/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "verifier.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "asn1_decoder.h" #include "otautil/print_sha1.h" static constexpr size_t MiB = 1024 * 1024; /* * Simple version of PKCS#7 SignedData extraction. This extracts the * signature OCTET STRING to be used for signature verification. * * For full details, see http://www.ietf.org/rfc/rfc3852.txt * * The PKCS#7 structure looks like: * * SEQUENCE (ContentInfo) * OID (ContentType) * [0] (content) * SEQUENCE (SignedData) * INTEGER (version CMSVersion) * SET (DigestAlgorithmIdentifiers) * SEQUENCE (EncapsulatedContentInfo) * [0] (CertificateSet OPTIONAL) * [1] (RevocationInfoChoices OPTIONAL) * SET (SignerInfos) * SEQUENCE (SignerInfo) * INTEGER (CMSVersion) * SEQUENCE (SignerIdentifier) * SEQUENCE (DigestAlgorithmIdentifier) * SEQUENCE (SignatureAlgorithmIdentifier) * OCTET STRING (SignatureValue) */ static bool read_pkcs7(const uint8_t* pkcs7_der, size_t pkcs7_der_len, std::vector* sig_der) { CHECK(sig_der != nullptr); sig_der->clear(); asn1_context ctx(pkcs7_der, pkcs7_der_len); std::unique_ptr pkcs7_seq(ctx.asn1_sequence_get()); if (pkcs7_seq == nullptr || !pkcs7_seq->asn1_sequence_next()) { return false; } std::unique_ptr signed_data_app(pkcs7_seq->asn1_constructed_get()); if (signed_data_app == nullptr) { return false; } std::unique_ptr signed_data_seq(signed_data_app->asn1_sequence_get()); if (signed_data_seq == nullptr || !signed_data_seq->asn1_sequence_next() || !signed_data_seq->asn1_sequence_next() || !signed_data_seq->asn1_sequence_next() || !signed_data_seq->asn1_constructed_skip_all()) { return false; } std::unique_ptr sig_set(signed_data_seq->asn1_set_get()); if (sig_set == nullptr) { return false; } std::unique_ptr sig_seq(sig_set->asn1_sequence_get()); if (sig_seq == nullptr || !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next()) { return false; } const uint8_t* sig_der_ptr; size_t sig_der_length; if (!sig_seq->asn1_octet_string_get(&sig_der_ptr, &sig_der_length)) { return false; } sig_der->resize(sig_der_length); std::copy(sig_der_ptr, sig_der_ptr + sig_der_length, sig_der->begin()); return true; } int verify_file(VerifierInterface* package, const std::vector& keys) { CHECK(package); package->SetProgress(0.0); // An archive with a whole-file signature will end in six bytes: // // (2-byte signature start) $ff $ff (2-byte comment size) // // (As far as the ZIP format is concerned, these are part of the archive comment.) We start by // reading this footer, this tells us how far back from the end we have to start reading to find // the whole comment. #define FOOTER_SIZE 6 uint64_t length = package->GetPackageSize(); if (length < FOOTER_SIZE) { LOG(ERROR) << "not big enough to contain footer"; return VERIFY_FAILURE; } uint8_t footer[FOOTER_SIZE]; if (!package->ReadFullyAtOffset(footer, FOOTER_SIZE, length - FOOTER_SIZE)) { LOG(ERROR) << "Failed to read footer"; return VERIFY_FAILURE; } if (footer[2] != 0xff || footer[3] != 0xff) { LOG(ERROR) << "footer is wrong"; return VERIFY_FAILURE; } size_t comment_size = footer[4] + (footer[5] << 8); size_t signature_start = footer[0] + (footer[1] << 8); LOG(INFO) << "comment is " << comment_size << " bytes; signature is " << signature_start << " bytes from end"; if (signature_start > comment_size) { LOG(ERROR) << "signature start: " << signature_start << " is larger than comment size: " << comment_size; return VERIFY_FAILURE; } if (signature_start <= FOOTER_SIZE) { LOG(ERROR) << "Signature start is in the footer"; return VERIFY_FAILURE; } #define EOCD_HEADER_SIZE 22 // The end-of-central-directory record is 22 bytes plus any comment length. size_t eocd_size = comment_size + EOCD_HEADER_SIZE; if (length < eocd_size) { LOG(ERROR) << "not big enough to contain EOCD"; return VERIFY_FAILURE; } // Determine how much of the file is covered by the signature. This is everything except the // signature data and length, which includes all of the EOCD except for the comment length field // (2 bytes) and the comment data. uint64_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2; uint8_t eocd[eocd_size]; if (!package->ReadFullyAtOffset(eocd, eocd_size, length - eocd_size)) { LOG(ERROR) << "Failed to read EOCD of " << eocd_size << " bytes"; return VERIFY_FAILURE; } // If this is really is the EOCD record, it will begin with the magic number $50 $4b $05 $06. if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) { LOG(ERROR) << "signature length doesn't match EOCD marker"; return VERIFY_FAILURE; } for (size_t i = 4; i < eocd_size-3; ++i) { if (eocd[i] == 0x50 && eocd[i+1] == 0x4b && eocd[i+2] == 0x05 && eocd[i+3] == 0x06) { // If the sequence $50 $4b $05 $06 appears anywhere after the real one, libziparchive will // find the later (wrong) one, which could be exploitable. Fail the verification if this // sequence occurs anywhere after the real one. LOG(ERROR) << "EOCD marker occurs after start of EOCD"; return VERIFY_FAILURE; } } bool need_sha1 = false; bool need_sha256 = false; for (const auto& key : keys) { switch (key.hash_len) { case SHA_DIGEST_LENGTH: need_sha1 = true; break; case SHA256_DIGEST_LENGTH: need_sha256 = true; break; } } SHA_CTX sha1_ctx; SHA256_CTX sha256_ctx; SHA1_Init(&sha1_ctx); SHA256_Init(&sha256_ctx); std::vector hashers; if (need_sha1) { hashers.emplace_back( std::bind(&SHA1_Update, &sha1_ctx, std::placeholders::_1, std::placeholders::_2)); } if (need_sha256) { hashers.emplace_back( std::bind(&SHA256_Update, &sha256_ctx, std::placeholders::_1, std::placeholders::_2)); } double frac = -1.0; uint64_t so_far = 0; while (so_far < signed_len) { // On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a 1196MiB full OTA and // 60% for an 89MiB incremental OTA. http://b/28135231. uint64_t read_size = std::min(signed_len - so_far, 16 * MiB); package->UpdateHashAtOffset(hashers, so_far, read_size); so_far += read_size; double f = so_far / static_cast(signed_len); if (f > frac + 0.02 || read_size == so_far) { package->SetProgress(f); frac = f; } } uint8_t sha1[SHA_DIGEST_LENGTH]; SHA1_Final(sha1, &sha1_ctx); uint8_t sha256[SHA256_DIGEST_LENGTH]; SHA256_Final(sha256, &sha256_ctx); const uint8_t* signature = eocd + eocd_size - signature_start; size_t signature_size = signature_start - FOOTER_SIZE; LOG(INFO) << "signature (offset: " << std::hex << (length - signature_start) << ", length: " << signature_size << "): " << print_hex(signature, signature_size); std::vector sig_der; if (!read_pkcs7(signature, signature_size, &sig_der)) { LOG(ERROR) << "Could not find signature DER block"; return VERIFY_FAILURE; } // Check to make sure at least one of the keys matches the signature. Since any key can match, // we need to try each before determining a verification failure has happened. size_t i = 0; for (const auto& key : keys) { const uint8_t* hash; int hash_nid; switch (key.hash_len) { case SHA_DIGEST_LENGTH: hash = sha1; hash_nid = NID_sha1; break; case SHA256_DIGEST_LENGTH: hash = sha256; hash_nid = NID_sha256; break; default: continue; } // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that the signing tool appends // after the signature itself. if (key.key_type == Certificate::KEY_TYPE_RSA) { if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der.data(), sig_der.size(), key.rsa.get())) { LOG(INFO) << "failed to verify against RSA key " << i; continue; } LOG(INFO) << "whole-file signature verified against RSA key " << i; return VERIFY_SUCCESS; } else if (key.key_type == Certificate::KEY_TYPE_EC && key.hash_len == SHA256_DIGEST_LENGTH) { if (!ECDSA_verify(0, hash, key.hash_len, sig_der.data(), sig_der.size(), key.ec.get())) { LOG(INFO) << "failed to verify against EC key " << i; continue; } LOG(INFO) << "whole-file signature verified against EC key " << i; return VERIFY_SUCCESS; } else { LOG(INFO) << "Unknown key type " << key.key_type; } i++; } if (need_sha1) { LOG(INFO) << "SHA-1 digest: " << print_hex(sha1, SHA_DIGEST_LENGTH); } if (need_sha256) { LOG(INFO) << "SHA-256 digest: " << print_hex(sha256, SHA256_DIGEST_LENGTH); } LOG(ERROR) << "failed to verify whole-file signature"; return VERIFY_FAILURE; } static std::vector IterateZipEntriesAndSearchForKeys(const ZipArchiveHandle& handle) { void* cookie; ZipString suffix("x509.pem"); int32_t iter_status = StartIteration(handle, &cookie, nullptr, &suffix); if (iter_status != 0) { LOG(ERROR) << "Failed to iterate over entries in the certificate zipfile: " << ErrorCodeString(iter_status); return {}; } std::vector result; ZipString name; ZipEntry entry; while ((iter_status = Next(cookie, &entry, &name)) == 0) { std::vector pem_content(entry.uncompressed_length); if (int32_t extract_status = ExtractToMemory(handle, &entry, pem_content.data(), pem_content.size()); extract_status != 0) { LOG(ERROR) << "Failed to extract " << std::string(name.name, name.name + name.name_length); return {}; } Certificate cert(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr); // Aborts the parsing if we fail to load one of the key file. if (!LoadCertificateFromBuffer(pem_content, &cert)) { LOG(ERROR) << "Failed to load keys from " << std::string(name.name, name.name + name.name_length); return {}; } result.emplace_back(std::move(cert)); } if (iter_status != -1) { LOG(ERROR) << "Error while iterating over zip entries: " << ErrorCodeString(iter_status); return {}; } return result; } std::vector LoadKeysFromZipfile(const std::string& zip_name) { ZipArchiveHandle handle; if (int32_t open_status = OpenArchive(zip_name.c_str(), &handle); open_status != 0) { LOG(ERROR) << "Failed to open " << zip_name << ": " << ErrorCodeString(open_status); return {}; } std::vector result = IterateZipEntriesAndSearchForKeys(handle); CloseArchive(handle); return result; } bool CheckRSAKey(const std::unique_ptr& rsa) { if (!rsa) { return false; } const BIGNUM* out_n; const BIGNUM* out_e; RSA_get0_key(rsa.get(), &out_n, &out_e, nullptr /* private exponent */); auto modulus_bits = BN_num_bits(out_n); if (modulus_bits != 2048) { LOG(ERROR) << "Modulus should be 2048 bits long, actual: " << modulus_bits; return false; } BN_ULONG exponent = BN_get_word(out_e); if (exponent != 3 && exponent != 65537) { LOG(ERROR) << "Public exponent should be 3 or 65537, actual: " << exponent; return false; } return true; } bool CheckECKey(const std::unique_ptr& ec_key) { if (!ec_key) { return false; } const EC_GROUP* ec_group = EC_KEY_get0_group(ec_key.get()); if (!ec_group) { LOG(ERROR) << "Failed to get the ec_group from the ec_key"; return false; } auto degree = EC_GROUP_get_degree(ec_group); if (degree != 256) { LOG(ERROR) << "Field size of the ec key should be 256 bits long, actual: " << degree; return false; } return true; } bool LoadCertificateFromBuffer(const std::vector& pem_content, Certificate* cert) { std::unique_ptr content( BIO_new_mem_buf(pem_content.data(), pem_content.size()), BIO_free); std::unique_ptr x509( PEM_read_bio_X509(content.get(), nullptr, nullptr, nullptr), X509_free); if (!x509) { LOG(ERROR) << "Failed to read x509 certificate"; return false; } int nid = X509_get_signature_nid(x509.get()); switch (nid) { // SignApk has historically accepted md5WithRSA certificates, but treated them as // sha1WithRSA anyway. Continue to do so for backwards compatibility. case NID_md5WithRSA: case NID_md5WithRSAEncryption: case NID_sha1WithRSA: case NID_sha1WithRSAEncryption: cert->hash_len = SHA_DIGEST_LENGTH; break; case NID_sha256WithRSAEncryption: case NID_ecdsa_with_SHA256: cert->hash_len = SHA256_DIGEST_LENGTH; break; default: LOG(ERROR) << "Unrecognized signature nid " << OBJ_nid2ln(nid); return false; } std::unique_ptr public_key(X509_get_pubkey(x509.get()), EVP_PKEY_free); if (!public_key) { LOG(ERROR) << "Failed to extract the public key from x509 certificate"; return false; } int key_type = EVP_PKEY_id(public_key.get()); if (key_type == EVP_PKEY_RSA) { cert->key_type = Certificate::KEY_TYPE_RSA; cert->ec.reset(); cert->rsa.reset(EVP_PKEY_get1_RSA(public_key.get())); if (!cert->rsa || !CheckRSAKey(cert->rsa)) { LOG(ERROR) << "Failed to validate the rsa key info from public key"; return false; } } else if (key_type == EVP_PKEY_EC) { cert->key_type = Certificate::KEY_TYPE_EC; cert->rsa.reset(); cert->ec.reset(EVP_PKEY_get1_EC_KEY(public_key.get())); if (!cert->ec || !CheckECKey(cert->ec)) { LOG(ERROR) << "Failed to validate the ec key info from the public key"; return false; } } else { LOG(ERROR) << "Unrecognized public key type " << OBJ_nid2ln(key_type); return false; } return true; }