From 600bf0351476a5a21aabb5429132ddf7f52ac0b9 Mon Sep 17 00:00:00 2001 From: aap Date: Wed, 15 May 2019 16:52:37 +0200 Subject: first commit --- src/Collision.cpp | 1629 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1629 insertions(+) create mode 100644 src/Collision.cpp (limited to 'src/Collision.cpp') diff --git a/src/Collision.cpp b/src/Collision.cpp new file mode 100644 index 00000000..14b3adcd --- /dev/null +++ b/src/Collision.cpp @@ -0,0 +1,1629 @@ +#include "common.h" +#include "patcher.h" +#include "Game.h" +#include "General.h" +#include "RenderBuffer.h" +#include "SurfaceTable.h" +#include "Collision.h" + +enum Direction +{ + DIR_X_POS, + DIR_X_NEG, + DIR_Y_POS, + DIR_Y_NEG, + DIR_Z_POS, + DIR_Z_NEG, +}; + +eLevelName &CCollision::ms_collisionInMemory = *(eLevelName*)0x8F6250; +CLinkList &CCollision::ms_colModelCache = *(CLinkList*)0x95CB58; + +#if 0 + +void +CCollision::Init(void) +{ + ms_colModelCache.Init(NUMCOLCACHELINKS); + ms_collisionInMemory = LEVEL_NONE; +} + +void +CCollision::Update(void) +{ + CVector pos = FindPlayerCoors(); + eLevelName level = CTheZones::m_CurrLevel; + bool changeLevel = false; + + // hardcode a level if there are no zones + if(level == LEVEL_NONE){ + if(CGame::currLevel == LEVEL_INDUSTRIAL && + pos.x < 400.0f){ + level = LEVEL_COMMERCIAL; + changeLevel = true; + }else if(CGame::currLevel == LEVEL_SUBURBAN && + pos.x > -450.0f && pos.y < -1400.0f){ + level = LEVEL_COMMERCIAL; + changeLevel = true; + }else{ + if(pos.x > 800.0f){ + level = LEVEL_INDUSTRIAL; + changeLevel = true; + }else if(pos.x < -800.0f){ + level = LEVEL_SUBURBAN; + changeLevel = true; + } + } + } + if(level != LEVEL_NONE && level != CGame::currLevel){ + debug("changing level %d -> %d\n", CGame::currLevel, level); + CGame::currLevel = level; + } + if(ms_collisionInMemory != CGame::currLevel) + LoadCollisionWhenINeedIt(changeLevel); + CStreaming::HaveAllBigBuildingsLoaded(CGame::currLevel); +} + +void +CCollision::LoadCollisionWhenINeedIt(bool changeLevel) +{ + eLevelName level; + level = LEVEL_NONE; + if(!changeLevel){ + //assert(0 && "unimplemented"); + } + + if(level != CGame::currLevel || changeLevel){ + CTimer::Stop(); + CStreaming::RemoveIslandsNotUsed(LEVEL_INDUSTRIAL); + CStreaming::RemoveIslandsNotUsed(LEVEL_COMMERCIAL); + CStreaming::RemoveIslandsNotUsed(LEVEL_SUBURBAN); + CStreaming::RemoveBigBuildings(LEVEL_INDUSTRIAL); + CStreaming::RemoveBigBuildings(LEVEL_COMMERCIAL); + CStreaming::RemoveBigBuildings(LEVEL_SUBURBAN); + ms_collisionInMemory = CGame::currLevel; + CStreaming::RemoveUnusedBigBuildings(CGame::currLevel); + CStreaming::RemoveUnusedBuildings(CGame::currLevel); + CStreaming::RequestBigBuildings(CGame::currLevel); + CStreaming::LoadAllRequestedModels(); + CStreaming::HaveAllBigBuildingsLoaded(CGame::currLevel); + CTimer::Update(); + } +} + +#endif + +// +// Test +// + + +bool +CCollision::TestSphereSphere(const CColSphere &s1, const CColSphere &s2) +{ + float d = s1.radius + s2.radius; + return (s1.center - s2.center).MagnitudeSqr() < d*d; +} + +bool +CCollision::TestSphereBox(const CColSphere &sph, const CColBox &box) +{ + if(sph.center.x + sph.radius < box.min.x) return false; + if(sph.center.x - sph.radius > box.max.x) return false; + if(sph.center.y + sph.radius < box.min.y) return false; + if(sph.center.y - sph.radius > box.max.y) return false; + if(sph.center.z + sph.radius < box.min.z) return false; + if(sph.center.z - sph.radius > box.max.z) return false; + return true; +} + +bool +CCollision::TestLineBox(const CColLine &line, const CColBox &box) +{ + float t, x, y, z; + // If either line point is in the box, we have a collision + if(line.p0.x > box.min.x && line.p0.x < box.max.x && + line.p0.y > box.min.y && line.p0.y < box.max.y && + line.p0.z > box.min.z && line.p0.z < box.max.z) + return true; + if(line.p1.x > box.min.x && line.p1.x < box.max.x && + line.p1.y > box.min.y && line.p1.y < box.max.y && + line.p1.z > box.min.z && line.p1.z < box.max.z) + return true; + + // check if points are on opposite sides of min x plane + if((box.min.x - line.p1.x) * (box.min.x - line.p0.x) < 0.0f){ + // parameter along line where we intersect + t = (box.min.x - line.p0.x) / (line.p1.x - line.p0.x); + // y of intersection + y = line.p0.y + (line.p1.y - line.p0.y)*t; + if(y > box.min.y && y < box.max.y){ + // z of intersection + z = line.p0.z + (line.p1.z - line.p0.z)*t; + if(z > box.min.z && z < box.max.z) + return true; + } + } + + // same test with max x plane + if((line.p1.x - box.max.x) * (line.p0.x - box.max.x) < 0.0f){ + t = (line.p0.x - box.max.x) / (line.p0.x - line.p1.x); + y = line.p0.y + (line.p1.y - line.p0.y)*t; + if(y > box.min.y && y < box.max.y){ + z = line.p0.z + (line.p1.z - line.p0.z)*t; + if(z > box.min.z && z < box.max.z) + return true; + } + } + + // min y plne + if((box.min.y - line.p0.y) * (box.min.y - line.p1.y) < 0.0f){ + t = (box.min.y - line.p0.y) / (line.p1.y - line.p0.y); + x = line.p0.x + (line.p1.x - line.p0.x)*t; + if(x > box.min.x && x < box.max.x){ + z = line.p0.z + (line.p1.z - line.p0.z)*t; + if(z > box.min.z && z < box.max.z) + return true; + } + } + + // max y plane + if((line.p0.y - box.max.y) * (line.p1.y - box.max.y) < 0.0f){ + t = (line.p0.y - box.max.y) / (line.p0.y - line.p1.y); + x = line.p0.x + (line.p1.x - line.p0.x)*t; + if(x > box.min.x && x < box.max.x){ + z = line.p0.z + (line.p1.z - line.p0.z)*t; + if(z > box.min.z && z < box.max.z) + return true; + } + } + + // min z plne + if((box.min.z - line.p0.z) * (box.min.z - line.p1.z) < 0.0f){ + t = (box.min.z - line.p0.z) / (line.p1.z - line.p0.z); + x = line.p0.x + (line.p1.x - line.p0.x)*t; + if(x > box.min.x && x < box.max.x){ + y = line.p0.y + (line.p1.y - line.p0.y)*t; + if(y > box.min.y && y < box.max.y) + return true; + } + } + + // max z plane + if((line.p0.z - box.max.z) * (line.p1.z - box.max.z) < 0.0f){ + t = (line.p0.z - box.max.z) / (line.p0.z - line.p1.z); + x = line.p0.x + (line.p1.x - line.p0.x)*t; + if(x > box.min.x && x < box.max.x){ + y = line.p0.y + (line.p1.y - line.p0.y)*t; + if(y > box.min.y && y < box.max.y) + return true; + } + } + return false; +} + +bool +CCollision::TestVerticalLineBox(const CColLine &line, const CColBox &box) +{ + if(line.p0.x <= box.min.x) return false; + if(line.p0.y <= box.min.y) return false; + if(line.p0.x >= box.max.x) return false; + if(line.p0.y >= box.max.y) return false; + if(line.p0.z < line.p1.z){ + if(line.p0.z > box.max.z) return false; + if(line.p1.z < box.min.z) return false; + }else{ + if(line.p1.z > box.max.z) return false; + if(line.p0.z < box.min.z) return false; + } + return true; +} + +bool +CCollision::TestLineTriangle(const CColLine &line, const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane) +{ + float t; + CVector normal; + plane.GetNormal(normal); + + // if points are on the same side, no collision + if(plane.CalcPoint(line.p0) * plane.CalcPoint(line.p1) > 0.0f) + return false; + + // intersection parameter on line + t = -plane.CalcPoint(line.p0) / DotProduct(line.p1 - line.p0, normal); + // find point of intersection + CVector p = line.p0 + (line.p1-line.p0)*t; + + const CVector &va = verts[tri.a]; + const CVector &vb = verts[tri.b]; + const CVector &vc = verts[tri.c]; + CVector2D vec1, vec2, vec3, vect; + + // We do the test in 2D. With the plane direction we + // can figure out how to project the vectors. + // normal = (c-a) x (b-a) + switch(plane.dir){ + case DIR_X_POS: + vec1.x = va.y; vec1.y = va.z; + vec2.x = vc.y; vec2.y = vc.z; + vec3.x = vb.y; vec3.y = vb.z; + vect.x = p.y; vect.y = p.z; + break; + case DIR_X_NEG: + vec1.x = va.y; vec1.y = va.z; + vec2.x = vb.y; vec2.y = vb.z; + vec3.x = vc.y; vec3.y = vc.z; + vect.x = p.y; vect.y = p.z; + break; + case DIR_Y_POS: + vec1.x = va.z; vec1.y = va.x; + vec2.x = vc.z; vec2.y = vc.x; + vec3.x = vb.z; vec3.y = vb.x; + vect.x = p.z; vect.y = p.x; + break; + case DIR_Y_NEG: + vec1.x = va.z; vec1.y = va.x; + vec2.x = vb.z; vec2.y = vb.x; + vec3.x = vc.z; vec3.y = vc.x; + vect.x = p.z; vect.y = p.x; + break; + case DIR_Z_POS: + vec1.x = va.x; vec1.y = va.y; + vec2.x = vc.x; vec2.y = vc.y; + vec3.x = vb.x; vec3.y = vb.y; + vect.x = p.x; vect.y = p.y; + break; + case DIR_Z_NEG: + vec1.x = va.x; vec1.y = va.y; + vec2.x = vb.x; vec2.y = vb.y; + vec3.x = vc.x; vec3.y = vc.y; + vect.x = p.x; vect.y = p.y; + break; + default: + assert(0); + } + // This is our triangle: + // 3-------2 + // \ P / + // \ / + // \ / + // 1 + // We can use the "2d cross product" to check on which side + // a vector is of another. Test is true if point is inside of all edges. + if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false; + if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false; + if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false; + return true; +} + +// Test if line segment intersects with sphere. +// If the first point is inside the sphere this test does not register a collision! +// The code is reversed from the original code and rather ugly, see Process for a clear version. +// TODO: actually rewrite this mess +bool +CCollision::TestLineSphere(const CColLine &line, const CColSphere &sph) +{ + CVector v01 = line.p1 - line.p0; // vector from p0 to p1 + CVector v0c = sph.center - line.p0; // vector from p0 to center + float linesq = v01.MagnitudeSqr(); + // I leave in the strange -2 factors even though they serve no real purpose + float projline = -2.0f * DotProduct(v01, v0c); // project v0c onto line + // Square of tangent from p0 multiplied by line length so we can compare with projline. + // The length of the tangent would be this: sqrt((c-p0)^2 - r^2). + // Negative if p0 is inside the sphere! This breaks the test! + float tansq = 4.0f * linesq * + (sph.center.MagnitudeSqr() - 2.0f*DotProduct(sph.center, line.p0) + line.p0.MagnitudeSqr() - sph.radius*sph.radius); + float diffsq = projline*projline - tansq; + // if diffsq < 0 that means the line is a passant, so no intersection + if(diffsq < 0.0f) + return false; + // projline (negative in GTA for some reason) is the point on the line + // in the middle of the two intersection points (startin from p0). + // sqrt(diffsq) somehow works out to be the distance from that + // midpoint to the intersection points. + // So subtract that and get rid of the awkward scaling: + float f = (-projline - sqrt(diffsq)) / (2.0f*linesq); + // f should now be in range [0, 1] for [p0, p1] + return f >= 0.0f && f <= 1.0f; +} + +bool +CCollision::TestSphereTriangle(const CColSphere &sphere, + const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane) +{ + // If sphere and plane don't intersect, no collision + if(fabs(plane.CalcPoint(sphere.center)) > sphere.radius) + return false; + + const CVector &va = verts[tri.a]; + const CVector &vb = verts[tri.b]; + const CVector &vc = verts[tri.c]; + + // calculate two orthogonal basis vectors for the triangle + CVector vec2 = vb - va; + float len = vec2.Magnitude(); + vec2 = vec2 * (1.0f/len); + CVector vec1 = CrossProduct(vec2, plane.normal); + + // We know A has local coordinate [0,0] and B has [0,len]. + // Now calculate coordinates on triangle for these two vectors: + CVector vac = vc - va; + CVector vas = sphere.center - va; + CVector2D b(0.0f, len); + CVector2D c(DotProduct(vec1, vac), DotProduct(vec2, vac)); + CVector2D s(DotProduct(vec1, vas), DotProduct(vec2, vas)); + + // The three triangle lines partition the space into 6 sectors, + // find out in which the center lies. + int insideAB = CrossProduct2D(s, b) >= 0.0f; + int insideAC = CrossProduct2D(c, s) >= 0.0f; + int insideBC = CrossProduct2D(s-b, c-b) >= 0.0f; + + int testcase = insideAB + insideAC + insideBC; + float dist = 0.0f; + if(testcase == 1){ + // closest to a vertex + if(insideAB) dist = (sphere.center - vc).Magnitude(); + else if(insideAC) dist = (sphere.center - vb).Magnitude(); + else if(insideBC) dist = (sphere.center - va).Magnitude(); + else assert(0); + }else if(testcase == 2){ + // closest to an edge + if(!insideAB) dist = DistToLine(&va, &vb, &sphere.center); + else if(!insideAC) dist = DistToLine(&va, &vc, &sphere.center); + else if(!insideBC) dist = DistToLine(&vb, &vc, &sphere.center); + else assert(0); + }else if(testcase == 3){ + // center is in triangle + return true; + }else + assert(0); // front fell off + + return dist < sphere.radius; +} + +bool +CCollision::TestLineOfSight(CColLine &line, const CMatrix &matrix, CColModel &model, bool ignoreSurf78) +{ + static CMatrix matTransform; + int i; + + // transform line to model space + Invert(matrix, matTransform); + CColLine newline(matTransform * line.p0, matTransform * line.p1); + + // If we don't intersect with the bounding box, no chance on the rest + if(!TestLineBox(newline, model.boundingBox)) + return false; + + for(i = 0; i < model.numSpheres; i++) + if(!ignoreSurf78 || model.spheres[i].surface != 7 && model.spheres[i].surface != 8) + if(TestLineSphere(newline, model.spheres[i])) + return true; + + for(i = 0; i < model.numBoxes; i++) + if(!ignoreSurf78 || model.boxes[i].surface != 7 && model.boxes[i].surface != 8) + if(TestLineBox(newline, model.boxes[i])) + return true; + + CalculateTrianglePlanes(&model); + for(i = 0; i < model.numTriangles; i++) + if(!ignoreSurf78 || model.triangles[i].surface != 7 && model.triangles[i].surface != 8) + if(TestLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i])) + return true; + + return false; +} + + +// +// Process +// + +// For Spheres mindist is the squared distance to its center +// For Lines mindist is between [0,1] + +bool +CCollision::ProcessSphereSphere(const CColSphere &s1, const CColSphere &s2, CColPoint &point, float &mindistsq) +{ + CVector dist = s1.center - s2.center; + float d = dist.Magnitude() - s2.radius; // distance from s1's center to s2 + float dc = d < 0.0f ? 0.0f : d; // clamp to zero, i.e. if s1's center is inside s2 + // no collision if sphere is not close enough + if(mindistsq <= dc*dc || s1.radius <= dc) + return false; + dist.Normalise(); + point.point = s1.center - dist*dc; + point.normal = dist; + point.surfaceA = s1.surface; + point.pieceA = s1.piece; + point.surfaceB = s2.surface; + point.pieceB = s2.piece; + point.depth = s1.radius - d; // sphere overlap + mindistsq = dc*dc; // collision radius + return true; +} + +bool +CCollision::ProcessSphereBox(const CColSphere &sph, const CColBox &box, CColPoint &point, float &mindistsq) +{ + CVector p; + CVector dist; + + // GTA's code is too complicated, uses a huge 3x3x3 if statement + // we can simplify the structure a lot + + // first make sure we have a collision at all + if(sph.center.x + sph.radius < box.min.x) return false; + if(sph.center.x - sph.radius > box.max.x) return false; + if(sph.center.y + sph.radius < box.min.y) return false; + if(sph.center.y - sph.radius > box.max.y) return false; + if(sph.center.z + sph.radius < box.min.z) return false; + if(sph.center.z - sph.radius > box.max.z) return false; + + // Now find out where the sphere center lies in relation to all the sides + int xpos = sph.center.x < box.min.x ? 1 : + sph.center.x > box.max.x ? 2 : + 0; + int ypos = sph.center.y < box.min.y ? 1 : + sph.center.y > box.max.y ? 2 : + 0; + int zpos = sph.center.z < box.min.z ? 1 : + sph.center.z > box.max.z ? 2 : + 0; + + if(xpos == 0 && ypos == 0 && zpos == 0){ + // sphere is inside the box + p = (box.min + box.max)*0.5f; + + dist = sph.center - p; + float lensq = dist.MagnitudeSqr(); + if(lensq < mindistsq){ + point.normal = dist * (1.0f/sqrt(lensq)); + point.point = sph.center - point.normal; + point.surfaceA = sph.surface; + point.pieceA = sph.piece; + point.surfaceB = box.surface; + point.pieceB = box.piece; + + // find absolute distance to the closer side in each dimension + float dx = dist.x > 0.0f ? + box.max.x - sph.center.x : + sph.center.x - box.min.x; + float dy = dist.y > 0.0f ? + box.max.y - sph.center.y : + sph.center.y - box.min.y; + float dz = dist.z > 0.0f ? + box.max.z - sph.center.z : + sph.center.z - box.min.z; + // collision depth is maximum of that: + if(dx > dy && dx > dz) + point.depth = dx; + else if(dy > dz) + point.depth = dy; + else + point.depth = dz; + return true; + } + }else{ + // sphere is outside. + // closest point on box: + p.x = xpos == 1 ? box.min.x : + xpos == 2 ? box.max.x : + sph.center.x; + p.y = ypos == 1 ? box.min.y : + ypos == 2 ? box.max.y : + sph.center.y; + p.z = zpos == 1 ? box.min.z : + zpos == 2 ? box.max.z : + sph.center.z; + + dist = sph.center - p; + float lensq = dist.MagnitudeSqr(); + if(lensq < mindistsq){ + float len = sqrt(lensq); + point.point = p; + point.normal = dist * (1.0f/len); + point.surfaceA = sph.surface; + point.pieceA = sph.piece; + point.surfaceB = box.surface; + point.pieceB = box.piece; + point.depth = sph.radius - len; + mindistsq = lensq; + return true; + } + } + return false; +} + +bool +CCollision::ProcessLineBox(const CColLine &line, const CColBox &box, CColPoint &point, float &mindist) +{ + float mint, t, x, y, z; + CVector normal; + CVector p; + + mint = 1.0f; + // check if points are on opposite sides of min x plane + if((box.min.x - line.p1.x) * (box.min.x - line.p0.x) < 0.0f){ + // parameter along line where we intersect + t = (box.min.x - line.p0.x) / (line.p1.x - line.p0.x); + // y of intersection + y = line.p0.y + (line.p1.y - line.p0.y)*t; + if(y > box.min.y && y < box.max.y){ + // z of intersection + z = line.p0.z + (line.p1.z - line.p0.z)*t; + if(z > box.min.z && z < box.max.z) + if(t < mint){ + mint = t; + p = CVector(box.min.x, y, z); + normal = CVector(-1.0f, 0.0f, 0.0f); + } + } + } + + // max x plane + if((line.p1.x - box.max.x) * (line.p0.x - box.max.x) < 0.0f){ + t = (line.p0.x - box.max.x) / (line.p0.x - line.p1.x); + y = line.p0.y + (line.p1.y - line.p0.y)*t; + if(y > box.min.y && y < box.max.y){ + z = line.p0.z + (line.p1.z - line.p0.z)*t; + if(z > box.min.z && z < box.max.z) + if(t < mint){ + mint = t; + p = CVector(box.max.x, y, z); + normal = CVector(1.0f, 0.0f, 0.0f); + } + } + } + + // min y plne + if((box.min.y - line.p0.y) * (box.min.y - line.p1.y) < 0.0f){ + t = (box.min.y - line.p0.y) / (line.p1.y - line.p0.y); + x = line.p0.x + (line.p1.x - line.p0.x)*t; + if(x > box.min.x && x < box.max.x){ + z = line.p0.z + (line.p1.z - line.p0.z)*t; + if(z > box.min.z && z < box.max.z) + if(t < mint){ + mint = t; + p = CVector(x, box.min.y, z); + normal = CVector(0.0f, -1.0f, 0.0f); + } + } + } + + // max y plane + if((line.p0.y - box.max.y) * (line.p1.y - box.max.y) < 0.0f){ + t = (line.p0.y - box.max.y) / (line.p0.y - line.p1.y); + x = line.p0.x + (line.p1.x - line.p0.x)*t; + if(x > box.min.x && x < box.max.x){ + z = line.p0.z + (line.p1.z - line.p0.z)*t; + if(z > box.min.z && z < box.max.z) + if(t < mint){ + mint = t; + p = CVector(x, box.max.y, z); + normal = CVector(0.0f, 1.0f, 0.0f); + } + } + } + + // min z plne + if((box.min.z - line.p0.z) * (box.min.z - line.p1.z) < 0.0f){ + t = (box.min.z - line.p0.z) / (line.p1.z - line.p0.z); + x = line.p0.x + (line.p1.x - line.p0.x)*t; + if(x > box.min.x && x < box.max.x){ + y = line.p0.y + (line.p1.y - line.p0.y)*t; + if(y > box.min.y && y < box.max.y) + if(t < mint){ + mint = t; + p = CVector(x, y, box.min.z); + normal = CVector(0.0f, 0.0f, -1.0f); + } + } + } + + // max z plane + if((line.p0.z - box.max.z) * (line.p1.z - box.max.z) < 0.0f){ + t = (line.p0.z - box.max.z) / (line.p0.z - line.p1.z); + x = line.p0.x + (line.p1.x - line.p0.x)*t; + if(x > box.min.x && x < box.max.x){ + y = line.p0.y + (line.p1.y - line.p0.y)*t; + if(y > box.min.y && y < box.max.y) + if(t < mint){ + mint = t; + p = CVector(x, y, box.max.z); + normal = CVector(0.0f, 0.0f, 1.0f); + } + } + } + + if(mint >= mindist) + return false; + + point.point = p; + point.normal = normal; + point.surfaceA = 0; + point.pieceA = 0; + point.surfaceB = box.surface; + point.pieceB = box.piece; + mindist = mint; + + return true; +} + +// If line.p0 lies inside sphere, no collision is registered. +bool +CCollision::ProcessLineSphere(const CColLine &line, const CColSphere &sphere, CColPoint &point, float &mindist) +{ + CVector v01 = line.p1 - line.p0; + CVector v0c = sphere.center - line.p0; + float linesq = v01.MagnitudeSqr(); + // project v0c onto v01, scaled by |v01| this is the midpoint of the two intersections + float projline = DotProduct(v01, v0c); + // tangent of p0 to sphere, scaled by linesq just like projline^2 + float tansq = (v0c.MagnitudeSqr() - sphere.radius*sphere.radius) * linesq; + // this works out to be the square of the distance between the midpoint and the intersections + float diffsq = projline*projline - tansq; + // no intersection + if(diffsq < 0.0f) + return false; + // point of first intersection, in range [0,1] between p0 and p1 + float t = (projline - sqrt(diffsq)) / linesq; + // if not on line or beyond mindist, no intersection + if(t < 0.0f || t > 1.0f || t >= mindist) + return false; + point.point = line.p0 + v01*t; + point.normal = point.point - sphere.center; + point.normal.Normalise(); + point.surfaceA = 0; + point.pieceA = 0; + point.surfaceB = sphere.surface; + point.pieceB = sphere.piece; + mindist = t; + return true; +} + +bool +CCollision::ProcessVerticalLineTriangle(const CColLine &line, + const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane, + CColPoint &point, float &mindist, CStoredCollPoly *poly) +{ + float t; + CVector normal; + + const CVector &p0 = line.p0; + const CVector &va = verts[tri.a]; + const CVector &vb = verts[tri.b]; + const CVector &vc = verts[tri.c]; + + // early out bound rect test + if(p0.x < va.x && p0.x < vb.x && p0.x < vc.x) return false; + if(p0.x > va.x && p0.x > vb.x && p0.x > vc.x) return false; + if(p0.y < va.y && p0.y < vb.y && p0.y < vc.y) return false; + if(p0.y > va.y && p0.y > vb.y && p0.y > vc.y) return false; + + plane.GetNormal(normal); + // if points are on the same side, no collision + if(plane.CalcPoint(p0) * plane.CalcPoint(line.p1) > 0.0f) + return false; + + // intersection parameter on line + float h = (line.p1 - p0).z; + t = -plane.CalcPoint(p0) / (h * normal.z); + // early out if we're beyond the mindist + if(t >= mindist) + return false; + CVector p(p0.x, p0.y, p0.z + h*t); + + CVector2D vec1, vec2, vec3, vect; + switch(plane.dir){ + case DIR_X_POS: + vec1.x = va.y; vec1.y = va.z; + vec2.x = vc.y; vec2.y = vc.z; + vec3.x = vb.y; vec3.y = vb.z; + vect.x = p.y; vect.y = p.z; + break; + case DIR_X_NEG: + vec1.x = va.y; vec1.y = va.z; + vec2.x = vb.y; vec2.y = vb.z; + vec3.x = vc.y; vec3.y = vc.z; + vect.x = p.y; vect.y = p.z; + break; + case DIR_Y_POS: + vec1.x = va.z; vec1.y = va.x; + vec2.x = vc.z; vec2.y = vc.x; + vec3.x = vb.z; vec3.y = vb.x; + vect.x = p.z; vect.y = p.x; + break; + case DIR_Y_NEG: + vec1.x = va.z; vec1.y = va.x; + vec2.x = vb.z; vec2.y = vb.x; + vec3.x = vc.z; vec3.y = vc.x; + vect.x = p.z; vect.y = p.x; + break; + case DIR_Z_POS: + vec1.x = va.x; vec1.y = va.y; + vec2.x = vc.x; vec2.y = vc.y; + vec3.x = vb.x; vec3.y = vb.y; + vect.x = p.x; vect.y = p.y; + break; + case DIR_Z_NEG: + vec1.x = va.x; vec1.y = va.y; + vec2.x = vb.x; vec2.y = vb.y; + vec3.x = vc.x; vec3.y = vc.y; + vect.x = p.x; vect.y = p.y; + break; + default: + assert(0); + } + if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false; + if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false; + if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false; + point.point = p; + point.normal = normal; + point.surfaceA = 0; + point.pieceA = 0; + point.surfaceB = tri.surface; + point.pieceB = 0; + if(poly){ + poly->verts[0] = va; + poly->verts[1] = vb; + poly->verts[2] = vc; + poly->valid = true; + } + mindist = t; + return true; +} + +bool +CCollision::ProcessLineTriangle(const CColLine &line , + const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane, + CColPoint &point, float &mindist) +{ + float t; + CVector normal; + plane.GetNormal(normal); + + // if points are on the same side, no collision + if(plane.CalcPoint(line.p0) * plane.CalcPoint(line.p1) > 0.0f) + return false; + + // intersection parameter on line + t = -plane.CalcPoint(line.p0) / DotProduct(line.p1 - line.p0, normal); + // early out if we're beyond the mindist + if(t >= mindist) + return false; + // find point of intersection + CVector p = line.p0 + (line.p1-line.p0)*t; + + const CVector &va = verts[tri.a]; + const CVector &vb = verts[tri.b]; + const CVector &vc = verts[tri.c]; + CVector2D vec1, vec2, vec3, vect; + + switch(plane.dir){ + case DIR_X_POS: + vec1.x = va.y; vec1.y = va.z; + vec2.x = vc.y; vec2.y = vc.z; + vec3.x = vb.y; vec3.y = vb.z; + vect.x = p.y; vect.y = p.z; + break; + case DIR_X_NEG: + vec1.x = va.y; vec1.y = va.z; + vec2.x = vb.y; vec2.y = vb.z; + vec3.x = vc.y; vec3.y = vc.z; + vect.x = p.y; vect.y = p.z; + break; + case DIR_Y_POS: + vec1.x = va.z; vec1.y = va.x; + vec2.x = vc.z; vec2.y = vc.x; + vec3.x = vb.z; vec3.y = vb.x; + vect.x = p.z; vect.y = p.x; + break; + case DIR_Y_NEG: + vec1.x = va.z; vec1.y = va.x; + vec2.x = vb.z; vec2.y = vb.x; + vec3.x = vc.z; vec3.y = vc.x; + vect.x = p.z; vect.y = p.x; + break; + case DIR_Z_POS: + vec1.x = va.x; vec1.y = va.y; + vec2.x = vc.x; vec2.y = vc.y; + vec3.x = vb.x; vec3.y = vb.y; + vect.x = p.x; vect.y = p.y; + break; + case DIR_Z_NEG: + vec1.x = va.x; vec1.y = va.y; + vec2.x = vb.x; vec2.y = vb.y; + vec3.x = vc.x; vec3.y = vc.y; + vect.x = p.x; vect.y = p.y; + break; + default: + assert(0); + } + if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false; + if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false; + if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false; + point.point = p; + point.normal = normal; + point.surfaceA = 0; + point.pieceA = 0; + point.surfaceB = tri.surface; + point.pieceB = 0; + mindist = t; + return true; +} + +bool +CCollision::ProcessSphereTriangle(const CColSphere &sphere, + const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane, + CColPoint &point, float &mindistsq) +{ + // If sphere and plane don't intersect, no collision + float planedist = plane.CalcPoint(sphere.center); + float distsq = planedist*planedist; + if(fabs(planedist) > sphere.radius || distsq > mindistsq) + return false; + + const CVector &va = verts[tri.a]; + const CVector &vb = verts[tri.b]; + const CVector &vc = verts[tri.c]; + + // calculate two orthogonal basis vectors for the triangle + CVector normal; + plane.GetNormal(normal); + CVector vec2 = vb - va; + float len = vec2.Magnitude(); + vec2 = vec2 * (1.0f/len); + CVector vec1 = CrossProduct(vec2, normal); + + // We know A has local coordinate [0,0] and B has [0,len]. + // Now calculate coordinates on triangle for these two vectors: + CVector vac = vc - va; + CVector vas = sphere.center - va; + CVector2D b(0.0f, len); + CVector2D c(DotProduct(vec1, vac), DotProduct(vec2, vac)); + CVector2D s(DotProduct(vec1, vas), DotProduct(vec2, vas)); + + // The three triangle lines partition the space into 6 sectors, + // find out in which the center lies. + int insideAB = CrossProduct2D(s, b) >= 0.0f; + int insideAC = CrossProduct2D(c, s) >= 0.0f; + int insideBC = CrossProduct2D(s-b, c-b) >= 0.0f; + + int testcase = insideAB + insideAC + insideBC; + float dist = 0.0f; + CVector p; + if(testcase == 1){ + // closest to a vertex + if(insideAB) p = vc; + else if(insideAC) p = vb; + else if(insideBC) p = va; + else assert(0); + dist = (sphere.center - p).Magnitude(); + }else if(testcase == 2){ + // closest to an edge + if(!insideAB) dist = DistToLine(&va, &vb, &sphere.center, p); + else if(!insideAC) dist = DistToLine(&va, &vc, &sphere.center, p); + else if(!insideBC) dist = DistToLine(&vb, &vc, &sphere.center, p); + else assert(0); + }else if(testcase == 3){ + // center is in triangle + dist = fabs(planedist); + p = sphere.center - normal*planedist; + }else + assert(0); // front fell off + + if(dist >= sphere.radius || dist*dist >= mindistsq) + return false; + + point.point = p; + point.normal = sphere.center - p; + point.normal.Normalise(); + point.surfaceA = sphere.surface; + point.pieceA = sphere.piece; + point.surfaceB = tri.surface; + point.pieceB = 0; + point.depth = sphere.radius - dist; + mindistsq = dist*dist; + return true; +} + +bool +CCollision::ProcessLineOfSight(const CColLine &line, + const CMatrix &matrix, CColModel &model, + CColPoint &point, float &mindist, bool ignoreSurf78) +{ + static CMatrix matTransform; + int i; + + // transform line to model space + Invert(matrix, matTransform); + CColLine newline(matTransform * line.p0, matTransform * line.p1); + + // If we don't intersect with the bounding box, no chance on the rest + if(!TestLineBox(newline, model.boundingBox)) + return false; + + float coldist = mindist; + for(i = 0; i < model.numSpheres; i++) + if(!ignoreSurf78 || model.spheres[i].surface != 7 && model.spheres[i].surface != 8) + ProcessLineSphere(newline, model.spheres[i], point, coldist); + + for(i = 0; i < model.numBoxes; i++) + if(!ignoreSurf78 || model.boxes[i].surface != 7 && model.boxes[i].surface != 8) + ProcessLineBox(newline, model.boxes[i], point, coldist); + + CalculateTrianglePlanes(&model); + for(i = 0; i < model.numTriangles; i++) + if(!ignoreSurf78 || model.triangles[i].surface != 7 && model.triangles[i].surface != 8) + ProcessLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i], point, coldist); + + if(coldist < mindist){ + point.point = matrix * point.point; + point.normal = Multiply3x3(matrix, point.normal); + mindist = coldist; + return true; + } + return false; +} + +bool +CCollision::ProcessVerticalLine(const CColLine &line, + const CMatrix &matrix, CColModel &model, + CColPoint &point, float &mindist, bool ignoreSurf78, CStoredCollPoly *poly) +{ + static CStoredCollPoly TempStoredPoly; + int i; + + // transform line to model space + // Why does the game seem to do this differently than above? + CColLine newline(MultiplyInverse(matrix, line.p0), MultiplyInverse(matrix, line.p1)); + newline.p1.x = newline.p0.x; + newline.p1.y = newline.p0.y; + + if(!TestVerticalLineBox(newline, model.boundingBox)) + return false; + + float coldist = mindist; + for(i = 0; i < model.numSpheres; i++) + if(!ignoreSurf78 || model.spheres[i].surface != 7 && model.spheres[i].surface != 8) + ProcessLineSphere(newline, model.spheres[i], point, coldist); + + for(i = 0; i < model.numBoxes; i++) + if(!ignoreSurf78 || model.boxes[i].surface != 7 && model.boxes[i].surface != 8) + ProcessLineBox(newline, model.boxes[i], point, coldist); + + CalculateTrianglePlanes(&model); + TempStoredPoly.valid = false; + for(i = 0; i < model.numTriangles; i++) + if(!ignoreSurf78 || model.triangles[i].surface != 7 && model.triangles[i].surface != 8) + ProcessVerticalLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i], point, coldist, &TempStoredPoly); + + if(coldist < mindist){ + point.point = matrix * point.point; + point.normal = Multiply3x3(matrix, point.normal); + if(poly && TempStoredPoly.valid){ + *poly = TempStoredPoly; + poly->verts[0] = matrix * poly->verts[0]; + poly->verts[1] = matrix * poly->verts[1]; + poly->verts[2] = matrix * poly->verts[2]; + } + mindist = coldist; + return true; + } + return false; +} + +enum { + MAXNUMSPHERES = 128, + MAXNUMBOXES = 32, + MAXNUMLINES = 16, + MAXNUMTRIS = 600 +}; + +// This checks model A's spheres and lines against model B's spheres, boxes and triangles. +// Returns the number of A's spheres that collide. +// Returned ColPoints are in world space. +// NB: lines do not seem to be supported very well, use with caution +int32 +CCollision::ProcessColModels(const CMatrix &matrixA, CColModel &modelA, + const CMatrix &matrixB, CColModel &modelB, + CColPoint *spherepoints, CColPoint *linepoints, float *linedists) +{ + static int aSphereIndicesA[MAXNUMSPHERES]; + static int aLineIndicesA[MAXNUMLINES]; + static int aSphereIndicesB[MAXNUMSPHERES]; + static int aBoxIndicesB[MAXNUMBOXES]; + static int aTriangleIndicesB[MAXNUMTRIS]; + static bool aCollided[MAXNUMLINES]; + static CColSphere aSpheresA[MAXNUMSPHERES]; + static CColLine aLinesA[MAXNUMLINES]; + static CMatrix matAB, matBA; + CColSphere s; + int i, j; + + assert(modelA.numSpheres <= MAXNUMSPHERES); + assert(modelA.numLines <= MAXNUMLINES); + + // From model A space to model B space + matAB = Invert(matrixB, matAB) * matrixA; + + CColSphere bsphereAB; // bounding sphere of A in B space + bsphereAB.Set(modelA.boundingSphere.radius, matAB * modelA.boundingSphere.center); + if(!TestSphereBox(bsphereAB, modelB.boundingBox)) + return 0; + // B to A space + matBA = Invert(matrixA, matBA) * matrixB; + + // transform modelA's spheres and lines to B space + for(i = 0; i < modelA.numSpheres; i++){ + CColSphere &s = modelA.spheres[i]; + aSpheresA[i].Set(s.radius, matAB * s.center, s.surface, s.piece); + } + for(i = 0; i < modelA.numLines; i++) + aLinesA[i].Set(matAB * modelA.lines[i].p0, matAB * modelA.lines[i].p1); + + // Test them against model B's bounding volumes + int numSpheresA = 0; + int numLinesA = 0; + for(i = 0; i < modelA.numSpheres; i++) + if(TestSphereBox(aSpheresA[i], modelB.boundingBox)) + aSphereIndicesA[numSpheresA++] = i; + // no actual check??? + for(i = 0; i < modelA.numLines; i++) + aLineIndicesA[numLinesA++] = i; + // No collision + if(numSpheresA == 0 && numLinesA == 0) + return 0; + + // Check model B against A's bounding volumes + int numSpheresB = 0; + int numBoxesB = 0; + int numTrianglesB = 0; + for(i = 0; i < modelB.numSpheres; i++){ + s.Set(modelB.spheres[i].radius, matBA * modelB.spheres[i].center); + if(TestSphereBox(s, modelA.boundingBox)) + aSphereIndicesB[numSpheresB++] = i; + } + for(i = 0; i < modelB.numBoxes; i++) + if(TestSphereBox(bsphereAB, modelB.boxes[i])) + aBoxIndicesB[numBoxesB++] = i; + CalculateTrianglePlanes(&modelB); + for(i = 0; i < modelB.numTriangles; i++) + if(TestSphereTriangle(bsphereAB, modelB.vertices, modelB.triangles[i], modelB.trianglePlanes[i])) + aTriangleIndicesB[numTrianglesB++] = i; + assert(numSpheresB <= MAXNUMSPHERES); + assert(numBoxesB <= MAXNUMBOXES); + assert(numTrianglesB <= MAXNUMTRIS); + // No collision + if(numSpheresB == 0 && numBoxesB == 0 && numTrianglesB == 0) + return 0; + + // We now have the collision volumes in A and B that are worth processing. + + // Process A's spheres against B's collision volumes + int numCollisions = 0; + for(i = 0; i < numSpheresA; i++){ + float coldist = 1.0e24f; + bool hasCollided = false; + + for(j = 0; j < numSpheresB; j++) + hasCollided |= ProcessSphereSphere( + aSpheresA[aSphereIndicesA[i]], + modelB.spheres[aSphereIndicesB[j]], + spherepoints[numCollisions], coldist); + for(j = 0; j < numBoxesB; j++) + hasCollided |= ProcessSphereBox( + aSpheresA[aSphereIndicesA[i]], + modelB.boxes[aBoxIndicesB[j]], + spherepoints[numCollisions], coldist); + for(j = 0; j < numTrianglesB; j++) + hasCollided |= ProcessSphereTriangle( + aSpheresA[aSphereIndicesA[i]], + modelB.vertices, + modelB.triangles[aTriangleIndicesB[j]], + modelB.trianglePlanes[aTriangleIndicesB[j]], + spherepoints[numCollisions], coldist); + if(hasCollided) + numCollisions++; + } + for(i = 0; i < numCollisions; i++){ + spherepoints[i].point = matrixB * spherepoints[i].point; + spherepoints[i].normal = Multiply3x3(matrixB, spherepoints[i].normal); + } + + // And the same thing for the lines in A + for(i = 0; i < numLinesA; i++){ + aCollided[i] = false; + + for(j = 0; j < numSpheresB; j++) + aCollided[i] |= ProcessLineSphere( + aLinesA[aLineIndicesA[i]], + modelB.spheres[aSphereIndicesB[j]], + linepoints[aLineIndicesA[i]], + linedists[aLineIndicesA[i]]); + for(j = 0; j < numBoxesB; j++) + aCollided[i] |= ProcessLineBox( + aLinesA[aLineIndicesA[i]], + modelB.boxes[aBoxIndicesB[j]], + linepoints[aLineIndicesA[i]], + linedists[aLineIndicesA[i]]); + for(j = 0; j < numTrianglesB; j++) + aCollided[i] |= ProcessLineTriangle( + aLinesA[aLineIndicesA[i]], + modelB.vertices, + modelB.triangles[aTriangleIndicesB[j]], + modelB.trianglePlanes[aTriangleIndicesB[j]], + linepoints[aLineIndicesA[i]], + linedists[aLineIndicesA[i]]); + } + for(i = 0; i < numLinesA; i++) + if(aCollided[i]){ + j = aLineIndicesA[i]; + linepoints[j].point = matrixB * linepoints[j].point; + linepoints[j].normal = Multiply3x3(matrixB, linepoints[j].normal); + } + + return numCollisions; // sphere collisions +} + + +// +// Misc +// + +float +CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *point) +{ + float lensq = (*l1 - *l0).MagnitudeSqr(); + float dot = DotProduct(*point - *l0, *l1 - *l0); + // Between 0 and len we're above the line. + // if not, calculate distance to endpoint + if(dot <= 0.0f) + return (*point - *l0).Magnitude(); + if(dot >= lensq) + return (*point - *l1).Magnitude(); + // distance to line + return sqrt((*point - *l0).MagnitudeSqr() - dot*dot/lensq); +} + +// same as above but also return the point on the line +float +CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *point, CVector &closest) +{ + float lensq = (*l1 - *l0).MagnitudeSqr(); + float dot = DotProduct(*point - *l0, *l1 - *l0); + // find out which point we're closest to + if(dot <= 0.0f) + closest = *l0; + else if(dot >= lensq) + closest = *l1; + else + closest = *l0 + (*l1 - *l0)*(dot/lensq); + // this is the distance + return (*point - closest).Magnitude(); +} + +void +CCollision::CalculateTrianglePlanes(CColModel *model) +{ + if(model->numTriangles == 0) + return; + + CLink *lptr; + if(model->trianglePlanes){ + // re-insert at front so it's not removed again soon + lptr = model->GetLinkPtr(); + lptr->Remove(); + ms_colModelCache.head.Insert(lptr); + }else{ + assert(model); + lptr = ms_colModelCache.Insert(model); + if(lptr == nil){ + // make room if we have to, remove last in list + lptr = ms_colModelCache.tail.prev; + assert(lptr); + assert(lptr->item); + lptr->item->RemoveTrianglePlanes(); + ms_colModelCache.Remove(lptr); + // now this cannot fail + lptr = ms_colModelCache.Insert(model); + assert(lptr); + } + model->CalculateTrianglePlanes(); + model->SetLinkPtr(lptr); + } +} + +void +CCollision::DrawColModel(const CMatrix &mat, const CColModel &colModel) +{ +} + +void +CCollision::DrawColModel_Coloured(const CMatrix &mat, const CColModel &colModel, int32 id) +{ + int i; + int s; + float f; + CVector verts[8]; + CVector min, max; + int r, g, b; + RwImVertexIndex *iptr; + RwIm3DVertex *vptr; + + RenderBuffer::ClearRenderBuffer(); + RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE); + RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)TRUE); + RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA); + RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA); + RwRenderStateSet(rwRENDERSTATETEXTURERASTER, nil); + + for(i = 0; i < colModel.numTriangles; i++){ + colModel.GetTrianglePoint(verts[0], colModel.triangles[i].a); + colModel.GetTrianglePoint(verts[1], colModel.triangles[i].b); + colModel.GetTrianglePoint(verts[2], colModel.triangles[i].c); + verts[0] = mat * verts[0]; + verts[1] = mat * verts[1]; + verts[2] = mat * verts[2]; + + // TODO: surface + r = 255; + g = 128; + b = 0; + + s = colModel.triangles[i].surface; + f = (s & 0xF)/32.0f + 0.5f; + switch(CSurfaceTable::GetAdhesionGroup(s)){ + case ADHESIVE_RUBBER: + r = f * 255.0f; + g = 0; + b = 0; + break; + case ADHESIVE_HARD: + r = f*255.0f; + g = f*255.0f; + b = f*128.0f; + break; + case ADHESIVE_ROAD: + r = f*128.0f; + g = f*128.0f; + b = f*128.0f; + break; + case ADHESIVE_LOOSE: + r = 0; + g = f * 255.0f; + b = 0; + break; + case ADHESIVE_WET: + r = 0; + g = 0; + b = f * 255.0f; + break; + default: + // this doesn't make much sense + r *= f; + g *= f; + b *= f; + } + + // TODO: make some surface types flicker? + + if(s > SURFACE_32){ + r = CGeneral::GetRandomNumber(); + g = CGeneral::GetRandomNumber(); + b = CGeneral::GetRandomNumber(); + printf("Illegal surfacetype:%d on MI:%d\n", s, id); + } + + RenderBuffer::StartStoring(6, 3, &iptr, &vptr); + RwIm3DVertexSetRGBA(&vptr[0], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[1], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[2], r, g, b, 255); + RwIm3DVertexSetU(&vptr[0], 0.0f); + RwIm3DVertexSetV(&vptr[0], 0.0f); + RwIm3DVertexSetU(&vptr[1], 0.0f); + RwIm3DVertexSetV(&vptr[1], 1.0f); + RwIm3DVertexSetU(&vptr[2], 1.0f); + RwIm3DVertexSetV(&vptr[2], 1.0f); + RwIm3DVertexSetPos(&vptr[0], verts[0].x, verts[0].y, verts[0].z); + RwIm3DVertexSetPos(&vptr[1], verts[1].x, verts[1].y, verts[1].z); + RwIm3DVertexSetPos(&vptr[2], verts[2].x, verts[2].y, verts[2].z); + iptr[0] = 0; iptr[1] = 1; iptr[2] = 2; + iptr[3] = 0; iptr[4] = 2; iptr[5] = 1; + RenderBuffer::StopStoring(); + } + + for(i = 0; i < colModel.numBoxes; i++){ + min = colModel.boxes[i].min; + max = colModel.boxes[i].max; + + verts[0] = mat * CVector(min.x, min.y, min.z); + verts[1] = mat * CVector(min.x, min.y, max.z); + verts[2] = mat * CVector(min.x, max.y, min.z); + verts[3] = mat * CVector(min.x, max.y, max.z); + verts[4] = mat * CVector(max.x, min.y, min.z); + verts[5] = mat * CVector(max.x, min.y, max.z); + verts[6] = mat * CVector(max.x, max.y, min.z); + verts[7] = mat * CVector(max.x, max.y, max.z); + + s = colModel.boxes[i].surface; + f = (s & 0xF)/32.0f + 0.5f; + switch(CSurfaceTable::GetAdhesionGroup(s)){ + case ADHESIVE_RUBBER: + r = f * 255.0f; + g = 0; + b = 0; + break; + case ADHESIVE_HARD: + r = f*255.0f; + g = f*255.0f; + b = f*128.0f; + break; + case ADHESIVE_ROAD: + r = f*128.0f; + g = f*128.0f; + b = f*128.0f; + break; + case ADHESIVE_LOOSE: + r = 0; + g = f * 255.0f; + b = 0; + break; + case ADHESIVE_WET: + r = 0; + g = 0; + b = f * 255.0f; + break; + default: + // this doesn't make much sense + r *= f; + g *= f; + b *= f; + } + + // TODO: make some surface types flicker? + + RenderBuffer::StartStoring(36, 8, &iptr, &vptr); + RwIm3DVertexSetRGBA(&vptr[0], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[1], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[2], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[3], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[4], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[5], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[6], r, g, b, 255); + RwIm3DVertexSetRGBA(&vptr[7], r, g, b, 255); + RwIm3DVertexSetU(&vptr[0], 0.0f); + RwIm3DVertexSetV(&vptr[0], 0.0f); + RwIm3DVertexSetU(&vptr[1], 0.0f); + RwIm3DVertexSetV(&vptr[1], 1.0f); + RwIm3DVertexSetU(&vptr[2], 1.0f); + RwIm3DVertexSetV(&vptr[2], 1.0f); + RwIm3DVertexSetU(&vptr[3], 0.0f); + RwIm3DVertexSetV(&vptr[3], 0.0f); + RwIm3DVertexSetU(&vptr[4], 0.0f); + RwIm3DVertexSetV(&vptr[4], 1.0f); + RwIm3DVertexSetU(&vptr[5], 1.0f); + RwIm3DVertexSetV(&vptr[5], 1.0f); + RwIm3DVertexSetU(&vptr[6], 0.0f); + RwIm3DVertexSetV(&vptr[6], 1.0f); + RwIm3DVertexSetU(&vptr[7], 1.0f); + RwIm3DVertexSetV(&vptr[7], 1.0f); + RwIm3DVertexSetPos(&vptr[0], verts[0].x, verts[0].y, verts[0].z); + RwIm3DVertexSetPos(&vptr[1], verts[1].x, verts[1].y, verts[1].z); + RwIm3DVertexSetPos(&vptr[2], verts[2].x, verts[2].y, verts[2].z); + RwIm3DVertexSetPos(&vptr[3], verts[3].x, verts[3].y, verts[3].z); + RwIm3DVertexSetPos(&vptr[4], verts[4].x, verts[4].y, verts[4].z); + RwIm3DVertexSetPos(&vptr[5], verts[5].x, verts[5].y, verts[5].z); + RwIm3DVertexSetPos(&vptr[6], verts[6].x, verts[6].y, verts[6].z); + RwIm3DVertexSetPos(&vptr[7], verts[7].x, verts[7].y, verts[7].z); + iptr[0] = 0; iptr[1] = 1; iptr[2] = 2; + iptr[3] = 1; iptr[4] = 3; iptr[5] = 2; + iptr[6] = 1; iptr[7] = 5; iptr[8] = 7; + iptr[9] = 1; iptr[10] = 7; iptr[11] = 3; + iptr[12] = 2; iptr[13] = 3; iptr[14] = 7; + iptr[15] = 2; iptr[16] = 7; iptr[17] = 6; + iptr[18] = 0; iptr[19] = 5; iptr[20] = 1; + iptr[21] = 0; iptr[22] = 4; iptr[23] = 5; + iptr[24] = 0; iptr[25] = 2; iptr[26] = 4; + iptr[27] = 2; iptr[28] = 6; iptr[29] = 4; + iptr[30] = 4; iptr[31] = 6; iptr[32] = 7; + iptr[33] = 4; iptr[34] = 7; iptr[35] = 5; + RenderBuffer::StopStoring(); + } + + RenderBuffer::RenderStuffInBuffer(); + RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA); + RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA); + RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)FALSE); + RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE); + RwRenderStateSet(rwRENDERSTATEZTESTENABLE, (void*)TRUE); +} + + +/* + * ColModel code + */ + +void +CColSphere::Set(float radius, const CVector ¢er, uint8 surf, uint8 piece) +{ + this->radius = radius; + this->center = center; + this->surface = surf; + this->piece = piece; +} + +void +CColBox::Set(const CVector &min, const CVector &max, uint8 surf, uint8 piece) +{ + this->min = min; + this->max = max; + this->surface = surf; + this->piece = piece; +} + +void +CColLine::Set(const CVector &p0, const CVector &p1) +{ + this->p0 = p0; + this->p1 = p1; +} + +void +CColTriangle::Set(const CVector *, int a, int b, int c, uint8 surf, uint8 piece) +{ + this->a = a; + this->b = b; + this->c = c; + this->surface = surf; +} + +void +CColTrianglePlane::Set(const CVector *v, CColTriangle &tri) +{ + const CVector &va = v[tri.a]; + const CVector &vb = v[tri.b]; + const CVector &vc = v[tri.c]; + + normal = CrossProduct(vc-va, vb-va); + normal.Normalise(); + dist = DotProduct(normal, va); + CVector an(fabs(normal.x), fabs(normal.y), fabs(normal.z)); + // find out largest component and its direction + if(an.x > an.y && an.x > an.z) + dir = normal.x < 0.0f ? DIR_X_NEG : DIR_X_POS; + else if(an.y > an.z) + dir = normal.y < 0.0f ? DIR_Y_NEG : DIR_Y_POS; + else + dir = normal.z < 0.0f ? DIR_Z_NEG : DIR_Z_POS; +} + +CColModel::CColModel(void) +{ + numSpheres = 0; + spheres = nil; + numLines = 0; + lines = nil; + numBoxes = 0; + boxes = nil; + numTriangles = 0; + vertices = nil; + triangles = nil; + trianglePlanes = nil; + level = CGame::currLevel; + ownsCollisionVolumes = true; +} + +CColModel::~CColModel(void) +{ + RemoveCollisionVolumes(); + RemoveTrianglePlanes(); +} + +void +CColModel::RemoveCollisionVolumes(void) +{ + if(ownsCollisionVolumes){ + RwFree(spheres); + RwFree(lines); + RwFree(boxes); + RwFree(vertices); + RwFree(triangles); + } + numSpheres = 0; + numLines = 0; + numBoxes = 0; + numTriangles = 0; + spheres = nil; + lines = nil; + boxes = nil; + vertices = nil; + triangles = nil; +} + +void +CColModel::CalculateTrianglePlanes(void) +{ + // HACK: allocate space for one more element to stuff the link pointer into + trianglePlanes = (CColTrianglePlane*)RwMalloc(sizeof(CColTrianglePlane) * (numTriangles+1)); + for(int i = 0; i < numTriangles; i++) + trianglePlanes[i].Set(vertices, triangles[i]); +} + +void +CColModel::RemoveTrianglePlanes(void) +{ + RwFree(trianglePlanes); + trianglePlanes = nil; +} + +void +CColModel::SetLinkPtr(CLink *lptr) +{ + assert(trianglePlanes); + *(CLink**)ALIGNPTR(&trianglePlanes[numTriangles]) = lptr; +} + +CLink* +CColModel::GetLinkPtr(void) +{ + assert(trianglePlanes); + return *(CLink**)ALIGNPTR(&trianglePlanes[numTriangles]); +} + +void +CColModel::GetTrianglePoint(CVector &v, int i) const +{ + v = vertices[i]; +} + +STARTPATCHES + InjectHook(0x4B9C30, (CMatrix& (*)(const CMatrix &src, CMatrix &dst))Invert, PATCH_JUMP); + + InjectHook(0x40BB70, CCollision::TestSphereBox, PATCH_JUMP); + InjectHook(0x40E130, CCollision::TestLineBox, PATCH_JUMP); + InjectHook(0x40E5C0, CCollision::TestVerticalLineBox, PATCH_JUMP); + InjectHook(0x40EC10, CCollision::TestLineTriangle, PATCH_JUMP); + InjectHook(0x40DAA0, CCollision::TestLineSphere, PATCH_JUMP); + InjectHook(0x40C580, CCollision::TestSphereTriangle, PATCH_JUMP); + InjectHook(0x40F720, CCollision::TestLineOfSight, PATCH_JUMP); + + InjectHook(0x40B9F0, CCollision::ProcessSphereSphere, PATCH_JUMP); + InjectHook(0x40BC00, CCollision::ProcessSphereBox, PATCH_JUMP); + InjectHook(0x40E670, CCollision::ProcessLineBox, PATCH_JUMP); + InjectHook(0x40DE80, CCollision::ProcessLineSphere, PATCH_JUMP); + InjectHook(0x40FB50, CCollision::ProcessVerticalLineTriangle, PATCH_JUMP); + InjectHook(0x40F140, CCollision::ProcessLineTriangle, PATCH_JUMP); + InjectHook(0x40CE30, CCollision::ProcessSphereTriangle, PATCH_JUMP); + + InjectHook(0x40F910, CCollision::ProcessLineOfSight, PATCH_JUMP); + InjectHook(0x410120, CCollision::ProcessVerticalLine, PATCH_JUMP); + InjectHook(0x410BE0, CCollision::ProcessColModels, PATCH_JUMP); + + InjectHook(0x40B960, CCollision::CalculateTrianglePlanes, PATCH_JUMP); + InjectHook(0x411640, &CLink::Remove, PATCH_JUMP); + InjectHook(0x411620, &CLink::Insert, PATCH_JUMP); + InjectHook(0x4115C0, &CLinkList::Insert, PATCH_JUMP); + InjectHook(0x411600, &CLinkList::Remove, PATCH_JUMP); +// InjectHook(0x411530, &CLinkList::Init, PATCH_JUMP); + + InjectHook(0x411E40, (void (CColSphere::*)(float, const CVector&, uint8, uint8))&CColSphere::Set, PATCH_JUMP); + InjectHook(0x40B2A0, &CColBox::Set, PATCH_JUMP); + InjectHook(0x40B320, &CColLine::ctor, PATCH_JUMP); + InjectHook(0x40B350, &CColLine::Set, PATCH_JUMP); + InjectHook(0x411E70, &CColTriangle::Set, PATCH_JUMP); + + InjectHook(0x411EA0, &CColTrianglePlane::Set, PATCH_JUMP); + InjectHook(0x412140, &CColTrianglePlane::GetNormal, PATCH_JUMP); + + InjectHook(0x411680, &CColModel::ctor, PATCH_JUMP); + InjectHook(0x4116E0, &CColModel::dtor, PATCH_JUMP); + InjectHook(0x411D80, &CColModel::RemoveCollisionVolumes, PATCH_JUMP); + InjectHook(0x411CB0, &CColModel::CalculateTrianglePlanes, PATCH_JUMP); + InjectHook(0x411D10, &CColModel::RemoveTrianglePlanes, PATCH_JUMP); + InjectHook(0x411D40, &CColModel::SetLinkPtr, PATCH_JUMP); + InjectHook(0x411D60, &CColModel::GetLinkPtr, PATCH_JUMP); +ENDPATCHES -- cgit v1.2.3