#include "Globals.h" #include #include "Path.h" #include "../Chunk.h" #define DISTANCE_MANHATTAN 0 // 1: More speed, a bit less accuracy 0: Max accuracy, less speed. #define HEURISTICS_ONLY 0 // 1: Much more speed, much less accurate. #define CALCULATIONS_PER_STEP 5 // Higher means more CPU load but faster path calculations. // The only version which guarantees the shortest path is 0, 0. enum class eCellStatus {OPENLIST, CLOSEDLIST, NOLIST}; struct cPathCell { Vector3i m_Location; // Location of the cell in the world. int m_F, m_G, m_H; // F, G, H as defined in regular A*. eCellStatus m_Status; // Which list is the cell in? Either non, open, or closed. cPathCell * m_Parent; // Cell's parent, as defined in regular A*. bool m_IsSolid; // Is the cell an air or a solid? Partial solids are currently considered solids. }; bool compareHeuristics::operator()(cPathCell * & a_Cell1, cPathCell * & a_Cell2) { return a_Cell1->m_F > a_Cell2->m_F; } /* cPath implementation */ cPath::cPath( cChunk & a_Chunk, const Vector3i & a_StartingPoint, const Vector3i & a_EndingPoint, int a_MaxSteps, double a_BoundingBoxWidth, double a_BoundingBoxHeight, int a_MaxUp, int a_MaxDown ) : m_Destination(a_EndingPoint.Floor()), m_Source(a_StartingPoint.Floor()), m_CurrentPoint(0), // GetNextPoint increments this to 1, but that's fine, since the first cell is always a_StartingPoint m_Chunk(&a_Chunk) { // TODO: if src not walkable OR dest not walkable, then abort. // Borrow a new "isWalkable" from ProcessIfWalkable, make ProcessIfWalkable also call isWalkable if (GetCell(m_Source)->m_IsSolid || GetCell(m_Destination)->m_IsSolid) { m_Status = ePathFinderStatus::PATH_NOT_FOUND; return; } m_Status = ePathFinderStatus::CALCULATING; m_StepsLeft = a_MaxSteps; ProcessCell(GetCell(a_StartingPoint), nullptr, 0); m_Chunk = nullptr; } cPath::~cPath() { if (m_Status == ePathFinderStatus::CALCULATING) { FinishCalculation(); } } ePathFinderStatus cPath::Step(cChunk & a_Chunk) { m_Chunk = &a_Chunk; if (m_Status != ePathFinderStatus::CALCULATING) { return m_Status; } if (m_StepsLeft == 0) { FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND); } else { --m_StepsLeft; int i; for (i = 0; i < CALCULATIONS_PER_STEP; ++i) { if (Step_Internal()) // Step_Internal returns true when no more calculation is needed. { break; // if we're here, m_Status must have changed either to PATH_FOUND or PATH_NOT_FOUND. } } } m_Chunk = nullptr; return m_Status; } bool cPath::IsSolid(const Vector3i & a_Location) { ASSERT(m_Chunk != nullptr); auto Chunk = m_Chunk->GetNeighborChunk(a_Location.x, a_Location.z); if ((Chunk == nullptr) || !Chunk->IsValid()) { return true; } m_Chunk = Chunk; BLOCKTYPE BlockType; NIBBLETYPE BlockMeta; int RelX = a_Location.x - m_Chunk->GetPosX() * cChunkDef::Width; int RelZ = a_Location.z - m_Chunk->GetPosZ() * cChunkDef::Width; m_Chunk->GetBlockTypeMeta(RelX, a_Location.y, RelZ, BlockType, BlockMeta); if ((BlockType == E_BLOCK_FENCE) || (BlockType == E_BLOCK_FENCE_GATE)) { GetCell(a_Location + Vector3i(0, 1, 0))->m_IsSolid = true; // Mobs will always think that the fence is 2 blocks high and therefore won't jump over. } if (BlockType == E_BLOCK_STATIONARY_WATER) { GetCell(a_Location + Vector3i(0, -1, 0))->m_IsSolid = true; // Mobs will always think that the fence is 2 blocks high and therefore won't jump over. } return cBlockInfo::IsSolid(BlockType); } bool cPath::Step_Internal() { cPathCell * CurrentCell = OpenListPop(); // Path not reachable, open list exauhsted. if (CurrentCell == nullptr) { FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND); ASSERT(m_Status == ePathFinderStatus::PATH_NOT_FOUND); return true; } // Path found. if ( (CurrentCell->m_Location == m_Destination + Vector3i(0, 0, 1)) || (CurrentCell->m_Location == m_Destination + Vector3i(1, 0, 0)) || (CurrentCell->m_Location == m_Destination + Vector3i(-1, 0, 0)) || (CurrentCell->m_Location == m_Destination + Vector3i(0, 0, -1)) || (CurrentCell->m_Location == m_Destination + Vector3i(0, -1, 0)) ) { do { m_PathPoints.push_back(CurrentCell->m_Location); // Populate the cPath with points. CurrentCell = CurrentCell->m_Parent; } while (CurrentCell != nullptr); FinishCalculation(ePathFinderStatus::PATH_FOUND); return true; } // Calculation not finished yet, process a currentCell by inspecting all neighbors. // Check North, South, East, West on all 3 different heights. int i; for (i = -1; i <= 1; ++i) { ProcessIfWalkable(CurrentCell->m_Location + Vector3i(1, i, 0), CurrentCell, 10); ProcessIfWalkable(CurrentCell->m_Location + Vector3i(-1, i, 0), CurrentCell, 10); ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, i, 1), CurrentCell, 10); ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, i, -1), CurrentCell, 10); } // Check diagonals on mob's height only. int x, z; for (x = -1; x <= 1; x += 2) { for (z = -1; z <= 1; z += 2) { // This condition prevents diagonal corner cutting. if (!GetCell(CurrentCell->m_Location + Vector3i(x, 0, 0))->m_IsSolid && !GetCell(CurrentCell->m_Location + Vector3i(0, 0, z))->m_IsSolid) { // This prevents falling of "sharp turns" e.g. a 1x1x20 rectangle in the air which breaks in a right angle suddenly. if (GetCell(CurrentCell->m_Location + Vector3i(x, -1, 0))->m_IsSolid && GetCell(CurrentCell->m_Location + Vector3i(0, -1, z))->m_IsSolid) { ProcessIfWalkable(CurrentCell->m_Location + Vector3i(x, 0, z), CurrentCell, 14); // 14 is a good enough approximation of sqrt(10 + 10). } } } } return false; } void cPath::FinishCalculation() { for (auto && pair : m_Map) { delete pair.second; } m_Map.clear(); m_OpenList = std::priority_queue, compareHeuristics>{}; } void cPath::FinishCalculation(ePathFinderStatus a_NewStatus) { m_Status = a_NewStatus; FinishCalculation(); } void cPath::OpenListAdd(cPathCell * a_Cell) { a_Cell->m_Status = eCellStatus::OPENLIST; m_OpenList.push(a_Cell); #ifdef COMPILING_PATHFIND_DEBUGGER si::setBlock(a_Cell->m_Location.x, a_Cell->m_Location.y, a_Cell->m_Location.z, debug_open, SetMini(a_Cell)); #endif } cPathCell * cPath::OpenListPop() // Popping from the open list also means adding to the closed list. { if (m_OpenList.size() == 0) { return nullptr; // We've exhausted the search space and nothing was found, this will trigger a PATH_NOT_FOUND status. } cPathCell * Ret = m_OpenList.top(); m_OpenList.pop(); Ret->m_Status = eCellStatus::CLOSEDLIST; #ifdef COMPILING_PATHFIND_DEBUGGER si::setBlock((Ret)->m_Location.x, (Ret)->m_Location.y, (Ret)->m_Location.z, debug_closed, SetMini(Ret)); #endif return Ret; } void cPath::ProcessIfWalkable(const Vector3i & a_Location, cPathCell * a_Parent, int a_Cost) { cPathCell * cell = GetCell(a_Location); if (!cell->m_IsSolid && GetCell(a_Location + Vector3i(0, -1, 0))->m_IsSolid && !GetCell(a_Location + Vector3i(0, 1, 0))->m_IsSolid) { ProcessCell(cell, a_Parent, a_Cost); } } void cPath::ProcessCell(cPathCell * a_Cell, cPathCell * a_Caller, int a_GDelta) { // Case 1: Cell is in the closed list, ignore it. if (a_Cell->m_Status == eCellStatus::CLOSEDLIST) { return; } if (a_Cell->m_Status == eCellStatus::NOLIST) // Case 2: The cell is not in any list. { // Cell is walkable, add it to the open list. // Note that non-walkable cells are filtered out in Step_internal(); // Special case: Start cell goes here, gDelta is 0, caller is NULL. a_Cell->m_Parent = a_Caller; if (a_Caller != nullptr) { a_Cell->m_G = a_Caller->m_G + a_GDelta; } else { a_Cell->m_G = 0; } // Calculate H. This is A*'s Heuristics value. #if DISTANCE_MANHATTAN == 1 // Manhattan distance. DeltaX + DeltaY + DeltaZ. a_Cell->m_H = 10 * (abs(a_Cell->m_Location.x-m_Destination.x) + abs(a_Cell->m_Location.y-m_Destination.y) + abs(a_Cell->m_Location.z-m_Destination.z)); #else // Euclidian distance. sqrt(DeltaX^2 + DeltaY^2 + DeltaZ^2), more precise. a_Cell->m_H = static_castm_H)>((a_Cell->m_Location - m_Destination).Length() * 10); #endif #if HEURISTICS_ONLY == 1 a_Cell->m_F = a_Cell->m_H; // Greedy search. https://en.wikipedia.org/wiki/Greedy_search #else a_Cell->m_F = a_Cell->m_H + a_Cell->m_G; // Regular A*. #endif OpenListAdd(a_Cell); return; } // Case 3: Cell is in the open list, check if G and H need an update. int NewG = a_Caller->m_G + a_GDelta; if (NewG < a_Cell->m_G) { a_Cell->m_G = NewG; a_Cell->m_H = a_Cell->m_F + a_Cell->m_G; a_Cell->m_Parent = a_Caller; } } cPathCell * cPath::GetCell(const Vector3i & a_Location) { // Create the cell in the hash table if it's not already there. cPathCell * Cell; if (m_Map.count(a_Location) == 0) // Case 1: Cell is not on any list. We've never checked this cell before. { Cell = new cPathCell(); Cell->m_Location = a_Location; m_Map[a_Location] = Cell; Cell->m_IsSolid = IsSolid(a_Location); Cell->m_Status = eCellStatus::NOLIST; #ifdef COMPILING_PATHFIND_DEBUGGER #ifdef COMPILING_PATHFIND_DEBUGGER_MARK_UNCHECKED si::setBlock(a_Location.x, a_Location.y, a_Location.z, debug_unchecked, Cell->m_IsSolid ? NORMAL : MINI); #endif #endif return Cell; } else { return m_Map[a_Location]; } }