summaryrefslogtreecommitdiffstats
path: root/crypto/lollipop/cryptfs.c
blob: 630fb0ee3c7c3ab9fc06798b269efaf8044e3ae2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* TO DO:
 *   1.  Perhaps keep several copies of the encrypted key, in case something
 *       goes horribly wrong?
 *
 */

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <ctype.h>
#include <fcntl.h>
#include <inttypes.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <linux/dm-ioctl.h>
#include <libgen.h>
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <sys/mount.h>
#include <openssl/evp.h>
#include <errno.h>
#include <ext4.h>
#include <linux/kdev_t.h>
#include <fs_mgr.h>
#include <time.h>
#include "cryptfs.h"
#define LOG_TAG "Cryptfs"
#include "cutils/log.h"
#include "cutils/properties.h"
#include "cutils/android_reboot.h"
#include "hardware_legacy/power.h"
#include <logwrap/logwrap.h>
//#include "VolumeManager.h"
//#include "VoldUtil.h"
#include "crypto_scrypt.h"
#include "ext4_utils.h"
#include "f2fs_sparseblock.h"
//#include "CheckBattery.h"
//#include "Process.h"

#include <hardware/keymaster.h>

#define UNUSED __attribute__((unused))

#define UNUSED __attribute__((unused))

#define DM_CRYPT_BUF_SIZE 4096

#define HASH_COUNT 2000
#define KEY_LEN_BYTES 16
#define IV_LEN_BYTES 16

#define KEY_IN_FOOTER  "footer"

// "default_password" encoded into hex (d=0x64 etc)
#define DEFAULT_PASSWORD "64656661756c745f70617373776f7264"

#define EXT4_FS 1
#define F2FS_FS 2

#define TABLE_LOAD_RETRIES 10

#define RSA_KEY_SIZE 2048
#define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8)
#define RSA_EXPONENT 0x10001

#define RETRY_MOUNT_ATTEMPTS 10
#define RETRY_MOUNT_DELAY_SECONDS 1

char *me = "cryptfs";

static unsigned char saved_master_key[KEY_LEN_BYTES];
static char *saved_mount_point;
static int  master_key_saved = 0;
static struct crypt_persist_data *persist_data = NULL;

static int keymaster_init(keymaster_device_t **keymaster_dev)
{
    int rc;

    const hw_module_t* mod;
    rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
    if (rc) {
        printf("could not find any keystore module\n");
        goto out;
    }

    rc = keymaster_open(mod, keymaster_dev);
    if (rc) {
        printf("could not open keymaster device in %s (%s)\n",
            KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc));
        goto out;
    }

    return 0;

out:
    *keymaster_dev = NULL;
    return rc;
}

/* Should we use keymaster? */
static int keymaster_check_compatibility()
{
    keymaster_device_t *keymaster_dev = 0;
    int rc = 0;

    if (keymaster_init(&keymaster_dev)) {
        printf("Failed to init keymaster\n");
        rc = -1;
        goto out;
    }

    printf("keymaster version is %d\n", keymaster_dev->common.module->module_api_version);

    if (keymaster_dev->common.module->module_api_version
            < KEYMASTER_MODULE_API_VERSION_0_3) {
        rc = 0;
        goto out;
    }

    if (keymaster_dev->flags & KEYMASTER_BLOBS_ARE_STANDALONE) {
        rc = 1;
    }

out:
    keymaster_close(keymaster_dev);
    return rc;
}

/* Create a new keymaster key and store it in this footer */
static int keymaster_create_key(struct crypt_mnt_ftr *ftr)
{
    uint8_t* key = 0;
    keymaster_device_t *keymaster_dev = 0;

    if (keymaster_init(&keymaster_dev)) {
        printf("Failed to init keymaster\n");
        return -1;
    }

    int rc = 0;

    keymaster_rsa_keygen_params_t params;
    memset(&params, '\0', sizeof(params));
    params.public_exponent = RSA_EXPONENT;
    params.modulus_size = RSA_KEY_SIZE;

    size_t key_size;
    if (keymaster_dev->generate_keypair(keymaster_dev, TYPE_RSA, &params,
                                        &key, &key_size)) {
        printf("Failed to generate keypair\n");
        rc = -1;
        goto out;
    }

    if (key_size > KEYMASTER_BLOB_SIZE) {
        printf("Keymaster key too large for crypto footer\n");
        rc = -1;
        goto out;
    }

    memcpy(ftr->keymaster_blob, key, key_size);
    ftr->keymaster_blob_size = key_size;

out:
    keymaster_close(keymaster_dev);
    free(key);
    return rc;
}

/* This signs the given object using the keymaster key. */
static int keymaster_sign_object(struct crypt_mnt_ftr *ftr,
                                 const unsigned char *object,
                                 const size_t object_size,
                                 unsigned char **signature,
                                 size_t *signature_size)
{
    int rc = 0;
    keymaster_device_t *keymaster_dev = 0;
    if (keymaster_init(&keymaster_dev)) {
        printf("Failed to init keymaster\n");
        return -1;
    }

    /* We currently set the digest type to DIGEST_NONE because it's the
     * only supported value for keymaster. A similar issue exists with
     * PADDING_NONE. Long term both of these should likely change.
     */
    keymaster_rsa_sign_params_t params;
    params.digest_type = DIGEST_NONE;
    params.padding_type = PADDING_NONE;

    unsigned char to_sign[RSA_KEY_SIZE_BYTES];
    size_t to_sign_size = sizeof(to_sign);
    memset(to_sign, 0, RSA_KEY_SIZE_BYTES);

    // To sign a message with RSA, the message must satisfy two
    // constraints:
    //
    // 1. The message, when interpreted as a big-endian numeric value, must
    //    be strictly less than the public modulus of the RSA key.  Note
    //    that because the most significant bit of the public modulus is
    //    guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
    //    key), an n-bit message with most significant bit 0 always
    //    satisfies this requirement.
    //
    // 2. The message must have the same length in bits as the public
    //    modulus of the RSA key.  This requirement isn't mathematically
    //    necessary, but is necessary to ensure consistency in
    //    implementations.
    switch (ftr->kdf_type) {
        case KDF_SCRYPT_KEYMASTER_UNPADDED:
            // This is broken: It produces a message which is shorter than
            // the public modulus, failing criterion 2.
            memcpy(to_sign, object, object_size);
            to_sign_size = object_size;
            printf("Signing unpadded object\n");
            break;
        case KDF_SCRYPT_KEYMASTER_BADLY_PADDED:
            // This is broken: Since the value of object is uniformly
            // distributed, it produces a message that is larger than the
            // public modulus with probability 0.25.
            memcpy(to_sign, object, min(RSA_KEY_SIZE_BYTES, object_size));
            printf("Signing end-padded object\n");
            break;
        case KDF_SCRYPT_KEYMASTER:
            // This ensures the most significant byte of the signed message
            // is zero.  We could have zero-padded to the left instead, but
            // this approach is slightly more robust against changes in
            // object size.  However, it's still broken (but not unusably
            // so) because we really should be using a proper RSA padding
            // function, such as OAEP.
            //
            // TODO(paullawrence): When keymaster 0.4 is available, change
            // this to use the padding options it provides.
            memcpy(to_sign + 1, object, min(RSA_KEY_SIZE_BYTES - 1, object_size));
            printf("Signing safely-padded object\n");
            break;
        default:
            printf("Unknown KDF type %d\n", ftr->kdf_type);
            return -1;
    }

    rc = keymaster_dev->sign_data(keymaster_dev,
                                  &params,
                                  ftr->keymaster_blob,
                                  ftr->keymaster_blob_size,
                                  to_sign,
                                  to_sign_size,
                                  signature,
                                  signature_size);

    keymaster_close(keymaster_dev);
    return rc;
}

/* Store password when userdata is successfully decrypted and mounted.
 * Cleared by cryptfs_clear_password
 *
 * To avoid a double prompt at boot, we need to store the CryptKeeper
 * password and pass it to KeyGuard, which uses it to unlock KeyStore.
 * Since the entire framework is torn down and rebuilt after encryption,
 * we have to use a daemon or similar to store the password. Since vold
 * is secured against IPC except from system processes, it seems a reasonable
 * place to store this.
 *
 * password should be cleared once it has been used.
 *
 * password is aged out after password_max_age_seconds seconds.
 */
static char* password = 0;
static int password_expiry_time = 0;
static const int password_max_age_seconds = 60;

struct fstab *fstab;

enum RebootType {reboot, recovery, shutdown};
static void cryptfs_reboot(enum RebootType rt)
{
  switch(rt) {
      case reboot:
          property_set(ANDROID_RB_PROPERTY, "reboot");
          break;

      case recovery:
          property_set(ANDROID_RB_PROPERTY, "reboot,recovery");
          break;

      case shutdown:
          property_set(ANDROID_RB_PROPERTY, "shutdown");
          break;
    }

    sleep(20);

    /* Shouldn't get here, reboot should happen before sleep times out */
    return;
}

static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
{
    memset(io, 0, dataSize);
    io->data_size = dataSize;
    io->data_start = sizeof(struct dm_ioctl);
    io->version[0] = 4;
    io->version[1] = 0;
    io->version[2] = 0;
    io->flags = flags;
    if (name) {
        strncpy(io->name, name, sizeof(io->name));
    }
}

/**
 * Gets the default device scrypt parameters for key derivation time tuning.
 * The parameters should lead to about one second derivation time for the
 * given device.
 */
static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) {
    const int default_params[] = SCRYPT_DEFAULTS;
    int params[] = SCRYPT_DEFAULTS;
    char paramstr[PROPERTY_VALUE_MAX];
    char *token;
    char *saveptr;
    int i;

    property_get(SCRYPT_PROP, paramstr, "");
    if (paramstr[0] != '\0') {
        /*
         * The token we're looking for should be three integers separated by
         * colons (e.g., "12:8:1"). Scan the property to make sure it matches.
         */
        for (i = 0, token = strtok_r(paramstr, ":", &saveptr);
                token != NULL && i < 3;
                i++, token = strtok_r(NULL, ":", &saveptr)) {
            char *endptr;
            params[i] = strtol(token, &endptr, 10);

            /*
             * Check that there was a valid number and it's 8-bit. If not,
             * break out and the end check will take the default values.
             */
            if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) {
                break;
            }
        }

        /*
         * If there were not enough tokens or a token was malformed (not an
         * integer), it will end up here and the default parameters can be
         * taken.
         */
        if ((i != 3) || (token != NULL)) {
            printf("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr);
            memcpy(params, default_params, sizeof(params));
        }
    }

    ftr->N_factor = params[0];
    ftr->r_factor = params[1];
    ftr->p_factor = params[2];
}

static unsigned int get_fs_size(char *dev)
{
    int fd, block_size;
    struct ext4_super_block sb;
    off64_t len;

    if ((fd = open(dev, O_RDONLY)) < 0) {
        printf("Cannot open device to get filesystem size ");
        return 0;
    }

    if (lseek64(fd, 1024, SEEK_SET) < 0) {
        printf("Cannot seek to superblock");
        return 0;
    }

    if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
        printf("Cannot read superblock");
        return 0;
    }

    close(fd);

    if (le32_to_cpu(sb.s_magic) != EXT4_SUPER_MAGIC) {
        printf("Not a valid ext4 superblock");
        return 0;
    }
    block_size = 1024 << sb.s_log_block_size;
    /* compute length in bytes */
    len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;

    /* return length in sectors */
    return (unsigned int) (len / 512);
}

static unsigned int get_blkdev_size(int fd)
{
  unsigned int nr_sec;

  if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
    nr_sec = 0;
  }

  return nr_sec;
}

static int get_crypt_ftr_info(char **metadata_fname, off64_t *off)
{
  static int cached_data = 0;
  static off64_t cached_off = 0;
  static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
  int fd;
  char key_loc[PROPERTY_VALUE_MAX];
  char real_blkdev[PROPERTY_VALUE_MAX];
  unsigned int nr_sec;
  int rc = -1;

  if (!cached_data) {
    fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc));
    printf("get_crypt_ftr_info crypto key location: '%s'\n", key_loc);
    if (!strcmp(key_loc, KEY_IN_FOOTER)) {
      if ( (fd = open(real_blkdev, O_RDWR)) < 0) {
        printf("Cannot open real block device %s\n", real_blkdev);
        return -1;
      }

      if ((nr_sec = get_blkdev_size(fd))) {
        /* If it's an encrypted Android partition, the last 16 Kbytes contain the
         * encryption info footer and key, and plenty of bytes to spare for future
         * growth.
         */
        strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname));
        cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
        cached_data = 1;
      } else {
        printf("Cannot get size of block device %s\n", real_blkdev);
      }
      close(fd);
    } else {
      strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname));
      cached_off = 0;
      cached_data = 1;
    }
  }

  if (cached_data) {
    if (metadata_fname) {
        *metadata_fname = cached_metadata_fname;
    }
    if (off) {
        *off = cached_off;
    }
    rc = 0;
  }

  return rc;
}

/* key or salt can be NULL, in which case just skip writing that value.  Useful to
 * update the failed mount count but not change the key.
 */
static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
{
  printf("TWRP NOT putting crypt footer and key\n");
  return 0;
  int fd;
  unsigned int nr_sec, cnt;
  /* starting_off is set to the SEEK_SET offset
   * where the crypto structure starts
   */
  off64_t starting_off;
  int rc = -1;
  char *fname = NULL;
  struct stat statbuf;

  if (get_crypt_ftr_info(&fname, &starting_off)) {
    printf("Unable to get crypt_ftr_info\n");
    return -1;
  }
  if (fname[0] != '/') {
    printf("Unexpected value for crypto key location\n");
    return -1;
  }
  if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
    printf("Cannot open footer file %s for put\n", fname);
    return -1;
  }

  /* Seek to the start of the crypt footer */
  if (lseek64(fd, starting_off, SEEK_SET) == -1) {
    printf("Cannot seek to real block device footer\n");
    goto errout;
  }

  if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
    printf("Cannot write real block device footer\n");
    goto errout;
  }

  fstat(fd, &statbuf);
  /* If the keys are kept on a raw block device, do not try to truncate it. */
  if (S_ISREG(statbuf.st_mode)) {
    if (ftruncate(fd, 0x4000)) {
      printf("Cannot set footer file size\n");
      goto errout;
    }
  }

  /* Success! */
  rc = 0;

errout:
  close(fd);
  return rc;

}

static inline int unix_read(int  fd, void*  buff, int  len)
{
    return TEMP_FAILURE_RETRY(read(fd, buff, len));
}

static inline int unix_write(int  fd, const void*  buff, int  len)
{
    return TEMP_FAILURE_RETRY(write(fd, buff, len));
}

static void init_empty_persist_data(struct crypt_persist_data *pdata, int len)
{
    memset(pdata, 0, len);
    pdata->persist_magic = PERSIST_DATA_MAGIC;
    pdata->persist_valid_entries = 0;
}

/* A routine to update the passed in crypt_ftr to the lastest version.
 * fd is open read/write on the device that holds the crypto footer and persistent
 * data, crypt_ftr is a pointer to the struct to be updated, and offset is the
 * absolute offset to the start of the crypt_mnt_ftr on the passed in fd.
 */
static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset)
{
    int orig_major = crypt_ftr->major_version;
    int orig_minor = crypt_ftr->minor_version;
printf("TWRP NOT upgrading crypto footer\n");
return; // do not upgrade in recovery
    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) {
        struct crypt_persist_data *pdata;
        off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET;

        printf("upgrading crypto footer to 1.1");

        pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
        if (pdata == NULL) {
            printf("Cannot allocate persisent data\n");
            return;
        }
        memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE);

        /* Need to initialize the persistent data area */
        if (lseek64(fd, pdata_offset, SEEK_SET) == -1) {
            printf("Cannot seek to persisent data offset\n");
            return;
        }
        /* Write all zeros to the first copy, making it invalid */
        unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);

        /* Write a valid but empty structure to the second copy */
        init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
        unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);

        /* Update the footer */
        crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
        crypt_ftr->persist_data_offset[0] = pdata_offset;
        crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE;
        crypt_ftr->minor_version = 1;
    }

    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) {
        printf("upgrading crypto footer to 1.2");
        /* But keep the old kdf_type.
         * It will get updated later to KDF_SCRYPT after the password has been verified.
         */
        crypt_ftr->kdf_type = KDF_PBKDF2;
        get_device_scrypt_params(crypt_ftr);
        crypt_ftr->minor_version = 2;
    }

    if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) {
        printf("upgrading crypto footer to 1.3");
        crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD;
        crypt_ftr->minor_version = 3;
    }

    if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) {
        if (lseek64(fd, offset, SEEK_SET) == -1) {
            printf("Cannot seek to crypt footer\n");
            return;
        }
        unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr));
    }
}


static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
{
  int fd;
  unsigned int nr_sec, cnt;
  off64_t starting_off;
  int rc = -1;
  char *fname = NULL;
  struct stat statbuf;

  if (get_crypt_ftr_info(&fname, &starting_off)) {
    printf("Unable to get crypt_ftr_info\n");
    return -1;
  }
  if (fname[0] != '/') {
    printf("Unexpected value for crypto key location\n");
    return -1;
  }
  if ( (fd = open(fname, O_RDWR)) < 0) {
    printf("Cannot open footer file %s for get\n", fname);
    return -1;
  }

  /* Make sure it's 16 Kbytes in length */
  fstat(fd, &statbuf);
  if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
    printf("footer file %s is not the expected size!\n", fname);
    goto errout;
  }

  /* Seek to the start of the crypt footer */
  if (lseek64(fd, starting_off, SEEK_SET) == -1) {
    printf("Cannot seek to real block device footer\n");
    goto errout;
  }

  if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
    printf("Cannot read real block device footer\n");
    goto errout;
  }

  if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
    printf("Bad magic for real block device %s\n", fname);
    goto errout;
  }

  if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
    printf("Cannot understand major version %d real block device footer; expected %d\n",
          crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
    goto errout;
  }

  if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
    printf("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
          crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
  }

  /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the
   * copy on disk before returning.
   */
  if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) {
    upgrade_crypt_ftr(fd, crypt_ftr, starting_off);
  }

  /* Success! */
  rc = 0;

errout:
  close(fd);
  return rc;
}

static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr)
{
    if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size >
        crypt_ftr->persist_data_offset[1]) {
        printf("Crypt_ftr persist data regions overlap");
        return -1;
    }

    if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) {
        printf("Crypt_ftr persist data region 0 starts after region 1");
        return -1;
    }

    if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) -
        (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) >
        CRYPT_FOOTER_OFFSET) {
        printf("Persistent data extends past crypto footer");
        return -1;
    }

    return 0;
}

static int load_persistent_data(void)
{
    struct crypt_mnt_ftr crypt_ftr;
    struct crypt_persist_data *pdata = NULL;
    char encrypted_state[PROPERTY_VALUE_MAX];
    char *fname;
    int found = 0;
    int fd;
    int ret;
    int i;

    if (persist_data) {
        /* Nothing to do, we've already loaded or initialized it */
        return 0;
    }


    /* If not encrypted, just allocate an empty table and initialize it */
    property_get("ro.crypto.state", encrypted_state, "");
    if (strcmp(encrypted_state, "encrypted") ) {
        pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
        if (pdata) {
            init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
            persist_data = pdata;
            return 0;
        }
        return -1;
    }

    if(get_crypt_ftr_and_key(&crypt_ftr)) {
        return -1;
    }

    if ((crypt_ftr.major_version < 1)
        || (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
        printf("Crypt_ftr version doesn't support persistent data");
        return -1;
    }

    if (get_crypt_ftr_info(&fname, NULL)) {
        return -1;
    }

    ret = validate_persistent_data_storage(&crypt_ftr);
    if (ret) {
        return -1;
    }

    fd = open(fname, O_RDONLY);
    if (fd < 0) {
        printf("Cannot open %s metadata file", fname);
        return -1;
    }

    if (persist_data == NULL) {
        pdata = malloc(crypt_ftr.persist_data_size);
        if (pdata == NULL) {
            printf("Cannot allocate memory for persistent data");
            goto err;
        }
    }

    for (i = 0; i < 2; i++) {
        if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) {
            printf("Cannot seek to read persistent data on %s", fname);
            goto err2;
        }
        if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){
            printf("Error reading persistent data on iteration %d", i);
            goto err2;
        }
        if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
            found = 1;
            break;
        }
    }

    if (!found) {
        printf("Could not find valid persistent data, creating");
        init_empty_persist_data(pdata, crypt_ftr.persist_data_size);
    }

    /* Success */
    persist_data = pdata;
    close(fd);
    return 0;

err2:
    free(pdata);

err:
    close(fd);
    return -1;
}

static int save_persistent_data(void)
{
    struct crypt_mnt_ftr crypt_ftr;
    struct crypt_persist_data *pdata;
    char *fname;
    off64_t write_offset;
    off64_t erase_offset;
    int found = 0;
    int fd;
    int ret;

    if (persist_data == NULL) {
        printf("No persistent data to save");
        return -1;
    }

    if(get_crypt_ftr_and_key(&crypt_ftr)) {
        return -1;
    }

    if ((crypt_ftr.major_version < 1)
        || (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
        printf("Crypt_ftr version doesn't support persistent data");
        return -1;
    }

    ret = validate_persistent_data_storage(&crypt_ftr);
    if (ret) {
        return -1;
    }

    if (get_crypt_ftr_info(&fname, NULL)) {
        return -1;
    }

    fd = open(fname, O_RDWR);
    if (fd < 0) {
        printf("Cannot open %s metadata file", fname);
        return -1;
    }

    pdata = malloc(crypt_ftr.persist_data_size);
    if (pdata == NULL) {
        printf("Cannot allocate persistant data");
        goto err;
    }

    if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) {
        printf("Cannot seek to read persistent data on %s", fname);
        goto err2;
    }

    if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
            printf("Error reading persistent data before save");
            goto err2;
    }

    if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
        /* The first copy is the curent valid copy, so write to
         * the second copy and erase this one */
       write_offset = crypt_ftr.persist_data_offset[1];
       erase_offset = crypt_ftr.persist_data_offset[0];
    } else {
        /* The second copy must be the valid copy, so write to
         * the first copy, and erase the second */
       write_offset = crypt_ftr.persist_data_offset[0];
       erase_offset = crypt_ftr.persist_data_offset[1];
    }

    /* Write the new copy first, if successful, then erase the old copy */
    if (lseek(fd, write_offset, SEEK_SET) < 0) {
        printf("Cannot seek to write persistent data");
        goto err2;
    }
    if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) ==
        (int) crypt_ftr.persist_data_size) {
        if (lseek(fd, erase_offset, SEEK_SET) < 0) {
            printf("Cannot seek to erase previous persistent data");
            goto err2;
        }
        fsync(fd);
        memset(pdata, 0, crypt_ftr.persist_data_size);
        if (unix_write(fd, pdata, crypt_ftr.persist_data_size) !=
            (int) crypt_ftr.persist_data_size) {
            printf("Cannot write to erase previous persistent data");
            goto err2;
        }
        fsync(fd);
    } else {
        printf("Cannot write to save persistent data");
        goto err2;
    }

    /* Success */
    free(pdata);
    close(fd);
    return 0;

err2:
    free(pdata);
err:
    close(fd);
    return -1;
}

static int hexdigit (char c)
{
    if (c >= '0' && c <= '9') return c - '0';
    c = tolower(c);
    if (c >= 'a' && c <= 'f') return c - 'a' + 10;
    return -1;
}

static unsigned char* convert_hex_ascii_to_key(const char* master_key_ascii,
                                               unsigned int* out_keysize)
{
    unsigned int i;
    *out_keysize = 0;

    size_t size = strlen (master_key_ascii);
    if (size % 2) {
        printf("Trying to convert ascii string of odd length");
        return NULL;
    }

    unsigned char* master_key = (unsigned char*) malloc(size / 2);
    if (master_key == 0) {
        printf("Cannot allocate");
        return NULL;
    }

    for (i = 0; i < size; i += 2) {
        int high_nibble = hexdigit (master_key_ascii[i]);
        int low_nibble = hexdigit (master_key_ascii[i + 1]);

        if(high_nibble < 0 || low_nibble < 0) {
            printf("Invalid hex string");
            free (master_key);
            return NULL;
        }

        master_key[*out_keysize] = high_nibble * 16 + low_nibble;
        (*out_keysize)++;
    }

    return master_key;
}

/* Convert a binary key of specified length into an ascii hex string equivalent,
 * without the leading 0x and with null termination
 */
static void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
                              char *master_key_ascii)
{
  unsigned int i, a;
  unsigned char nibble;

  for (i=0, a=0; i<keysize; i++, a+=2) {
    /* For each byte, write out two ascii hex digits */
    nibble = (master_key[i] >> 4) & 0xf;
    master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);

    nibble = master_key[i] & 0xf;
    master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
  }

  /* Add the null termination */
  master_key_ascii[a] = '\0';

}

static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
                                     char *real_blk_name, const char *name, int fd,
                                     char *extra_params)
{
  char buffer[DM_CRYPT_BUF_SIZE];
  struct dm_ioctl *io;
  struct dm_target_spec *tgt;
  char *crypt_params;
  char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
  int i;

  io = (struct dm_ioctl *) buffer;

  /* Load the mapping table for this device */
  tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];

  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
  io->target_count = 1;
  tgt->status = 0;
  tgt->sector_start = 0;
  tgt->length = crypt_ftr->fs_size;
  strcpy(tgt->target_type, "crypt");

  crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
  convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
  sprintf(crypt_params, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name,
          master_key_ascii, real_blk_name, extra_params);
  crypt_params += strlen(crypt_params) + 1;
  crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
  tgt->next = crypt_params - buffer;

  for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
    if (! ioctl(fd, DM_TABLE_LOAD, io)) {
      break;
    }
    usleep(500000);
  }

  if (i == TABLE_LOAD_RETRIES) {
    /* We failed to load the table, return an error */
    return -1;
  } else {
    return i + 1;
  }
}


static int get_dm_crypt_version(int fd, const char *name,  int *version)
{
    char buffer[DM_CRYPT_BUF_SIZE];
    struct dm_ioctl *io;
    struct dm_target_versions *v;
    int i;

    io = (struct dm_ioctl *) buffer;

    ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);

    if (ioctl(fd, DM_LIST_VERSIONS, io)) {
        return -1;
    }

    /* Iterate over the returned versions, looking for name of "crypt".
     * When found, get and return the version.
     */
    v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)];
    while (v->next) {
        if (! strcmp(v->name, "crypt")) {
            /* We found the crypt driver, return the version, and get out */
            version[0] = v->version[0];
            version[1] = v->version[1];
            version[2] = v->version[2];
            return 0;
        }
        v = (struct dm_target_versions *)(((char *)v) + v->next);
    }

    return -1;
}

static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
                                    char *real_blk_name, char *crypto_blk_name, const char *name)
{
  char buffer[DM_CRYPT_BUF_SIZE];
  char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
  char *crypt_params;
  struct dm_ioctl *io;
  struct dm_target_spec *tgt;
  unsigned int minor;
  int fd;
  int i;
  int retval = -1;
  int version[3];
  char *extra_params;
  int load_count;

  if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
    printf("Cannot open device-mapper\n");
    goto errout;
  }

  io = (struct dm_ioctl *) buffer;

  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
  if (ioctl(fd, DM_DEV_CREATE, io)) {
    printf("Cannot create dm-crypt device\n");
    goto errout;
  }

  /* Get the device status, in particular, the name of it's device file */
  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
  if (ioctl(fd, DM_DEV_STATUS, io)) {
    printf("Cannot retrieve dm-crypt device status\n");
    goto errout;
  }
  minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
  snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);

  extra_params = "";
  if (! get_dm_crypt_version(fd, name, version)) {
      /* Support for allow_discards was added in version 1.11.0 */
      if ((version[0] >= 2) ||
          ((version[0] == 1) && (version[1] >= 11))) {
          extra_params = "1 allow_discards";
          printf("Enabling support for allow_discards in dmcrypt.\n");
      }
  }

  load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name,
                                         fd, extra_params);
  if (load_count < 0) {
      printf("Cannot load dm-crypt mapping table.\n");
      goto errout;
  } else if (load_count > 1) {
      printf("Took %d tries to load dmcrypt table.\n", load_count);
  }

  /* Resume this device to activate it */
  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);

  if (ioctl(fd, DM_DEV_SUSPEND, io)) {
    printf("Cannot resume the dm-crypt device\n");
    goto errout;
  }

  /* We made it here with no errors.  Woot! */
  retval = 0;

errout:
  close(fd);   /* If fd is <0 from a failed open call, it's safe to just ignore the close error */

  return retval;
}

static int delete_crypto_blk_dev(char *name)
{
  int fd;
  char buffer[DM_CRYPT_BUF_SIZE];
  struct dm_ioctl *io;
  int retval = -1;

  if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
    printf("Cannot open device-mapper\n");
    goto errout;
  }

  io = (struct dm_ioctl *) buffer;

  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
  if (ioctl(fd, DM_DEV_REMOVE, io)) {
    printf("Cannot remove dm-crypt device\n");
    goto errout;
  }

  /* We made it here with no errors.  Woot! */
  retval = 0;

errout:
  close(fd);    /* If fd is <0 from a failed open call, it's safe to just ignore the close error */

  return retval;

}

static int pbkdf2(const char *passwd, const unsigned char *salt,
                  unsigned char *ikey, void *params UNUSED)
{
    printf("Using pbkdf2 for cryptfs KDF");

    /* Turn the password into a key and IV that can decrypt the master key */
    unsigned int keysize;
    char* master_key = (char*)convert_hex_ascii_to_key(passwd, &keysize);
    if (!master_key) return -1;
    PKCS5_PBKDF2_HMAC_SHA1(master_key, keysize, salt, SALT_LEN,
                           HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);

    memset(master_key, 0, keysize);
    free (master_key);
    return 0;
}

static int scrypt(const char *passwd, const unsigned char *salt,
                  unsigned char *ikey, void *params)
{
    printf("Using scrypt for cryptfs KDF\n");

    struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;

    int N = 1 << ftr->N_factor;
    int r = 1 << ftr->r_factor;
    int p = 1 << ftr->p_factor;

    /* Turn the password into a key and IV that can decrypt the master key */
    unsigned int keysize;
    unsigned char* master_key = convert_hex_ascii_to_key(passwd, &keysize);
    if (!master_key) return -1;
    crypto_scrypt(master_key, keysize, salt, SALT_LEN, N, r, p, ikey,
            KEY_LEN_BYTES + IV_LEN_BYTES);

    memset(master_key, 0, keysize);
    free (master_key);
    return 0;
}

static int scrypt_keymaster(const char *passwd, const unsigned char *salt,
                            unsigned char *ikey, void *params)
{
    printf("Using scrypt with keymaster for cryptfs KDF\n");

    int rc;
    unsigned int key_size;
    size_t signature_size;
    unsigned char* signature;
    struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;

    int N = 1 << ftr->N_factor;
    int r = 1 << ftr->r_factor;
    int p = 1 << ftr->p_factor;

    unsigned char* master_key = convert_hex_ascii_to_key(passwd, &key_size);
    if (!master_key) {
        printf("Failed to convert passwd from hex");
        return -1;
    }

    rc = crypto_scrypt(master_key, key_size, salt, SALT_LEN,
                       N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES);
    memset(master_key, 0, key_size);
    free(master_key);

    if (rc) {
        printf("scrypt failed");
        return -1;
    }

    if (keymaster_sign_object(ftr, ikey, KEY_LEN_BYTES + IV_LEN_BYTES,
                              &signature, &signature_size)) {
        printf("Signing failed");
        return -1;
    }

    rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN,
                       N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES);
    free(signature);

    if (rc) {
        printf("scrypt failed");
        return -1;
    }

    return 0;
}

static int encrypt_master_key(const char *passwd, const unsigned char *salt,
                              const unsigned char *decrypted_master_key,
                              unsigned char *encrypted_master_key,
                              struct crypt_mnt_ftr *crypt_ftr)
{
    unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
    EVP_CIPHER_CTX e_ctx;
    int encrypted_len, final_len;
    int rc = 0;

    /* Turn the password into an intermediate key and IV that can decrypt the master key */
    get_device_scrypt_params(crypt_ftr);

    switch (crypt_ftr->kdf_type) {
    case KDF_SCRYPT_KEYMASTER_UNPADDED:
    case KDF_SCRYPT_KEYMASTER_BADLY_PADDED:
    case KDF_SCRYPT_KEYMASTER:
        if (keymaster_create_key(crypt_ftr)) {
            printf("keymaster_create_key failed");
            return -1;
        }

        if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) {
            printf("scrypt failed");
            return -1;
        }
        break;

    case KDF_SCRYPT:
        if (scrypt(passwd, salt, ikey, crypt_ftr)) {
            printf("scrypt failed");
            return -1;
        }
        break;

    default:
        printf("Invalid kdf_type");
        return -1;
    }

    /* Initialize the decryption engine */
    if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
        printf("EVP_EncryptInit failed\n");
        return -1;
    }
    EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */

    /* Encrypt the master key */
    if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
                              decrypted_master_key, KEY_LEN_BYTES)) {
        printf("EVP_EncryptUpdate failed\n");
        return -1;
    }
    if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
        printf("EVP_EncryptFinal failed\n");
        return -1;
    }

    if (encrypted_len + final_len != KEY_LEN_BYTES) {
        printf("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
        return -1;
    }

    /* Store the scrypt of the intermediate key, so we can validate if it's a
       password error or mount error when things go wrong.
       Note there's no need to check for errors, since if this is incorrect, we
       simply won't wipe userdata, which is the correct default behavior
    */
    int N = 1 << crypt_ftr->N_factor;
    int r = 1 << crypt_ftr->r_factor;
    int p = 1 << crypt_ftr->p_factor;

    rc = crypto_scrypt(ikey, KEY_LEN_BYTES,
                       crypt_ftr->salt, sizeof(crypt_ftr->salt), N, r, p,
                       crypt_ftr->scrypted_intermediate_key,
                       sizeof(crypt_ftr->scrypted_intermediate_key));

    if (rc) {
      printf("encrypt_master_key: crypto_scrypt failed");
    }

    return 0;
}

static int decrypt_master_key_aux(char *passwd, unsigned char *salt,
                                  unsigned char *encrypted_master_key,
                                  unsigned char *decrypted_master_key,
                                  kdf_func kdf, void *kdf_params,
                                  unsigned char** intermediate_key,
                                  size_t* intermediate_key_size)
{
  unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
  EVP_CIPHER_CTX d_ctx;
  int decrypted_len, final_len;

  /* Turn the password into an intermediate key and IV that can decrypt the
     master key */
  if (kdf(passwd, salt, ikey, kdf_params)) {
    printf("kdf failed");
    return -1;
  }

  /* Initialize the decryption engine */
  if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
    return -1;
  }
  EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
  /* Decrypt the master key */
  if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
                            encrypted_master_key, KEY_LEN_BYTES)) {
    return -1;
  }
  if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
    return -1;
  }

  if (decrypted_len + final_len != KEY_LEN_BYTES) {
    return -1;
  }

  /* Copy intermediate key if needed by params */
  if (intermediate_key && intermediate_key_size) {
    *intermediate_key = (unsigned char*) malloc(KEY_LEN_BYTES);
    if (intermediate_key) {
      memcpy(*intermediate_key, ikey, KEY_LEN_BYTES);
      *intermediate_key_size = KEY_LEN_BYTES;
    }
  }

  return 0;
}

static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params)
{
    if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER_UNPADDED ||
        ftr->kdf_type == KDF_SCRYPT_KEYMASTER_BADLY_PADDED ||
        ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
        *kdf = scrypt_keymaster;
        *kdf_params = ftr;
    } else if (ftr->kdf_type == KDF_SCRYPT) {
        *kdf = scrypt;
        *kdf_params = ftr;
    } else {
        *kdf = pbkdf2;
        *kdf_params = NULL;
    }
}

static int decrypt_master_key(char *passwd, unsigned char *decrypted_master_key,
                              struct crypt_mnt_ftr *crypt_ftr,
                              unsigned char** intermediate_key,
                              size_t* intermediate_key_size)
{
    kdf_func kdf;
    void *kdf_params;
    int ret;

    get_kdf_func(crypt_ftr, &kdf, &kdf_params);
    ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key,
                                 decrypted_master_key, kdf, kdf_params,
                                 intermediate_key, intermediate_key_size);
    if (ret != 0) {
        printf("failure decrypting master key");
    }

    return ret;
}

static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt,
        struct crypt_mnt_ftr *crypt_ftr) {
    int fd;
    unsigned char key_buf[KEY_LEN_BYTES];
    EVP_CIPHER_CTX e_ctx;
    int encrypted_len, final_len;

    /* Get some random bits for a key */
    fd = open("/dev/urandom", O_RDONLY);
    read(fd, key_buf, sizeof(key_buf));
    read(fd, salt, SALT_LEN);
    close(fd);

    /* Now encrypt it with the password */
    return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr);
}

static int wait_and_unmount(char *mountpoint, bool kill)
{
    int i, err, rc;
#define WAIT_UNMOUNT_COUNT 20

    /*  Now umount the tmpfs filesystem */
    for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
        if (umount(mountpoint) == 0) {
            break;
        }

        if (errno == EINVAL) {
            /* EINVAL is returned if the directory is not a mountpoint,
             * i.e. there is no filesystem mounted there.  So just get out.
             */
            break;
        }

        err = errno;

        /* If allowed, be increasingly aggressive before the last two retries */
        if (kill) {
            if (i == (WAIT_UNMOUNT_COUNT - 3)) {
                printf("sending SIGHUP to processes with open files\n");
                //vold_killProcessesWithOpenFiles(mountpoint, 1);
            } else if (i == (WAIT_UNMOUNT_COUNT - 2)) {
                printf("sending SIGKILL to processes with open files\n");
                //vold_killProcessesWithOpenFiles(mountpoint, 2);
            }
        }

        sleep(1);
    }

    if (i < WAIT_UNMOUNT_COUNT) {
      printf("unmounting %s succeeded\n", mountpoint);
      rc = 0;
    } else {
      //vold_killProcessesWithOpenFiles(mountpoint, 0);
      printf("unmounting %s failed: %s\n", mountpoint, strerror(err));
      rc = -1;
    }

    return rc;
}

#define DATA_PREP_TIMEOUT 200
static int prep_data_fs(void)
{
    int i;

    /* Do the prep of the /data filesystem */
    property_set("vold.post_fs_data_done", "0");
    property_set("vold.decrypt", "trigger_post_fs_data");
    printf("Just triggered post_fs_data\n");

    /* Wait a max of 50 seconds, hopefully it takes much less */
    for (i=0; i<DATA_PREP_TIMEOUT; i++) {
        char p[PROPERTY_VALUE_MAX];

        property_get("vold.post_fs_data_done", p, "0");
        if (*p == '1') {
            break;
        } else {
            usleep(250000);
        }
    }
    if (i == DATA_PREP_TIMEOUT) {
        /* Ugh, we failed to prep /data in time.  Bail. */
        printf("post_fs_data timed out!\n");
        return -1;
    } else {
        printf("post_fs_data done\n");
        return 0;
    }
}

static void cryptfs_set_corrupt()
{
    // Mark the footer as bad
    struct crypt_mnt_ftr crypt_ftr;
    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        printf("Failed to get crypto footer - panic");
        return;
    }

    crypt_ftr.flags |= CRYPT_DATA_CORRUPT;
    if (put_crypt_ftr_and_key(&crypt_ftr)) {
        printf("Failed to set crypto footer - panic");
        return;
    }
}

static void cryptfs_trigger_restart_min_framework()
{
    if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
      printf("Failed to mount tmpfs on data - panic");
      return;
    }

    if (property_set("vold.decrypt", "trigger_post_fs_data")) {
        printf("Failed to trigger post fs data - panic");
        return;
    }

    if (property_set("vold.decrypt", "trigger_restart_min_framework")) {
        printf("Failed to trigger restart min framework - panic");
        return;
    }
}

/* returns < 0 on failure */
static int cryptfs_restart_internal(int restart_main)
{
    char fs_type[32];
    char real_blkdev[MAXPATHLEN];
    char crypto_blkdev[MAXPATHLEN];
    char fs_options[256];
    unsigned long mnt_flags;
    struct stat statbuf;
    int rc = -1, i;
    static int restart_successful = 0;

    /* Validate that it's OK to call this routine */
    if (! master_key_saved) {
        printf("Encrypted filesystem not validated, aborting");
        return -1;
    }

    if (restart_successful) {
        printf("System already restarted with encrypted disk, aborting");
        return -1;
    }

    if (restart_main) {
        /* Here is where we shut down the framework.  The init scripts
         * start all services in one of three classes: core, main or late_start.
         * On boot, we start core and main.  Now, we stop main, but not core,
         * as core includes vold and a few other really important things that
         * we need to keep running.  Once main has stopped, we should be able
         * to umount the tmpfs /data, then mount the encrypted /data.
         * We then restart the class main, and also the class late_start.
         * At the moment, I've only put a few things in late_start that I know
         * are not needed to bring up the framework, and that also cause problems
         * with unmounting the tmpfs /data, but I hope to add add more services
         * to the late_start class as we optimize this to decrease the delay
         * till the user is asked for the password to the filesystem.
         */

        /* The init files are setup to stop the class main when vold.decrypt is
         * set to trigger_reset_main.
         */
        property_set("vold.decrypt", "trigger_reset_main");
        printf("Just asked init to shut down class main\n");

        /* Ugh, shutting down the framework is not synchronous, so until it
         * can be fixed, this horrible hack will wait a moment for it all to
         * shut down before proceeding.  Without it, some devices cannot
         * restart the graphics services.
         */
        sleep(2);
    }

    /* Now that the framework is shutdown, we should be able to umount()
     * the tmpfs filesystem, and mount the real one.
     */

    property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
    if (strlen(crypto_blkdev) == 0) {
        printf("fs_crypto_blkdev not set\n");
        return -1;
    }

    if (! (rc = wait_and_unmount(DATA_MNT_POINT, true)) ) {
        /* If ro.crypto.readonly is set to 1, mount the decrypted
         * filesystem readonly.  This is used when /data is mounted by
         * recovery mode.
         */
        char ro_prop[PROPERTY_VALUE_MAX];
        property_get("ro.crypto.readonly", ro_prop, "");
        if (strlen(ro_prop) > 0 && atoi(ro_prop)) {
            struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
            rec->flags |= MS_RDONLY;
        }

        /* If that succeeded, then mount the decrypted filesystem */
        int retries = RETRY_MOUNT_ATTEMPTS;
        int mount_rc;
        while ((mount_rc = fs_mgr_do_mount(fstab, DATA_MNT_POINT,
                                           crypto_blkdev, 0))
               != 0) {
            if (mount_rc == FS_MGR_DOMNT_BUSY) {
                /* TODO: invoke something similar to
                   Process::killProcessWithOpenFiles(DATA_MNT_POINT,
                                   retries > RETRY_MOUNT_ATTEMPT/2 ? 1 : 2 ) */
                printf("Failed to mount %s because it is busy - waiting",
                      crypto_blkdev);
                if (--retries) {
                    sleep(RETRY_MOUNT_DELAY_SECONDS);
                } else {
                    /* Let's hope that a reboot clears away whatever is keeping
                       the mount busy */
                    cryptfs_reboot(reboot);
                }
            } else {
                printf("Failed to mount decrypted data");
                cryptfs_set_corrupt();
                cryptfs_trigger_restart_min_framework();
                printf("Started framework to offer wipe");
                return -1;
            }
        }

        property_set("vold.decrypt", "trigger_load_persist_props");
        /* Create necessary paths on /data */
        if (prep_data_fs()) {
            return -1;
        }

        /* startup service classes main and late_start */
        property_set("vold.decrypt", "trigger_restart_framework");
        printf("Just triggered restart_framework\n");

        /* Give it a few moments to get started */
        sleep(1);
    }

    if (rc == 0) {
        restart_successful = 1;
    }

    return rc;
}

int cryptfs_restart(void)
{
    /* Call internal implementation forcing a restart of main service group */
    return cryptfs_restart_internal(1);
}

static int do_crypto_complete(char *mount_point UNUSED)
{
  struct crypt_mnt_ftr crypt_ftr;
  char encrypted_state[PROPERTY_VALUE_MAX];
  char key_loc[PROPERTY_VALUE_MAX];

  property_get("ro.crypto.state", encrypted_state, "");
  if (strcmp(encrypted_state, "encrypted") ) {
    printf("not running with encryption, aborting");
    return CRYPTO_COMPLETE_NOT_ENCRYPTED;
  }

  if (get_crypt_ftr_and_key(&crypt_ftr)) {
    fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));

    /*
     * Only report this error if key_loc is a file and it exists.
     * If the device was never encrypted, and /data is not mountable for
     * some reason, returning 1 should prevent the UI from presenting the
     * a "enter password" screen, or worse, a "press button to wipe the
     * device" screen.
     */
    if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) {
      printf("master key file does not exist, aborting");
      return CRYPTO_COMPLETE_NOT_ENCRYPTED;
    } else {
      printf("Error getting crypt footer and key\n");
      return CRYPTO_COMPLETE_BAD_METADATA;
    }
  }

  // Test for possible error flags
  if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS){
    printf("Encryption process is partway completed\n");
    return CRYPTO_COMPLETE_PARTIAL;
  }

  if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE){
    printf("Encryption process was interrupted but cannot continue\n");
    return CRYPTO_COMPLETE_INCONSISTENT;
  }

  if (crypt_ftr.flags & CRYPT_DATA_CORRUPT){
    printf("Encryption is successful but data is corrupt\n");
    return CRYPTO_COMPLETE_CORRUPT;
  }

  /* We passed the test! We shall diminish, and return to the west */
  return CRYPTO_COMPLETE_ENCRYPTED;
}

static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
                                   char *passwd, char *mount_point, char *label)
{
  /* Allocate enough space for a 256 bit key, but we may use less */
  unsigned char decrypted_master_key[32];
  char crypto_blkdev[MAXPATHLEN];
  char real_blkdev[MAXPATHLEN];
  char tmp_mount_point[64];
  unsigned int orig_failed_decrypt_count;
  int rc;
  kdf_func kdf;
  void *kdf_params;
  int use_keymaster = 0;
  int upgrade = 0;
  unsigned char* intermediate_key = 0;
  size_t intermediate_key_size = 0;

  printf("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
  orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;

  if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
    if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr,
                           &intermediate_key, &intermediate_key_size)) {
      printf("Failed to decrypt master key\n");
      rc = -1;
      goto errout;
    }
  }

  fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));

  // Create crypto block device - all (non fatal) code paths
  // need it
  if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key,
                            real_blkdev, crypto_blkdev, label)) {
     printf("Error creating decrypted block device\n");
     rc = -1;
     goto errout;
  }

  /* Work out if the problem is the password or the data */
  unsigned char scrypted_intermediate_key[sizeof(crypt_ftr->
                                                 scrypted_intermediate_key)];
  int N = 1 << crypt_ftr->N_factor;
  int r = 1 << crypt_ftr->r_factor;
  int p = 1 << crypt_ftr->p_factor;

  rc = crypto_scrypt(intermediate_key, intermediate_key_size,
                     crypt_ftr->salt, sizeof(crypt_ftr->salt),
                     N, r, p, scrypted_intermediate_key,
                     sizeof(scrypted_intermediate_key));

  // Does the key match the crypto footer?
  if (rc == 0 && memcmp(scrypted_intermediate_key,
                        crypt_ftr->scrypted_intermediate_key,
                        sizeof(scrypted_intermediate_key)) == 0) {
    printf("Password matches\n");
    rc = 0;
  } else {
    /* Try mounting the file system anyway, just in case the problem's with
     * the footer, not the key. */
    sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
    mkdir(tmp_mount_point, 0755);
    if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
      printf("Error temp mounting decrypted block device '%s'\n", crypto_blkdev);
      delete_crypto_blk_dev(label);

      rc = ++crypt_ftr->failed_decrypt_count;
      //put_crypt_ftr_and_key(crypt_ftr); // Do not penalize for attempting to decrypt in recovery
    } else {
      /* Success! */
      printf("Password did not match but decrypted drive mounted - continue\n");
      umount(tmp_mount_point);
      rc = 0;
    }
  }

  if (rc == 0) {
    /*crypt_ftr->failed_decrypt_count = 0;
    if (orig_failed_decrypt_count != 0) {
      put_crypt_ftr_and_key(crypt_ftr);
    }*/

    /* Save the name of the crypto block device
     * so we can mount it when restarting the framework. */
    property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);

    /* Also save a the master key so we can reencrypted the key
     * the key when we want to change the password on it. */
    /*memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
    saved_mount_point = strdup(mount_point);
    master_key_saved = 1;
    printf("%s(): Master key saved\n", __FUNCTION__);*/
    rc = 0;

    // Upgrade if we're not using the latest KDF.
    /*use_keymaster = keymaster_check_compatibility();
    if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
        // Don't allow downgrade
    } else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) {
        crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
        upgrade = 1;
    } else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) {
        crypt_ftr->kdf_type = KDF_SCRYPT;
        upgrade = 1;
    }

    if (upgrade) {
        rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key,
                                crypt_ftr->master_key, crypt_ftr);
        if (!rc) {
            rc = put_crypt_ftr_and_key(crypt_ftr);
        }
        printf("Key Derivation Function upgrade: rc=%d\n", rc);

        // Do not fail even if upgrade failed - machine is bootable
        // Note that if this code is ever hit, there is a *serious* problem
        // since KDFs should never fail. You *must* fix the kdf before
        // proceeding!
        if (rc) {
          printf("Upgrade failed with error %d,"
                " but continuing with previous state\n",
                rc);
          rc = 0;
        }
    }*/
  }

 errout:
  if (intermediate_key) {
    memset(intermediate_key, 0, intermediate_key_size);
    free(intermediate_key);
  }
  return rc;
}

/* Called by vold when it wants to undo the crypto mapping of a volume it
 * manages.  This is usually in response to a factory reset, when we want
 * to undo the crypto mapping so the volume is formatted in the clear.
 */
int cryptfs_revert_volume(const char *label)
{
    return delete_crypto_blk_dev((char *)label);
}

/*
 * Called by vold when it's asked to mount an encrypted, nonremovable volume.
 * Setup a dm-crypt mapping, use the saved master key from
 * setting up the /data mapping, and return the new device path.
 */
int cryptfs_setup_volume(const char *label, int major, int minor,
                         char *crypto_sys_path, unsigned int max_path,
                         int *new_major, int *new_minor)
{
    char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
    struct crypt_mnt_ftr sd_crypt_ftr;
    struct stat statbuf;
    int nr_sec, fd;

    sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);

    get_crypt_ftr_and_key(&sd_crypt_ftr);

    /* Update the fs_size field to be the size of the volume */
    fd = open(real_blkdev, O_RDONLY);
    nr_sec = get_blkdev_size(fd);
    close(fd);
    if (nr_sec == 0) {
        printf("Cannot get size of volume %s\n", real_blkdev);
        return -1;
    }

    sd_crypt_ftr.fs_size = nr_sec;
    create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev, 
                          crypto_blkdev, label);

    stat(crypto_blkdev, &statbuf);
    *new_major = MAJOR(statbuf.st_rdev);
    *new_minor = MINOR(statbuf.st_rdev);

    /* Create path to sys entry for this block device */
    snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);

    return 0;
}

int cryptfs_crypto_complete(void)
{
  return do_crypto_complete("/data");
}

int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr)
{
    char encrypted_state[PROPERTY_VALUE_MAX];
    property_get("ro.crypto.state", encrypted_state, "");
    if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
        printf("encrypted fs already validated or not running with encryption,"
              " aborting");
        return -1;
    }

    if (get_crypt_ftr_and_key(crypt_ftr)) {
        printf("Error getting crypt footer and key");
        return -1;
    }

    return 0;
}

/*
 * TODO - transition patterns to new format in calling code
 *        and remove this vile hack, and the use of hex in
 *        the password passing code.
 *
 * Patterns are passed in zero based (i.e. the top left dot
 * is represented by zero, the top middle one etc), but we want
 * to store them '1' based.
 * This is to allow us to migrate the calling code to use this
 * convention. It also solves a nasty problem whereby scrypt ignores
 * trailing zeros, so patterns ending at the top left could be
 * truncated, and similarly, you could add the top left to any
 * pattern and still match.
 * adjust_passwd is a hack function that returns the alternate representation
 * if the password appears to be a pattern (hex numbers all less than 09)
 * If it succeeds we need to try both, and in particular try the alternate
 * first. If the original matches, then we need to update the footer
 * with the alternate.
 * All code that accepts passwords must adjust them first. Since
 * cryptfs_check_passwd is always the first function called after a migration
 * (and indeed on any boot) we only need to do the double try in this
 * function.
 */
char* adjust_passwd(const char* passwd)
{
    size_t index, length;

    if (!passwd) {
        return 0;
    }

    // Check even length. Hex encoded passwords are always
    // an even length, since each character encodes to two characters.
    length = strlen(passwd);
    if (length % 2) {
        printf("Password not correctly hex encoded.");
        return 0;
    }

    // Check password is old-style pattern - a collection of hex
    // encoded bytes less than 9 (00 through 08)
    for (index = 0; index < length; index +=2) {
        if (passwd[index] != '0'
            || passwd[index + 1] < '0' || passwd[index + 1] > '8') {
            return 0;
        }
    }

    // Allocate room for adjusted passwd and null terminate
    char* adjusted = malloc(length + 1);
    adjusted[length] = 0;

    // Add 0x31 ('1') to each character
    for (index = 0; index < length; index += 2) {
        // output is 31 through 39 so set first byte to three, second to src + 1
        adjusted[index] = '3';
        adjusted[index + 1] = passwd[index + 1] + 1;
    }

    return adjusted;
}

/*
 * Passwords in L get passed from Android to cryptfs in hex, so a '1'
 * gets converted to '31' where 31 is 0x31 which is the ascii character
 * code in hex of the character '1'. This function will convert the
 * regular character codes to their hexadecimal representation to make
 * decrypt work properly with Android 5.0 lollipop decryption.
 */
char* hexadj_passwd(const char* passwd)
{
    size_t index, length;
    char* ptr = passwd;

    if (!passwd) {
        return 0;
    }

    length = strlen(passwd);

    // Allocate room for hex passwd and null terminate
    char* hex = malloc((length * 2) + 1);
    hex[length * 2] = 0;

    // Convert to hex
    for (index = 0; index < length; index++) {
        sprintf(hex + (index * 2), "%02X", *ptr);
        ptr++;
    }

    return hex;
}

#define FSTAB_PREFIX "/fstab."

int cryptfs_check_footer(void)
{
    int rc = -1;
    char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)];
    char propbuf[PROPERTY_VALUE_MAX];
    struct crypt_mnt_ftr crypt_ftr;

    property_get("ro.hardware", propbuf, "");
    snprintf(fstab_filename, sizeof(fstab_filename), FSTAB_PREFIX"%s", propbuf);

    fstab = fs_mgr_read_fstab(fstab_filename);
    if (!fstab) {
        printf("failed to open %s\n", fstab_filename);
        return -1;
    }

    rc = get_crypt_ftr_and_key(&crypt_ftr);

    return rc;
}

int cryptfs_check_passwd(char *passwd)
{
    struct crypt_mnt_ftr crypt_ftr;
    int rc;
    char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)];
    char propbuf[PROPERTY_VALUE_MAX];

    property_get("ro.hardware", propbuf, "");
    snprintf(fstab_filename, sizeof(fstab_filename), FSTAB_PREFIX"%s", propbuf);

    fstab = fs_mgr_read_fstab(fstab_filename);
    if (!fstab) {
        printf("failed to open %s\n", fstab_filename);
        return -1;
    }

    rc = check_unmounted_and_get_ftr(&crypt_ftr);
    if (rc)
        return rc;

    char* adjusted_passwd = adjust_passwd(passwd);
    char* hex_passwd = hexadj_passwd(passwd);

    if (adjusted_passwd) {
        int failed_decrypt_count = crypt_ftr.failed_decrypt_count;
        rc = test_mount_encrypted_fs(&crypt_ftr, adjusted_passwd,
                                     DATA_MNT_POINT, "userdata");

        // Maybe the original one still works?
        if (rc) {
            // Don't double count this failure
            crypt_ftr.failed_decrypt_count = failed_decrypt_count;
            rc = test_mount_encrypted_fs(&crypt_ftr, passwd,
                                         DATA_MNT_POINT, "userdata");
            if (!rc) {
                // cryptfs_changepw also adjusts so pass original
                // Note that adjust_passwd only recognises patterns
                // so we can safely use CRYPT_TYPE_PATTERN
                printf("TWRP NOT Updating pattern to new format");
                //cryptfs_changepw(CRYPT_TYPE_PATTERN, passwd);
            } else if (hex_passwd) {
                rc = test_mount_encrypted_fs(&crypt_ftr, hex_passwd,
                                         DATA_MNT_POINT, "userdata");
            }
        }
        free(adjusted_passwd);
    } else {
        rc = test_mount_encrypted_fs(&crypt_ftr, passwd,
                                     DATA_MNT_POINT, "userdata");
        if (rc && hex_passwd) {
            rc = test_mount_encrypted_fs(&crypt_ftr, hex_passwd,
                                     DATA_MNT_POINT, "userdata");
        }
    }

    if (hex_passwd)
        free(hex_passwd);

    /*if (rc == 0 && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
		printf("cryptfs_check_passwd update expiry time?\n");
        cryptfs_clear_password();
        password = strdup(passwd);
        struct timespec now;
        clock_gettime(CLOCK_BOOTTIME, &now);
        password_expiry_time = now.tv_sec + password_max_age_seconds;
    }*/

    return rc;
}

int cryptfs_verify_passwd(char *passwd)
{
    struct crypt_mnt_ftr crypt_ftr;
    /* Allocate enough space for a 256 bit key, but we may use less */
    unsigned char decrypted_master_key[32];
    char encrypted_state[PROPERTY_VALUE_MAX];
    int rc;

    property_get("ro.crypto.state", encrypted_state, "");
    if (strcmp(encrypted_state, "encrypted") ) {
        printf("device not encrypted, aborting");
        return -2;
    }

    if (!master_key_saved) {
        printf("encrypted fs not yet mounted, aborting");
        return -1;
    }

    if (!saved_mount_point) {
        printf("encrypted fs failed to save mount point, aborting");
        return -1;
    }

    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        printf("Error getting crypt footer and key\n");
        return -1;
    }

    if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
        /* If the device has no password, then just say the password is valid */
        rc = 0;
    } else {
        char* adjusted_passwd = adjust_passwd(passwd);
        if (adjusted_passwd) {
            passwd = adjusted_passwd;
        }

        decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
        if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
            /* They match, the password is correct */
            rc = 0;
        } else {
            /* If incorrect, sleep for a bit to prevent dictionary attacks */
            sleep(1);
            rc = 1;
        }

        free(adjusted_passwd);
    }

    return rc;
}

/* Initialize a crypt_mnt_ftr structure.  The keysize is
 * defaulted to 16 bytes, and the filesystem size to 0.
 * Presumably, at a minimum, the caller will update the
 * filesystem size and crypto_type_name after calling this function.
 */
static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
{
    off64_t off;

    memset(ftr, 0, sizeof(struct crypt_mnt_ftr));
    ftr->magic = CRYPT_MNT_MAGIC;
    ftr->major_version = CURRENT_MAJOR_VERSION;
    ftr->minor_version = CURRENT_MINOR_VERSION;
    ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
    ftr->keysize = KEY_LEN_BYTES;

    switch (keymaster_check_compatibility()) {
    case 1:
        ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
        break;

    case 0:
        ftr->kdf_type = KDF_SCRYPT;
        break;

    default:
        printf("keymaster_check_compatibility failed");
        return -1;
    }

    get_device_scrypt_params(ftr);

    ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
    if (get_crypt_ftr_info(NULL, &off) == 0) {
        ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET;
        ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET +
                                    ftr->persist_data_size;
    }

    return 0;
}

static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
{
    const char *args[10];
    char size_str[32]; /* Must be large enough to hold a %lld and null byte */
    int num_args;
    int status;
    int tmp;
    int rc = -1;

    if (type == EXT4_FS) {
        args[0] = "/system/bin/make_ext4fs";
        args[1] = "-a";
        args[2] = "/data";
        args[3] = "-l";
        snprintf(size_str, sizeof(size_str), "%" PRId64, size * 512);
        args[4] = size_str;
        args[5] = crypto_blkdev;
        num_args = 6;
        printf("Making empty filesystem with command %s %s %s %s %s %s\n",
              args[0], args[1], args[2], args[3], args[4], args[5]);
    } else if (type == F2FS_FS) {
        args[0] = "/system/bin/mkfs.f2fs";
        args[1] = "-t";
        args[2] = "-d1";
        args[3] = crypto_blkdev;
        snprintf(size_str, sizeof(size_str), "%" PRId64, size);
        args[4] = size_str;
        num_args = 5;
        printf("Making empty filesystem with command %s %s %s %s %s\n",
              args[0], args[1], args[2], args[3], args[4]);
    } else {
        printf("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
        return -1;
    }

    tmp = android_fork_execvp(num_args, (char **)args, &status, false, true);

    if (tmp != 0) {
      printf("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev);
    } else {
        if (WIFEXITED(status)) {
            if (WEXITSTATUS(status)) {
                printf("Error creating filesystem on %s, exit status %d ",
                      crypto_blkdev, WEXITSTATUS(status));
            } else {
                printf("Successfully created filesystem on %s\n", crypto_blkdev);
                rc = 0;
            }
        } else {
            printf("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev);
       }
    }

    return rc;
}

#define CRYPT_INPLACE_BUFSIZE 4096
#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / CRYPT_SECTOR_SIZE)
#define CRYPT_SECTOR_SIZE 512

/* aligned 32K writes tends to make flash happy.
 * SD card association recommends it.
 */
#define BLOCKS_AT_A_TIME 8

struct encryptGroupsData
{
    int realfd;
    int cryptofd;
    off64_t numblocks;
    off64_t one_pct, cur_pct, new_pct;
    off64_t blocks_already_done, tot_numblocks;
    off64_t used_blocks_already_done, tot_used_blocks;
    char* real_blkdev, * crypto_blkdev;
    int count;
    off64_t offset;
    char* buffer;
    off64_t last_written_sector;
    int completed;
    time_t time_started;
    int remaining_time;
};

static void update_progress(struct encryptGroupsData* data, int is_used)
{
    data->blocks_already_done++;

    if (is_used) {
        data->used_blocks_already_done++;
    }
    if (data->tot_used_blocks) {
        data->new_pct = data->used_blocks_already_done / data->one_pct;
    } else {
        data->new_pct = data->blocks_already_done / data->one_pct;
    }

    if (data->new_pct > data->cur_pct) {
        char buf[8];
        data->cur_pct = data->new_pct;
        snprintf(buf, sizeof(buf), "%" PRId64, data->cur_pct);
        property_set("vold.encrypt_progress", buf);
    }

    if (data->cur_pct >= 5) {
        struct timespec time_now;
        if (clock_gettime(CLOCK_MONOTONIC, &time_now)) {
            printf("Error getting time");
        } else {
            double elapsed_time = difftime(time_now.tv_sec, data->time_started);
            off64_t remaining_blocks = data->tot_used_blocks
                                       - data->used_blocks_already_done;
            int remaining_time = (int)(elapsed_time * remaining_blocks
                                       / data->used_blocks_already_done);

            // Change time only if not yet set, lower, or a lot higher for
            // best user experience
            if (data->remaining_time == -1
                || remaining_time < data->remaining_time
                || remaining_time > data->remaining_time + 60) {
                char buf[8];
                snprintf(buf, sizeof(buf), "%d", remaining_time);
                property_set("vold.encrypt_time_remaining", buf);
                data->remaining_time = remaining_time;
            }
        }
    }
}

static void log_progress(struct encryptGroupsData const* data, bool completed)
{
    // Precondition - if completed data = 0 else data != 0

    // Track progress so we can skip logging blocks
    static off64_t offset = -1;

    // Need to close existing 'Encrypting from' log?
    if (completed || (offset != -1 && data->offset != offset)) {
        printf("Encrypted to sector %" PRId64,
              offset / info.block_size * CRYPT_SECTOR_SIZE);
        offset = -1;
    }

    // Need to start new 'Encrypting from' log?
    if (!completed && offset != data->offset) {
        printf("Encrypting from sector %" PRId64,
              data->offset / info.block_size * CRYPT_SECTOR_SIZE);
    }

    // Update offset
    if (!completed) {
        offset = data->offset + (off64_t)data->count * info.block_size;
    }
}

static int flush_outstanding_data(struct encryptGroupsData* data)
{
    if (data->count == 0) {
        return 0;
    }

    printf("Copying %d blocks at offset %" PRIx64, data->count, data->offset);

    if (pread64(data->realfd, data->buffer,
                info.block_size * data->count, data->offset)
        <= 0) {
        printf("Error reading real_blkdev %s for inplace encrypt",
              data->real_blkdev);
        return -1;
    }

    if (pwrite64(data->cryptofd, data->buffer,
                 info.block_size * data->count, data->offset)
        <= 0) {
        printf("Error writing crypto_blkdev %s for inplace encrypt",
              data->crypto_blkdev);
        return -1;
    } else {
      log_progress(data, false);
    }

    data->count = 0;
    data->last_written_sector = (data->offset + data->count)
                                / info.block_size * CRYPT_SECTOR_SIZE - 1;
    return 0;
}

static int encrypt_groups(struct encryptGroupsData* data)
{
    unsigned int i;
    u8 *block_bitmap = 0;
    unsigned int block;
    off64_t ret;
    int rc = -1;

    data->buffer = malloc(info.block_size * BLOCKS_AT_A_TIME);
    if (!data->buffer) {
        printf("Failed to allocate crypto buffer");
        goto errout;
    }

    block_bitmap = malloc(info.block_size);
    if (!block_bitmap) {
        printf("failed to allocate block bitmap");
        goto errout;
    }

    for (i = 0; i < aux_info.groups; ++i) {
        printf("Encrypting group %d", i);

        u32 first_block = aux_info.first_data_block + i * info.blocks_per_group;
        u32 block_count = min(info.blocks_per_group,
                             aux_info.len_blocks - first_block);

        off64_t offset = (u64)info.block_size
                         * aux_info.bg_desc[i].bg_block_bitmap;

        ret = pread64(data->realfd, block_bitmap, info.block_size, offset);
        if (ret != (int)info.block_size) {
            printf("failed to read all of block group bitmap %d", i);
            goto errout;
        }

        offset = (u64)info.block_size * first_block;

        data->count = 0;

        for (block = 0; block < block_count; block++) {
            int used = bitmap_get_bit(block_bitmap, block);
            update_progress(data, used);
            if (used) {
                if (data->count == 0) {
                    data->offset = offset;
                }
                data->count++;
            } else {
                if (flush_outstanding_data(data)) {
                    goto errout;
                }
            }

            offset += info.block_size;

            /* Write data if we are aligned or buffer size reached */
            if (offset % (info.block_size * BLOCKS_AT_A_TIME) == 0
                || data->count == BLOCKS_AT_A_TIME) {
                if (flush_outstanding_data(data)) {
                    goto errout;
                }
            }

            if (1) {
                printf("Stopping encryption due to low battery");
                rc = 0;
                goto errout;
            }

        }
        if (flush_outstanding_data(data)) {
            goto errout;
        }
    }

    data->completed = 1;
    rc = 0;

errout:
    log_progress(0, true);
    free(data->buffer);
    free(block_bitmap);
    return rc;
}

static int cryptfs_enable_inplace_ext4(char *crypto_blkdev,
                                       char *real_blkdev,
                                       off64_t size,
                                       off64_t *size_already_done,
                                       off64_t tot_size,
                                       off64_t previously_encrypted_upto)
{
    u32 i;
    struct encryptGroupsData data;
    int rc; // Can't initialize without causing warning -Wclobbered

    if (previously_encrypted_upto > *size_already_done) {
        printf("Not fast encrypting since resuming part way through");
        return -1;
    }

    memset(&data, 0, sizeof(data));
    data.real_blkdev = real_blkdev;
    data.crypto_blkdev = crypto_blkdev;

    if ( (data.realfd = open(real_blkdev, O_RDWR)) < 0) {
        printf("Error opening real_blkdev %s for inplace encrypt. err=%d(%s)\n",
              real_blkdev, errno, strerror(errno));
        rc = -1;
        goto errout;
    }

    if ( (data.cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
        printf("Error opening crypto_blkdev %s for ext4 inplace encrypt. err=%d(%s)\n",
              crypto_blkdev, errno, strerror(errno));
        rc = ENABLE_INPLACE_ERR_DEV;
        goto errout;
    }

    if (setjmp(setjmp_env)) {
        printf("Reading ext4 extent caused an exception\n");
        rc = -1;
        goto errout;
    }

    if (read_ext(data.realfd, 0) != 0) {
        printf("Failed to read ext4 extent\n");
        rc = -1;
        goto errout;
    }

    data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
    data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
    data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;

    printf("Encrypting ext4 filesystem in place...");

    data.tot_used_blocks = data.numblocks;
    for (i = 0; i < aux_info.groups; ++i) {
      data.tot_used_blocks -= aux_info.bg_desc[i].bg_free_blocks_count;
    }

    data.one_pct = data.tot_used_blocks / 100;
    data.cur_pct = 0;

    struct timespec time_started = {0};
    if (clock_gettime(CLOCK_MONOTONIC, &time_started)) {
        printf("Error getting time at start");
        // Note - continue anyway - we'll run with 0
    }
    data.time_started = time_started.tv_sec;
    data.remaining_time = -1;

    rc = encrypt_groups(&data);
    if (rc) {
        printf("Error encrypting groups");
        goto errout;
    }

    *size_already_done += data.completed ? size : data.last_written_sector;
    rc = 0;

errout:
    close(data.realfd);
    close(data.cryptofd);

    return rc;
}

static void log_progress_f2fs(u64 block, bool completed)
{
    // Precondition - if completed data = 0 else data != 0

    // Track progress so we can skip logging blocks
    static u64 last_block = (u64)-1;

    // Need to close existing 'Encrypting from' log?
    if (completed || (last_block != (u64)-1 && block != last_block + 1)) {
        printf("Encrypted to block %" PRId64, last_block);
        last_block = -1;
    }

    // Need to start new 'Encrypting from' log?
    if (!completed && (last_block == (u64)-1 || block != last_block + 1)) {
        printf("Encrypting from block %" PRId64, block);
    }

    // Update offset
    if (!completed) {
        last_block = block;
    }
}

static int encrypt_one_block_f2fs(u64 pos, void *data)
{
    struct encryptGroupsData *priv_dat = (struct encryptGroupsData *)data;

    priv_dat->blocks_already_done = pos - 1;
    update_progress(priv_dat, 1);

    off64_t offset = pos * CRYPT_INPLACE_BUFSIZE;

    if (pread64(priv_dat->realfd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) {
        printf("Error reading real_blkdev %s for f2fs inplace encrypt", priv_dat->crypto_blkdev);
        return -1;
    }

    if (pwrite64(priv_dat->cryptofd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) {
        printf("Error writing crypto_blkdev %s for f2fs inplace encrypt", priv_dat->crypto_blkdev);
        return -1;
    } else {
        log_progress_f2fs(pos, false);
    }

    return 0;
}

static int cryptfs_enable_inplace_f2fs(char *crypto_blkdev,
                                       char *real_blkdev,
                                       off64_t size,
                                       off64_t *size_already_done,
                                       off64_t tot_size,
                                       off64_t previously_encrypted_upto)
{
    u32 i;
    struct encryptGroupsData data;
    struct f2fs_info *f2fs_info = NULL;
    int rc = ENABLE_INPLACE_ERR_OTHER;
    if (previously_encrypted_upto > *size_already_done) {
        printf("Not fast encrypting since resuming part way through");
        return ENABLE_INPLACE_ERR_OTHER;
    }
    memset(&data, 0, sizeof(data));
    data.real_blkdev = real_blkdev;
    data.crypto_blkdev = crypto_blkdev;
    data.realfd = -1;
    data.cryptofd = -1;
    if ( (data.realfd = open64(real_blkdev, O_RDWR)) < 0) {
        printf("Error opening real_blkdev %s for f2fs inplace encrypt\n",
              real_blkdev);
        goto errout;
    }
    if ( (data.cryptofd = open64(crypto_blkdev, O_WRONLY)) < 0) {
        printf("Error opening crypto_blkdev %s for f2fs inplace encrypt. err=%d(%s)\n",
              crypto_blkdev, errno, strerror(errno));
        rc = ENABLE_INPLACE_ERR_DEV;
        goto errout;
    }

    f2fs_info = generate_f2fs_info(data.realfd);
    if (!f2fs_info)
      goto errout;

    data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
    data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
    data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;

    data.tot_used_blocks = get_num_blocks_used(f2fs_info);

    data.one_pct = data.tot_used_blocks / 100;
    data.cur_pct = 0;
    data.time_started = time(NULL);
    data.remaining_time = -1;

    data.buffer = malloc(f2fs_info->block_size);
    if (!data.buffer) {
        printf("Failed to allocate crypto buffer");
        goto errout;
    }

    data.count = 0;

    /* Currently, this either runs to completion, or hits a nonrecoverable error */
    rc = run_on_used_blocks(data.blocks_already_done, f2fs_info, &encrypt_one_block_f2fs, &data);

    if (rc) {
        printf("Error in running over f2fs blocks");
        rc = ENABLE_INPLACE_ERR_OTHER;
        goto errout;
    }

    *size_already_done += size;
    rc = 0;

errout:
    if (rc)
        printf("Failed to encrypt f2fs filesystem on %s", real_blkdev);

    log_progress_f2fs(0, true);
    free(f2fs_info);
    free(data.buffer);
    close(data.realfd);
    close(data.cryptofd);

    return rc;
}

static int cryptfs_enable_inplace_full(char *crypto_blkdev, char *real_blkdev,
                                       off64_t size, off64_t *size_already_done,
                                       off64_t tot_size,
                                       off64_t previously_encrypted_upto)
{
    int realfd, cryptofd;
    char *buf[CRYPT_INPLACE_BUFSIZE];
    int rc = ENABLE_INPLACE_ERR_OTHER;
    off64_t numblocks, i, remainder;
    off64_t one_pct, cur_pct, new_pct;
    off64_t blocks_already_done, tot_numblocks;

    if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) { 
        printf("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
        return ENABLE_INPLACE_ERR_OTHER;
    }

    if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) { 
        printf("Error opening crypto_blkdev %s for inplace encrypt. err=%d(%s)\n",
              crypto_blkdev, errno, strerror(errno));
        close(realfd);
        return ENABLE_INPLACE_ERR_DEV;
    }

    /* This is pretty much a simple loop of reading 4K, and writing 4K.
     * The size passed in is the number of 512 byte sectors in the filesystem.
     * So compute the number of whole 4K blocks we should read/write,
     * and the remainder.
     */
    numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
    remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
    tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
    blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;

    printf("Encrypting filesystem in place...");

    i = previously_encrypted_upto + 1 - *size_already_done;

    if (lseek64(realfd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
        printf("Cannot seek to previously encrypted point on %s", real_blkdev);
        goto errout;
    }

    if (lseek64(cryptofd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
        printf("Cannot seek to previously encrypted point on %s", crypto_blkdev);
        goto errout;
    }

    for (;i < size && i % CRYPT_SECTORS_PER_BUFSIZE != 0; ++i) {
        if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
            printf("Error reading initial sectors from real_blkdev %s for "
                  "inplace encrypt\n", crypto_blkdev);
            goto errout;
        }
        if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
            printf("Error writing initial sectors to crypto_blkdev %s for "
                  "inplace encrypt\n", crypto_blkdev);
            goto errout;
        } else {
            printf("Encrypted 1 block at %" PRId64, i);
        }
    }

    one_pct = tot_numblocks / 100;
    cur_pct = 0;
    /* process the majority of the filesystem in blocks */
    for (i/=CRYPT_SECTORS_PER_BUFSIZE; i<numblocks; i++) {
        new_pct = (i + blocks_already_done) / one_pct;
        if (new_pct > cur_pct) {
            char buf[8];

            cur_pct = new_pct;
            snprintf(buf, sizeof(buf), "%" PRId64, cur_pct);
            property_set("vold.encrypt_progress", buf);
        }
        if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
            printf("Error reading real_blkdev %s for inplace encrypt", crypto_blkdev);
            goto errout;
        }
        if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
            printf("Error writing crypto_blkdev %s for inplace encrypt", crypto_blkdev);
            goto errout;
        } else {
            printf("Encrypted %d block at %" PRId64,
                  CRYPT_SECTORS_PER_BUFSIZE,
                  i * CRYPT_SECTORS_PER_BUFSIZE);
        }

       if (1) {
            printf("Stopping encryption due to low battery");
            *size_already_done += (i + 1) * CRYPT_SECTORS_PER_BUFSIZE - 1;
            rc = 0;
            goto errout;
        }
    }

    /* Do any remaining sectors */
    for (i=0; i<remainder; i++) {
        if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
            printf("Error reading final sectors from real_blkdev %s for inplace encrypt", crypto_blkdev);
            goto errout;
        }
        if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
            printf("Error writing final sectors to crypto_blkdev %s for inplace encrypt", crypto_blkdev);
            goto errout;
        } else {
            printf("Encrypted 1 block at next location");
        }
    }

    *size_already_done += size;
    rc = 0;

errout:
    close(realfd);
    close(cryptofd);

    return rc;
}

/* returns on of the ENABLE_INPLACE_* return codes */
static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev,
                                  off64_t size, off64_t *size_already_done,
                                  off64_t tot_size,
                                  off64_t previously_encrypted_upto)
{
    int rc_ext4, rc_f2fs, rc_full;
    if (previously_encrypted_upto) {
        printf("Continuing encryption from %" PRId64, previously_encrypted_upto);
    }

    if (*size_already_done + size < previously_encrypted_upto) {
        *size_already_done += size;
        return 0;
    }

    /* TODO: identify filesystem type.
     * As is, cryptfs_enable_inplace_ext4 will fail on an f2fs partition, and
     * then we will drop down to cryptfs_enable_inplace_f2fs.
     * */
    if ((rc_ext4 = cryptfs_enable_inplace_ext4(crypto_blkdev, real_blkdev,
                                size, size_already_done,
                                tot_size, previously_encrypted_upto)) == 0) {
      return 0;
    }
    printf("cryptfs_enable_inplace_ext4()=%d\n", rc_ext4);

    if ((rc_f2fs = cryptfs_enable_inplace_f2fs(crypto_blkdev, real_blkdev,
                                size, size_already_done,
                                tot_size, previously_encrypted_upto)) == 0) {
      return 0;
    }
    printf("cryptfs_enable_inplace_f2fs()=%d\n", rc_f2fs);

    rc_full = cryptfs_enable_inplace_full(crypto_blkdev, real_blkdev,
                                       size, size_already_done, tot_size,
                                       previously_encrypted_upto);
    printf("cryptfs_enable_inplace_full()=%d\n", rc_full);

    /* Hack for b/17898962, the following is the symptom... */
    if (rc_ext4 == ENABLE_INPLACE_ERR_DEV
        && rc_f2fs == ENABLE_INPLACE_ERR_DEV
        && rc_full == ENABLE_INPLACE_ERR_DEV) {
            return ENABLE_INPLACE_ERR_DEV;
    }
    return rc_full;
}

#define CRYPTO_ENABLE_WIPE 1
#define CRYPTO_ENABLE_INPLACE 2

#define FRAMEWORK_BOOT_WAIT 60

static inline int should_encrypt(struct volume_info *volume)
{
    return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
            (VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
}

static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf)
{
    int fd = open(filename, O_RDONLY);
    if (fd == -1) {
        printf("Error opening file %s", filename);
        return -1;
    }

    char block[CRYPT_INPLACE_BUFSIZE];
    memset(block, 0, sizeof(block));
    if (unix_read(fd, block, sizeof(block)) < 0) {
        printf("Error reading file %s", filename);
        close(fd);
        return -1;
    }

    close(fd);

    SHA256_CTX c;
    SHA256_Init(&c);
    SHA256_Update(&c, block, sizeof(block));
    SHA256_Final(buf, &c);

    return 0;
}

static int get_fs_type(struct fstab_rec *rec)
{
    if (!strcmp(rec->fs_type, "ext4")) {
        return EXT4_FS;
    } else if (!strcmp(rec->fs_type, "f2fs")) {
        return F2FS_FS;
    } else {
        return -1;
    }
}

static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr *crypt_ftr, int how,
                                      char *crypto_blkdev, char *real_blkdev,
                                      int previously_encrypted_upto)
{
    off64_t cur_encryption_done=0, tot_encryption_size=0;
    int i, rc = -1;

    if (1) {
        printf("Not starting encryption due to low battery");
        return 0;
    }

    /* The size of the userdata partition, and add in the vold volumes below */
    tot_encryption_size = crypt_ftr->fs_size;

    if (how == CRYPTO_ENABLE_WIPE) {
        struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
        int fs_type = get_fs_type(rec);
        if (fs_type < 0) {
            printf("cryptfs_enable: unsupported fs type %s\n", rec->fs_type);
            return -1;
        }
        rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr->fs_size, fs_type);
    } else if (how == CRYPTO_ENABLE_INPLACE) {
        rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev,
                                    crypt_ftr->fs_size, &cur_encryption_done,
                                    tot_encryption_size,
                                    previously_encrypted_upto);

        if (rc == ENABLE_INPLACE_ERR_DEV) {
            /* Hack for b/17898962 */
            printf("cryptfs_enable: crypto block dev failure. Must reboot...\n");
            cryptfs_reboot(reboot);
        }

        if (!rc) {
            crypt_ftr->encrypted_upto = cur_encryption_done;
        }

        if (!rc && crypt_ftr->encrypted_upto == crypt_ftr->fs_size) {
            /* The inplace routine never actually sets the progress to 100% due
             * to the round down nature of integer division, so set it here */
            property_set("vold.encrypt_progress", "100");
        }
    } else {
        /* Shouldn't happen */
        printf("cryptfs_enable: internal error, unknown option\n");
        rc = -1;
    }

    return rc;
}

int cryptfs_enable_internal(char *howarg, int crypt_type, char *passwd,
                            int allow_reboot)
{
    int how = 0;
    char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN];
    unsigned long nr_sec;
    unsigned char decrypted_master_key[KEY_LEN_BYTES];
    int rc=-1, fd, i, ret;
    struct crypt_mnt_ftr crypt_ftr;
    struct crypt_persist_data *pdata;
    char encrypted_state[PROPERTY_VALUE_MAX];
    char lockid[32] = { 0 };
    char key_loc[PROPERTY_VALUE_MAX];
    char fuse_sdcard[PROPERTY_VALUE_MAX];
    char *sd_mnt_point;
    int num_vols;
    struct volume_info *vol_list = 0;
    off64_t previously_encrypted_upto = 0;
printf("cryptfs_enable_internal disabled by TWRP\n");
return -1;
    if (!strcmp(howarg, "wipe")) {
      how = CRYPTO_ENABLE_WIPE;
    } else if (! strcmp(howarg, "inplace")) {
      how = CRYPTO_ENABLE_INPLACE;
    } else {
      /* Shouldn't happen, as CommandListener vets the args */
      goto error_unencrypted;
    }

    /* See if an encryption was underway and interrupted */
    if (how == CRYPTO_ENABLE_INPLACE
          && get_crypt_ftr_and_key(&crypt_ftr) == 0
          && (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS)) {
        previously_encrypted_upto = crypt_ftr.encrypted_upto;
        crypt_ftr.encrypted_upto = 0;
        crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;

        /* At this point, we are in an inconsistent state. Until we successfully
           complete encryption, a reboot will leave us broken. So mark the
           encryption failed in case that happens.
           On successfully completing encryption, remove this flag */
        crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;

        put_crypt_ftr_and_key(&crypt_ftr);
    }

    property_get("ro.crypto.state", encrypted_state, "");
    if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) {
        printf("Device is already running encrypted, aborting");
        goto error_unencrypted;
    }

    // TODO refactor fs_mgr_get_crypt_info to get both in one call
    fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
    fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));

    /* Get the size of the real block device */
    fd = open(real_blkdev, O_RDONLY);
    if ( (nr_sec = get_blkdev_size(fd)) == 0) {
        printf("Cannot get size of block device %s\n", real_blkdev);
        goto error_unencrypted;
    }
    close(fd);

    /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
    if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
        unsigned int fs_size_sec, max_fs_size_sec;
        fs_size_sec = get_fs_size(real_blkdev);
        if (fs_size_sec == 0)
            fs_size_sec = get_f2fs_filesystem_size_sec(real_blkdev);

        max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);

        if (fs_size_sec > max_fs_size_sec) {
            printf("Orig filesystem overlaps crypto footer region.  Cannot encrypt in place.");
            goto error_unencrypted;
        }
    }

    /* Get a wakelock as this may take a while, and we don't want the
     * device to sleep on us.  We'll grab a partial wakelock, and if the UI
     * wants to keep the screen on, it can grab a full wakelock.
     */
    snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
    acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);

    /* Get the sdcard mount point */
    sd_mnt_point = getenv("EMULATED_STORAGE_SOURCE");
    if (!sd_mnt_point) {
       sd_mnt_point = getenv("EXTERNAL_STORAGE");
    }
    if (!sd_mnt_point) {
        sd_mnt_point = "/mnt/sdcard";
    }

    /* TODO
     * Currently do not have test devices with multiple encryptable volumes.
     * When we acquire some, re-add support.
     */
    num_vols=0/*vold_getNumDirectVolumes()*/;
    vol_list = malloc(sizeof(struct volume_info) * num_vols);
    //vold_getDirectVolumeList(vol_list);

    for (i=0; i<num_vols; i++) {
        if (should_encrypt(&vol_list[i])) {
            printf("Cannot encrypt if there are multiple encryptable volumes"
                  "%s\n", vol_list[i].label);
            goto error_unencrypted;
        }
    }

    /* The init files are setup to stop the class main and late start when
     * vold sets trigger_shutdown_framework.
     */
    property_set("vold.decrypt", "trigger_shutdown_framework");
    printf("Just asked init to shut down class main\n");

    if (1 /*vold_unmountAllAsecs()*/) {
        /* Just report the error.  If any are left mounted,
         * umounting /data below will fail and handle the error.
         */
        printf("Error unmounting internal asecs");
    }

    property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
    if (!strcmp(fuse_sdcard, "true")) {
        /* This is a device using the fuse layer to emulate the sdcard semantics
         * on top of the userdata partition.  vold does not manage it, it is managed
         * by the sdcard service.  The sdcard service was killed by the property trigger
         * above, so just unmount it now.  We must do this _AFTER_ killing the framework,
         * unlike the case for vold managed devices above.
         */
        if (wait_and_unmount(sd_mnt_point, false)) {
            goto error_shutting_down;
        }
    }

    /* Now unmount the /data partition. */
    if (wait_and_unmount(DATA_MNT_POINT, false)) {
        if (allow_reboot) {
            goto error_shutting_down;
        } else {
            goto error_unencrypted;
        }
    }

    /* Do extra work for a better UX when doing the long inplace encryption */
    if (how == CRYPTO_ENABLE_INPLACE) {
        /* Now that /data is unmounted, we need to mount a tmpfs
         * /data, set a property saying we're doing inplace encryption,
         * and restart the framework.
         */
        if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
            goto error_shutting_down;
        }
        /* Tells the framework that inplace encryption is starting */
        property_set("vold.encrypt_progress", "0");

        /* restart the framework. */
        /* Create necessary paths on /data */
        if (prep_data_fs()) {
            goto error_shutting_down;
        }

        /* Ugh, shutting down the framework is not synchronous, so until it
         * can be fixed, this horrible hack will wait a moment for it all to
         * shut down before proceeding.  Without it, some devices cannot
         * restart the graphics services.
         */
        sleep(2);

        /* startup service classes main and late_start */
        property_set("vold.decrypt", "trigger_restart_min_framework");
        printf("Just triggered restart_min_framework\n");

        /* OK, the framework is restarted and will soon be showing a
         * progress bar.  Time to setup an encrypted mapping, and
         * either write a new filesystem, or encrypt in place updating
         * the progress bar as we work.
         */
    }

    /* Start the actual work of making an encrypted filesystem */
    /* Initialize a crypt_mnt_ftr for the partition */
    if (previously_encrypted_upto == 0) {
        if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) {
            goto error_shutting_down;
        }

        if (!strcmp(key_loc, KEY_IN_FOOTER)) {
            crypt_ftr.fs_size = nr_sec
              - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
        } else {
            crypt_ftr.fs_size = nr_sec;
        }
        /* At this point, we are in an inconsistent state. Until we successfully
           complete encryption, a reboot will leave us broken. So mark the
           encryption failed in case that happens.
           On successfully completing encryption, remove this flag */
        crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
        crypt_ftr.crypt_type = crypt_type;
        strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");

        /* Make an encrypted master key */
        if (create_encrypted_random_key(passwd, crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) {
            printf("Cannot create encrypted master key\n");
            goto error_shutting_down;
        }

        /* Write the key to the end of the partition */
        put_crypt_ftr_and_key(&crypt_ftr);

        /* If any persistent data has been remembered, save it.
         * If none, create a valid empty table and save that.
         */
        if (!persist_data) {
           pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
           if (pdata) {
               init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
               persist_data = pdata;
           }
        }
        if (persist_data) {
            save_persistent_data();
        }
    }

    decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
    create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
                          "userdata");

    /* If we are continuing, check checksums match */
    rc = 0;
    if (previously_encrypted_upto) {
        __le8 hash_first_block[SHA256_DIGEST_LENGTH];
        rc = cryptfs_SHA256_fileblock(crypto_blkdev, hash_first_block);

        if (!rc && memcmp(hash_first_block, crypt_ftr.hash_first_block,
                          sizeof(hash_first_block)) != 0) {
            printf("Checksums do not match - trigger wipe");
            rc = -1;
        }
    }

    if (!rc) {
        rc = cryptfs_enable_all_volumes(&crypt_ftr, how,
                                        crypto_blkdev, real_blkdev,
                                        previously_encrypted_upto);
    }

    /* Calculate checksum if we are not finished */
    if (!rc && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
        rc = cryptfs_SHA256_fileblock(crypto_blkdev,
                                      crypt_ftr.hash_first_block);
        if (rc) {
            printf("Error calculating checksum for continuing encryption");
            rc = -1;
        }
    }

    /* Undo the dm-crypt mapping whether we succeed or not */
    delete_crypto_blk_dev("userdata");

    free(vol_list);

    if (! rc) {
        /* Success */
        crypt_ftr.flags &= ~CRYPT_INCONSISTENT_STATE;

        if (crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
            printf("Encrypted up to sector %lld - will continue after reboot",
                  crypt_ftr.encrypted_upto);
            crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
        }

        put_crypt_ftr_and_key(&crypt_ftr);

        if (crypt_ftr.encrypted_upto == crypt_ftr.fs_size) {
          char value[PROPERTY_VALUE_MAX];
          property_get("ro.crypto.state", value, "");
          if (!strcmp(value, "")) {
            /* default encryption - continue first boot sequence */
            property_set("ro.crypto.state", "encrypted");
            release_wake_lock(lockid);
            cryptfs_check_passwd(DEFAULT_PASSWORD);
            cryptfs_restart_internal(1);
            return 0;
          } else {
            sleep(2); /* Give the UI a chance to show 100% progress */
            cryptfs_reboot(reboot);
          }
        } else {
            sleep(2); /* Partially encrypted, ensure writes flushed to ssd */
            cryptfs_reboot(shutdown);
        }
    } else {
        char value[PROPERTY_VALUE_MAX];

        property_get("ro.vold.wipe_on_crypt_fail", value, "0");
        if (!strcmp(value, "1")) {
            /* wipe data if encryption failed */
            printf("encryption failed - rebooting into recovery to wipe data\n");
            mkdir("/cache/recovery", 0700);
            int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC, 0600);
            if (fd >= 0) {
                write(fd, "--wipe_data\n", strlen("--wipe_data\n") + 1);
                write(fd, "--reason=cryptfs_enable_internal\n", strlen("--reason=cryptfs_enable_internal\n") + 1);
                close(fd);
            } else {
                printf("could not open /cache/recovery/command\n");
            }
            cryptfs_reboot(recovery);
        } else {
            /* set property to trigger dialog */
            property_set("vold.encrypt_progress", "error_partially_encrypted");
            release_wake_lock(lockid);
        }
        return -1;
    }

    /* hrm, the encrypt step claims success, but the reboot failed.
     * This should not happen.
     * Set the property and return.  Hope the framework can deal with it.
     */
    property_set("vold.encrypt_progress", "error_reboot_failed");
    release_wake_lock(lockid);
    return rc;

error_unencrypted:
    free(vol_list);
    property_set("vold.encrypt_progress", "error_not_encrypted");
    if (lockid[0]) {
        release_wake_lock(lockid);
    }
    return -1;

error_shutting_down:
    /* we failed, and have not encrypted anthing, so the users's data is still intact,
     * but the framework is stopped and not restarted to show the error, so it's up to
     * vold to restart the system.
     */
    printf("Error enabling encryption after framework is shutdown, no data changed, restarting system");
    cryptfs_reboot(reboot);

    /* shouldn't get here */
    property_set("vold.encrypt_progress", "error_shutting_down");
    free(vol_list);
    if (lockid[0]) {
        release_wake_lock(lockid);
    }
    return -1;
}

int cryptfs_enable(char *howarg, int type, char *passwd, int allow_reboot)
{
    char* adjusted_passwd = adjust_passwd(passwd);
    if (adjusted_passwd) {
        passwd = adjusted_passwd;
    }

    int rc = cryptfs_enable_internal(howarg, type, passwd, allow_reboot);

    free(adjusted_passwd);
    return rc;
}

int cryptfs_enable_default(char *howarg, int allow_reboot)
{
    return cryptfs_enable_internal(howarg, CRYPT_TYPE_DEFAULT,
                          DEFAULT_PASSWORD, allow_reboot);
}

int cryptfs_changepw(int crypt_type, const char *newpw)
{
    struct crypt_mnt_ftr crypt_ftr;
    unsigned char decrypted_master_key[KEY_LEN_BYTES];

    /* This is only allowed after we've successfully decrypted the master key */
    if (!master_key_saved) {
        printf("Key not saved, aborting");
        return -1;
    }

    if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
        printf("Invalid crypt_type %d", crypt_type);
        return -1;
    }

    /* get key */
    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        printf("Error getting crypt footer and key");
        return -1;
    }

    crypt_ftr.crypt_type = crypt_type;

    char* adjusted_passwd = adjust_passwd(newpw);
    if (adjusted_passwd) {
        newpw = adjusted_passwd;
    }

    encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD
                                                        : newpw,
                       crypt_ftr.salt,
                       saved_master_key,
                       crypt_ftr.master_key,
                       &crypt_ftr);

    /* save the key */
    put_crypt_ftr_and_key(&crypt_ftr);

    free(adjusted_passwd);
    return 0;
}

static int persist_get_key(char *fieldname, char *value)
{
    unsigned int i;

    if (persist_data == NULL) {
        return -1;
    }
    for (i = 0; i < persist_data->persist_valid_entries; i++) {
        if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
            /* We found it! */
            strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX);
            return 0;
        }
    }

    return -1;
}

static int persist_set_key(char *fieldname, char *value, int encrypted)
{
    unsigned int i;
    unsigned int num;
    struct crypt_mnt_ftr crypt_ftr;
    unsigned int max_persistent_entries;
    unsigned int dsize;

    if (persist_data == NULL) {
        return -1;
    }

    /* If encrypted, use the values from the crypt_ftr, otherwise
     * use the values for the current spec.
     */
    if (encrypted) {
        if(get_crypt_ftr_and_key(&crypt_ftr)) {
            return -1;
        }
        dsize = crypt_ftr.persist_data_size;
    } else {
        dsize = CRYPT_PERSIST_DATA_SIZE;
    }
    max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) /
                             sizeof(struct crypt_persist_entry);

    num = persist_data->persist_valid_entries;

    for (i = 0; i < num; i++) {
        if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
            /* We found an existing entry, update it! */
            memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX);
            strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX);
            return 0;
        }
    }

    /* We didn't find it, add it to the end, if there is room */
    if (persist_data->persist_valid_entries < max_persistent_entries) {
        memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry));
        strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX);
        strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX);
        persist_data->persist_valid_entries++;
        return 0;
    }

    return -1;
}

/* Return the value of the specified field. */
int cryptfs_getfield(char *fieldname, char *value, int len)
{
    char temp_value[PROPERTY_VALUE_MAX];
    char real_blkdev[MAXPATHLEN];
    /* 0 is success, 1 is not encrypted,
     * -1 is value not set, -2 is any other error
     */
    int rc = -2;

    if (persist_data == NULL) {
        load_persistent_data();
        if (persist_data == NULL) {
            printf("Getfield error, cannot load persistent data");
            goto out;
        }
    }

    if (!persist_get_key(fieldname, temp_value)) {
        /* We found it, copy it to the caller's buffer and return */
        strlcpy(value, temp_value, len);
        rc = 0;
    } else {
        /* Sadness, it's not there.  Return the error */
        rc = -1;
    }

out:
    return rc;
}

/* Set the value of the specified field. */
int cryptfs_setfield(char *fieldname, char *value)
{
    struct crypt_persist_data stored_pdata;
    struct crypt_persist_data *pdata_p;
    struct crypt_mnt_ftr crypt_ftr;
    char encrypted_state[PROPERTY_VALUE_MAX];
    /* 0 is success, -1 is an error */
    int rc = -1;
    int encrypted = 0;

    if (persist_data == NULL) {
        load_persistent_data();
        if (persist_data == NULL) {
            printf("Setfield error, cannot load persistent data");
            goto out;
        }
    }

    property_get("ro.crypto.state", encrypted_state, "");
    if (!strcmp(encrypted_state, "encrypted") ) {
        encrypted = 1;
    }

    if (persist_set_key(fieldname, value, encrypted)) {
        goto out;
    }

    /* If we are running encrypted, save the persistent data now */
    if (encrypted) {
        if (save_persistent_data()) {
            printf("Setfield error, cannot save persistent data");
            goto out;
        }
    }

    rc = 0;

out:
    return rc;
}

/* Checks userdata. Attempt to mount the volume if default-
 * encrypted.
 * On success trigger next init phase and return 0.
 * Currently do not handle failure - see TODO below.
 */
int cryptfs_mount_default_encrypted(void)
{
    char decrypt_state[PROPERTY_VALUE_MAX];
    property_get("vold.decrypt", decrypt_state, "0");
    if (!strcmp(decrypt_state, "0")) {
        printf("Not encrypted - should not call here");
    } else {
        int crypt_type = cryptfs_get_password_type();
        if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
            printf("Bad crypt type - error");
        } else if (crypt_type != CRYPT_TYPE_DEFAULT) {
            printf("Password is not default - "
                  "starting min framework to prompt");
            property_set("vold.decrypt", "trigger_restart_min_framework");
            return 0;
        } else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) {
            printf("Password is default - restarting filesystem");
            cryptfs_restart_internal(0);
            return 0;
        } else {
            printf("Encrypted, default crypt type but can't decrypt");
        }
    }

    /** Corrupt. Allow us to boot into framework, which will detect bad
        crypto when it calls do_crypto_complete, then do a factory reset
     */
    property_set("vold.decrypt", "trigger_restart_min_framework");
    return 0;
}

/* Returns type of the password, default, pattern, pin or password.
 */
int cryptfs_get_password_type(void)
{
    struct crypt_mnt_ftr crypt_ftr;
    char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)];
    char propbuf[PROPERTY_VALUE_MAX];

    property_get("ro.hardware", propbuf, "");
    snprintf(fstab_filename, sizeof(fstab_filename), FSTAB_PREFIX"%s", propbuf);

    fstab = fs_mgr_read_fstab(fstab_filename);
    if (!fstab) {
        printf("failed to open %s\n", fstab_filename);
        return -1;
    }

    if (get_crypt_ftr_and_key(&crypt_ftr)) {
        printf("Error getting crypt footer and key\n");
        return -1;
    }

    if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
        return -1;
    }

    return crypt_ftr.crypt_type;
}

char* cryptfs_get_password()
{
    struct timespec now;
    clock_gettime(CLOCK_MONOTONIC, &now);
    if (now.tv_sec < password_expiry_time) {
        return password;
    } else {
        cryptfs_clear_password();
        return 0;
    }
}

void cryptfs_clear_password()
{
    if (password) {
        size_t len = strlen(password);
        memset(password, 0, len);
        free(password);
        password = 0;
        password_expiry_time = 0;
    }
}