/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "updater/install.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "edify/expr.h" #include "mounts.h" #include "applypatch/applypatch.h" #include "flashutils/flashutils.h" #include "install.h" #ifdef HAVE_LIBTUNE2FS #include "tune2fs.h" #endif #ifdef USE_EXT4 #include "make_ext4fs.h" #include "wipe.h" #endif #include "otautil/ZipUtil.h" #include "otafault/ota_io.h" #include "otautil/DirUtil.h" #include "otautil/error_code.h" #include "otautil/print_sha1.h" #include "updater/updater.h" // Send over the buffer to recovery though the command pipe. static void uiPrint(State* state, const std::string& buffer) { UpdaterInfo* ui = static_cast(state->cookie); // "line1\nline2\n" will be split into 3 tokens: "line1", "line2" and "". // So skip sending empty strings to UI. std::vector lines = android::base::Split(buffer, "\n"); for (auto& line : lines) { if (!line.empty()) { fprintf(ui->cmd_pipe, "ui_print %s\n", line.c_str()); } } // On the updater side, we need to dump the contents to stderr (which has // been redirected to the log file). Because the recovery will only print // the contents to screen when processing pipe command ui_print. LOG(INFO) << buffer; } static bool is_dir(const std::string& dirpath) { struct stat st; return stat(dirpath.c_str(), &st) == 0 && S_ISDIR(st.st_mode); } // Create all parent directories of name, if necessary. static bool make_parents(const std::string& name) { size_t prev_end = 0; while (prev_end < name.size()) { size_t next_end = name.find('/', prev_end + 1); if (next_end == std::string::npos) { break; } std::string dir_path = name.substr(0, next_end); if (!is_dir(dir_path)) { int result = mkdir(dir_path.c_str(), 0700); if (result != 0) { PLOG(ERROR) << "failed to mkdir " << dir_path << " when make parents for " << name; return false; } LOG(INFO) << "created [" << dir_path << "]"; } prev_end = next_end; } return true; } void uiPrintf(State* _Nonnull state, const char* _Nonnull format, ...) { std::string error_msg; va_list ap; va_start(ap, format); android::base::StringAppendV(&error_msg, format, ap); va_end(ap); uiPrint(state, error_msg); } // This is the updater side handler for ui_print() in edify script. Contents will be sent over to // the recovery side for on-screen display. Value* UIPrintFn(const char* name, State* state, const std::vector>& argv) { std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } std::string buffer = android::base::Join(args, ""); uiPrint(state, buffer); return StringValue(buffer); } // package_extract_file(package_file[, dest_file]) // Extracts a single package_file from the update package and writes it to dest_file, // overwriting existing files if necessary. Without the dest_file argument, returns the // contents of the package file as a binary blob. Value* PackageExtractFileFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() < 1 || argv.size() > 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 or 2 args, got %zu", name, argv.size()); } if (argv.size() == 2) { // The two-argument version extracts to a file. std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name, argv.size()); } const std::string& zip_path = args[0]; const std::string& dest_path = args[1]; ZipArchiveHandle za = static_cast(state->cookie)->package_zip; ZipString zip_string_path(zip_path.c_str()); ZipEntry entry; if (FindEntry(za, zip_string_path, &entry) != 0) { LOG(ERROR) << name << ": no " << zip_path << " in package"; return StringValue(""); } unique_fd fd(TEMP_FAILURE_RETRY( ota_open(dest_path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR))); if (fd == -1) { PLOG(ERROR) << name << ": can't open " << dest_path << " for write"; return StringValue(""); } bool success = true; int32_t ret = ExtractEntryToFile(za, &entry, fd); if (ret != 0) { LOG(ERROR) << name << ": Failed to extract entry \"" << zip_path << "\" (" << entry.uncompressed_length << " bytes) to \"" << dest_path << "\": " << ErrorCodeString(ret); success = false; } if (ota_fsync(fd) == -1) { PLOG(ERROR) << "fsync of \"" << dest_path << "\" failed"; success = false; } if (ota_close(fd) == -1) { PLOG(ERROR) << "close of \"" << dest_path << "\" failed"; success = false; } return StringValue(success ? "t" : ""); } else { // The one-argument version returns the contents of the file as the result. std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name, argv.size()); } const std::string& zip_path = args[0]; ZipArchiveHandle za = static_cast(state->cookie)->package_zip; ZipString zip_string_path(zip_path.c_str()); ZipEntry entry; if (FindEntry(za, zip_string_path, &entry) != 0) { return ErrorAbort(state, kPackageExtractFileFailure, "%s(): no %s in package", name, zip_path.c_str()); } std::string buffer; buffer.resize(entry.uncompressed_length); int32_t ret = ExtractToMemory(za, &entry, reinterpret_cast(&buffer[0]), buffer.size()); if (ret != 0) { return ErrorAbort(state, kPackageExtractFileFailure, "%s: Failed to extract entry \"%s\" (%zu bytes) to memory: %s", name, zip_path.c_str(), buffer.size(), ErrorCodeString(ret)); } return new Value(VAL_BLOB, buffer); } } // apply_patch(src_file, tgt_file, tgt_sha1, tgt_size, patch1_sha1, patch1_blob, [...]) // Applies a binary patch to the src_file to produce the tgt_file. If the desired target is the // same as the source, pass "-" for tgt_file. tgt_sha1 and tgt_size are the expected final SHA1 // hash and size of the target file. The remaining arguments must come in pairs: a SHA1 hash (a // 40-character hex string) and a blob. The blob is the patch to be applied when the source // file's current contents have the given SHA1. // // The patching is done in a safe manner that guarantees the target file either has the desired // SHA1 hash and size, or it is untouched -- it will not be left in an unrecoverable intermediate // state. If the process is interrupted during patching, the target file may be in an intermediate // state; a copy exists in the cache partition so restarting the update can successfully update // the file. Value* ApplyPatchFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() < 6 || (argv.size() % 2) == 1) { return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 6 args and an " "even number, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args, 0, 4)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& source_filename = args[0]; const std::string& target_filename = args[1]; const std::string& target_sha1 = args[2]; const std::string& target_size_str = args[3]; size_t target_size; if (!android::base::ParseUint(target_size_str.c_str(), &target_size)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name, target_size_str.c_str()); } int patchcount = (argv.size() - 4) / 2; std::vector> arg_values; if (!ReadValueArgs(state, argv, &arg_values, 4, argv.size() - 4)) { return nullptr; } for (int i = 0; i < patchcount; ++i) { if (arg_values[i * 2]->type != VAL_STRING) { return ErrorAbort(state, kArgsParsingFailure, "%s(): sha-1 #%d is not string", name, i * 2); } if (arg_values[i * 2 + 1]->type != VAL_BLOB) { return ErrorAbort(state, kArgsParsingFailure, "%s(): patch #%d is not blob", name, i * 2 + 1); } } std::vector patch_sha_str; std::vector> patches; for (int i = 0; i < patchcount; ++i) { patch_sha_str.push_back(arg_values[i * 2]->data); patches.push_back(std::move(arg_values[i * 2 + 1])); } int result = applypatch(source_filename.c_str(), target_filename.c_str(), target_sha1.c_str(), target_size, patch_sha_str, patches, nullptr); return StringValue(result == 0 ? "t" : ""); } // apply_patch_check(filename, [sha1, ...]) // Returns true if the contents of filename or the temporary copy in the cache partition (if // present) have a SHA-1 checksum equal to one of the given sha1 values. sha1 values are // specified as 40 hex digits. This function differs from sha1_check(read_file(filename), // sha1 [, ...]) in that it knows to check the cache partition copy, so apply_patch_check() will // succeed even if the file was corrupted by an interrupted apply_patch() update. Value* ApplyPatchCheckFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() < 1) { return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 1 arg, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args, 0, 1)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; std::vector sha1s; if (argv.size() > 1 && !ReadArgs(state, argv, &sha1s, 1, argv.size() - 1)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } int result = applypatch_check(filename.c_str(), sha1s); return StringValue(result == 0 ? "t" : ""); } // sha1_check(data) // to return the sha1 of the data (given in the format returned by // read_file). // // sha1_check(data, sha1_hex, [sha1_hex, ...]) // returns the sha1 of the file if it matches any of the hex // strings passed, or "" if it does not equal any of them. // Value* Sha1CheckFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() < 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name); } std::vector> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } if (args[0]->type == VAL_INVALID) { return StringValue(""); } uint8_t digest[SHA_DIGEST_LENGTH]; SHA1(reinterpret_cast(args[0]->data.c_str()), args[0]->data.size(), digest); if (argv.size() == 1) { return StringValue(print_sha1(digest)); } for (size_t i = 1; i < argv.size(); ++i) { uint8_t arg_digest[SHA_DIGEST_LENGTH]; if (args[i]->type != VAL_STRING) { LOG(ERROR) << name << "(): arg " << i << " is not a string; skipping"; } else if (ParseSha1(args[i]->data.c_str(), arg_digest) != 0) { // Warn about bad args and skip them. LOG(ERROR) << name << "(): error parsing \"" << args[i]->data << "\" as sha-1; skipping"; } else if (memcmp(digest, arg_digest, SHA_DIGEST_LENGTH) == 0) { // Found a match. return args[i].release(); } } // Didn't match any of the hex strings; return false. return StringValue(""); } // mount(fs_type, partition_type, location, mount_point) // mount(fs_type, partition_type, location, mount_point, mount_options) // fs_type="ext4" partition_type="EMMC" location=device Value* MountFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 4 && argv.size() != 5) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 4-5 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& fs_type = args[0]; const std::string& partition_type = args[1]; const std::string& location = args[2]; const std::string& mount_point = args[3]; std::string mount_options; if (argv.size() == 5) { mount_options = args[4]; } if (fs_type.empty()) { return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name); } if (partition_type.empty()) { return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty", name); } if (location.empty()) { return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name); } if (mount_point.empty()) { return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty", name); } { char* secontext = nullptr; if (sehandle) { selabel_lookup(sehandle, &secontext, mount_point.c_str(), 0755); setfscreatecon(secontext); } mkdir(mount_point.c_str(), 0755); if (secontext) { freecon(secontext); setfscreatecon(nullptr); } } if (mount(location.c_str(), mount_point.c_str(), fs_type.c_str(), MS_NOATIME | MS_NODEV | MS_NODIRATIME, mount_options.c_str()) < 0) { uiPrintf(state, "%s: Failed to mount %s at %s: %s", name, location.c_str(), mount_point.c_str(), strerror(errno)); return StringValue(""); } return StringValue(mount_point); } // is_mounted(mount_point) Value* IsMountedFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& mount_point = args[0]; if (mount_point.empty()) { return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to unmount() can't be empty"); } scan_mounted_volumes(); MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str()); if (vol == nullptr) { return StringValue(""); } return StringValue(mount_point); } Value* UnmountFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& mount_point = args[0]; if (mount_point.empty()) { return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to unmount() can't be empty"); } scan_mounted_volumes(); MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str()); if (vol == nullptr) { uiPrintf(state, "Failed to unmount %s: No such volume", mount_point.c_str()); return nullptr; } else { int ret = unmount_mounted_volume(vol); if (ret != 0) { uiPrintf(state, "Failed to unmount %s: %s", mount_point.c_str(), strerror(errno)); } } return StringValue(mount_point); } static int exec_cmd(const char* path, char* const argv[]) { pid_t child; if ((child = vfork()) == 0) { execv(path, argv); _exit(EXIT_FAILURE); } int status; waitpid(child, &status, 0); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { LOG(ERROR) << path << " failed with status " << WEXITSTATUS(status); } return WEXITSTATUS(status); } // format(fs_type, partition_type, location, fs_size, mount_point) // // fs_type="ext4" partition_type="EMMC" location=device fs_size= mount_point= // fs_type="f2fs" partition_type="EMMC" location=device fs_size= mount_point= // if fs_size == 0, then make fs uses the entire partition. // if fs_size > 0, that is the size to use // if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs") Value* FormatFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 5) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 5 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& fs_type = args[0]; const std::string& partition_type = args[1]; const std::string& location = args[2]; const std::string& fs_size = args[3]; const std::string& mount_point = args[4]; if (fs_type.empty()) { return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name); } if (partition_type.empty()) { return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty", name); } if (location.empty()) { return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name); } if (mount_point.empty()) { return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty", name); } int64_t size; if (!android::base::ParseInt(fs_size, &size)) { return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name, fs_size.c_str()); } if (fs_type == "ext4") { const char* mke2fs_argv[] = { "/sbin/mke2fs_static", "-t", "ext4", "-b", "4096", location.c_str(), nullptr, nullptr }; std::string size_str; if (size != 0) { size_str = std::to_string(size / 4096LL); mke2fs_argv[6] = size_str.c_str(); } int status = exec_cmd(mke2fs_argv[0], const_cast(mke2fs_argv)); if (status != 0) { LOG(ERROR) << name << ": mke2fs failed (" << status << ") on " << location; return StringValue(""); } const char* e2fsdroid_argv[] = { "/sbin/e2fsdroid_static", "-e", "-a", mount_point.c_str(), location.c_str(), nullptr }; status = exec_cmd(e2fsdroid_argv[0], const_cast(e2fsdroid_argv)); if (status != 0) { LOG(ERROR) << name << ": e2fsdroid failed (" << status << ") on " << location; return StringValue(""); } return StringValue(location); } else if (fs_type == "f2fs") { if (size < 0) { LOG(ERROR) << name << ": fs_size can't be negative for f2fs: " << fs_size; return StringValue(""); } std::string num_sectors = std::to_string(size / 512); const char* f2fs_path = "/sbin/mkfs.f2fs"; const char* f2fs_argv[] = { "mkfs.f2fs", "-d1", "-f", "-O", "encrypt", "-O", "quota", "-O", "verity", "-w", "512", location.c_str(), (size < 512) ? nullptr : num_sectors.c_str(), nullptr }; int status = exec_cmd(f2fs_path, const_cast(f2fs_argv)); if (status != 0) { LOG(ERROR) << name << ": mkfs.f2fs failed (" << status << ") on " << location; return StringValue(""); } const char* sload_argv[] = { "/sbin/sload.f2fs", "-t", mount_point.c_str(), location.c_str(), nullptr }; status = exec_cmd(sload_argv[0], const_cast(sload_argv)); if (status != 0) { LOG(ERROR) << name << ": sload.f2fs failed (" << status << ") on " << location; return StringValue(""); } return StringValue(location); } else { LOG(ERROR) << name << ": unsupported fs_type \"" << fs_type << "\" partition_type \"" << partition_type << "\""; } return nullptr; } // rename(src_name, dst_name) // Renames src_name to dst_name. It automatically creates the necessary directories for dst_name. // Example: rename("system/app/Hangouts/Hangouts.apk", "system/priv-app/Hangouts/Hangouts.apk") Value* RenameFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& src_name = args[0]; const std::string& dst_name = args[1]; if (src_name.empty()) { return ErrorAbort(state, kArgsParsingFailure, "src_name argument to %s() can't be empty", name); } if (dst_name.empty()) { return ErrorAbort(state, kArgsParsingFailure, "dst_name argument to %s() can't be empty", name); } if (!make_parents(dst_name)) { return ErrorAbort(state, kFileRenameFailure, "Creating parent of %s failed, error %s", dst_name.c_str(), strerror(errno)); } else if (access(dst_name.c_str(), F_OK) == 0 && access(src_name.c_str(), F_OK) != 0) { // File was already moved return StringValue(dst_name); } else if (rename(src_name.c_str(), dst_name.c_str()) != 0) { return ErrorAbort(state, kFileRenameFailure, "Rename of %s to %s failed, error %s", src_name.c_str(), dst_name.c_str(), strerror(errno)); } return StringValue(dst_name); } // delete([filename, ...]) // Deletes all the filenames listed. Returns the number of files successfully deleted. // // delete_recursive([dirname, ...]) // Recursively deletes dirnames and all their contents. Returns the number of directories // successfully deleted. Value* DeleteFn(const char* name, State* state, const std::vector>& argv) { std::vector paths; if (!ReadArgs(state, argv, &paths)) { return nullptr; } bool recursive = (strcmp(name, "delete_recursive") == 0); int success = 0; for (const auto& path : paths) { if ((recursive ? dirUnlinkHierarchy(path.c_str()) : unlink(path.c_str())) == 0) { ++success; } } return StringValue(std::to_string(success)); } Value* ShowProgressFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& frac_str = args[0]; const std::string& sec_str = args[1]; double frac; if (!android::base::ParseDouble(frac_str.c_str(), &frac)) { return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name, frac_str.c_str()); } int sec; if (!android::base::ParseInt(sec_str.c_str(), &sec)) { return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name, sec_str.c_str()); } UpdaterInfo* ui = static_cast(state->cookie); fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec); return StringValue(frac_str); } Value* SetProgressFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& frac_str = args[0]; double frac; if (!android::base::ParseDouble(frac_str.c_str(), &frac)) { return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name, frac_str.c_str()); } UpdaterInfo* ui = static_cast(state->cookie); fprintf(ui->cmd_pipe, "set_progress %f\n", frac); return StringValue(frac_str); } // package_extract_dir(package_dir, dest_dir) // Extracts all files from the package underneath package_dir and writes them to the // corresponding tree beneath dest_dir. Any existing files are overwritten. // Example: package_extract_dir("system", "/system") // // Note: package_dir needs to be a relative path; dest_dir needs to be an absolute path. Value* PackageExtractDirFn(const char* name, State* state, const std::vector>&argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& zip_path = args[0]; const std::string& dest_path = args[1]; ZipArchiveHandle za = static_cast(state->cookie)->package_zip; // To create a consistent system image, never use the clock for timestamps. constexpr struct utimbuf timestamp = { 1217592000, 1217592000 }; // 8/1/2008 default bool success = ExtractPackageRecursive(za, zip_path, dest_path, ×tamp, sehandle); return StringValue(success ? "t" : ""); } // symlink(target, [src1, src2, ...]) // Creates all sources as symlinks to target. It unlinks any previously existing src1, src2, etc // before creating symlinks. Value* SymlinkFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() == 0) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1+ args, got %zu", name, argv.size()); } std::string target; if (!Evaluate(state, argv[0], &target)) { return nullptr; } std::vector srcs; if (!ReadArgs(state, argv, &srcs, 1, argv.size())) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } size_t bad = 0; for (const auto& src : srcs) { if (unlink(src.c_str()) == -1 && errno != ENOENT) { PLOG(ERROR) << name << ": failed to remove " << src; ++bad; } else if (!make_parents(src)) { LOG(ERROR) << name << ": failed to symlink " << src << " to " << target << ": making parents failed"; ++bad; } else if (symlink(target.c_str(), src.c_str()) == -1) { PLOG(ERROR) << name << ": failed to symlink " << src << " to " << target; ++bad; } } if (bad != 0) { return ErrorAbort(state, kSymlinkFailure, "%s: Failed to create %zu symlink(s)", name, bad); } return StringValue("t"); } struct perm_parsed_args { bool has_uid; uid_t uid; bool has_gid; gid_t gid; bool has_mode; mode_t mode; bool has_fmode; mode_t fmode; bool has_dmode; mode_t dmode; bool has_selabel; const char* selabel; bool has_capabilities; uint64_t capabilities; }; static struct perm_parsed_args ParsePermArgs(State * state, const std::vector& args) { struct perm_parsed_args parsed; int bad = 0; static int max_warnings = 20; memset(&parsed, 0, sizeof(parsed)); for (size_t i = 1; i < args.size(); i += 2) { if (args[i] == "uid") { int64_t uid; if (sscanf(args[i + 1].c_str(), "%" SCNd64, &uid) == 1) { parsed.uid = uid; parsed.has_uid = true; } else { uiPrintf(state, "ParsePermArgs: invalid UID \"%s\"\n", args[i + 1].c_str()); bad++; } continue; } if (args[i] == "gid") { int64_t gid; if (sscanf(args[i + 1].c_str(), "%" SCNd64, &gid) == 1) { parsed.gid = gid; parsed.has_gid = true; } else { uiPrintf(state, "ParsePermArgs: invalid GID \"%s\"\n", args[i + 1].c_str()); bad++; } continue; } if (args[i] == "mode") { int32_t mode; if (sscanf(args[i + 1].c_str(), "%" SCNi32, &mode) == 1) { parsed.mode = mode; parsed.has_mode = true; } else { uiPrintf(state, "ParsePermArgs: invalid mode \"%s\"\n", args[i + 1].c_str()); bad++; } continue; } if (args[i] == "dmode") { int32_t mode; if (sscanf(args[i + 1].c_str(), "%" SCNi32, &mode) == 1) { parsed.dmode = mode; parsed.has_dmode = true; } else { uiPrintf(state, "ParsePermArgs: invalid dmode \"%s\"\n", args[i + 1].c_str()); bad++; } continue; } if (args[i] == "fmode") { int32_t mode; if (sscanf(args[i + 1].c_str(), "%" SCNi32, &mode) == 1) { parsed.fmode = mode; parsed.has_fmode = true; } else { uiPrintf(state, "ParsePermArgs: invalid fmode \"%s\"\n", args[i + 1].c_str()); bad++; } continue; } if (args[i] == "capabilities") { int64_t capabilities; if (sscanf(args[i + 1].c_str(), "%" SCNi64, &capabilities) == 1) { parsed.capabilities = capabilities; parsed.has_capabilities = true; } else { uiPrintf(state, "ParsePermArgs: invalid capabilities \"%s\"\n", args[i + 1].c_str()); bad++; } continue; } if (args[i] == "selabel") { if (!args[i + 1].empty()) { parsed.selabel = args[i + 1].c_str(); parsed.has_selabel = true; } else { uiPrintf(state, "ParsePermArgs: invalid selabel \"%s\"\n", args[i + 1].c_str()); bad++; } continue; } if (max_warnings != 0) { printf("ParsedPermArgs: unknown key \"%s\", ignoring\n", args[i].c_str()); max_warnings--; if (max_warnings == 0) { LOG(INFO) << "ParsedPermArgs: suppressing further warnings"; } } } return parsed; } static int ApplyParsedPerms(State* state, const char* filename, const struct stat* statptr, struct perm_parsed_args parsed) { int bad = 0; if (parsed.has_selabel) { if (lsetfilecon(filename, parsed.selabel) != 0) { uiPrintf(state, "ApplyParsedPerms: lsetfilecon of %s to %s failed: %s\n", filename, parsed.selabel, strerror(errno)); bad++; } } /* ignore symlinks */ if (S_ISLNK(statptr->st_mode)) { return bad; } if (parsed.has_uid) { if (chown(filename, parsed.uid, -1) < 0) { uiPrintf(state, "ApplyParsedPerms: chown of %s to %d failed: %s\n", filename, parsed.uid, strerror(errno)); bad++; } } if (parsed.has_gid) { if (chown(filename, -1, parsed.gid) < 0) { uiPrintf(state, "ApplyParsedPerms: chgrp of %s to %d failed: %s\n", filename, parsed.gid, strerror(errno)); bad++; } } if (parsed.has_mode) { if (chmod(filename, parsed.mode) < 0) { uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n", filename, parsed.mode, strerror(errno)); bad++; } } if (parsed.has_dmode && S_ISDIR(statptr->st_mode)) { if (chmod(filename, parsed.dmode) < 0) { uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n", filename, parsed.dmode, strerror(errno)); bad++; } } if (parsed.has_fmode && S_ISREG(statptr->st_mode)) { if (chmod(filename, parsed.fmode) < 0) { uiPrintf(state, "ApplyParsedPerms: chmod of %s to %d failed: %s\n", filename, parsed.fmode, strerror(errno)); bad++; } } if (parsed.has_capabilities && S_ISREG(statptr->st_mode)) { if (parsed.capabilities == 0) { if ((removexattr(filename, XATTR_NAME_CAPS) == -1) && (errno != ENODATA)) { // Report failure unless it's ENODATA (attribute not set) uiPrintf(state, "ApplyParsedPerms: removexattr of %s to %" PRIx64 " failed: %s\n", filename, parsed.capabilities, strerror(errno)); bad++; } } else { struct vfs_cap_data cap_data; memset(&cap_data, 0, sizeof(cap_data)); cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE; cap_data.data[0].permitted = (uint32_t)(parsed.capabilities & 0xffffffff); cap_data.data[0].inheritable = 0; cap_data.data[1].permitted = (uint32_t)(parsed.capabilities >> 32); cap_data.data[1].inheritable = 0; if (setxattr(filename, XATTR_NAME_CAPS, &cap_data, sizeof(cap_data), 0) < 0) { uiPrintf(state, "ApplyParsedPerms: setcap of %s to %" PRIx64 " failed: %s\n", filename, parsed.capabilities, strerror(errno)); bad++; } } } return bad; } // nftw doesn't allow us to pass along context, so we need to use // global variables. *sigh* static struct perm_parsed_args recursive_parsed_args; static State* recursive_state; static int do_SetMetadataRecursive(const char* filename, const struct stat* statptr, int , struct FTW* ) { return ApplyParsedPerms(recursive_state, filename, statptr, recursive_parsed_args); } static Value* SetMetadataFn(const char* name, State* state, const std::vector>& argv) { if ((argv.size() % 2) != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects an odd number of arguments, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } struct stat sb; if (lstat(args[0].c_str(), &sb) == -1) { return ErrorAbort(state, kSetMetadataFailure, "%s: Error on lstat of \"%s\": %s", name, args[0].c_str(), strerror(errno)); } struct perm_parsed_args parsed = ParsePermArgs(state, args); int bad = 0; bool recursive = (strcmp(name, "set_metadata_recursive") == 0); if (recursive) { recursive_parsed_args = parsed; recursive_state = state; bad += nftw(args[0].c_str(), do_SetMetadataRecursive, 30, FTW_CHDIR | FTW_DEPTH | FTW_PHYS); memset(&recursive_parsed_args, 0, sizeof(recursive_parsed_args)); recursive_state = NULL; } else { bad += ApplyParsedPerms(state, args[0].c_str(), &sb, parsed); } if (bad > 0) { return ErrorAbort(state, kSetMetadataFailure, "%s: some changes failed", name); } return StringValue(""); } Value* GetPropFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::string key; if (!Evaluate(state, argv[0], &key)) { return nullptr; } std::string value = android::base::GetProperty(key, ""); return StringValue(value); } // file_getprop(file, key) // // interprets 'file' as a getprop-style file (key=value pairs, one // per line. # comment lines, blank lines, lines without '=' ignored), // and returns the value for 'key' (or "" if it isn't defined). Value* FileGetPropFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; const std::string& key = args[1]; struct stat st; if (stat(filename.c_str(), &st) < 0) { return ErrorAbort(state, kFileGetPropFailure, "%s: failed to stat \"%s\": %s", name, filename.c_str(), strerror(errno)); } constexpr off_t MAX_FILE_GETPROP_SIZE = 65536; if (st.st_size > MAX_FILE_GETPROP_SIZE) { return ErrorAbort(state, kFileGetPropFailure, "%s too large for %s (max %lld)", filename.c_str(), name, static_cast(MAX_FILE_GETPROP_SIZE)); } std::string buffer(st.st_size, '\0'); unique_file f(ota_fopen(filename.c_str(), "rb")); if (f == nullptr) { return ErrorAbort(state, kFileOpenFailure, "%s: failed to open %s: %s", name, filename.c_str(), strerror(errno)); } if (ota_fread(&buffer[0], 1, st.st_size, f.get()) != static_cast(st.st_size)) { ErrorAbort(state, kFreadFailure, "%s: failed to read %zu bytes from %s", name, static_cast(st.st_size), filename.c_str()); return nullptr; } ota_fclose(f); std::vector lines = android::base::Split(buffer, "\n"); for (size_t i = 0; i < lines.size(); i++) { std::string line = android::base::Trim(lines[i]); // comment or blank line: skip to next line if (line.empty() || line[0] == '#') { continue; } size_t equal_pos = line.find('='); if (equal_pos == std::string::npos) { continue; } // trim whitespace between key and '=' std::string str = android::base::Trim(line.substr(0, equal_pos)); // not the key we're looking for if (key != str) continue; return StringValue(android::base::Trim(line.substr(equal_pos + 1))); } return StringValue(""); } // apply_patch_space(bytes) Value* ApplyPatchSpaceFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& bytes_str = args[0]; size_t bytes; if (!android::base::ParseUint(bytes_str.c_str(), &bytes)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name, bytes_str.c_str()); } // Skip the cache size check if the update is a retry. if (state->is_retry || CacheSizeCheck(bytes) == 0) { return StringValue("t"); } return StringValue(""); } Value* WipeCacheFn(const char* name, State* state, const std::vector>& argv) { if (!argv.empty()) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name, argv.size()); } fprintf(static_cast(state->cookie)->cmd_pipe, "wipe_cache\n"); return StringValue("t"); } Value* RunProgramFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() < 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } char* args2[argv.size() + 1]; for (size_t i = 0; i < argv.size(); i++) { args2[i] = &args[i][0]; } args2[argv.size()] = nullptr; LOG(INFO) << "about to run program [" << args2[0] << "] with " << argv.size() << " args"; pid_t child = fork(); if (child == 0) { execv(args2[0], args2); PLOG(ERROR) << "run_program: execv failed"; _exit(EXIT_FAILURE); } int status; waitpid(child, &status, 0); if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { LOG(ERROR) << "run_program: child exited with status " << WEXITSTATUS(status); } } else if (WIFSIGNALED(status)) { LOG(ERROR) << "run_program: child terminated by signal " << WTERMSIG(status); } return StringValue(std::to_string(status)); } // Read a local file and return its contents (the Value* returned // is actually a FileContents*). Value* ReadFileFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; Value* v = new Value(VAL_INVALID, ""); FileContents fc; if (LoadFileContents(filename.c_str(), &fc) == 0) { v->type = VAL_BLOB; v->data = std::string(fc.data.begin(), fc.data.end()); } return v; } // write_value(value, filename) // Writes 'value' to 'filename'. // Example: write_value("960000", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq") Value* WriteValueFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } const std::string& filename = args[1]; if (filename.empty()) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Filename cannot be empty", name); } const std::string& value = args[0]; if (!android::base::WriteStringToFile(value, filename)) { PLOG(ERROR) << name << ": Failed to write to \"" << filename << "\""; return StringValue(""); } else { return StringValue("t"); } } // Immediately reboot the device. Recovery is not finished normally, // so if you reboot into recovery it will re-start applying the // current package (because nothing has cleared the copy of the // arguments stored in the BCB). // // The argument is the partition name passed to the android reboot // property. It can be "recovery" to boot from the recovery // partition, or "" (empty string) to boot from the regular boot // partition. Value* RebootNowFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } const std::string& filename = args[0]; const std::string& property = args[1]; // Zero out the 'command' field of the bootloader message. Leave the rest intact. bootloader_message boot; std::string err; if (!read_bootloader_message_from(&boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; return StringValue(""); } memset(boot.command, 0, sizeof(boot.command)); if (!write_bootloader_message_to(boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err; return StringValue(""); } std::string reboot_cmd = "reboot," + property; if (android::base::GetBoolProperty("ro.boot.quiescent", false)) { reboot_cmd += ",quiescent"; } android::base::SetProperty(ANDROID_RB_PROPERTY, reboot_cmd); sleep(5); return ErrorAbort(state, kRebootFailure, "%s() failed to reboot", name); } // Store a string value somewhere that future invocations of recovery // can access it. This value is called the "stage" and can be used to // drive packages that need to do reboots in the middle of // installation and keep track of where they are in the multi-stage // install. // // The first argument is the block device for the misc partition // ("/misc" in the fstab), which is where this value is stored. The // second argument is the string to store; it should not exceed 31 // bytes. Value* SetStageFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; const std::string& stagestr = args[1]; // Store this value in the misc partition, immediately after the // bootloader message that the main recovery uses to save its // arguments in case of the device restarting midway through // package installation. bootloader_message boot; std::string err; if (!read_bootloader_message_from(&boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; return StringValue(""); } strlcpy(boot.stage, stagestr.c_str(), sizeof(boot.stage)); if (!write_bootloader_message_to(boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err; return StringValue(""); } return StringValue(filename); } // Return the value most recently saved with SetStageFn. The argument // is the block device for the misc partition. Value* GetStageFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; bootloader_message boot; std::string err; if (!read_bootloader_message_from(&boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; return StringValue(""); } return StringValue(boot.stage); } Value* WipeBlockDeviceFn(const char* name, State* state, const std::vector>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; const std::string& len_str = args[1]; size_t len; if (!android::base::ParseUint(len_str.c_str(), &len)) { return nullptr; } unique_fd fd(ota_open(filename.c_str(), O_WRONLY, 0644)); // The wipe_block_device function in ext4_utils returns 0 on success and 1 // for failure. int status = wipe_block_device(fd, len); return StringValue((status == 0) ? "t" : ""); } Value* EnableRebootFn(const char* name, State* state, const std::vector>& argv) { if (!argv.empty()) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name, argv.size()); } UpdaterInfo* ui = static_cast(state->cookie); fprintf(ui->cmd_pipe, "enable_reboot\n"); return StringValue("t"); } Value* Tune2FsFn(const char* name, State* state, const std::vector>& ) { #ifdef HAVE_LIBTUNE2FS if (argv.empty()) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects args, got %zu", name, argv.size()); } std::vector args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() could not read args", name); } char* args2[argv.size() + 1]; // Tune2fs expects the program name as its args[0] args2[0] = const_cast(name); if (args2[0] == nullptr) { return nullptr; } for (size_t i = 0; i < argv.size(); ++i) { args2[i + 1] = &args[i][0]; } // tune2fs changes the file system parameters on an ext2 file system; it // returns 0 on success. int result = tune2fs_main(argv.size() + 1, args2); if (result != 0) { return ErrorAbort(state, kTune2FsFailure, "%s() returned error code %d", name, result); } return StringValue("t"); #else return ErrorAbort(state, kTune2FsFailure, "%s() support not present, no libtune2fs", name); #endif // HAVE_LIBTUNE2FS } void RegisterInstallFunctions() { RegisterFunction("mount", MountFn); RegisterFunction("is_mounted", IsMountedFn); RegisterFunction("unmount", UnmountFn); RegisterFunction("format", FormatFn); RegisterFunction("show_progress", ShowProgressFn); RegisterFunction("set_progress", SetProgressFn); RegisterFunction("delete", DeleteFn); RegisterFunction("delete_recursive", DeleteFn); RegisterFunction("package_extract_dir", PackageExtractDirFn); RegisterFunction("package_extract_file", PackageExtractFileFn); RegisterFunction("symlink", SymlinkFn); // Usage: // set_metadata("filename", "key1", "value1", "key2", "value2", ...) // Example: // set_metadata("/system/bin/netcfg", "uid", 0, "gid", 3003, "mode", 02750, "selabel", // "u:object_r:system_file:s0", "capabilities", 0x0); RegisterFunction("set_metadata", SetMetadataFn); // Usage: // set_metadata_recursive("dirname", "key1", "value1", "key2", "value2", ...) // Example: // set_metadata_recursive("/system", "uid", 0, "gid", 0, "fmode", 0644, "dmode", 0755, // "selabel", "u:object_r:system_file:s0", "capabilities", 0x0); RegisterFunction("set_metadata_recursive", SetMetadataFn); RegisterFunction("getprop", GetPropFn); RegisterFunction("file_getprop", FileGetPropFn); RegisterFunction("apply_patch", ApplyPatchFn); RegisterFunction("apply_patch_check", ApplyPatchCheckFn); RegisterFunction("apply_patch_space", ApplyPatchSpaceFn); RegisterFunction("wipe_block_device", WipeBlockDeviceFn); RegisterFunction("read_file", ReadFileFn); RegisterFunction("sha1_check", Sha1CheckFn); RegisterFunction("rename", RenameFn); RegisterFunction("write_value", WriteValueFn); RegisterFunction("wipe_cache", WipeCacheFn); RegisterFunction("ui_print", UIPrintFn); RegisterFunction("run_program", RunProgramFn); RegisterFunction("reboot_now", RebootNowFn); RegisterFunction("get_stage", GetStageFn); RegisterFunction("set_stage", SetStageFn); RegisterFunction("enable_reboot", EnableRebootFn); RegisterFunction("tune2fs", Tune2FsFn); }