (overlap && LoadStash(params, srchash, true, ¶ms.buffer, true) == 0) { // Overlapping source blocks were previously stashed, command can proceed. We are recovering // from an interrupted command, so we don't know if the stash can safely be deleted after this // command. return 0; } // Valid source data not available, update cannot be resumed. LOG(ERROR) << "partition has unexpected contents"; PrintHashForCorruptedSourceBlocks(params, params.buffer); params.isunresumable = true; return -1; } static int PerformCommandMove(CommandParameters& params) { size_t blocks = 0; RangeSet tgt; int status = LoadSrcTgtVersion3(params, &tgt, &blocks, true); if (status == -1) { LOG(ERROR) << "failed to read blocks for move"; return -1; } if (status == 0) { params.foundwrites = true; } else { params.target_verified = true; if (params.foundwrites) { LOG(WARNING) << "warning: commands executed out of order [" << params.cmdname << "]"; } } if (params.canwrite) { if (status == 0) { LOG(INFO) << " moving " << blocks << " blocks"; if (WriteBlocks(tgt, params.buffer, params.fd) == -1) { return -1; } } else { LOG(INFO) << "skipping " << blocks << " already moved blocks"; } } if (!params.freestash.empty()) { FreeStash(params.stashbase, params.freestash); params.freestash.clear(); } params.written += tgt.blocks(); return 0; } static int PerformCommandStash(CommandParameters& params) { // if (params.cpos + 1 >= params.tokens.size()) { LOG(ERROR) << "missing id and/or src range fields in stash command"; return -1; } const std::string& id = params.tokens[params.cpos++]; if (LoadStash(params, id, true, ¶ms.buffer, false) == 0) { // Stash file already exists and has expected contents. Do not read from source again, as the // source may have been already overwritten during a previous attempt. return 0; } RangeSet src = RangeSet::Parse(params.tokens[params.cpos++]); CHECK(static_cast(src)); size_t blocks = src.blocks(); allocate(blocks * BLOCKSIZE, ¶ms.buffer); if (ReadBlocks(src, ¶ms.buffer, params.fd) == -1) { return -1; } stash_map[id] = src; if (VerifyBlocks(id, params.buffer, blocks, true) != 0) { // Source blocks have unexpected contents. If we actually need this data later, this is an // unrecoverable error. However, the command that uses the data may have already completed // previously, so the possible failure will occur during source block verification. LOG(ERROR) << "failed to load source blocks for stash " << id; return 0; } // In verify mode, we don't need to stash any blocks. if (!params.canwrite) { return 0; } LOG(INFO) << "stashing " << blocks << " blocks to " << id; int result = WriteStash(params.stashbase, id, blocks, params.buffer, false, nullptr); if (result == 0) { params.stashed += blocks; } return result; } static int PerformCommandFree(CommandParameters& params) { // if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing stash id in free command"; return -1; } const std::string& id = params.tokens[params.cpos++]; stash_map.erase(id); if (params.createdstash || params.canwrite) { return FreeStash(params.stashbase, id); } return 0; } static int PerformCommandZero(CommandParameters& params) { if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing target blocks for zero"; return -1; } RangeSet tgt = RangeSet::Parse(params.tokens[params.cpos++]); CHECK(static_cast(tgt)); LOG(INFO) << " zeroing " << tgt.blocks() << " blocks"; allocate(BLOCKSIZE, ¶ms.buffer); memset(params.buffer.data(), 0, BLOCKSIZE); if (params.canwrite) { for (const auto& [begin, end] : tgt) { off64_t offset = static_cast(begin) * BLOCKSIZE; size_t size = (end - begin) * BLOCKSIZE; if (!discard_blocks(params.fd, offset, size)) { return -1; } if (!check_lseek(params.fd, offset, SEEK_SET)) { return -1; } for (size_t j = begin; j < end; ++j) { if (!android::base::WriteFully(params.fd, params.buffer.data(), BLOCKSIZE)) { failure_type = errno == EIO ? kEioFailure : kFwriteFailure; PLOG(ERROR) << "Failed to write " << BLOCKSIZE << " bytes of data"; return -1; } } } } if (params.cmdname[0] == 'z') { // Update only for the zero command, as the erase command will call // this if DEBUG_ERASE is defined. params.written += tgt.blocks(); } return 0; } static int PerformCommandNew(CommandParameters& params) { if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing target blocks for new"; return -1; } RangeSet tgt = RangeSet::Parse(params.tokens[params.cpos++]); CHECK(static_cast(tgt)); if (params.canwrite) { LOG(INFO) << " writing " << tgt.blocks() << " blocks of new data"; pthread_mutex_lock(¶ms.nti.mu); params.nti.writer = std::make_unique(params.fd, tgt); pthread_cond_broadcast(¶ms.nti.cv); while (params.nti.writer != nullptr) { if (!params.nti.receiver_available) { LOG(ERROR) << "missing " << (tgt.blocks() * BLOCKSIZE - params.nti.writer->BytesWritten()) << " bytes of new data"; pthread_mutex_unlock(¶ms.nti.mu); return -1; } pthread_cond_wait(¶ms.nti.cv, ¶ms.nti.mu); } pthread_mutex_unlock(¶ms.nti.mu); } params.written += tgt.blocks(); return 0; } static int PerformCommandDiff(CommandParameters& params) { // if (params.cpos + 1 >= params.tokens.size()) { LOG(ERROR) << "missing patch offset or length for " << params.cmdname; return -1; } size_t offset; if (!android::base::ParseUint(params.tokens[params.cpos++], &offset)) { LOG(ERROR) << "invalid patch offset"; return -1; } size_t len; if (!android::base::ParseUint(params.tokens[params.cpos++], &len)) { LOG(ERROR) << "invalid patch len"; return -1; } RangeSet tgt; size_t blocks = 0; int status = LoadSrcTgtVersion3(params, &tgt, &blocks, false); if (status == -1) { LOG(ERROR) << "failed to read blocks for diff"; return -1; } if (status == 0) { params.foundwrites = true; } else { params.target_verified = true; if (params.foundwrites) { LOG(WARNING) << "warning: commands executed out of order [" << params.cmdname << "]"; } } if (params.canwrite) { if (status == 0) { LOG(INFO) << "patching " << blocks << " blocks to " << tgt.blocks(); Value patch_value( Value::Type::BLOB, std::string(reinterpret_cast(params.patch_start + offset), len)); RangeSinkWriter writer(params.fd, tgt); if (params.cmdname[0] == 'i') { // imgdiff if (ApplyImagePatch(params.buffer.data(), blocks * BLOCKSIZE, patch_value, std::bind(&RangeSinkWriter::Write, &writer, std::placeholders::_1, std::placeholders::_2), nullptr) != 0) { LOG(ERROR) << "Failed to apply image patch."; failure_type = kPatchApplicationFailure; return -1; } } else { if (ApplyBSDiffPatch(params.buffer.data(), blocks * BLOCKSIZE, patch_value, 0, std::bind(&RangeSinkWriter::Write, &writer, std::placeholders::_1, std::placeholders::_2)) != 0) { LOG(ERROR) << "Failed to apply bsdiff patch."; failure_type = kPatchApplicationFailure; return -1; } } // We expect the output of the patcher to fill the tgt ranges exactly. if (!writer.Finished()) { LOG(ERROR) << "Failed to fully write target blocks (range sink underrun): Missing " << writer.AvailableSpace() << " bytes"; failure_type = kPatchApplicationFailure; return -1; } } else { LOG(INFO) << "skipping " << blocks << " blocks already patched to " << tgt.blocks() << " [" << params.cmdline << "]"; } } if (!params.freestash.empty()) { FreeStash(params.stashbase, params.freestash); params.freestash.clear(); } params.written += tgt.blocks(); return 0; } static int PerformCommandErase(CommandParameters& params) { if (DEBUG_ERASE) { return PerformCommandZero(params); } struct stat sb; if (fstat(params.fd, &sb) == -1) { PLOG(ERROR) << "failed to fstat device to erase"; return -1; } if (!S_ISBLK(sb.st_mode)) { LOG(ERROR) << "not a block device; skipping erase"; return -1; } if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing target blocks for erase"; return -1; } RangeSet tgt = RangeSet::Parse(params.tokens[params.cpos++]); CHECK(static_cast(tgt)); if (params.canwrite) { LOG(INFO) << " erasing " << tgt.blocks() << " blocks"; for (const auto& [begin, end] : tgt) { off64_t offset = static_cast(begin) * BLOCKSIZE; size_t size = (end - begin) * BLOCKSIZE; if (!discard_blocks(params.fd, offset, size, true /* force */)) { return -1; } } } return 0; } static int PerformCommandAbort(CommandParameters&) { LOG(INFO) << "Aborting as instructed"; return -1; } // Computes the hash_tree bytes based on the parameters, checks if the root hash of the tree // matches the expected hash and writes the result to the specified range on the block_device. // Hash_tree computation arguments: // hash_tree_ranges // source_ranges // hash_algorithm // salt_hex // root_hash static int PerformCommandComputeHashTree(CommandParameters& params) { if (params.cpos + 5 != params.tokens.size()) { LOG(ERROR) << "Invaild arguments count in hash computation " << params.cmdline; return -1; } // Expects the hash_tree data to be contiguous. RangeSet hash_tree_ranges = RangeSet::Parse(params.tokens[params.cpos++]); if (!hash_tree_ranges || hash_tree_ranges.size() != 1) { LOG(ERROR) << "Invalid hash tree ranges in " << params.cmdline; return -1; } RangeSet source_ranges = RangeSet::Parse(params.tokens[params.cpos++]); if (!source_ranges) { LOG(ERROR) << "Invalid source ranges in " << params.cmdline; return -1; } auto hash_function = HashTreeBuilder::HashFunction(params.tokens[params.cpos++]); if (hash_function == nullptr) { LOG(ERROR) << "Invalid hash algorithm in " << params.cmdline; return -1; } std::vector salt; std::string salt_hex = params.tokens[params.cpos++]; if (salt_hex.empty() || !HashTreeBuilder::ParseBytesArrayFromString(salt_hex, &salt)) { LOG(ERROR) << "Failed to parse salt in " << params.cmdline; return -1; } std::string expected_root_hash = params.tokens[params.cpos++]; if (expected_root_hash.empty()) { LOG(ERROR) << "Invalid root hash in " << params.cmdline; return -1; } // Starts the hash_tree computation. HashTreeBuilder builder(BLOCKSIZE, hash_function); if (!builder.Initialize(static_cast(source_ranges.blocks()) * BLOCKSIZE, salt)) { LOG(ERROR) << "Failed to initialize hash tree computation, source " << source_ranges.ToString() << ", salt " << salt_hex; return -1; } // Iterates through every block in the source_ranges and updates the hash tree structure // accordingly. for (const auto& [begin, end] : source_ranges) { uint8_t buffer[BLOCKSIZE]; if (!check_lseek(params.fd, static_cast(begin) * BLOCKSIZE, SEEK_SET)) { PLOG(ERROR) << "Failed to seek to block: " << begin; return -1; } for (size_t i = begin; i < end; i++) { if (!android::base::ReadFully(params.fd, buffer, BLOCKSIZE)) { failure_type = errno == EIO ? kEioFailure : kFreadFailure; LOG(ERROR) << "Failed to read data in " << begin << ":" << end; return -1; } if (!builder.Update(reinterpret_cast(buffer), BLOCKSIZE)) { LOG(ERROR) << "Failed to update hash tree builder"; return -1; } } } if (!builder.BuildHashTree()) { LOG(ERROR) << "Failed to build hash tree"; return -1; } std::string root_hash_hex = HashTreeBuilder::BytesArrayToString(builder.root_hash()); if (root_hash_hex != expected_root_hash) { LOG(ERROR) << "Root hash of the verity hash tree doesn't match the expected value. Expected: " << expected_root_hash << ", actual: " << root_hash_hex; return -1; } uint64_t write_offset = static_cast(hash_tree_ranges.GetBlockNumber(0)) * BLOCKSIZE; if (params.canwrite && !builder.WriteHashTreeToFd(params.fd, write_offset)) { LOG(ERROR) << "Failed to write hash tree to output"; return -1; } // TODO(xunchang) validates the written bytes return 0; } using CommandFunction = std::function; using CommandMap = std::unordered_map; static bool Sha1DevicePath(const std::string& path, uint8_t digest[SHA_DIGEST_LENGTH]) { auto device_name = android::base::Basename(path); auto dm_target_name_path = "/sys/block/" + device_name + "/dm/name"; struct stat sb; if (stat(dm_target_name_path.c_str(), &sb) == 0) { // This is a device mapper target. Use partition name as part of the hash instead. Do not // include extents as part of the hash, because the size of a partition may be shrunk after // the patches are applied. std::string dm_target_name; if (!android::base::ReadFileToString(dm_target_name_path, &dm_target_name)) { PLOG(ERROR) << "Cannot read " << dm_target_name_path; return false; } SHA1(reinterpret_cast(dm_target_name.data()), dm_target_name.size(), digest); return true; } if (errno != ENOENT) { // This is a device mapper target, but its name cannot be retrieved. PLOG(ERROR) << "Cannot get dm target name for " << path; return false; } // This doesn't appear to be a device mapper target, but if its name starts with dm-, something // else might have gone wrong. if (android::base::StartsWith(device_name, "dm-")) { LOG(WARNING) << "Device " << path << " starts with dm- but is not mapped by device-mapper."; } // Stash directory should be different for each partition to avoid conflicts when updating // multiple partitions at the same time, so we use the hash of the block device name as the base // directory. SHA1(reinterpret_cast(path.data()), path.size(), digest); return true; } static Value* PerformBlockImageUpdate(const char* name, State* state, const std::vector>& argv, const CommandMap& command_map, bool dryrun) { CommandParameters params{}; stash_map.clear(); params.canwrite = !dryrun; LOG(INFO) << "performing " << (dryrun ? "verification" : "update"); if (state->is_retry) { is_retry = true; LOG(INFO) << "This update is a retry."; } if (argv.size() != 4) { ErrorAbort(state, kArgsParsingFailure, "block_image_update expects 4 arguments, got %zu", argv.size()); return StringValue(""); } std::vector> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } // args: // - block device (or file) to modify in-place // - transfer list (blob) // - new data stream (filename within package.zip) // - patch stream (filename within package.zip, must be uncompressed) const std::unique_ptr& blockdev_filename = args[0]; const std::unique_ptr& transfer_list_value = args[1]; const std::unique_ptr& new_data_fn = args[2]; const std::unique_ptr& patch_data_fn = args[3]; if (blockdev_filename->type != Value::Type::STRING) { ErrorAbort(state, kArgsParsingFailure, "blockdev_filename argument to %s must be string", name); return StringValue(""); } if (transfer_list_value->type != Value::Type::BLOB) { ErrorAbort(state, kArgsParsingFailure, "transfer_list argument to %s must be blob", name); return StringValue(""); } if (new_data_fn->type != Value::Type::STRING) { ErrorAbort(state, kArgsParsingFailure, "new_data_fn argument to %s must be string", name); return StringValue(""); } if (patch_data_fn->type != Value::Type::STRING) { ErrorAbort(state, kArgsParsingFailure, "patch_data_fn argument to %s must be string", name); return StringValue(""); } auto updater = state->updater; auto block_device_path = updater->FindBlockDeviceName(blockdev_filename->data); if (block_device_path.empty()) { LOG(ERROR) << "Block device path for " << blockdev_filename->data << " not found. " << name << " failed."; return StringValue(""); } ZipArchiveHandle za = updater->GetPackageHandle(); if (za == nullptr) { return StringValue(""); } std::string_view path_data(patch_data_fn->data); ZipEntry64 patch_entry; if (FindEntry(za, path_data, &patch_entry) != 0) { LOG(ERROR) << name << "(): no file \"" << patch_data_fn->data << "\" in package"; return StringValue(""); } params.patch_start = updater->GetMappedPackageAddress() + patch_entry.offset; std::string_view new_data(new_data_fn->data); ZipEntry64 new_entry; if (FindEntry(za, new_data, &new_entry) != 0) { LOG(ERROR) << name << "(): no file \"" << new_data_fn->data << "\" in package"; return StringValue(""); } params.fd.reset(TEMP_FAILURE_RETRY(open(block_device_path.c_str(), O_RDWR))); if (params.fd == -1) { failure_type = errno == EIO ? kEioFailure : kFileOpenFailure; PLOG(ERROR) << "open \"" << block_device_path << "\" failed"; return StringValue(""); } uint8_t digest[SHA_DIGEST_LENGTH]; if (!Sha1DevicePath(block_device_path, digest)) { return StringValue(""); } params.stashbase = print_sha1(digest); // Possibly do return early on retry, by checking the marker. If the update on this partition has // been finished (but interrupted at a later point), there could be leftover on /cache that would // fail the no-op retry. std::string updated_marker = GetStashFileName(params.stashbase + ".UPDATED", "", ""); if (is_retry) { struct stat sb; int result = stat(updated_marker.c_str(), &sb); if (result == 0) { LOG(INFO) << "Skipping already updated partition " << block_device_path << " based on marker"; return StringValue("t"); } } else { // Delete the obsolete marker if any. std::string err; if (!android::base::RemoveFileIfExists(updated_marker, &err)) { LOG(ERROR) << "Failed to remove partition updated marker " << updated_marker << ": " << err; return StringValue(""); } } static constexpr size_t kTransferListHeaderLines = 4; std::vector lines = android::base::Split(transfer_list_value->data, "\n"); if (lines.size() < kTransferListHeaderLines) { ErrorAbort(state, kArgsParsingFailure, "too few lines in the transfer list [%zu]", lines.size()); return StringValue(""); } // First line in transfer list is the version number. if (!android::base::ParseInt(lines[0], ¶ms.version, 3, 4)) { LOG(ERROR) << "unexpected transfer list version [" << lines[0] << "]"; return StringValue(""); } LOG(INFO) << "blockimg version is " << params.version; // Second line in transfer list is the total number of blocks we expect to write. size_t total_blocks; if (!android::base::ParseUint(lines[1], &total_blocks)) { ErrorAbort(state, kArgsParsingFailure, "unexpected block count [%s]", lines[1].c_str()); return StringValue(""); } if (total_blocks == 0) { return StringValue("t"); } // Third line is how many stash entries are needed simultaneously. LOG(INFO) << "maximum stash entries " << lines[2]; // Fourth line is the maximum number of blocks that will be stashed simultaneously size_t stash_max_blocks; if (!android::base::ParseUint(lines[3], &stash_max_blocks)) { ErrorAbort(state, kArgsParsingFailure, "unexpected maximum stash blocks [%s]", lines[3].c_str()); return StringValue(""); } int res = CreateStash(state, stash_max_blocks, params.stashbase); if (res == -1) { return StringValue(""); } params.createdstash = res; // Set up the new data writer. if (params.canwrite) { params.nti.za = za; params.nti.entry = new_entry; params.nti.brotli_compressed = android::base::EndsWith(new_data_fn->data, ".br"); if (params.nti.brotli_compressed) { // Initialize brotli decoder state. params.nti.brotli_decoder_state = BrotliDecoderCreateInstance(nullptr, nullptr, nullptr); } params.nti.receiver_available = true; pthread_mutex_init(¶ms.nti.mu, nullptr); pthread_cond_init(¶ms.nti.cv, nullptr); pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); int error = pthread_create(¶ms.thread, &attr, unzip_new_data, ¶ms.nti); if (error != 0) { LOG(ERROR) << "pthread_create failed: " << strerror(error); return StringValue(""); } } // When performing an update, save the index and cmdline of the current command into the // last_command_file. // Upon resuming an update, read the saved index first; then // 1. In verification mode, check if the 'move' or 'diff' commands before the saved index has // the expected target blocks already. If not, these commands cannot be skipped and we need // to attempt to execute them again. Therefore, we will delete the last_command_file so that // the update will resume from the start of the transfer list. // 2. In update mode, skip all commands before the saved index. Therefore, we can avoid deleting // stashes with duplicate id unintentionally (b/69858743); and also speed up the update. // If an update succeeds or is unresumable, delete the last_command_file. bool skip_executed_command = true; size_t saved_last_command_index; if (!ParseLastCommandFile(&saved_last_command_index)) { DeleteLastCommandFile(); // We failed to parse the last command. Disallow skipping executed commands. skip_executed_command = false; } int rc = -1; // Subsequent lines are all individual transfer commands for (size_t i = kTransferListHeaderLines; i < lines.size(); i++) { const std::string& line = lines[i]; if (line.empty()) continue; size_t cmdindex = i - kTransferListHeaderLines; params.tokens = android::base::Split(line, " "); params.cpos = 0; params.cmdname = params.tokens[params.cpos++]; params.cmdline = line; params.target_verified = false; Command::Type cmd_type = Command::ParseType(params.cmdname); if (cmd_type == Command::Type::LAST) { LOG(ERROR) << "unexpected command [" << params.cmdname << "]"; goto pbiudone; } const CommandFunction& performer = command_map.at(cmd_type); // Skip the command if we explicitly set the corresponding function pointer to nullptr, e.g. // "erase" during block_image_verify. if (performer == nullptr) { LOG(DEBUG) << "skip executing command [" << line << "]"; continue; } // Skip all commands before the saved last command index when resuming an update, except for // "new" command. Because new commands read in the data sequentially. if (params.canwrite && skip_executed_command && cmdindex <= saved_last_command_index && cmd_type != Command::Type::NEW) { LOG(INFO) << "Skipping already executed command: " << cmdindex << ", last executed command for previous update: " << saved_last_command_index; continue; } if (performer(params) == -1) { LOG(ERROR) << "failed to execute command [" << line << "]"; if (cmd_type == Command::Type::COMPUTE_HASH_TREE && failure_type == kNoCause) { failure_type = kHashTreeComputationFailure; } goto pbiudone; } // In verify mode, check if the commands before the saved last_command_index have been executed // correctly. If some target blocks have unexpected contents, delete the last command file so // that we will resume the update from the first command in the transfer list. if (!params.canwrite && skip_executed_command && cmdindex <= saved_last_command_index) { // TODO(xunchang) check that the cmdline of the saved index is correct. if ((cmd_type == Command::Type::MOVE || cmd_type == Command::Type::BSDIFF || cmd_type == Command::Type::IMGDIFF) && !params.target_verified) { LOG(WARNING) << "Previously executed command " << saved_last_command_index << ": " << params.cmdline << " doesn't produce expected target blocks."; skip_executed_command = false; DeleteLastCommandFile(); } } if (params.canwrite) { if (fsync(params.fd) == -1) { failure_type = errno == EIO ? kEioFailure : kFsyncFailure; PLOG(ERROR) << "fsync failed"; goto pbiudone; } if (!UpdateLastCommandIndex(cmdindex, params.cmdline)) { LOG(WARNING) << "Failed to update the last command file."; } updater->WriteToCommandPipe( android::base::StringPrintf("set_progress %.4f", static_cast(params.written) / total_blocks), true); } } rc = 0; pbiudone: if (params.canwrite) { pthread_mutex_lock(¶ms.nti.mu); if (params.nti.receiver_available) { LOG(WARNING) << "new data receiver is still available after executing all commands."; } params.nti.receiver_available = false; pthread_cond_broadcast(¶ms.nti.cv); pthread_mutex_unlock(¶ms.nti.mu); int ret = pthread_join(params.thread, nullptr); if (ret != 0) { LOG(WARNING) << "pthread join returned with " << strerror(ret); } if (rc == 0) { LOG(INFO) << "wrote " << params.written << " blocks; expected " << total_blocks; LOG(INFO) << "stashed " << params.stashed << " blocks"; LOG(INFO) << "max alloc needed was " << params.buffer.size(); const char* partition = strrchr(block_device_path.c_str(), '/'); if (partition != nullptr && *(partition + 1) != 0) { updater->WriteToCommandPipe( android::base::StringPrintf("log bytes_written_%s: %" PRIu64, partition + 1, static_cast(params.written) * BLOCKSIZE)); updater->WriteToCommandPipe( android::base::StringPrintf("log bytes_stashed_%s: %" PRIu64, partition + 1, static_cast(params.stashed) * BLOCKSIZE), true); } // Delete stash only after successfully completing the update, as it may contain blocks needed // to complete the update later. DeleteStash(params.stashbase); DeleteLastCommandFile(); // Create a marker on /cache partition, which allows skipping the update on this partition on // retry. The marker will be removed once booting into normal boot, or before starting next // fresh install. if (!SetUpdatedMarker(updated_marker)) { LOG(WARNING) << "Failed to set updated marker; continuing"; } } pthread_mutex_destroy(¶ms.nti.mu); pthread_cond_destroy(¶ms.nti.cv); } else if (rc == 0) { LOG(INFO) << "verified partition contents; update may be resumed"; } if (fsync(params.fd) == -1) { failure_type = errno == EIO ? kEioFailure : kFsyncFailure; PLOG(ERROR) << "fsync failed"; } // params.fd will be automatically closed because it's a unique_fd. if (params.nti.brotli_decoder_state != nullptr) { BrotliDecoderDestroyInstance(params.nti.brotli_decoder_state); } // Delete the last command file if the update cannot be resumed. if (params.isunresumable) { DeleteLastCommandFile(); } // Only delete the stash if the update cannot be resumed, or it's a verification run and we // created the stash. if (params.isunresumable || (!params.canwrite && params.createdstash)) { DeleteStash(params.stashbase); } if (failure_type != kNoCause && state->cause_code == kNoCause) { state->cause_code = failure_type; } return StringValue(rc == 0 ? "t" : ""); } /** * The transfer list is a text file containing commands to transfer data from one place to another * on the target partition. We parse it and execute the commands in order: * * zero [rangeset] * - Fill the indicated blocks with zeros. * * new [rangeset] * - Fill the blocks with data read from the new_data file. * * erase [rangeset] * - Mark the given blocks as empty. * * move <...> * bsdiff <...> * imgdiff <...> * - Read the source blocks, apply a patch (or not in the case of move), write result to target * blocks. bsdiff or imgdiff specifies the type of patch; move means no patch at all. * * See the comments in LoadSrcTgtVersion3() for a description of the <...> format. * * stash * - Load the given source range and stash the data in the given slot of the stash table. * * free * - Free the given stash data. * * The creator of the transfer list will guarantee that no block is read (ie, used as the source for * a patch or move) after it has been written. * * The creator will guarantee that a given stash is loaded (with a stash command) before it's used * in a move/bsdiff/imgdiff command. * * Within one command the source and target ranges may overlap so in general we need to read the * entire source into memory before writing anything to the target blocks. * * All the patch data is concatenated into one patch_data file in the update package. It must be * stored uncompressed because we memory-map it in directly from the archive. (Since patches are * already compressed, we lose very little by not compressing their concatenation.) * * Commands that read data from the partition (i.e. move/bsdiff/imgdiff/stash) have one or more * additional hashes before the range parameters, which are used to check if the command has already * been completed and verify the integrity of the source data. */ Value* BlockImageVerifyFn(const char* name, State* state, const std::vector>& argv) { // Commands which are not allowed are set to nullptr to skip them completely. const CommandMap command_map{ // clang-format off { Command::Type::ABORT, PerformCommandAbort }, { Command::Type::BSDIFF, PerformCommandDiff }, { Command::Type::COMPUTE_HASH_TREE, nullptr }, { Command::Type::ERASE, nullptr }, { Command::Type::FREE, PerformCommandFree }, { Command::Type::IMGDIFF, PerformCommandDiff }, { Command::Type::MOVE, PerformCommandMove }, { Command::Type::NEW, nullptr }, { Command::Type::STASH, PerformCommandStash }, { Command::Type::ZERO, nullptr }, // clang-format on }; CHECK_EQ(static_cast(Command::Type::LAST), command_map.size()); // Perform a dry run without writing to test if an update can proceed. return PerformBlockImageUpdate(name, state, argv, command_map, true); } Value* BlockImageUpdateFn(const char* name, State* state, const std::vector>& argv) { const CommandMap command_map{ // clang-format off { Command::Type::ABORT, PerformCommandAbort }, { Command::Type::BSDIFF, PerformCommandDiff }, { Command::Type::COMPUTE_HASH_TREE, PerformCommandComputeHashTree }, { Command::Type::ERASE, PerformCommandErase }, { Command::Type::FREE, PerformCommandFree }, { Command::Type::IMGDIFF, PerformCommandDiff }, { Command::Type::MOVE, PerformCommandMove }, { Command::Type::NEW, PerformCommandNew }, { Command::Type::STASH, PerformCommandStash }, { Command::Type::ZERO, PerformCommandZero }, // clang-format on }; CHECK_EQ(static_cast(Command::Type::LAST), command_map.size()); return PerformBlockImageUpdate(name, state, argv, command_map, false); } Value* RangeSha1Fn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { ErrorAbort(state, kArgsParsingFailure, "range_sha1 expects 2 arguments, got %zu", argv.size()); return StringValue(""); } std::vector> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } const std::unique_ptr& blockdev_filename = args[0]; const std::unique_ptr& ranges = args[1]; if (blockdev_filename->type != Value::Type::STRING) { ErrorAbort(state, kArgsParsingFailure, "blockdev_filename argument to %s must be string", name); return StringValue(""); } if (ranges->type != Value::Type::STRING) { ErrorAbort(state, kArgsParsingFailure, "ranges argument to %s must be string", name); return StringValue(""); } auto block_device_path = state->updater->FindBlockDeviceName(blockdev_filename->data); if (block_device_path.empty()) { LOG(ERROR) << "Block device path for " << blockdev_filename->data << " not found. " << name << " failed."; return StringValue(""); } android::base::unique_fd fd(open(block_device_path.c_str(), O_RDWR)); if (fd == -1) { CauseCode cause_code = errno == EIO ? kEioFailure : kFileOpenFailure; ErrorAbort(state, cause_code, "open \"%s\" failed: %s", block_device_path.c_str(), strerror(errno)); return StringValue(""); } RangeSet rs = RangeSet::Parse(ranges->data); CHECK(static_cast(rs)); SHA_CTX ctx; SHA1_Init(&ctx); std::vector buffer(BLOCKSIZE); for (const auto& [begin, end] : rs) { if (!check_lseek(fd, static_cast(begin) * BLOCKSIZE, SEEK_SET)) { ErrorAbort(state, kLseekFailure, "failed to seek %s: %s", block_device_path.c_str(), strerror(errno)); return StringValue(""); } for (size_t j = begin; j < end; ++j) { if (!android::base::ReadFully(fd, buffer.data(), BLOCKSIZE)) { CauseCode cause_code = errno == EIO ? kEioFailure : kFreadFailure; ErrorAbort(state, cause_code, "failed to read %s: %s", block_device_path.c_str(), strerror(errno)); return StringValue(""); } SHA1_Update(&ctx, buffer.data(), BLOCKSIZE); } } uint8_t digest[SHA_DIGEST_LENGTH]; SHA1_Final(digest, &ctx); return StringValue(print_sha1(digest)); } // This function checks if a device has been remounted R/W prior to an incremental // OTA update. This is an common cause of update abortion. The function reads the // 1st block of each partition and check for mounting time/count. It return string "t" // if executes successfully and an empty string otherwise. Value* CheckFirstBlockFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 1) { ErrorAbort(state, kArgsParsingFailure, "check_first_block expects 1 argument, got %zu", argv.size()); return StringValue(""); } std::vector> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } const std::unique_ptr& arg_filename = args[0]; if (arg_filename->type != Value::Type::STRING) { ErrorAbort(state, kArgsParsingFailure, "filename argument to %s must be string", name); return StringValue(""); } auto block_device_path = state->updater->FindBlockDeviceName(arg_filename->data); if (block_device_path.empty()) { LOG(ERROR) << "Block device path for " << arg_filename->data << " not found. " << name << " failed."; return StringValue(""); } android::base::unique_fd fd(open(block_device_path.c_str(), O_RDONLY)); if (fd == -1) { CauseCode cause_code = errno == EIO ? kEioFailure : kFileOpenFailure; ErrorAbort(state, cause_code, "open \"%s\" failed: %s", block_device_path.c_str(), strerror(errno)); return StringValue(""); } RangeSet blk0(std::vector{ Range{ 0, 1 } }); std::vector block0_buffer(BLOCKSIZE); if (ReadBlocks(blk0, &block0_buffer, fd) == -1) { CauseCode cause_code = errno == EIO ? kEioFailure : kFreadFailure; ErrorAbort(state, cause_code, "failed to read %s: %s", block_device_path.c_str(), strerror(errno)); return StringValue(""); } // https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout // Super block starts from block 0, offset 0x400 // 0x2C: len32 Mount time // 0x30: len32 Write time // 0x34: len16 Number of mounts since the last fsck // 0x38: len16 Magic signature 0xEF53 time_t mount_time = *reinterpret_cast(&block0_buffer[0x400 + 0x2C]); uint16_t mount_count = *reinterpret_cast(&block0_buffer[0x400 + 0x34]); if (mount_count > 0) { state->updater->UiPrint( android::base::StringPrintf("Device was remounted R/W %" PRIu16 " times", mount_count)); state->updater->UiPrint( android::base::StringPrintf("Last remount happened on %s", ctime(&mount_time))); } return StringValue("t"); } Value* BlockImageRecoverFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { ErrorAbort(state, kArgsParsingFailure, "block_image_recover expects 2 arguments, got %zu", argv.size()); return StringValue(""); } std::vector> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } const std::unique_ptr& filename = args[0]; const std::unique_ptr& ranges = args[1]; if (filename->type != Value::Type::STRING) { ErrorAbort(state, kArgsParsingFailure, "filename argument to %s must be string", name); return StringValue(""); } if (ranges->type != Value::Type::STRING) { ErrorAbort(state, kArgsParsingFailure, "ranges argument to %s must be string", name); return StringValue(""); } RangeSet rs = RangeSet::Parse(ranges->data); if (!rs) { ErrorAbort(state, kArgsParsingFailure, "failed to parse ranges: %s", ranges->data.c_str()); return StringValue(""); } auto block_device_path = state->updater->FindBlockDeviceName(filename->data); if (block_device_path.empty()) { LOG(ERROR) << "Block device path for " << filename->data << " not found. " << name << " failed."; return StringValue(""); } // Output notice to log when recover is attempted LOG(INFO) << block_device_path << " image corrupted, attempting to recover..."; // When opened with O_RDWR, libfec rewrites corrupted blocks when they are read fec::io fh(block_device_path, O_RDWR); if (!fh) { ErrorAbort(state, kLibfecFailure, "fec_open \"%s\" failed: %s", block_device_path.c_str(), strerror(errno)); return StringValue(""); } if (!fh.has_ecc() || !fh.has_verity()) { ErrorAbort(state, kLibfecFailure, "unable to use metadata to correct errors"); return StringValue(""); } fec_status status; if (!fh.get_status(status)) { ErrorAbort(state, kLibfecFailure, "failed to read FEC status"); return StringValue(""); } uint8_t buffer[BLOCKSIZE]; for (const auto& [begin, end] : rs) { for (size_t j = begin; j < end; ++j) { // Stay within the data area, libfec validates and corrects metadata if (status.data_size <= static_cast(j) * BLOCKSIZE) { continue; } if (fh.pread(buffer, BLOCKSIZE, static_cast(j) * BLOCKSIZE) != BLOCKSIZE) { ErrorAbort(state, kLibfecFailure, "failed to recover %s (block %zu): %s", block_device_path.c_str(), j, strerror(errno)); return StringValue(""); } // If we want to be able to recover from a situation where rewriting a corrected // block doesn't guarantee the same data will be returned when re-read later, we // can save a copy of corrected blocks to /cache. Note: // // 1. Maximum space required from /cache is the same as the maximum number of // corrupted blocks we can correct. For RS(255, 253) and a 2 GiB partition, // this would be ~16 MiB, for example. // // 2. To find out if this block was corrupted, call fec_get_status after each // read and check if the errors field value has increased. } } LOG(INFO) << "..." << block_device_path << " image recovered successfully."; return StringValue("t"); } void RegisterBlockImageFunctions() { RegisterFunction("block_image_verify", BlockImageVerifyFn); RegisterFunction("block_image_update", BlockImageUpdateFn); RegisterFunction("block_image_recover", BlockImageRecoverFn); RegisterFunction("check_first_block", CheckFirstBlockFn); RegisterFunction("range_sha1", RangeSha1Fn); }