1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
|
from __future__ import annotations
import asyncio
import uuid
import json
import os
try:
from py_arkose_generator.arkose import get_values_for_request
from async_property import async_cached_property
has_requirements = True
except ImportError:
async_cached_property = property
has_requirements = False
try:
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
except ImportError:
pass
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import get_cookies
from ...webdriver import get_browser
from ...typing import AsyncResult, Messages, Cookies, ImageType, Union
from ...requests import get_args_from_browser
from ...requests.aiohttp import StreamSession
from ...image import to_image, to_bytes, ImageResponse, ImageRequest
from ...errors import MissingRequirementsError, MissingAuthError
from ... import debug
class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
"""A class for creating and managing conversations with OpenAI chat service"""
url = "https://chat.openai.com"
working = True
needs_auth = True
supports_gpt_35_turbo = True
supports_gpt_4 = True
supports_message_history = True
default_model = None
models = ["gpt-3.5-turbo", "gpt-4", "gpt-4-gizmo"]
model_aliases = {"text-davinci-002-render-sha": "gpt-3.5-turbo"}
_args: dict = None
@classmethod
async def create(
cls,
prompt: str = None,
model: str = "",
messages: Messages = [],
history_disabled: bool = False,
action: str = "next",
conversation_id: str = None,
parent_id: str = None,
image: ImageType = None,
**kwargs
) -> Response:
"""
Create a new conversation or continue an existing one
Args:
prompt: The user input to start or continue the conversation
model: The name of the model to use for generating responses
messages: The list of previous messages in the conversation
history_disabled: A flag indicating if the history and training should be disabled
action: The type of action to perform, either "next", "continue", or "variant"
conversation_id: The ID of the existing conversation, if any
parent_id: The ID of the parent message, if any
image: The image to include in the user input, if any
**kwargs: Additional keyword arguments to pass to the generator
Returns:
A Response object that contains the generator, action, messages, and options
"""
# Add the user input to the messages list
if prompt:
messages.append({
"role": "user",
"content": prompt
})
generator = cls.create_async_generator(
model,
messages,
history_disabled=history_disabled,
action=action,
conversation_id=conversation_id,
parent_id=parent_id,
image=image,
response_fields=True,
**kwargs
)
return Response(
generator,
action,
messages,
kwargs
)
@classmethod
async def upload_image(
cls,
session: StreamSession,
headers: dict,
image: ImageType,
image_name: str = None
) -> ImageRequest:
"""
Upload an image to the service and get the download URL
Args:
session: The StreamSession object to use for requests
headers: The headers to include in the requests
image: The image to upload, either a PIL Image object or a bytes object
Returns:
An ImageRequest object that contains the download URL, file name, and other data
"""
# Convert the image to a PIL Image object and get the extension
image = to_image(image)
extension = image.format.lower()
# Convert the image to a bytes object and get the size
data_bytes = to_bytes(image)
data = {
"file_name": image_name if image_name else f"{image.width}x{image.height}.{extension}",
"file_size": len(data_bytes),
"use_case": "multimodal"
}
# Post the image data to the service and get the image data
async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
response.raise_for_status()
image_data = {
**data,
**await response.json(),
"mime_type": f"image/{extension}",
"extension": extension,
"height": image.height,
"width": image.width
}
# Put the image bytes to the upload URL and check the status
async with session.put(
image_data["upload_url"],
data=data_bytes,
headers={
"Content-Type": image_data["mime_type"],
"x-ms-blob-type": "BlockBlob"
}
) as response:
response.raise_for_status()
# Post the file ID to the service and get the download URL
async with session.post(
f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
json={},
headers=headers
) as response:
response.raise_for_status()
image_data["download_url"] = (await response.json())["download_url"]
return ImageRequest(image_data)
@classmethod
async def get_default_model(cls, session: StreamSession, headers: dict):
"""
Get the default model name from the service
Args:
session: The StreamSession object to use for requests
headers: The headers to include in the requests
Returns:
The default model name as a string
"""
if not cls.default_model:
async with session.get(f"{cls.url}/backend-api/models", headers=headers) as response:
cls._update_request_args(session)
response.raise_for_status()
data = await response.json()
if "categories" in data:
cls.default_model = data["categories"][-1]["default_model"]
return cls.default_model
raise RuntimeError(f"Response: {data}")
return cls.default_model
@classmethod
def create_messages(cls, messages: Messages, image_request: ImageRequest = None):
"""
Create a list of messages for the user input
Args:
prompt: The user input as a string
image_response: The image response object, if any
Returns:
A list of messages with the user input and the image, if any
"""
# Create a message object with the user role and the content
messages = [{
"id": str(uuid.uuid4()),
"author": {"role": message["role"]},
"content": {"content_type": "text", "parts": [message["content"]]},
} for message in messages]
# Check if there is an image response
if image_request:
# Change content in last user message
messages[-1]["content"] = {
"content_type": "multimodal_text",
"parts": [{
"asset_pointer": f"file-service://{image_request.get('file_id')}",
"height": image_request.get("height"),
"size_bytes": image_request.get("file_size"),
"width": image_request.get("width"),
}, messages[-1]["content"]["parts"][0]]
}
# Add the metadata object with the attachments
messages[-1]["metadata"] = {
"attachments": [{
"height": image_request.get("height"),
"id": image_request.get("file_id"),
"mimeType": image_request.get("mime_type"),
"name": image_request.get("file_name"),
"size": image_request.get("file_size"),
"width": image_request.get("width"),
}]
}
return messages
@classmethod
async def get_generated_image(cls, session: StreamSession, headers: dict, line: dict) -> ImageResponse:
"""
Retrieves the image response based on the message content.
This method processes the message content to extract image information and retrieves the
corresponding image from the backend API. It then returns an ImageResponse object containing
the image URL and the prompt used to generate the image.
Args:
session (StreamSession): The StreamSession object used for making HTTP requests.
headers (dict): HTTP headers to be used for the request.
line (dict): A dictionary representing the line of response that contains image information.
Returns:
ImageResponse: An object containing the image URL and the prompt, or None if no image is found.
Raises:
RuntimeError: If there'san error in downloading the image, including issues with the HTTP request or response.
"""
if "parts" not in line["message"]["content"]:
return
first_part = line["message"]["content"]["parts"][0]
if "asset_pointer" not in first_part or "metadata" not in first_part:
return
if first_part["metadata"] is None:
return
prompt = first_part["metadata"]["dalle"]["prompt"]
file_id = first_part["asset_pointer"].split("file-service://", 1)[1]
try:
async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response:
response.raise_for_status()
download_url = (await response.json())["download_url"]
return ImageResponse(download_url, prompt)
except Exception as e:
raise RuntimeError(f"Error in downloading image: {e}")
@classmethod
async def delete_conversation(cls, session: StreamSession, headers: dict, conversation_id: str):
"""
Deletes a conversation by setting its visibility to False.
This method sends an HTTP PATCH request to update the visibility of a conversation.
It's used to effectively delete a conversation from being accessed or displayed in the future.
Args:
session (StreamSession): The StreamSession object used for making HTTP requests.
headers (dict): HTTP headers to be used for the request.
conversation_id (str): The unique identifier of the conversation to be deleted.
Raises:
HTTPError: If the HTTP request fails or returns an unsuccessful status code.
"""
async with session.patch(
f"{cls.url}/backend-api/conversation/{conversation_id}",
json={"is_visible": False},
headers=headers
) as response:
response.raise_for_status()
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
timeout: int = 120,
api_key: str = None,
cookies: Cookies = None,
auto_continue: bool = False,
history_disabled: bool = True,
action: str = "next",
conversation_id: str = None,
parent_id: str = None,
image: ImageType = None,
response_fields: bool = False,
**kwargs
) -> AsyncResult:
"""
Create an asynchronous generator for the conversation.
Args:
model (str): The model name.
messages (Messages): The list of previous messages.
proxy (str): Proxy to use for requests.
timeout (int): Timeout for requests.
api_key (str): Access token for authentication.
cookies (dict): Cookies to use for authentication.
auto_continue (bool): Flag to automatically continue the conversation.
history_disabled (bool): Flag to disable history and training.
action (str): Type of action ('next', 'continue', 'variant').
conversation_id (str): ID of the conversation.
parent_id (str): ID of the parent message.
image (ImageType): Image to include in the conversation.
response_fields (bool): Flag to include response fields in the output.
**kwargs: Additional keyword arguments.
Yields:
AsyncResult: Asynchronous results from the generator.
Raises:
RuntimeError: If an error occurs during processing.
"""
if not has_requirements:
raise MissingRequirementsError('Install "py-arkose-generator" and "async_property" package')
if not parent_id:
parent_id = str(uuid.uuid4())
# Read api_key from args
api_key = kwargs["access_token"] if "access_token" in kwargs else api_key
if cls._args is None:
if api_key is None:
# Read api_key from cookies
cookies = get_cookies("chat.openai.com", False) if cookies is None else cookies
api_key = cookies["access_token"] if "access_token" in cookies else api_key
cls._args = cls._create_request_args(cookies)
async with StreamSession(
proxies={"https": proxy},
impersonate="chrome",
timeout=timeout
) as session:
if api_key is None and cookies:
# Read api_key from session
api_key = await cls.fetch_access_token(session, cls._args["headers"])
if api_key is not None:
cls._args["headers"]["Authorization"] = f"Bearer {api_key}"
try:
cls.default_model = await cls.get_default_model(session, cls._args["headers"])
except Exception as e:
if debug.logging:
print(f"{e.__class__.__name__}: {e}")
if cls.default_model is None:
login_url = os.environ.get("G4F_LOGIN_URL")
if login_url:
yield f"Please login: [ChatGPT]({login_url})\n\n"
try:
cls._args = cls.browse_access_token(proxy)
except MissingRequirementsError:
raise MissingAuthError(f'Missing or invalid "access_token". Add a new "api_key" please')
cls.default_model = await cls.get_default_model(session, cls._args["headers"])
try:
image_response = await cls.upload_image(
session,
cls._args["headers"],
image,
kwargs.get("image_name")
) if image else None
except Exception as e:
yield e
end_turn = EndTurn()
model = cls.get_model(model)
model = "text-davinci-002-render-sha" if model == "gpt-3.5-turbo" else model
while not end_turn.is_end:
arkose_token = await cls.get_arkose_token(session)
data = {
"action": action,
"arkose_token": arkose_token,
"conversation_mode": {"kind": "primary_assistant"},
"force_paragen": False,
"force_rate_limit": False,
"conversation_id": conversation_id,
"parent_message_id": parent_id,
"model": model,
"history_and_training_disabled": history_disabled and not auto_continue,
}
if action != "continue":
messages = messages if not conversation_id else [messages[-1]]
data["messages"] = cls.create_messages(messages, image_response)
async with session.post(
f"{cls.url}/backend-api/conversation",
json=data,
headers={
"Accept": "text/event-stream",
"OpenAI-Sentinel-Arkose-Token": arkose_token,
**cls._args["headers"]
}
) as response:
cls._update_request_args(session)
if not response.ok:
raise RuntimeError(f"Response {response.status}: {await response.text()}")
last_message: int = 0
async for line in response.iter_lines():
if not line.startswith(b"data: "):
continue
elif line.startswith(b"data: [DONE]"):
break
try:
line = json.loads(line[6:])
except:
continue
if "message" not in line:
continue
if "error" in line and line["error"]:
raise RuntimeError(line["error"])
if "message_type" not in line["message"]["metadata"]:
continue
try:
image_response = await cls.get_generated_image(session, cls._args["headers"], line)
if image_response is not None:
yield image_response
except Exception as e:
yield e
if line["message"]["author"]["role"] != "assistant":
continue
if line["message"]["content"]["content_type"] != "text":
continue
if line["message"]["metadata"]["message_type"] not in ("next", "continue", "variant"):
continue
conversation_id = line["conversation_id"]
parent_id = line["message"]["id"]
if response_fields:
response_fields = False
yield ResponseFields(conversation_id, parent_id, end_turn)
if "parts" in line["message"]["content"]:
new_message = line["message"]["content"]["parts"][0]
if len(new_message) > last_message:
yield new_message[last_message:]
last_message = len(new_message)
if "finish_details" in line["message"]["metadata"]:
if line["message"]["metadata"]["finish_details"]["type"] == "stop":
end_turn.end()
if not auto_continue:
break
action = "continue"
await asyncio.sleep(5)
if history_disabled and auto_continue:
await cls.delete_conversation(session, cls._args["headers"], conversation_id)
@classmethod
def browse_access_token(cls, proxy: str = None, timeout: int = 1200) -> tuple[str, dict]:
"""
Browse to obtain an access token.
Args:
proxy (str): Proxy to use for browsing.
Returns:
tuple[str, dict]: A tuple containing the access token and cookies.
"""
driver = get_browser(proxy=proxy)
try:
driver.get(f"{cls.url}/")
WebDriverWait(driver, timeout).until(EC.presence_of_element_located((By.ID, "prompt-textarea")))
access_token = driver.execute_script(
"let session = await fetch('/api/auth/session');"
"let data = await session.json();"
"let accessToken = data['accessToken'];"
"let expires = new Date(); expires.setTime(expires.getTime() + 60 * 60 * 4 * 1000);"
"document.cookie = 'access_token=' + accessToken + ';expires=' + expires.toUTCString() + ';path=/';"
"return accessToken;"
)
args = get_args_from_browser(f"{cls.url}/", driver, do_bypass_cloudflare=False)
args["headers"]["Authorization"] = f"Bearer {access_token}"
args["headers"]["Cookie"] = cls._format_cookies(args["cookies"])
return args
finally:
driver.close()
@classmethod
async def get_arkose_token(cls, session: StreamSession) -> str:
"""
Obtain an Arkose token for the session.
Args:
session (StreamSession): The session object.
Returns:
str: The Arkose token.
Raises:
RuntimeError: If unable to retrieve the token.
"""
config = {
"pkey": "3D86FBBA-9D22-402A-B512-3420086BA6CC",
"surl": "https://tcr9i.chat.openai.com",
"headers": {
"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36'
},
"site": cls.url,
}
args_for_request = get_values_for_request(config)
async with session.post(**args_for_request) as response:
response.raise_for_status()
decoded_json = await response.json()
if "token" in decoded_json:
return decoded_json["token"]
raise RuntimeError(f"Response: {decoded_json}")
@classmethod
async def fetch_access_token(cls, session: StreamSession, headers: dict):
async with session.get(
f"{cls.url}/api/auth/session",
headers=headers
) as response:
if response.ok:
data = await response.json()
if "accessToken" in data:
return data["accessToken"]
@staticmethod
def _format_cookies(cookies: Cookies):
return "; ".join(f"{k}={v}" for k, v in cookies.items() if k != "access_token")
@classmethod
def _create_request_args(cls, cookies: Union[Cookies, None]):
return {
"headers": {} if cookies is None else {"Cookie": cls._format_cookies(cookies)},
"cookies": {} if cookies is None else cookies
}
@classmethod
def _update_request_args(cls, session: StreamSession):
for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar:
cls._args["cookies"][c.name if hasattr(c, "name") else c.key] = c.value
cls._args["headers"]["Cookie"] = cls._format_cookies(cls._args["cookies"])
class EndTurn:
"""
Class to represent the end of a conversation turn.
"""
def __init__(self):
self.is_end = False
def end(self):
self.is_end = True
class ResponseFields:
"""
Class to encapsulate response fields.
"""
def __init__(self, conversation_id: str, message_id: str, end_turn: EndTurn):
self.conversation_id = conversation_id
self.message_id = message_id
self._end_turn = end_turn
class Response():
"""
Class to encapsulate a response from the chat service.
"""
def __init__(
self,
generator: AsyncResult,
action: str,
messages: Messages,
options: dict
):
self._generator = generator
self.action = action
self.is_end = False
self._message = None
self._messages = messages
self._options = options
self._fields = None
async def generator(self):
if self._generator:
self._generator = None
chunks = []
async for chunk in self._generator:
if isinstance(chunk, ResponseFields):
self._fields = chunk
else:
yield chunk
chunks.append(str(chunk))
self._message = "".join(chunks)
if not self._fields:
raise RuntimeError("Missing response fields")
self.is_end = self._fields._end_turn.is_end
def __aiter__(self):
return self.generator()
@async_cached_property
async def message(self) -> str:
await self.generator()
return self._message
async def get_fields(self):
await self.generator()
return {"conversation_id": self._fields.conversation_id, "parent_id": self._fields.message_id}
async def next(self, prompt: str, **kwargs) -> Response:
return await OpenaiChat.create(
**self._options,
prompt=prompt,
messages=await self.messages,
action="next",
**await self.get_fields(),
**kwargs
)
async def do_continue(self, **kwargs) -> Response:
fields = await self.get_fields()
if self.is_end:
raise RuntimeError("Can't continue message. Message already finished.")
return await OpenaiChat.create(
**self._options,
messages=await self.messages,
action="continue",
**fields,
**kwargs
)
async def variant(self, **kwargs) -> Response:
if self.action != "next":
raise RuntimeError("Can't create variant from continue or variant request.")
return await OpenaiChat.create(
**self._options,
messages=self._messages,
action="variant",
**await self.get_fields(),
**kwargs
)
@async_cached_property
async def messages(self):
messages = self._messages
messages.append({"role": "assistant", "content": await self.message})
return messages
|