1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This program constructs binary patches for images -- such as boot.img and recovery.img -- that
* consist primarily of large chunks of gzipped data interspersed with uncompressed data. Doing a
* naive bsdiff of these files is not useful because small changes in the data lead to large
* changes in the compressed bitstream; bsdiff patches of gzipped data are typically as large as
* the data itself.
*
* To patch these usefully, we break the source and target images up into chunks of two types:
* "normal" and "gzip". Normal chunks are simply patched using a plain bsdiff. Gzip chunks are
* first expanded, then a bsdiff is applied to the uncompressed data, then the patched data is
* gzipped using the same encoder parameters. Patched chunks are concatenated together to create
* the output file; the output image should be *exactly* the same series of bytes as the target
* image used originally to generate the patch.
*
* To work well with this tool, the gzipped sections of the target image must have been generated
* using the same deflate encoder that is available in applypatch, namely, the one in the zlib
* library. In practice this means that images should be compressed using the "minigzip" tool
* included in the zlib distribution, not the GNU gzip program.
*
* An "imgdiff" patch consists of a header describing the chunk structure of the file and any
* encoding parameters needed for the gzipped chunks, followed by N bsdiff patches, one per chunk.
*
* For a diff to be generated, the source and target must be in well-formed zip archive format;
* or they are image files with the same "chunk" structure: that is, the same number of gzipped and
* normal chunks in the same order. Android boot and recovery images currently consist of five
* chunks: a small normal header, a gzipped kernel, a small normal section, a gzipped ramdisk, and
* finally a small normal footer.
*
* Caveats: we locate gzipped sections within the source and target images by searching for the
* byte sequence 1f8b0800: 1f8b is the gzip magic number; 08 specifies the "deflate" encoding
* [the only encoding supported by the gzip standard]; and 00 is the flags byte. We do not
* currently support any extra header fields (which would be indicated by a nonzero flags byte).
* We also don't handle the case when that byte sequence appears spuriously in the file. (Note
* that it would have to occur spuriously within a normal chunk to be a problem.)
*
*
* The imgdiff patch header looks like this:
*
* "IMGDIFF2" (8) [magic number and version]
* chunk count (4)
* for each chunk:
* chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}]
* if chunk type == CHUNK_NORMAL:
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* if chunk type == CHUNK_GZIP: (version 1 only)
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* source expanded len (8) [size of uncompressed source]
* target expected len (8) [size of uncompressed target]
* gzip level (4)
* method (4)
* windowBits (4)
* memLevel (4)
* strategy (4)
* gzip header len (4)
* gzip header (gzip header len)
* gzip footer (8)
* if chunk type == CHUNK_DEFLATE: (version 2 only)
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* source expanded len (8) [size of uncompressed source]
* target expected len (8) [size of uncompressed target]
* gzip level (4)
* method (4)
* windowBits (4)
* memLevel (4)
* strategy (4)
* if chunk type == RAW: (version 2 only)
* target len (4)
* data (target len)
*
* All integers are little-endian. "source start" and "source len" specify the section of the
* input image that comprises this chunk, including the gzip header and footer for gzip chunks.
* "source expanded len" is the size of the uncompressed source data. "target expected len" is the
* size of the uncompressed data after applying the bsdiff patch. The next five parameters
* specify the zlib parameters to be used when compressing the patched data, and the next three
* specify the header and footer to be wrapped around the compressed data to create the output
* chunk (so that header contents like the timestamp are recreated exactly).
*
* After the header there are 'chunk count' bsdiff patches; the offset of each from the beginning
* of the file is specified in the header.
*
* This tool can take an optional file of "bonus data". This is an extra file of data that is
* appended to chunk #1 after it is compressed (it must be a CHUNK_DEFLATE chunk). The same file
* must be available (and passed to applypatch with -b) when applying the patch. This is used to
* reduce the size of recovery-from-boot patches by combining the boot image with recovery ramdisk
* information that is stored on the system partition.
*
* When generating the patch between two zip files, this tool has an option "--block-limit" to
* split the large source/target files into several pair of pieces, with each piece has at most
* *limit* blocks. When this option is used, we also need to output the split info into the file
* path specified by "--split-info".
*
* Format of split info file:
* 2 [version of imgdiff]
* n [count of split pieces]
* <patch_size>, <tgt_size>, <src_range> [size and ranges for split piece#1]
* ...
* <patch_size>, <tgt_size>, <src_range> [size and ranges for split piece#n]
*
* To split a pair of large zip files, we walk through the chunks in target zip and search by its
* entry_name in the source zip. If the entry_name is non-empty and a matching entry in source
* is found, we'll add the source entry to the current split source image; otherwise we'll skip
* this chunk and later do bsdiff between all the skipped trunks and the whole split source image.
* We move on to the next pair of pieces if the size of the split source image reaches the block
* limit.
*
* After the split, the target pieces are continuous and block aligned, while the source pieces
* are mutually exclusive. Some of the source blocks may not be used if there's no matching
* entry_name in the target; as a result, they won't be included in any of these split source
* images. Then we will generate patches accordingly between each split image pairs; in particular,
* the unmatched trunks in the split target will diff against the entire split source image.
*
* For example:
* Input: [src_image, tgt_image]
* Split: [src-0, tgt-0; src-1, tgt-1, src-2, tgt-2]
* Diff: [ patch-0; patch-1; patch-2]
*
* Patch: [(src-0, patch-0) = tgt-0; (src-1, patch-1) = tgt-1; (src-2, patch-2) = tgt-2]
* Concatenate: [tgt-0 + tgt-1 + tgt-2 = tgt_image]
*/
#include "applypatch/imgdiff.h"
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <string>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/memory.h>
#include <android-base/parseint.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <bsdiff/bsdiff.h>
#include <ziparchive/zip_archive.h>
#include <zlib.h>
#include "applypatch/imgdiff_image.h"
#include "otautil/rangeset.h"
using android::base::get_unaligned;
static constexpr size_t VERSION = 2;
// We assume the header "IMGDIFF#" is 8 bytes.
static_assert(VERSION <= 9, "VERSION occupies more than one byte");
static constexpr size_t BLOCK_SIZE = 4096;
static constexpr size_t BUFFER_SIZE = 0x8000;
// If we use this function to write the offset and length (type size_t), their values should not
// exceed 2^63; because the signed bit will be casted away.
static inline bool Write8(int fd, int64_t value) {
return android::base::WriteFully(fd, &value, sizeof(int64_t));
}
// Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk
// size).
static inline bool Write4(int fd, int32_t value) {
return android::base::WriteFully(fd, &value, sizeof(int32_t));
}
// Trim the head or tail to align with the block size. Return false if the chunk has nothing left
// after alignment.
static bool AlignHead(size_t* start, size_t* length) {
size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE;
if (*length <= residual) {
*length = 0;
return false;
}
// Trim the data in the beginning.
*start += residual;
*length -= residual;
return true;
}
static bool AlignTail(size_t* start, size_t* length) {
size_t residual = (*start + *length) % BLOCK_SIZE;
if (*length <= residual) {
*length = 0;
return false;
}
// Trim the data in the end.
*length -= residual;
return true;
}
// Remove the used blocks from the source chunk to make sure the source ranges are mutually
// exclusive after split. Return false if we fail to get the non-overlapped ranges. In such
// a case, we'll skip the entire source chunk.
static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) {
if (!used_ranges.Overlaps(*start, *length)) {
return true;
}
// TODO find the largest non-overlap chunk.
LOG(INFO) << "Removing block " << used_ranges.ToString() << " from " << *start << " - "
<< *start + *length - 1;
// If there's no duplicate entry name, we should only overlap in the head or tail block. Try to
// trim both blocks. Skip this source chunk in case it still overlaps with the used ranges.
if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) {
return true;
}
if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) {
return true;
}
LOG(WARNING) << "Failed to remove the overlapped block ranges; skip the source";
return false;
}
static const struct option OPTIONS[] = {
{ "zip-mode", no_argument, nullptr, 'z' },
{ "bonus-file", required_argument, nullptr, 'b' },
{ "block-limit", required_argument, nullptr, 0 },
{ "debug-dir", required_argument, nullptr, 0 },
{ "split-info", required_argument, nullptr, 0 },
{ "verbose", no_argument, nullptr, 'v' },
{ nullptr, 0, nullptr, 0 },
};
ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content,
size_t raw_data_len, std::string entry_name)
: type_(type),
start_(start),
input_file_ptr_(file_content),
raw_data_len_(raw_data_len),
compress_level_(6),
entry_name_(std::move(entry_name)) {
CHECK(file_content != nullptr) << "input file container can't be nullptr";
}
const uint8_t* ImageChunk::GetRawData() const {
CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
return input_file_ptr_->data() + start_;
}
const uint8_t * ImageChunk::DataForPatch() const {
if (type_ == CHUNK_DEFLATE) {
return uncompressed_data_.data();
}
return GetRawData();
}
size_t ImageChunk::DataLengthForPatch() const {
if (type_ == CHUNK_DEFLATE) {
return uncompressed_data_.size();
}
return raw_data_len_;
}
void ImageChunk::Dump(size_t index) const {
LOG(INFO) << "chunk: " << index << ", type: " << type_ << ", start: " << start_
<< ", len: " << DataLengthForPatch() << ", name: " << entry_name_;
}
bool ImageChunk::operator==(const ImageChunk& other) const {
if (type_ != other.type_) {
return false;
}
return (raw_data_len_ == other.raw_data_len_ &&
memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
}
void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
uncompressed_data_ = std::move(data);
}
bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
if (type_ != CHUNK_DEFLATE) {
return false;
}
uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end());
return true;
}
void ImageChunk::ChangeDeflateChunkToNormal() {
if (type_ != CHUNK_DEFLATE) return;
type_ = CHUNK_NORMAL;
// No need to clear the entry name.
uncompressed_data_.clear();
}
bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
return false;
}
return (other.start_ == start_ + raw_data_len_);
}
void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
CHECK(IsAdjacentNormal(other));
raw_data_len_ = raw_data_len_ + other.raw_data_len_;
}
bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src,
std::vector<uint8_t>* patch_data,
bsdiff::SuffixArrayIndexInterface** bsdiff_cache) {
#if defined(__ANDROID__)
char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
#else
char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
#endif
int fd = mkstemp(ptemp);
if (fd == -1) {
PLOG(ERROR) << "MakePatch failed to create a temporary file";
return false;
}
close(fd);
int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(),
tgt.DataLengthForPatch(), ptemp, bsdiff_cache);
if (r != 0) {
LOG(ERROR) << "bsdiff() failed: " << r;
return false;
}
android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
if (patch_fd == -1) {
PLOG(ERROR) << "Failed to open " << ptemp;
return false;
}
struct stat st;
if (fstat(patch_fd, &st) != 0) {
PLOG(ERROR) << "Failed to stat patch file " << ptemp;
return false;
}
size_t sz = static_cast<size_t>(st.st_size);
patch_data->resize(sz);
if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
PLOG(ERROR) << "Failed to read " << ptemp;
unlink(ptemp);
return false;
}
unlink(ptemp);
return true;
}
bool ImageChunk::ReconstructDeflateChunk() {
if (type_ != CHUNK_DEFLATE) {
LOG(ERROR) << "Attempted to reconstruct non-deflate chunk";
return false;
}
// We only check two combinations of encoder parameters: level 6 (the default) and level 9
// (the maximum).
for (int level = 6; level <= 9; level += 3) {
if (TryReconstruction(level)) {
compress_level_ = level;
return true;
}
}
return false;
}
/*
* Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored
* in the chunk, and checks that it matches exactly the compressed data we started with (also
* stored in the chunk).
*/
bool ImageChunk::TryReconstruction(int level) {
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = uncompressed_data_.size();
strm.next_in = uncompressed_data_.data();
int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY);
if (ret < 0) {
LOG(ERROR) << "Failed to initialize deflate: " << ret;
return false;
}
std::vector<uint8_t> buffer(BUFFER_SIZE);
size_t offset = 0;
do {
strm.avail_out = buffer.size();
strm.next_out = buffer.data();
ret = deflate(&strm, Z_FINISH);
if (ret < 0) {
LOG(ERROR) << "Failed to deflate: " << ret;
return false;
}
size_t compressed_size = buffer.size() - strm.avail_out;
if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) {
// mismatch; data isn't the same.
deflateEnd(&strm);
return false;
}
offset += compressed_size;
} while (ret != Z_STREAM_END);
deflateEnd(&strm);
if (offset != raw_data_len_) {
// mismatch; ran out of data before we should have.
return false;
}
return true;
}
PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
: type_(tgt.GetType()),
source_start_(src.GetStartOffset()),
source_len_(src.GetRawDataLength()),
source_uncompressed_len_(src.DataLengthForPatch()),
target_start_(tgt.GetStartOffset()),
target_len_(tgt.GetRawDataLength()),
target_uncompressed_len_(tgt.DataLengthForPatch()),
target_compress_level_(tgt.GetCompressLevel()),
data_(std::move(data)) {}
// Construct a CHUNK_RAW patch from the target data directly.
PatchChunk::PatchChunk(const ImageChunk& tgt)
: type_(CHUNK_RAW),
source_start_(0),
source_len_(0),
source_uncompressed_len_(0),
target_start_(tgt.GetStartOffset()),
target_len_(tgt.GetRawDataLength()),
target_uncompressed_len_(tgt.DataLengthForPatch()),
target_compress_level_(tgt.GetCompressLevel()),
data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {}
// Return true if raw data is smaller than the patch size.
bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
size_t target_len = tgt.GetRawDataLength();
return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size));
}
void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) {
if (type_ == CHUNK_DEFLATE) {
source_start_ = src_range.GetOffsetInRangeSet(source_start_);
}
}
// Header size:
// header_type 4 bytes
// CHUNK_NORMAL 8*3 = 24 bytes
// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
// CHUNK_RAW 4 bytes + patch_size
size_t PatchChunk::GetHeaderSize() const {
switch (type_) {
case CHUNK_NORMAL:
return 4 + 8 * 3;
case CHUNK_DEFLATE:
return 4 + 8 * 5 + 4 * 5;
case CHUNK_RAW:
return 4 + 4 + data_.size();
default:
CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here.
return 0;
}
}
// Return the offset of the next patch into the patch data.
size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset, size_t index) const {
Write4(fd, type_);
switch (type_) {
case CHUNK_NORMAL:
LOG(INFO) << android::base::StringPrintf("chunk %zu: normal (%10zu, %10zu) %10zu", index,
target_start_, target_len_, data_.size());
Write8(fd, static_cast<int64_t>(source_start_));
Write8(fd, static_cast<int64_t>(source_len_));
Write8(fd, static_cast<int64_t>(offset));
return offset + data_.size();
case CHUNK_DEFLATE:
LOG(INFO) << android::base::StringPrintf("chunk %zu: deflate (%10zu, %10zu) %10zu", index,
target_start_, target_len_, data_.size());
Write8(fd, static_cast<int64_t>(source_start_));
Write8(fd, static_cast<int64_t>(source_len_));
Write8(fd, static_cast<int64_t>(offset));
Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
Write8(fd, static_cast<int64_t>(target_uncompressed_len_));
Write4(fd, target_compress_level_);
Write4(fd, ImageChunk::METHOD);
Write4(fd, ImageChunk::WINDOWBITS);
Write4(fd, ImageChunk::MEMLEVEL);
Write4(fd, ImageChunk::STRATEGY);
return offset + data_.size();
case CHUNK_RAW:
LOG(INFO) << android::base::StringPrintf("chunk %zu: raw (%10zu, %10zu)", index,
target_start_, target_len_);
Write4(fd, static_cast<int32_t>(data_.size()));
if (!android::base::WriteFully(fd, data_.data(), data_.size())) {
CHECK(false) << "Failed to write " << data_.size() << " bytes patch";
}
return offset;
default:
CHECK(false) << "unexpected chunk type: " << type_;
return offset;
}
}
size_t PatchChunk::PatchSize() const {
if (type_ == CHUNK_RAW) {
return GetHeaderSize();
}
return GetHeaderSize() + data_.size();
}
// Write the contents of |patch_chunks| to |patch_fd|.
bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) {
// Figure out how big the imgdiff file header is going to be, so that we can correctly compute
// the offset of each bsdiff patch within the file.
size_t total_header_size = 12;
for (const auto& patch : patch_chunks) {
total_header_size += patch.GetHeaderSize();
}
size_t offset = total_header_size;
// Write out the headers.
if (!android::base::WriteStringToFd("IMGDIFF" + std::to_string(VERSION), patch_fd)) {
PLOG(ERROR) << "Failed to write \"IMGDIFF" << VERSION << "\"";
return false;
}
Write4(patch_fd, static_cast<int32_t>(patch_chunks.size()));
LOG(INFO) << "Writing " << patch_chunks.size() << " patch headers...";
for (size_t i = 0; i < patch_chunks.size(); ++i) {
offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset, i);
}
// Append each chunk's bsdiff patch, in order.
for (const auto& patch : patch_chunks) {
if (patch.type_ == CHUNK_RAW) {
continue;
}
if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) {
PLOG(ERROR) << "Failed to write " << patch.data_.size() << " bytes patch to patch_fd";
return false;
}
}
return true;
}
ImageChunk& Image::operator[](size_t i) {
CHECK_LT(i, chunks_.size());
return chunks_[i];
}
const ImageChunk& Image::operator[](size_t i) const {
CHECK_LT(i, chunks_.size());
return chunks_[i];
}
void Image::MergeAdjacentNormalChunks() {
size_t merged_last = 0, cur = 0;
while (cur < chunks_.size()) {
// Look for normal chunks adjacent to the current one. If such chunk exists, extend the
// length of the current normal chunk.
size_t to_check = cur + 1;
while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) {
chunks_[cur].MergeAdjacentNormal(chunks_[to_check]);
to_check++;
}
if (merged_last != cur) {
chunks_[merged_last] = std::move(chunks_[cur]);
}
merged_last++;
cur = to_check;
}
if (merged_last < chunks_.size()) {
chunks_.erase(chunks_.begin() + merged_last, chunks_.end());
}
}
void Image::DumpChunks() const {
std::string type = is_source_ ? "source" : "target";
LOG(INFO) << "Dumping chunks for " << type;
for (size_t i = 0; i < chunks_.size(); ++i) {
chunks_[i].Dump(i);
}
}
bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) {
CHECK(file_content != nullptr);
android::base::unique_fd fd(open(filename.c_str(), O_RDONLY));
if (fd == -1) {
PLOG(ERROR) << "Failed to open " << filename;
return false;
}
struct stat st;
if (fstat(fd, &st) != 0) {
PLOG(ERROR) << "Failed to stat " << filename;
return false;
}
size_t sz = static_cast<size_t>(st.st_size);
file_content->resize(sz);
if (!android::base::ReadFully(fd, file_content->data(), sz)) {
PLOG(ERROR) << "Failed to read " << filename;
return false;
}
fd.reset();
return true;
}
bool ZipModeImage::Initialize(const std::string& filename) {
if (!ReadFile(filename, &file_content_)) {
return false;
}
// Omit the trailing zeros before we pass the file to ziparchive handler.
size_t zipfile_size;
if (!GetZipFileSize(&zipfile_size)) {
LOG(ERROR) << "Failed to parse the actual size of " << filename;
return false;
}
ZipArchiveHandle handle;
int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size,
filename.c_str(), &handle);
if (err != 0) {
LOG(ERROR) << "Failed to open zip file " << filename << ": " << ErrorCodeString(err);
CloseArchive(handle);
return false;
}
if (!InitializeChunks(filename, handle)) {
CloseArchive(handle);
return false;
}
CloseArchive(handle);
return true;
}
// Iterate the zip entries and compose the image chunks accordingly.
bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) {
void* cookie;
int ret = StartIteration(handle, &cookie, nullptr, nullptr);
if (ret != 0) {
LOG(ERROR) << "Failed to iterate over entries in " << filename << ": " << ErrorCodeString(ret);
return false;
}
// Create a list of deflated zip entries, sorted by offset.
std::vector<std::pair<std::string, ZipEntry>> temp_entries;
ZipString name;
ZipEntry entry;
while ((ret = Next(cookie, &entry, &name)) == 0) {
if (entry.method == kCompressDeflated || limit_ > 0) {
std::string entry_name(name.name, name.name + name.name_length);
temp_entries.emplace_back(entry_name, entry);
}
}
if (ret != -1) {
LOG(ERROR) << "Error while iterating over zip entries: " << ErrorCodeString(ret);
return false;
}
std::sort(temp_entries.begin(), temp_entries.end(),
[](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; });
EndIteration(cookie);
// For source chunks, we don't need to compose chunks for the metadata.
if (is_source_) {
for (auto& entry : temp_entries) {
if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) {
LOG(ERROR) << "Failed to add " << entry.first << " to source chunks";
return false;
}
}
// Add the end of zip file (mainly central directory) as a normal chunk.
size_t entries_end = 0;
if (!temp_entries.empty()) {
entries_end = static_cast<size_t>(temp_entries.back().second.offset +
temp_entries.back().second.compressed_length);
}
CHECK_LT(entries_end, file_content_.size());
chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_,
file_content_.size() - entries_end);
return true;
}
// For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two
// deflate entries as CHUNK_NORMAL.
size_t pos = 0;
size_t nextentry = 0;
while (pos < file_content_.size()) {
if (nextentry < temp_entries.size() &&
static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
// Add the next zip entry.
std::string entry_name = temp_entries[nextentry].first;
if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) {
LOG(ERROR) << "Failed to add " << entry_name << " to target chunks";
return false;
}
pos += temp_entries[nextentry].second.compressed_length;
++nextentry;
continue;
}
// Use a normal chunk to take all the data up to the start of the next entry.
size_t raw_data_len;
if (nextentry < temp_entries.size()) {
raw_data_len = temp_entries[nextentry].second.offset - pos;
} else {
raw_data_len = file_content_.size() - pos;
}
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len);
pos += raw_data_len;
}
return true;
}
bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name,
ZipEntry* entry) {
size_t compressed_len = entry->compressed_length;
if (compressed_len == 0) return true;
// Split the entry into several normal chunks if it's too large.
if (limit_ > 0 && compressed_len > limit_) {
int count = 0;
while (compressed_len > 0) {
size_t length = std::min(limit_, compressed_len);
std::string name = entry_name + "-" + std::to_string(count);
chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length,
name);
count++;
compressed_len -= length;
}
} else if (entry->method == kCompressDeflated) {
size_t uncompressed_len = entry->uncompressed_length;
std::vector<uint8_t> uncompressed_data(uncompressed_len);
int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len);
if (ret != 0) {
LOG(ERROR) << "Failed to extract " << entry_name << " with size " << uncompressed_len << ": "
<< ErrorCodeString(ret);
return false;
}
ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name);
curr.SetUncompressedData(std::move(uncompressed_data));
chunks_.push_back(std::move(curr));
} else {
chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name);
}
return true;
}
// EOCD record
// offset 0: signature 0x06054b50, 4 bytes
// offset 4: number of this disk, 2 bytes
// ...
// offset 20: comment length, 2 bytes
// offset 22: comment, n bytes
bool ZipModeImage::GetZipFileSize(size_t* input_file_size) {
if (file_content_.size() < 22) {
LOG(ERROR) << "File is too small to be a zip file";
return false;
}
// Look for End of central directory record of the zip file, and calculate the actual
// zip_file size.
for (int i = file_content_.size() - 22; i >= 0; i--) {
if (file_content_[i] == 0x50) {
if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) {
// double-check: this archive consists of a single "disk".
CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0);
uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]);
size_t file_size = i + 22 + comment_length;
CHECK_LE(file_size, file_content_.size());
*input_file_size = file_size;
return true;
}
}
}
// EOCD not found, this file is likely not a valid zip file.
return false;
}
ImageChunk ZipModeImage::PseudoSource() const {
CHECK(is_source_);
return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size());
}
const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const {
if (name.empty()) {
return nullptr;
}
for (auto& chunk : chunks_) {
if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) {
continue;
}
if (chunk.GetEntryName() == name) {
return &chunk;
}
// Edge case when target chunk is split due to size limit but source chunk isn't.
if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) {
return &chunk;
}
// TODO handle the .so files with incremental version number.
// (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so)
}
return nullptr;
}
ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) {
return const_cast<ImageChunk*>(
static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal));
}
bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) {
for (auto& tgt_chunk : *tgt_image) {
if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
continue;
}
ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName());
if (src_chunk == nullptr) {
tgt_chunk.ChangeDeflateChunkToNormal();
} else if (tgt_chunk == *src_chunk) {
// If two deflate chunks are identical (eg, the kernel has not changed between two builds),
// treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial
// patch to the compressed data, rather than uncompressing and recompressing to apply the
// trivial patch to the uncompressed data.
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk->ChangeDeflateChunkToNormal();
} else if (!tgt_chunk.ReconstructDeflateChunk()) {
// We cannot recompress the data and get exactly the same bits as are in the input target
// image. Treat the chunk as a normal non-deflated chunk.
LOG(WARNING) << "Failed to reconstruct target deflate chunk [" << tgt_chunk.GetEntryName()
<< "]; treating as normal";
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk->ChangeDeflateChunkToNormal();
}
}
// For zips, we only need merge normal chunks for the target: deflated chunks are matched via
// filename, and normal chunks are patched using the entire source file as the source.
if (tgt_image->limit_ == 0) {
tgt_image->MergeAdjacentNormalChunks();
tgt_image->DumpChunks();
}
return true;
}
// For each target chunk, look for the corresponding source chunk by the zip_entry name. If
// found, add the range of this chunk in the original source file to the block aligned source
// ranges. Construct the split src & tgt image once the size of source range reaches limit.
bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
std::vector<ZipModeImage>* split_tgt_images,
std::vector<ZipModeImage>* split_src_images,
std::vector<SortedRangeSet>* split_src_ranges) {
CHECK_EQ(tgt_image.limit_, src_image.limit_);
size_t limit = tgt_image.limit_;
src_image.DumpChunks();
LOG(INFO) << "Splitting " << tgt_image.NumOfChunks() << " tgt chunks...";
SortedRangeSet used_src_ranges; // ranges used for previous split source images.
// Reserve the central directory in advance for the last split image.
const auto& central_directory = src_image.cend() - 1;
CHECK_EQ(CHUNK_NORMAL, central_directory->GetType());
used_src_ranges.Insert(central_directory->GetStartOffset(),
central_directory->DataLengthForPatch());
SortedRangeSet src_ranges;
std::vector<ImageChunk> split_src_chunks;
std::vector<ImageChunk> split_tgt_chunks;
for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) {
const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true);
if (src == nullptr) {
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
continue;
}
size_t src_offset = src->GetStartOffset();
size_t src_length = src->GetRawDataLength();
CHECK(src_length > 0);
CHECK_LE(src_length, limit);
// Make sure this source range hasn't been used before so that the src_range pieces don't
// overlap with each other.
if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) {
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
} else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) {
src_ranges.Insert(src_offset, src_length);
// Add the deflate source chunk if it hasn't been aligned.
if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) {
split_src_chunks.push_back(*src);
split_tgt_chunks.push_back(*tgt);
} else {
// TODO split smarter to avoid alignment of large deflate chunks
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
}
} else {
bool added_image = ZipModeImage::AddSplitImageFromChunkList(
tgt_image, src_image, src_ranges, split_tgt_chunks, split_src_chunks, split_tgt_images,
split_src_images);
split_tgt_chunks.clear();
split_src_chunks.clear();
// No need to update the split_src_ranges if we don't update the split source images.
if (added_image) {
used_src_ranges.Insert(src_ranges);
split_src_ranges->push_back(std::move(src_ranges));
}
src_ranges.Clear();
// We don't have enough space for the current chunk; start a new split image and handle
// this chunk there.
tgt--;
}
}
// TODO Trim it in case the CD exceeds limit too much.
src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch());
bool added_image = ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges,
split_tgt_chunks, split_src_chunks,
split_tgt_images, split_src_images);
if (added_image) {
split_src_ranges->push_back(std::move(src_ranges));
}
ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges,
tgt_image.file_content_.size());
return true;
}
bool ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
const SortedRangeSet& split_src_ranges,
const std::vector<ImageChunk>& split_tgt_chunks,
const std::vector<ImageChunk>& split_src_chunks,
std::vector<ZipModeImage>* split_tgt_images,
std::vector<ZipModeImage>* split_src_images) {
CHECK(!split_tgt_chunks.empty());
std::vector<ImageChunk> aligned_tgt_chunks;
// Align the target chunks in the beginning with BLOCK_SIZE.
size_t i = 0;
while (i < split_tgt_chunks.size()) {
size_t tgt_start = split_tgt_chunks[i].GetStartOffset();
size_t tgt_length = split_tgt_chunks[i].GetRawDataLength();
// Current ImageChunk is long enough to align.
if (AlignHead(&tgt_start, &tgt_length)) {
aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_,
tgt_length);
break;
}
i++;
}
// Nothing left after alignment in the current split tgt chunks; skip adding the split_tgt_image.
if (i == split_tgt_chunks.size()) {
return false;
}
aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1,
split_tgt_chunks.end());
CHECK(!aligned_tgt_chunks.empty());
// Add a normal chunk to align the contents in the end.
size_t end_offset =
aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength();
if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) {
size_t tail_block_length = std::min<size_t>(tgt_image.file_content_.size() - end_offset,
BLOCK_SIZE - (end_offset % BLOCK_SIZE));
aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_,
tail_block_length);
}
ZipModeImage split_tgt_image(false);
split_tgt_image.Initialize(std::move(aligned_tgt_chunks), {});
split_tgt_image.MergeAdjacentNormalChunks();
// Construct the dummy source file based on the src_ranges.
std::vector<uint8_t> src_content;
for (const auto& r : split_src_ranges) {
size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE);
src_content.insert(src_content.end(), src_image.file_content_.begin() + r.first * BLOCK_SIZE,
src_image.file_content_.begin() + end);
}
// We should not have an empty src in our design; otherwise we will encounter an error in
// bsdiff since src_content.data() == nullptr.
CHECK(!src_content.empty());
ZipModeImage split_src_image(true);
split_src_image.Initialize(split_src_chunks, std::move(src_content));
split_tgt_images->push_back(std::move(split_tgt_image));
split_src_images->push_back(std::move(split_src_image));
return true;
}
void ZipModeImage::ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
const std::vector<ZipModeImage>& split_src_images,
std::vector<SortedRangeSet>& split_src_ranges,
size_t total_tgt_size) {
CHECK_EQ(split_tgt_images.size(), split_src_images.size());
LOG(INFO) << "Validating " << split_tgt_images.size() << " images";
// Verify that the target image pieces is continuous and can add up to the total size.
size_t last_offset = 0;
for (const auto& tgt_image : split_tgt_images) {
CHECK(!tgt_image.chunks_.empty());
CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset());
CHECK(last_offset % BLOCK_SIZE == 0);
// Check the target chunks within the split image are continuous.
for (const auto& chunk : tgt_image.chunks_) {
CHECK_EQ(last_offset, chunk.GetStartOffset());
last_offset += chunk.GetRawDataLength();
}
}
CHECK_EQ(total_tgt_size, last_offset);
// Verify that the source ranges are mutually exclusive.
CHECK_EQ(split_src_images.size(), split_src_ranges.size());
SortedRangeSet used_src_ranges;
for (size_t i = 0; i < split_src_ranges.size(); i++) {
CHECK(!used_src_ranges.Overlaps(split_src_ranges[i]))
<< "src range " << split_src_ranges[i].ToString() << " overlaps "
<< used_src_ranges.ToString();
used_src_ranges.Insert(split_src_ranges[i]);
}
}
bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
std::vector<PatchChunk>* patch_chunks) {
LOG(INFO) << "Constructing patches for " << tgt_image.NumOfChunks() << " chunks...";
patch_chunks->clear();
bsdiff::SuffixArrayIndexInterface* bsdiff_cache = nullptr;
for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
const auto& tgt_chunk = tgt_image[i];
if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
patch_chunks->emplace_back(tgt_chunk);
continue;
}
const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
? nullptr
: src_image.FindChunkByName(tgt_chunk.GetEntryName());
const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk;
bsdiff::SuffixArrayIndexInterface** bsdiff_cache_ptr =
(src_chunk == nullptr) ? &bsdiff_cache : nullptr;
std::vector<uint8_t> patch_data;
if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) {
LOG(ERROR) << "Failed to generate patch, name: " << tgt_chunk.GetEntryName();
return false;
}
LOG(INFO) << "patch " << i << " is " << patch_data.size() << " bytes (of "
<< tgt_chunk.GetRawDataLength() << ")";
if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
patch_chunks->emplace_back(tgt_chunk);
} else {
patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data));
}
}
delete bsdiff_cache;
CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks());
return true;
}
bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name) {
std::vector<PatchChunk> patch_chunks;
ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks);
CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
PLOG(ERROR) << "Failed to open " << patch_name;
return false;
}
return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
bool ZipModeImage::GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
const std::vector<ZipModeImage>& split_src_images,
const std::vector<SortedRangeSet>& split_src_ranges,
const std::string& patch_name,
const std::string& split_info_file,
const std::string& debug_dir) {
LOG(INFO) << "Constructing patches for " << split_tgt_images.size() << " split images...";
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
PLOG(ERROR) << "Failed to open " << patch_name;
return false;
}
std::vector<std::string> split_info_list;
for (size_t i = 0; i < split_tgt_images.size(); i++) {
std::vector<PatchChunk> patch_chunks;
if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i],
&patch_chunks)) {
LOG(ERROR) << "Failed to generate split patch";
return false;
}
size_t total_patch_size = 12;
for (auto& p : patch_chunks) {
p.UpdateSourceOffset(split_src_ranges[i]);
total_patch_size += p.PatchSize();
}
if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) {
return false;
}
size_t split_tgt_size = split_tgt_images[i].chunks_.back().GetStartOffset() +
split_tgt_images[i].chunks_.back().GetRawDataLength() -
split_tgt_images[i].chunks_.front().GetStartOffset();
std::string split_info = android::base::StringPrintf(
"%zu %zu %s", total_patch_size, split_tgt_size, split_src_ranges[i].ToString().c_str());
split_info_list.push_back(split_info);
// Write the split source & patch into the debug directory.
if (!debug_dir.empty()) {
std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i);
android::base::unique_fd fd(
open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (fd == -1) {
PLOG(ERROR) << "Failed to open " << src_name;
return false;
}
if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(),
split_src_images[i].PseudoSource().DataLengthForPatch())) {
PLOG(ERROR) << "Failed to write split source data into " << src_name;
return false;
}
std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i);
fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (fd == -1) {
PLOG(ERROR) << "Failed to open " << patch_name;
return false;
}
if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) {
return false;
}
}
}
// Store the split in the following format:
// Line 0: imgdiff version#
// Line 1: number of pieces
// Line 2: patch_size_1 tgt_size_1 src_range_1
// ...
// Line n+1: patch_size_n tgt_size_n src_range_n
std::string split_info_string = android::base::StringPrintf(
"%zu\n%zu\n", VERSION, split_info_list.size()) + android::base::Join(split_info_list, '\n');
if (!android::base::WriteStringToFile(split_info_string, split_info_file)) {
PLOG(ERROR) << "Failed to write split info to " << split_info_file;
return false;
}
return true;
}
bool ImageModeImage::Initialize(const std::string& filename) {
if (!ReadFile(filename, &file_content_)) {
return false;
}
size_t sz = file_content_.size();
size_t pos = 0;
while (pos < sz) {
// 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number
if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) {
// 'pos' is the offset of the start of a gzip chunk.
size_t chunk_offset = pos;
// The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos);
break;
}
// We need three chunks for the deflated image in total, one normal chunk for the header,
// one deflated chunk for the body, and another normal chunk for the footer.
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN);
pos += GZIP_HEADER_LEN;
// We must decompress this chunk in order to discover where it ends, and so we can update
// the uncompressed_data of the image body and its length.
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = sz - pos;
strm.next_in = file_content_.data() + pos;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
int ret = inflateInit2(&strm, -15);
if (ret < 0) {
LOG(ERROR) << "Failed to initialize inflate: " << ret;
return false;
}
size_t allocated = BUFFER_SIZE;
std::vector<uint8_t> uncompressed_data(allocated);
size_t uncompressed_len = 0, raw_data_len = 0;
do {
strm.avail_out = allocated - uncompressed_len;
strm.next_out = uncompressed_data.data() + uncompressed_len;
ret = inflate(&strm, Z_NO_FLUSH);
if (ret < 0) {
LOG(WARNING) << "Inflate failed [" << strm.msg << "] at offset [" << chunk_offset
<< "]; treating as a normal chunk";
break;
}
uncompressed_len = allocated - strm.avail_out;
if (strm.avail_out == 0) {
allocated *= 2;
uncompressed_data.resize(allocated);
}
} while (ret != Z_STREAM_END);
raw_data_len = sz - strm.avail_in - pos;
inflateEnd(&strm);
if (ret < 0) {
continue;
}
// The footer contains the size of the uncompressed data. Double-check to make sure that it
// matches the size of the data we got when we actually did the decompression.
size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4;
if (sz - footer_index < 4) {
LOG(WARNING) << "invalid footer position; treating as a normal chunk";
continue;
}
size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index);
if (footer_size != uncompressed_len) {
LOG(WARNING) << "footer size " << footer_size << " != " << uncompressed_len
<< "; treating as a normal chunk";
continue;
}
ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len);
uncompressed_data.resize(uncompressed_len);
body.SetUncompressedData(std::move(uncompressed_data));
chunks_.push_back(std::move(body));
pos += raw_data_len;
// create a normal chunk for the footer
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN);
pos += GZIP_FOOTER_LEN;
} else {
// Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect
// the number of chunks to be small (5 for typical boot and recovery images).
// Scan forward until we find a gzip header.
size_t data_len = 0;
while (data_len + pos < sz) {
if (data_len + pos + 4 <= sz &&
get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) {
break;
}
data_len++;
}
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len);
pos += data_len;
}
}
return true;
}
bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) {
CHECK(is_source_);
if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) {
LOG(ERROR) << "Failed to set bonus data";
DumpChunks();
return false;
}
LOG(INFO) << " using " << bonus_data.size() << " bytes of bonus data";
return true;
}
// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
// same sequence of deflate and normal chunks).
bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) {
// In image mode, merge the gzip header and footer in with any adjacent normal chunks.
tgt_image->MergeAdjacentNormalChunks();
src_image->MergeAdjacentNormalChunks();
if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
LOG(ERROR) << "Source and target don't have same number of chunks!";
tgt_image->DumpChunks();
src_image->DumpChunks();
return false;
}
for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) {
LOG(ERROR) << "Source and target don't have same chunk structure! (chunk " << i << ")";
tgt_image->DumpChunks();
src_image->DumpChunks();
return false;
}
}
for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
auto& tgt_chunk = (*tgt_image)[i];
auto& src_chunk = (*src_image)[i];
if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
continue;
}
// If two deflate chunks are identical treat them as normal chunks.
if (tgt_chunk == src_chunk) {
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk.ChangeDeflateChunkToNormal();
} else if (!tgt_chunk.ReconstructDeflateChunk()) {
// We cannot recompress the data and get exactly the same bits as are in the input target
// image, fall back to normal
LOG(WARNING) << "Failed to reconstruct target deflate chunk " << i << " ["
<< tgt_chunk.GetEntryName() << "]; treating as normal";
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk.ChangeDeflateChunkToNormal();
}
}
// For images, we need to maintain the parallel structure of the chunk lists, so do the merging
// in both the source and target lists.
tgt_image->MergeAdjacentNormalChunks();
src_image->MergeAdjacentNormalChunks();
if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
// This shouldn't happen.
LOG(ERROR) << "Merging normal chunks went awry";
return false;
}
return true;
}
// In image mode, generate patches against the given source chunks and bonus_data; write the
// result to |patch_name|.
bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image,
const ImageModeImage& src_image,
const std::string& patch_name) {
LOG(INFO) << "Constructing patches for " << tgt_image.NumOfChunks() << " chunks...";
std::vector<PatchChunk> patch_chunks;
patch_chunks.reserve(tgt_image.NumOfChunks());
for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
const auto& tgt_chunk = tgt_image[i];
const auto& src_chunk = src_image[i];
if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
patch_chunks.emplace_back(tgt_chunk);
continue;
}
std::vector<uint8_t> patch_data;
if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) {
LOG(ERROR) << "Failed to generate patch for target chunk " << i;
return false;
}
LOG(INFO) << "patch " << i << " is " << patch_data.size() << " bytes (of "
<< tgt_chunk.GetRawDataLength() << ")";
if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
patch_chunks.emplace_back(tgt_chunk);
} else {
patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data));
}
}
CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
PLOG(ERROR) << "Failed to open " << patch_name;
return false;
}
return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
int imgdiff(int argc, const char** argv) {
bool verbose = false;
bool zip_mode = false;
std::vector<uint8_t> bonus_data;
size_t blocks_limit = 0;
std::string split_info_file;
std::string debug_dir;
int opt;
int option_index;
optind = 0; // Reset the getopt state so that we can call it multiple times for test.
while ((opt = getopt_long(argc, const_cast<char**>(argv), "zb:v", OPTIONS, &option_index)) !=
-1) {
switch (opt) {
case 'z':
zip_mode = true;
break;
case 'b': {
android::base::unique_fd fd(open(optarg, O_RDONLY));
if (fd == -1) {
PLOG(ERROR) << "Failed to open bonus file " << optarg;
return 1;
}
struct stat st;
if (fstat(fd, &st) != 0) {
PLOG(ERROR) << "Failed to stat bonus file " << optarg;
return 1;
}
size_t bonus_size = st.st_size;
bonus_data.resize(bonus_size);
if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
PLOG(ERROR) << "Failed to read bonus file " << optarg;
return 1;
}
break;
}
case 'v':
verbose = true;
break;
case 0: {
std::string name = OPTIONS[option_index].name;
if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) {
LOG(ERROR) << "Failed to parse size blocks_limit: " << optarg;
return 1;
} else if (name == "split-info") {
split_info_file = optarg;
} else if (name == "debug-dir") {
debug_dir = optarg;
}
break;
}
default:
LOG(ERROR) << "unexpected opt: " << static_cast<char>(opt);
return 2;
}
}
if (!verbose) {
android::base::SetMinimumLogSeverity(android::base::WARNING);
}
if (argc - optind != 3) {
LOG(ERROR) << "usage: " << argv[0] << " [options] <src-img> <tgt-img> <patch-file>";
LOG(ERROR)
<< " -z <zip-mode>, Generate patches in zip mode, src and tgt should be zip files.\n"
" -b <bonus-file>, Bonus file in addition to src, image mode only.\n"
" --block-limit, For large zips, split the src and tgt based on the block limit;\n"
" and generate patches between each pair of pieces. Concatenate "
"these\n"
" patches together and output them into <patch-file>.\n"
" --split-info, Output the split information (patch_size, tgt_size, src_ranges);\n"
" zip mode with block-limit only.\n"
" --debug-dir, Debug directory to put the split srcs and patches, zip mode only.\n"
" -v, --verbose, Enable verbose logging.";
return 2;
}
if (zip_mode) {
ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE);
ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE);
if (!src_image.Initialize(argv[optind])) {
return 1;
}
if (!tgt_image.Initialize(argv[optind + 1])) {
return 1;
}
if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
// Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
// deflate chunks).
if (blocks_limit > 0) {
if (split_info_file.empty()) {
LOG(ERROR) << "split-info path cannot be empty when generating patches with a block-limit";
return 1;
}
std::vector<ZipModeImage> split_tgt_images;
std::vector<ZipModeImage> split_src_images;
std::vector<SortedRangeSet> split_src_ranges;
ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
&split_src_images, &split_src_ranges);
if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges,
argv[optind + 2], split_info_file, debug_dir)) {
return 1;
}
} else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
return 1;
}
} else {
ImageModeImage src_image(true);
ImageModeImage tgt_image(false);
if (!src_image.Initialize(argv[optind])) {
return 1;
}
if (!tgt_image.Initialize(argv[optind + 1])) {
return 1;
}
if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) {
return 1;
}
if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
return 1;
}
}
return 0;
}
|