#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \begin_preamble \usepackage{siunitx} \usepackage{pgfplots} \usepackage{listings} \usepackage{multicol} \sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} \usepackage{amsmath} \usepackage{tikz} \newcommand{\udensdash}[1]{% \tikz[baseline=(todotted.base)]{ \node[inner sep=1pt,outer sep=0pt] (todotted) {#1}; \draw[densely dashed] (todotted.south west) -- (todotted.south east); }% }% \end_preamble \use_default_options true \begin_modules enumitem theorems-ams \end_modules \maintain_unincluded_children false \language slovene \language_package default \inputencoding auto \fontencoding global \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification false \use_refstyle 1 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \leftmargin 1cm \topmargin 0cm \rightmargin 1cm \bottommargin 2cm \headheight 1cm \headsep 1cm \footskip 1cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style german \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Title Rešitev šeste domače naloge Linearne Algebre \end_layout \begin_layout Author \noun on Anton Luka Šijanec \end_layout \begin_layout Date \begin_inset ERT status open \begin_layout Plain Layout \backslash today \end_layout \end_inset \end_layout \begin_layout Abstract Za boljšo preglednost sem svoje rešitve domače naloge prepisal na računalnik. Dokumentu sledi še rokopis. Naloge je izdelala asistentka Ajda Lemut. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash newcommand \backslash euler{e} \backslash newcommand \backslash rang{ \backslash text{rang}} \end_layout \end_inset \end_layout \begin_layout Enumerate Naj bosta \begin_inset Formula $V,W$ \end_inset vektorska prostora. Pokaži, da je množica vseh linearnih preslikav \begin_inset Formula $\mathcal{L}\left(V,W\right)=\left\{ A:V\to W:A\text{ linearna}\right\} $ \end_inset vektorski prostor. \end_layout \begin_deeper \begin_layout Paragraph Rešitev \end_layout \begin_layout Standard Definirali smo, da za linearno preslikavo velja aditivnost \begin_inset Formula $L\left(v_{1}+v_{2}\right)=Lv_{1}+Lv_{2}$ \end_inset in homogenost \begin_inset Formula $L\alpha v=\alpha Lv$ \end_inset , skupaj \begin_inset Formula $L\left(\alpha_{1}v_{1}+\alpha_{2}v_{2}\right)=\alpha_{1}Lv_{2}+\alpha_{2}Lv_{2}$ \end_inset . \end_layout \begin_layout Standard Vektorski prostor pa smo definirali kot urejeno trojico \begin_inset Formula $\left(V,+,\cdot\right)\ni:$ \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $\left(V,+\right)$ \end_inset je Abelova grupa: komutativnost, asociativnost, inverzi, enota, notranjost \end_layout \begin_layout Enumerate aksiomi množenja s skalarjem iz polja \begin_inset Formula $F$ \end_inset : \begin_inset Formula $\forall\alpha,\beta\in F\forall a,b\in V:$ \end_inset \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $\alpha\cdot\left(a+b\right)=\alpha\cdot a+\alpha\cdot b$ \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $\left(\alpha+\beta\right)\cdot a=\alpha\cdot a+\beta\cdot a$ \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $\left(\alpha\cdot\beta\right)\cdot a=\alpha\cdot\left(\beta\cdot a\right)$ \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula $1\cdot a=a$ \end_inset , kjer je \begin_inset Formula $1$ \end_inset enota \begin_inset Formula $F$ \end_inset \end_layout \end_deeper \begin_layout Standard Da linearne preslikave \begin_inset Formula $L:V\to W$ \end_inset sploh obstajajo, privzemam, da sta \begin_inset Formula $V$ \end_inset in \begin_inset Formula $W$ \end_inset vektorska prostora nad istim poljem. \end_layout \begin_layout Standard Treba je definirati \begin_inset Formula $+$ \end_inset , \begin_inset Formula $F$ \end_inset in \begin_inset Formula $\cdot$ \end_inset ter dokazati, da je pri izbranih \begin_inset Formula $+$ \end_inset , \begin_inset Formula $F$ \end_inset in \begin_inset Formula $\cdot$ \end_inset \begin_inset Formula $\left(\mathcal{L},+,\cdot\right)$ \end_inset vektorski prostor po tej definiciji. Vzemimo za \begin_inset Formula $+$ \end_inset operacijo \begin_inset Formula $+$ \end_inset iz vektorskega prostora \begin_inset Formula $W$ \end_inset in definirajmo operacijo na \begin_inset Formula $\mathcal{L}$ \end_inset : \begin_inset Formula $\forall L_{1},L_{2}\in\mathcal{L}:\quad\left(L_{1}+L_{2}\right)v\coloneqq L_{1}v+L_{2}v$ \end_inset . Dokažimo, da je \begin_inset Formula $\left(\mathcal{L},+\right)$ \end_inset abelova grupa: \end_layout \begin_layout Enumerate Notranjost operacije: Trdimo, da je \begin_inset Formula $L_{1}+L_{2}$ \end_inset linearna transformacija. Dokaz: \begin_inset Formula $\forall v\in V:$ \end_inset \end_layout \begin_deeper \begin_layout Enumerate Aditivnost: \begin_inset Formula $\left(L_{1}+L_{2}\right)\left(v_{1}+v_{2}\right)\overset{\text{def}+}{=}L_{1}\left(v_{1}+v_{2}\right)+L_{2}\left(v_{1}+v_{2}\right)\overset{\text{aditivnost}}{=}L_{1}v_{1}+L_{1}v_{2}+L_{2}v_{1}+L_{2}v_{2}\overset{W\text{V.P.}}{=}L_{1}v_{1}+L_{2}v_{1}+L_{1}v_{2}+L_{2}v_{2}\overset{def+}{=}\left(L_{1}+L_{2}\right)v_{1}+\left(L_{1}+L_{2}\right)v_{2}$ \end_inset \end_layout \begin_layout Enumerate Homogenost: \begin_inset Formula $\alpha\left(L_{1}+L_{2}\right)v\overset{\text{def}+}{=}\alpha\left(L_{1}v+L_{2}v\right)\overset{W\text{V.P.}}{=}\alpha L_{1}v+\alpha L_{2}v\overset{\text{homogenost}}{=}L_{1}\alpha v+L_{2}\alpha v\overset{\text{def}+}{=}\left(L_{1}+L_{2}\right)\left(\alpha v\right)$ \end_inset \end_layout \end_deeper \begin_layout Enumerate Enote: Enota naj bo tista linearna preslikava \begin_inset Formula $L_{0}$ \end_inset , ki slika ves \begin_inset Formula $V$ \end_inset v \begin_inset Formula $0\in W$ \end_inset . Dokaz: \begin_inset Formula $\forall L\in\mathcal{L}:\quad$ \end_inset \begin_inset Formula $Lv+L_{0}v\text{\ensuremath{\overset{\text{def}L_{0}}{=}}}Lv+0\ensuremath{\overset{\left(W,+\right)\text{abelova grupa}}{=}}Lv$ \end_inset \end_layout \begin_layout Enumerate Inverzi \begin_inset CommandInset label LatexCommand label name "enu:Inverzi:-Ker-je" \end_inset : Ker je \begin_inset Formula $W$ \end_inset V. P., \begin_inset Formula $\forall w\in W\exists!-w\in W\ni:w+\left(-w\right)=0$ \end_inset , zato \begin_inset Formula $\forall L\in\mathcal{L}\exists-L\in\mathcal{L}\ni:-L+L=L_{0}$ \end_inset s predpisom \begin_inset Formula $-L$ \end_inset slika element \begin_inset Formula $v\in V$ \end_inset v tisti \begin_inset Formula $w\in W$ \end_inset , ki je inverz \begin_inset Formula $Lv\in W$ \end_inset . \begin_inset Formula $-L$ \end_inset je res \begin_inset Formula $\in\mathcal{L}$ \end_inset . Velja \begin_inset Formula $-L\coloneqq$ \end_inset \begin_inset Formula $\left(-1\right)\cdot L$ \end_inset , kjer je \begin_inset Formula $-1$ \end_inset inverz enote polja, ki ga izberemo kasneje. \begin_inset Formula $\forall v\in V,L\in\mathcal{L}:\left(\left(-1\right)\cdot L\right)v\overset{\text{def}\cdot\text{sledi}}{=}\left(-1\right)\left(Lv\right)\overset{\text{def\ensuremath{\cdot},homogenost}}{=}L\left(-1v\right)\overset{\text{karakteristika F}\not=0}{L\left(-v\right)}$ \end_inset . Ta dokaz se sklicuje na določitev polja in skalarnega množenja, ki ga podam kasneje. \end_layout \begin_layout Enumerate Asociativnost: \begin_inset Formula $\forall L_{1},L_{2},L_{3}\in\mathcal{L}:L_{1}+\left(L_{2}+L_{3}\right)=\left(L_{1}+L_{2}\right)+L_{3}$ \end_inset velja očitno iz definicije \begin_inset Formula $+$ \end_inset , saj je \begin_inset Formula $W$ \end_inset vektorski prostor. Komutativnost spet iz istih razlogov. \end_layout \begin_layout Standard Določiti moramo še polje in množenje s skalarjem. Vzemimo za \begin_inset Formula $F$ \end_inset polje vektorskega prostora \begin_inset Formula $W$ \end_inset in množenje s skalarjem definirajmo takole: \begin_inset Formula $\forall v\in V,\alpha\in F:\left(\alpha L\right)v\coloneqq\alpha\left(Lv\right)$ \end_inset . Zopet za vsak slučaj dokažimo še linearnost dobljene preslikave \begin_inset Formula $\forall\alpha,\beta\in F\forall L\in\mathcal{L}\forall v_{1},v_{2}\in V:$ \end_inset \end_layout \begin_layout Enumerate Aditivnost: \begin_inset Formula $\left(\alpha L\right)\left(v_{1}+v_{2}\right)\overset{\text{def}\cdot}{=}\alpha\left(L\left(v_{1}+v_{2}\right)\right)\overset{\text{aditivnost}}{=}\alpha\left(Lv_{1}+Lv_{2}\right)\overset{W\text{V.P.}}{=}\alpha\left(Lv_{1}\right)+\alpha\left(Lv_{2}\right)\overset{\text{def}\cdot}{=}\left(\alpha L\right)v_{1}+\left(\alpha L\right)v_{2}$ \end_inset \end_layout \begin_layout Enumerate Homogenost: \begin_inset Formula $\left(\alpha L\right)\left(\beta v\right)\overset{\text{def}\cdot}{=}\alpha\left(L\left(\beta v\right)\right)\overset{\text{homogenost}}{=}\alpha$ \end_inset \begin_inset Formula $\beta Lv\overset{\text{F\text{polje}}}{=}\beta\alpha\left(Lv\right)\overset{\text{def}\cdot}{=}\beta\left(\alpha L\right)v$ \end_inset \end_layout \begin_layout Standard Iz tega dokaza sledi tudi obstoj inverzov ( \begin_inset CommandInset ref LatexCommand ref reference "enu:Inverzi:-Ker-je" plural "false" caps "false" noprefix "false" \end_inset ). \end_layout \begin_layout Standard Sedaj lahko dokažemo še štiri aksiome vektorskih prostorov za množenje s skalarjem. \begin_inset Formula $\forall\alpha,\beta\in F\forall L_{1},L_{2}\in V:$ \end_inset \end_layout \begin_layout Enumerate \begin_inset ERT status open \begin_layout Plain Layout \backslash udensdash{$ \backslash alpha \backslash left(L_1+L_2 \backslash right) \backslash overset{?}{=} \backslash alpha L_1+ \backslash alpha L_2$} \end_layout \end_inset : \begin_inset Formula $\left(\alpha\left(L_{1}+L_{2}\right)\right)v\overset{\text{def}+\cdot}{=}\alpha\left(L_{1}v+L_{2}v\right)\overset{W\text{V.P.}}{=}\alpha L_{1}+\alpha L_{2}$ \end_inset \end_layout \begin_layout Enumerate \begin_inset ERT status open \begin_layout Plain Layout \backslash udensdash{$ \backslash left( \backslash alpha+ \backslash beta \backslash right)L_1= \backslash alpha L_1+ \backslash beta L_1$} \end_layout \end_inset : Po definiciji našega \begin_inset Formula $\cdot$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset ERT status open \begin_layout Plain Layout \backslash udensdash{$ \backslash alpha \backslash left( \backslash beta L_1 \backslash right)= \backslash left( \backslash alpha \backslash beta \backslash right)L_1$} \end_layout \end_inset : Po definiciji našega \begin_inset Formula $\cdot$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset ERT status open \begin_layout Plain Layout \backslash udensdash{$1 \backslash cdot L_1=L_1$} \end_layout \end_inset : \begin_inset Formula $\left(1\cdot L_{1}\right)v\overset{\text{def}\cdot}{=}1\cdot\left(L_{1}v\right)\overset{W\text{V.P.}}{=}L_{1}v$ \end_inset \end_layout \end_deeper \begin_layout Enumerate Naj bo \begin_inset Formula $Z:\mathbb{R}^{3}\to\mathbb{R}^{3}$ \end_inset zrcaljenje preko ravnine \begin_inset Formula $x+y+z=0$ \end_inset . Določi matriko \begin_inset Formula $Z$ \end_inset v standardni bazi. \end_layout \begin_deeper \begin_layout Paragraph Rešitev \end_layout \begin_layout Standard Tri točke na taki ravnini so \begin_inset Formula $\left(0,0,0\right)$ \end_inset , \begin_inset Formula $\left(1,0,-1\right)$ \end_inset in \begin_inset Formula $\left(0,1,-1\right)$ \end_inset . Normala ravnine je \begin_inset Formula $\left(1,0,-1\right)\times\left(0,1,-1\right)=\left(1,1,1\right)$ \end_inset . Parametrično to ravnino zapišemo kot \begin_inset Formula $\left\{ s\vec{r}+p\vec{q};s,p\in\mathbb{R}\right\} $ \end_inset , kjer \begin_inset Formula $\vec{r}=\left(1,0,-1\right)$ \end_inset in \begin_inset Formula $\vec{q}=\left(0,1,-1\right)$ \end_inset . Za določitev matrike linearne preslikave \begin_inset Formula $Z$ \end_inset bomo zrcalili vektorje standardne baze \begin_inset Formula $\left(1,0,0\right)$ \end_inset , \begin_inset Formula $\left(0,1,0\right)$ \end_inset in \begin_inset Formula $\left(0,0,1\right)$ \end_inset čez to ravnino. Zrcaljenje \begin_inset Formula $\vec{t}$ \end_inset v \begin_inset Formula $Z\vec{t}$ \end_inset čez ravnino je opisano z enačbo \begin_inset Formula $Z\vec{t}=\vec{t}+2\left(\hat{t}-\vec{t}\right)=2\hat{t}-\vec{t}$ \end_inset , kjer s \begin_inset Formula $\hat{t}$ \end_inset označim pravokotno projekcijo točke \begin_inset Formula $\vec{t}$ \end_inset na ravnino. Torej najprej tako projicirajmo standardno bazo na ravnino. \begin_inset Formula \[ \langle\hat{t}-\vec{t},\vec{q}\rangle=0=\langle\hat{t}-\vec{t},\vec{r}\rangle\quad\text{(pravokotna projekcija)} \] \end_inset \begin_inset Formula \[ \langle s\vec{r}+p\vec{q}-\vec{t},\vec{q}\rangle=0=\langle s\vec{r}+p\vec{q}-\vec{t},\vec{r}\rangle\quad\text{(parametrični zapis \ensuremath{\hat{t}})} \] \end_inset \begin_inset Formula \[ s\langle\vec{r},\vec{q}\rangle+p\langle\text{\ensuremath{\vec{q},\vec{q}\rangle-\langle\vec{t},\vec{q}\rangle=0=s\langle\vec{r},\vec{r}\rangle+p\langle\vec{q},\vec{r}\rangle-\langle\vec{t},\vec{r}\rangle}} \] \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash begin{align*} \end_layout \begin_layout Plain Layout s \backslash langle \backslash vec{r}, \backslash vec{q} \backslash rangle+p \backslash langle \backslash vec{q}, \backslash vec{q} \backslash rangle&= \backslash langle \backslash vec{t}, \backslash vec{q} \backslash rangle \backslash \backslash \end_layout \begin_layout Plain Layout s \backslash langle \backslash vec{r}, \backslash vec{r} \backslash rangle+p \backslash langle \backslash vec{q}, \backslash vec{r} \backslash rangle&= \backslash langle \backslash vec{t}, \backslash vec{r} \backslash rangle \end_layout \begin_layout Plain Layout \backslash end{align*} \end_layout \end_inset Dobimo sistem enačb z neznankama \begin_inset Formula $s$ \end_inset in \begin_inset Formula $p$ \end_inset , parametroma projekcije. Vstavimo \begin_inset Formula $\vec{r}=\left(1,0,-1\right)$ \end_inset in \begin_inset Formula $\vec{q}=\left(0,1,-1\right)$ \end_inset ter za \begin_inset Formula $\vec{t}$ \end_inset posamično vse tri točke standardne baze in izračunajmo njihove projekcije. \begin_inset Formula \[ s\cdot1+p\cdot2=\langle\vec{t},\left(0,1,-1\right)\rangle \] \end_inset \begin_inset Formula \[ s\cdot2+p\cdot1=\langle\vec{t},\left(1,0,-1\right)\rangle \] \end_inset \end_layout \begin_layout Standard Nato izračunamo še njihovo zrcaljenje iz projekcij po enačbi za zrcaljenje zgoraj. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash setlength{ \backslash columnseprule}{0.2pt} \backslash begin{multicols}{3} \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula $\vec{b_{1}}=\left(1,0,0\right)$ \end_inset \begin_inset Formula \[ s+2p=0 \] \end_inset \begin_inset Formula \[ 2s+p=1 \] \end_inset \begin_inset Formula \[ s=-2p \] \end_inset \begin_inset Formula \[ p-4p=1 \] \end_inset \begin_inset Formula \[ p=-\frac{1}{3},\quad s=\frac{2}{3} \] \end_inset \begin_inset Formula \[ \hat{t}=\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right) \] \end_inset \begin_inset Formula \[ Z\vec{b_{1}}=\left(\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right) \] \end_inset \end_layout \begin_layout Standard \begin_inset Formula $\vec{b_{2}}=\left(0,1,0\right)$ \end_inset \begin_inset Formula \[ s+2p=1 \] \end_inset \begin_inset Formula \[ 2s+p=0 \] \end_inset \begin_inset Formula \[ p=-2s \] \end_inset \begin_inset Formula \[ s-4s=1 \] \end_inset \begin_inset Formula \[ p=\frac{2}{3},\quad s=-\frac{1}{3} \] \end_inset \begin_inset Formula \[ \hat{b_{2}}=\left(-\frac{1}{3},\frac{2}{3},-\frac{1}{3}\right) \] \end_inset \begin_inset Formula \[ Z\vec{b_{2}}=\left(-\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right) \] \end_inset \end_layout \begin_layout Standard \begin_inset Formula $\vec{b_{3}}=\left(0,0,1\right)$ \end_inset \begin_inset Formula \[ s+2p=-1 \] \end_inset \begin_inset Formula \[ 2s+p=-1 \] \end_inset \end_layout \begin_layout Standard \begin_inset Formula \[ s=-2p-1 \] \end_inset \begin_inset Formula \[ 2\left(-2p-1\right)+p=-1 \] \end_inset \begin_inset Formula \[ p=-\frac{1}{3},\quad s=-\frac{1}{3} \] \end_inset \begin_inset Formula \[ \hat{b_{2}}=\left(-\frac{1}{3},-\frac{1}{3},\frac{2}{3}\right) \] \end_inset \begin_inset Formula \[ Z\vec{b_{3}}=\left(-\frac{2}{3},-\frac{2}{3},\frac{1}{3}\right) \] \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash end{multicols} \end_layout \end_inset \end_layout \begin_layout Standard Dobljene z \begin_inset Formula $Z$ \end_inset preslikane (čez ravnino zrcaljene) vektorje po stolpcih zložimo v matriko \begin_inset Formula $Z$ \end_inset : \begin_inset Formula \[ Z=\left[\begin{array}{ccc} 1/3 & -2/3 & -2/3\\ -2/3 & 1/3 & -2/3\\ -2/3 & -2/3 & 1/3 \end{array}\right] \] \end_inset \end_layout \end_deeper \begin_layout Enumerate Določi rang matrike \begin_inset Formula \[ B=\left[\begin{array}{cccc} -2-t & 4 & 5+t & 4\\ 1 & -1 & -2 & 1\\ -t & 3 & 1+t & 4+t \end{array}\right] \] \end_inset v odvisnosti od parametra \begin_inset Formula $t$ \end_inset . \end_layout \begin_deeper \begin_layout Paragraph Rešitev \end_layout \begin_layout Standard Za \begin_inset Formula $A:V\to U$ \end_inset smo definirali \begin_inset Formula $\rang A\coloneqq\dim\text{Im}A$ \end_inset , kjer je \begin_inset Formula $\text{Im}A\coloneqq\left\{ Av;v\in V\right\} $ \end_inset . Dokazali smo, da je rang matrike enak številu linearno neodvisnih vrstic matrike in da velja \begin_inset Formula $\rang A=\rang A^{T}$ \end_inset . \begin_inset Formula \[ \rang\left[\begin{array}{cccc} -2-t & 4 & 5+t & 4\\ 1 & -1 & -2 & 1\\ -t & 3 & 1+t & 4+t \end{array}\right]=\rang\left[\begin{array}{ccc} -2-t & 1 & -t\\ 4 & -1 & 3\\ 5+t & -2 & 1+t\\ 4 & 1 & 4+t \end{array}\right]= \] \end_inset \begin_inset Formula \[ =\rang\left[\begin{array}{ccc} 4 & 1 & -3\\ -2-t & 1 & -t\\ 5+t & -2 & 1+t\\ 4 & 1 & 4+t \end{array}\right]=\rang\left[\begin{array}{ccc} 4 & 1 & -3\\ 3 & -1 & 1\\ 5+t & -2 & 1+t\\ 4 & 1 & 4+t \end{array}\right]= \] \end_inset \begin_inset Formula \[ =\rang\left[\begin{array}{ccc} 4 & 1 & -3\\ 3 & -1 & 1\\ 1+t & -3 & -3\\ 4 & 1 & 4+t \end{array}\right]=\rang\left[\begin{array}{ccc} 1 & 2 & -4\\ 3 & -1 & 1\\ 1+t & -3 & -3\\ 4 & 1 & 4+t \end{array}\right]= \] \end_inset \begin_inset Formula \[ =\rang\left[\begin{array}{ccc} 1 & 2 & -4\\ 0 & -7 & 13\\ 0 & -5-t & 1+4t\\ 0 & -7 & 20+t \end{array}\right]=\rang\left[\begin{array}{ccc} 1 & 2 & -4\\ 0 & -7 & 13\\ 0 & 0 & \frac{-58+15t}{7}\\ 0 & 0 & 7+t \end{array}\right] \] \end_inset \end_layout \begin_layout Standard Rang je vsaj 2, ker sta \begin_inset Formula $\left(1,2,-4\right)$ \end_inset in \begin_inset Formula $\left(0,-7,13\right)$ \end_inset linearno neodvisna. Rang je kvečjemu 3, ker je manjša izmed stranic matrike dolžine 3. Rang ne more biti 2, ker sistem \begin_inset Formula $\frac{-58+15t}{7}=7+t=0$ \end_inset nima rešitve. \begin_inset Formula $\rang B=3$ \end_inset . \end_layout \end_deeper \begin_layout Enumerate Poišči karakteristični in minimalni polinom matrike \begin_inset Formula \[ A=\left[\begin{array}{ccc} 4 & -5 & 3\\ 2 & -3 & 2\\ -1 & 1 & 0 \end{array}\right] \] \end_inset in s pomočjo Cayley-Hamiltonovega izreka določi njen inverz. \end_layout \begin_deeper \begin_layout Standard \begin_inset Formula \[ \nabla_{P}\left(\lambda\right)=\det\left(A-\lambda I\right)=\left|\begin{array}{ccc} 4-\lambda & -5 & 3\\ 2 & -3-\lambda & 2\\ -1 & 1 & -\lambda \end{array}\right|= \] \end_inset \begin_inset Formula \[ =-3\left(3+\lambda\right)-2\left(4-\lambda\right)-10\lambda+\lambda\left(3+\lambda\right)\left(4-\lambda\right)+10+6= \] \end_inset \begin_inset Formula \[ -9-3\lambda-8+2\lambda-10\lambda+\left(3\lambda+\lambda^{2}\right)\left(4-\lambda\right)+16= \] \end_inset \begin_inset Formula \[ =-17+16-11\lambda+12\lambda-3\lambda^{2}+4\lambda^{2}-\lambda^{3}=-\lambda^{3}+\lambda^{2}+\lambda-1 \] \end_inset \end_layout \begin_layout Standard Eno ničlo uganemo ( \begin_inset Formula $\lambda_{1}=1$ \end_inset ), nato \begin_inset Formula $-\lambda^{3}+\lambda^{2}+\lambda-1:\lambda-1=-\lambda^{2}+1=\left(1+\lambda\right)\left(1-\lambda\right)$ \end_inset . 1 je torej dvojna ničla, \begin_inset Formula $\lambda_{2}=-1$ \end_inset pa enojna. Ker \begin_inset Formula $m_{A}\left(\lambda\right)|\nabla_{A}\left(\lambda\right)$ \end_inset , je kandidat za \begin_inset Formula $m_{A}\left(\lambda\right)$ \end_inset poleg \begin_inset Formula $-\nabla_{A}\left(\lambda\right)$ \end_inset še \begin_inset Formula $p\left(\lambda\right)=\left(\lambda-x\right)\left(\lambda+1\right)=1-\lambda^{2}$ \end_inset . Po Cayley-Hamiltonovem izreku \begin_inset Formula $m_{A}\left(A\right)=0=\nabla_{A}\left(A\right)$ \end_inset . Toda ker \begin_inset Formula $I-A^{2}\not=0$ \end_inset , je \begin_inset Formula $m_{A}\left(\lambda\right)=-\nabla_{A}\left(\lambda\right)=\lambda^{3}-\lambda^{2}-\lambda+1$ \end_inset . Izračunajmo inverz: \begin_inset Formula \[ m_{A}\left(A\right)=A^{3}-A^{2}-A+I=0\quad\quad/-I \] \end_inset \begin_inset Formula \[ A^{3}-A^{2}-A=-I\quad\quad/\cdot A^{-1} \] \end_inset \begin_inset Formula \[ A^{3}A^{-1}-A^{2}A^{-1}-AA^{-1}=-IA^{-1}\quad\quad/\cdot\left(-I\right) \] \end_inset \begin_inset Formula \[ -A^{2}+A+I=A^{1}= \] \end_inset \begin_inset Formula \[ =-\left[\begin{array}{ccc} 4 & -5 & 3\\ 2 & -3 & 2\\ -1 & 1 & 0 \end{array}\right]\left[\begin{array}{ccc} 4 & -5 & 3\\ 2 & -3 & 2\\ -1 & 1 & 0 \end{array}\right]+\left[\begin{array}{ccc} 4 & -5 & 3\\ 2 & -3 & 2\\ -1 & 1 & 0 \end{array}\right]+\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right]= \] \end_inset \begin_inset Formula \[ =\left[\begin{array}{ccc} 2 & -3 & 1\\ 2 & -3 & 2\\ 1 & -1 & 2 \end{array}\right]\text{, kar je res \ensuremath{A^{-1}.}} \] \end_inset \end_layout \end_deeper \begin_layout Standard \begin_inset Separator plain \end_inset \end_layout \begin_layout Standard Rokopisi, ki sledijo, naj služijo le kot dokaz samostojnega reševanja. Zavedam se namreč njihovega neličnega izgleda. \end_layout \begin_layout Standard \begin_inset External template PDFPages filename /mnt/slu/shramba/upload/www/d/LADN6FMF1.pdf extra LaTeX "pages=-" \end_inset \begin_inset External template PDFPages filename /mnt/slu/shramba/upload/www/d/LADN6FMF2.pdf extra LaTeX "pages=-" \end_inset \end_layout \end_body \end_document