From 2877f4eda3d1b0c7431039e3142ecf1a282a34b1 Mon Sep 17 00:00:00 2001 From: LaG1924 <12997935+LaG1924@users.noreply.github.com> Date: Tue, 21 Aug 2018 20:40:38 +0500 Subject: Update glm to 0.9.9.0 --- external/include/glm/gtc/bitfield.hpp | 111 ++-- external/include/glm/gtc/bitfield.inl | 246 +++---- external/include/glm/gtc/color_encoding.inl | 65 -- external/include/glm/gtc/color_space.hpp | 30 +- external/include/glm/gtc/color_space.inl | 70 +- external/include/glm/gtc/constants.hpp | 67 +- external/include/glm/gtc/constants.inl | 60 +- external/include/glm/gtc/epsilon.hpp | 41 +- external/include/glm/gtc/epsilon.inl | 112 +--- external/include/glm/gtc/functions.hpp | 53 -- external/include/glm/gtc/functions.inl | 31 - external/include/glm/gtc/integer.hpp | 67 +- external/include/glm/gtc/integer.inl | 46 +- external/include/glm/gtc/matrix_access.hpp | 25 +- external/include/glm/gtc/matrix_access.inl | 22 +- external/include/glm/gtc/matrix_integer.hpp | 297 ++++----- external/include/glm/gtc/matrix_inverse.hpp | 19 +- external/include/glm/gtc/matrix_inverse.inl | 48 +- external/include/glm/gtc/matrix_transform.hpp | 832 ++++++++++++++++-------- external/include/glm/gtc/matrix_transform.inl | 737 ++++++++++++++------- external/include/glm/gtc/noise.hpp | 29 +- external/include/glm/gtc/noise.inl | 904 +++++++++++++------------- external/include/glm/gtc/packing.hpp | 551 ++++++++++------ external/include/glm/gtc/packing.inl | 341 +++++++--- external/include/glm/gtc/quaternion.hpp | 358 +++++----- external/include/glm/gtc/quaternion.inl | 533 +++++++-------- external/include/glm/gtc/quaternion_simd.inl | 88 +-- external/include/glm/gtc/random.hpp | 91 ++- external/include/glm/gtc/random.inl | 310 ++++----- external/include/glm/gtc/reciprocal.hpp | 84 +-- external/include/glm/gtc/reciprocal.inl | 100 +-- external/include/glm/gtc/round.hpp | 136 ++-- external/include/glm/gtc/round.inl | 158 ++--- external/include/glm/gtc/type_aligned.hpp | 588 ++++++++++++----- external/include/glm/gtc/type_precision.hpp | 606 ++++++++--------- external/include/glm/gtc/type_ptr.hpp | 126 +++- external/include/glm/gtc/type_ptr.inl | 621 ++++++++---------- external/include/glm/gtc/ulp.hpp | 38 +- external/include/glm/gtc/ulp.inl | 136 ++-- external/include/glm/gtc/vec1.hpp | 152 +---- 40 files changed, 4838 insertions(+), 4091 deletions(-) delete mode 100644 external/include/glm/gtc/color_encoding.inl delete mode 100644 external/include/glm/gtc/functions.hpp delete mode 100644 external/include/glm/gtc/functions.inl (limited to 'external/include/glm/gtc') diff --git a/external/include/glm/gtc/bitfield.hpp b/external/include/glm/gtc/bitfield.hpp index 38a38b6..9dcec53 100644 --- a/external/include/glm/gtc/bitfield.hpp +++ b/external/include/glm/gtc/bitfield.hpp @@ -6,16 +6,17 @@ /// /// @defgroup gtc_bitfield GLM_GTC_bitfield /// @ingroup gtc -/// -/// @brief Allow to perform bit operations on integer values -/// -/// need to be included to use these functionalities. +/// +/// Include to use the features of this extension. +/// +/// Allow to perform bit operations on integer values + +#include "../detail/setup.hpp" #pragma once // Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #include "../detail/type_int.hpp" #include "../detail/_vectorize.hpp" #include @@ -32,172 +33,192 @@ namespace glm /// Build a mask of 'count' bits /// /// @see gtc_bitfield - template + template GLM_FUNC_DECL genIUType mask(genIUType Bits); - + /// Build a mask of 'count' bits /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template class vecIUType> - GLM_FUNC_DECL vecIUType mask(vecIUType const & v); + template + GLM_FUNC_DECL vec mask(vec const& v); /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. /// /// @see gtc_bitfield - template + template GLM_FUNC_DECL genIUType bitfieldRotateRight(genIUType In, int Shift); /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template class vecType> - GLM_FUNC_DECL vecType bitfieldRotateRight(vecType const & In, int Shift); + template + GLM_FUNC_DECL vec bitfieldRotateRight(vec const& In, int Shift); /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. /// /// @see gtc_bitfield - template + template GLM_FUNC_DECL genIUType bitfieldRotateLeft(genIUType In, int Shift); /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template class vecType> - GLM_FUNC_DECL vecType bitfieldRotateLeft(vecType const & In, int Shift); + template + GLM_FUNC_DECL vec bitfieldRotateLeft(vec const& In, int Shift); /// Set to 1 a range of bits. /// /// @see gtc_bitfield - template + template GLM_FUNC_DECL genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount); /// Set to 1 a range of bits. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template class vecType> - GLM_FUNC_DECL vecType bitfieldFillOne(vecType const & Value, int FirstBit, int BitCount); + template + GLM_FUNC_DECL vec bitfieldFillOne(vec const& Value, int FirstBit, int BitCount); /// Set to 0 a range of bits. /// /// @see gtc_bitfield - template + template GLM_FUNC_DECL genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount); /// Set to 0 a range of bits. /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// /// @see gtc_bitfield - template class vecType> - GLM_FUNC_DECL vecType bitfieldFillZero(vecType const & Value, int FirstBit, int BitCount); + template + GLM_FUNC_DECL vec bitfieldFillZero(vec const& Value, int FirstBit, int BitCount); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y); /// Interleaves the bits of x and y. /// The first bit is the first bit of x followed by the first bit of y. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y); /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z); /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z); /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z); - /// Interleaves the bits of x, y and z. + /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z); - /// Interleaves the bits of x, y and z. + /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z); - /// Interleaves the bits of x, y and z. + /// Interleaves the bits of x, y and z. /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z); - /// Interleaves the bits of x, y, z and w. + /// Interleaves the bits of x, y, z and w. /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w); - /// Interleaves the bits of x, y, z and w. + /// Interleaves the bits of x, y, z and w. /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w); - /// Interleaves the bits of x, y, z and w. + /// Interleaves the bits of x, y, z and w. /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w); - /// Interleaves the bits of x, y, z and w. + /// Interleaves the bits of x, y, z and w. /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. /// The other bits are interleaved following the previous sequence. - /// + /// /// @see gtc_bitfield GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w); diff --git a/external/include/glm/gtc/bitfield.inl b/external/include/glm/gtc/bitfield.inl index 490cfb3..9735740 100644 --- a/external/include/glm/gtc/bitfield.inl +++ b/external/include/glm/gtc/bitfield.inl @@ -6,165 +6,165 @@ namespace glm{ namespace detail { - template + template GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); - template + template GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); - template + template GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); - template <> + template<> GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) { glm::uint16 REG1(x); glm::uint16 REG2(y); - REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F); - REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F); + REG1 = ((REG1 << 4) | REG1) & static_cast(0x0F0F); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x0F0F); - REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333); - REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333); + REG1 = ((REG1 << 2) | REG1) & static_cast(0x3333); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x3333); - REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555); - REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555); + REG1 = ((REG1 << 1) | REG1) & static_cast(0x5555); + REG2 = ((REG2 << 1) | REG2) & static_cast(0x5555); - return REG1 | (REG2 << 1); + return REG1 | static_cast(REG2 << 1); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) { glm::uint32 REG1(x); glm::uint32 REG2(y); - REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF); - REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF); + REG1 = ((REG1 << 8) | REG1) & static_cast(0x00FF00FF); + REG2 = ((REG2 << 8) | REG2) & static_cast(0x00FF00FF); - REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F); - REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F); + REG1 = ((REG1 << 4) | REG1) & static_cast(0x0F0F0F0F); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x0F0F0F0F); - REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333); - REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333); + REG1 = ((REG1 << 2) | REG1) & static_cast(0x33333333); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x33333333); - REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555); - REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555); + REG1 = ((REG1 << 1) | REG1) & static_cast(0x55555555); + REG2 = ((REG2 << 1) | REG2) & static_cast(0x55555555); return REG1 | (REG2 << 1); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) { glm::uint64 REG1(x); glm::uint64 REG2(y); - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFFull); + REG1 = ((REG1 << 16) | REG1) & static_cast(0x0000FFFF0000FFFFull); + REG2 = ((REG2 << 16) | REG2) & static_cast(0x0000FFFF0000FFFFull); - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FFull); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FFull); + REG1 = ((REG1 << 8) | REG1) & static_cast(0x00FF00FF00FF00FFull); + REG2 = ((REG2 << 8) | REG2) & static_cast(0x00FF00FF00FF00FFull); - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0Full); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0Full); + REG1 = ((REG1 << 4) | REG1) & static_cast(0x0F0F0F0F0F0F0F0Full); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x0F0F0F0F0F0F0F0Full); - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333ull); + REG1 = ((REG1 << 2) | REG1) & static_cast(0x3333333333333333ull); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x3333333333333333ull); - REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555ull); - REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555ull); + REG1 = ((REG1 << 1) | REG1) & static_cast(0x5555555555555555ull); + REG2 = ((REG2 << 1) | REG2) & static_cast(0x5555555555555555ull); return REG1 | (REG2 << 1); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) { glm::uint32 REG1(x); glm::uint32 REG2(y); glm::uint32 REG3(z); - REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); - REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); - REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); + REG1 = ((REG1 << 16) | REG1) & static_cast(0xFF0000FFu); + REG2 = ((REG2 << 16) | REG2) & static_cast(0xFF0000FFu); + REG3 = ((REG3 << 16) | REG3) & static_cast(0xFF0000FFu); - REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F); - REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F); - REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F); + REG1 = ((REG1 << 8) | REG1) & static_cast(0x0F00F00Fu); + REG2 = ((REG2 << 8) | REG2) & static_cast(0x0F00F00Fu); + REG3 = ((REG3 << 8) | REG3) & static_cast(0x0F00F00Fu); - REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3); - REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3); - REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3); + REG1 = ((REG1 << 4) | REG1) & static_cast(0xC30C30C3u); + REG2 = ((REG2 << 4) | REG2) & static_cast(0xC30C30C3u); + REG3 = ((REG3 << 4) | REG3) & static_cast(0xC30C30C3u); - REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249); - REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249); - REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249); + REG1 = ((REG1 << 2) | REG1) & static_cast(0x49249249u); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x49249249u); + REG3 = ((REG3 << 2) | REG3) & static_cast(0x49249249u); return REG1 | (REG2 << 1) | (REG3 << 2); } - - template <> + + template<> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); - REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); - REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); - REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); + REG1 = ((REG1 << 32) | REG1) & static_cast(0xFFFF00000000FFFFull); + REG2 = ((REG2 << 32) | REG2) & static_cast(0xFFFF00000000FFFFull); + REG3 = ((REG3 << 32) | REG3) & static_cast(0xFFFF00000000FFFFull); - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); - REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); + REG1 = ((REG1 << 16) | REG1) & static_cast(0x00FF0000FF0000FFull); + REG2 = ((REG2 << 16) | REG2) & static_cast(0x00FF0000FF0000FFull); + REG3 = ((REG3 << 16) | REG3) & static_cast(0x00FF0000FF0000FFull); - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); - REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); + REG1 = ((REG1 << 8) | REG1) & static_cast(0xF00F00F00F00F00Full); + REG2 = ((REG2 << 8) | REG2) & static_cast(0xF00F00F00F00F00Full); + REG3 = ((REG3 << 8) | REG3) & static_cast(0xF00F00F00F00F00Full); - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); - REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); + REG1 = ((REG1 << 4) | REG1) & static_cast(0x30C30C30C30C30C3ull); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x30C30C30C30C30C3ull); + REG3 = ((REG3 << 4) | REG3) & static_cast(0x30C30C30C30C30C3ull); - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull); - REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull); + REG1 = ((REG1 << 2) | REG1) & static_cast(0x9249249249249249ull); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x9249249249249249ull); + REG3 = ((REG3 << 2) | REG3) & static_cast(0x9249249249249249ull); return REG1 | (REG2 << 1) | (REG3 << 2); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); - REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull); - REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull); - REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull); + REG1 = ((REG1 << 32) | REG1) & static_cast(0xFFFF00000000FFFFull); + REG2 = ((REG2 << 32) | REG2) & static_cast(0xFFFF00000000FFFFull); + REG3 = ((REG3 << 32) | REG3) & static_cast(0xFFFF00000000FFFFull); - REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull); - REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull); - REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull); + REG1 = ((REG1 << 16) | REG1) & static_cast(0x00FF0000FF0000FFull); + REG2 = ((REG2 << 16) | REG2) & static_cast(0x00FF0000FF0000FFull); + REG3 = ((REG3 << 16) | REG3) & static_cast(0x00FF0000FF0000FFull); - REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full); - REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full); - REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full); + REG1 = ((REG1 << 8) | REG1) & static_cast(0xF00F00F00F00F00Full); + REG2 = ((REG2 << 8) | REG2) & static_cast(0xF00F00F00F00F00Full); + REG3 = ((REG3 << 8) | REG3) & static_cast(0xF00F00F00F00F00Full); - REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull); - REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull); - REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull); + REG1 = ((REG1 << 4) | REG1) & static_cast(0x30C30C30C30C30C3ull); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x30C30C30C30C30C3ull); + REG3 = ((REG3 << 4) | REG3) & static_cast(0x30C30C30C30C30C3ull); - REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull); - REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull); - REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull); + REG1 = ((REG1 << 2) | REG1) & static_cast(0x9249249249249249ull); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x9249249249249249ull); + REG3 = ((REG3 << 2) | REG3) & static_cast(0x9249249249249249ull); return REG1 | (REG2 << 1) | (REG3 << 2); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) { glm::uint32 REG1(x); @@ -172,25 +172,25 @@ namespace detail glm::uint32 REG3(z); glm::uint32 REG4(w); - REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); - REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); - REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); - REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); + REG1 = ((REG1 << 12) | REG1) & static_cast(0x000F000Fu); + REG2 = ((REG2 << 12) | REG2) & static_cast(0x000F000Fu); + REG3 = ((REG3 << 12) | REG3) & static_cast(0x000F000Fu); + REG4 = ((REG4 << 12) | REG4) & static_cast(0x000F000Fu); - REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303); - REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303); - REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303); - REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303); + REG1 = ((REG1 << 6) | REG1) & static_cast(0x03030303u); + REG2 = ((REG2 << 6) | REG2) & static_cast(0x03030303u); + REG3 = ((REG3 << 6) | REG3) & static_cast(0x03030303u); + REG4 = ((REG4 << 6) | REG4) & static_cast(0x03030303u); - REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111); - REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111); - REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111); - REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111); + REG1 = ((REG1 << 3) | REG1) & static_cast(0x11111111u); + REG2 = ((REG2 << 3) | REG2) & static_cast(0x11111111u); + REG3 = ((REG3 << 3) | REG3) & static_cast(0x11111111u); + REG4 = ((REG4 << 3) | REG4) & static_cast(0x11111111u); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } - template <> + template<> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) { glm::uint64 REG1(x); @@ -198,31 +198,31 @@ namespace detail glm::uint64 REG3(z); glm::uint64 REG4(w); - REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FFull); - REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FFull); - REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FFull); - REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FFull); + REG1 = ((REG1 << 24) | REG1) & static_cast(0x000000FF000000FFull); + REG2 = ((REG2 << 24) | REG2) & static_cast(0x000000FF000000FFull); + REG3 = ((REG3 << 24) | REG3) & static_cast(0x000000FF000000FFull); + REG4 = ((REG4 << 24) | REG4) & static_cast(0x000000FF000000FFull); - REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000Full); - REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000Full); - REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000Full); - REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000Full); + REG1 = ((REG1 << 12) | REG1) & static_cast(0x000F000F000F000Full); + REG2 = ((REG2 << 12) | REG2) & static_cast(0x000F000F000F000Full); + REG3 = ((REG3 << 12) | REG3) & static_cast(0x000F000F000F000Full); + REG4 = ((REG4 << 12) | REG4) & static_cast(0x000F000F000F000Full); - REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303ull); - REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303ull); - REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303ull); - REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303ull); + REG1 = ((REG1 << 6) | REG1) & static_cast(0x0303030303030303ull); + REG2 = ((REG2 << 6) | REG2) & static_cast(0x0303030303030303ull); + REG3 = ((REG3 << 6) | REG3) & static_cast(0x0303030303030303ull); + REG4 = ((REG4 << 6) | REG4) & static_cast(0x0303030303030303ull); - REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111ull); - REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111ull); - REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111ull); - REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111ull); + REG1 = ((REG1 << 3) | REG1) & static_cast(0x1111111111111111ull); + REG2 = ((REG2 << 3) | REG2) & static_cast(0x1111111111111111ull); + REG3 = ((REG3 << 3) | REG3) & static_cast(0x1111111111111111ull); + REG4 = ((REG4 << 3) | REG4) & static_cast(0x1111111111111111ull); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } }//namespace detail - template + template GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'mask' accepts only integer values"); @@ -230,15 +230,15 @@ namespace detail return Bits >= sizeof(genIUType) * 8 ? ~static_cast(0) : (static_cast(1) << Bits) - static_cast(1); } - template class vecIUType> - GLM_FUNC_QUALIFIER vecIUType mask(vecIUType const& v) + template + GLM_FUNC_QUALIFIER vec mask(vec const& v) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'mask' accepts only integer values"); - return detail::functor1::call(mask, v); + return detail::functor1::call(mask, v); } - template + template GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldRotateRight' accepts only integer values"); @@ -247,8 +247,8 @@ namespace detail return (In << static_cast(Shift)) | (In >> static_cast(BitSize - Shift)); } - template class vecType> - GLM_FUNC_QUALIFIER vecType bitfieldRotateRight(vecType const & In, int Shift) + template + GLM_FUNC_QUALIFIER vec bitfieldRotateRight(vec const& In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldRotateRight' accepts only integer values"); @@ -256,7 +256,7 @@ namespace detail return (In << static_cast(Shift)) | (In >> static_cast(BitSize - Shift)); } - template + template GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldRotateLeft' accepts only integer values"); @@ -265,8 +265,8 @@ namespace detail return (In >> static_cast(Shift)) | (In << static_cast(BitSize - Shift)); } - template class vecType> - GLM_FUNC_QUALIFIER vecType bitfieldRotateLeft(vecType const& In, int Shift) + template + GLM_FUNC_QUALIFIER vec bitfieldRotateLeft(vec const& In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldRotateLeft' accepts only integer values"); @@ -274,26 +274,26 @@ namespace detail return (In >> static_cast(Shift)) | (In << static_cast(BitSize - Shift)); } - template + template GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount) { return Value | static_cast(mask(BitCount) << FirstBit); } - template class vecType> - GLM_FUNC_QUALIFIER vecType bitfieldFillOne(vecType const& Value, int FirstBit, int BitCount) + template + GLM_FUNC_QUALIFIER vec bitfieldFillOne(vec const& Value, int FirstBit, int BitCount) { return Value | static_cast(mask(BitCount) << FirstBit); } - template + template GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount) { return Value & static_cast(~(mask(BitCount) << FirstBit)); } - template class vecType> - GLM_FUNC_QUALIFIER vecType bitfieldFillZero(vecType const& Value, int FirstBit, int BitCount) + template + GLM_FUNC_QUALIFIER vec bitfieldFillZero(vec const& Value, int FirstBit, int BitCount) { return Value & static_cast(~(mask(BitCount) << FirstBit)); } diff --git a/external/include/glm/gtc/color_encoding.inl b/external/include/glm/gtc/color_encoding.inl deleted file mode 100644 index 68570cb..0000000 --- a/external/include/glm/gtc/color_encoding.inl +++ /dev/null @@ -1,65 +0,0 @@ -/// @ref gtc_color_encoding -/// @file glm/gtc/color_encoding.inl - -namespace glm -{ - template - GLM_FUNC_QUALIFIER tvec3 convertLinearSRGBToD65XYZ(tvec3 const& ColorLinearSRGB) - { - tvec3 const M(0.490f, 0.17697f, 0.2f); - tvec3 const N(0.31f, 0.8124f, 0.01063f); - tvec3 const O(0.490f, 0.01f, 0.99f); - - return (M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB) * static_cast(5.650675255693055f); - } - - template - GLM_FUNC_QUALIFIER tvec3 convertD65XYZToLinearSRGB(tvec3 const& ColorD65XYZ) - { - tvec3 const M(0.41847f, -0.091169f, 0.0009209f); - tvec3 const N(-0.15866f, 0.25243f, 0.015708f); - tvec3 const O(0.0009209f, -0.0025498f, 0.1786f); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template - GLM_FUNC_QUALIFIER tvec3 convertLinearSRGBToD50XYZ(tvec3 const& ColorLinearSRGB) - { - tvec3 const M(0.436030342570117f, 0.222438466210245f, 0.013897440074263f); - tvec3 const N(0.385101860087134f, 0.716942745571917f, 0.097076381494207f); - tvec3 const O(0.143067806654203f, 0.060618777416563f, 0.713926257896652f); - - return M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB; - } - - template - GLM_FUNC_QUALIFIER tvec3 convertD50XYZToLinearSRGB(tvec3 const& ColorD50XYZ) - { - tvec3 const M(); - tvec3 const N(); - tvec3 const O(); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template - GLM_FUNC_QUALIFIER tvec3 convertD65XYZToD50XYZ(tvec3 const& ColorD65XYZ) - { - tvec3 const M(+1.047844353856414f, +0.029549007606644f, -0.009250984365223f); - tvec3 const N(+0.022898981050086f, +0.990508028941971f, +0.015072338237051f); - tvec3 const O(-0.050206647741605f, -0.017074711360960f, +0.751717835079977f); - - return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; - } - - template - GLM_FUNC_QUALIFIER tvec3 convertD50XYZToD65XYZ(tvec3 const& ColorD50XYZ) - { - tvec3 const M(); - tvec3 const N(); - tvec3 const O(); - - return M * ColorD50XYZ + N * ColorD50XYZ + O * ColorD50XYZ; - } -}//namespace glm diff --git a/external/include/glm/gtc/color_space.hpp b/external/include/glm/gtc/color_space.hpp index 08ece8f..56cbc8f 100644 --- a/external/include/glm/gtc/color_space.hpp +++ b/external/include/glm/gtc/color_space.hpp @@ -7,15 +7,15 @@ /// @defgroup gtc_color_space GLM_GTC_color_space /// @ingroup gtc /// -/// @brief Allow to perform bit operations on integer values +/// Include to use the features of this extension. /// -/// need to be included to use these functionalities. +/// Allow to perform bit operations on integer values #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #include "../exponential.hpp" #include "../vec3.hpp" #include "../vec4.hpp" @@ -31,24 +31,24 @@ namespace glm /// @{ /// Convert a linear color to sRGB color using a standard gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template class vecType> - GLM_FUNC_DECL vecType convertLinearToSRGB(vecType const & ColorLinear); + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template + GLM_FUNC_DECL vec convertLinearToSRGB(vec const& ColorLinear); /// Convert a linear color to sRGB color using a custom gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template class vecType> - GLM_FUNC_DECL vecType convertLinearToSRGB(vecType const & ColorLinear, T Gamma); + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template + GLM_FUNC_DECL vec convertLinearToSRGB(vec const& ColorLinear, T Gamma); /// Convert a sRGB color to linear color using a standard gamma correction. - /// IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template class vecType> - GLM_FUNC_DECL vecType convertSRGBToLinear(vecType const & ColorSRGB); + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template + GLM_FUNC_DECL vec convertSRGBToLinear(vec const& ColorSRGB); /// Convert a sRGB color to linear color using a custom gamma correction. - // IEC 61966-2-1:1999 specification https://www.w3.org/Graphics/Color/srgb - template class vecType> - GLM_FUNC_DECL vecType convertSRGBToLinear(vecType const & ColorSRGB, T Gamma); + // IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template + GLM_FUNC_DECL vec convertSRGBToLinear(vec const& ColorSRGB, T Gamma); /// @} } //namespace glm diff --git a/external/include/glm/gtc/color_space.inl b/external/include/glm/gtc/color_space.inl index c9a44ef..53241ac 100644 --- a/external/include/glm/gtc/color_space.inl +++ b/external/include/glm/gtc/color_space.inl @@ -4,72 +4,82 @@ namespace glm{ namespace detail { - template class vecType> + template struct compute_rgbToSrgb { - GLM_FUNC_QUALIFIER static vecType call(vecType const& ColorRGB, T GammaCorrection) + GLM_FUNC_QUALIFIER static vec call(vec const& ColorRGB, T GammaCorrection) { - vecType const ClampedColor(clamp(ColorRGB, static_cast(0), static_cast(1))); + vec const ClampedColor(clamp(ColorRGB, static_cast(0), static_cast(1))); return mix( - pow(ClampedColor, vecType(GammaCorrection)) * static_cast(1.055) - static_cast(0.055), + pow(ClampedColor, vec(GammaCorrection)) * static_cast(1.055) - static_cast(0.055), ClampedColor * static_cast(12.92), - lessThan(ClampedColor, vecType(static_cast(0.0031308)))); + lessThan(ClampedColor, vec(static_cast(0.0031308)))); } }; - template - struct compute_rgbToSrgb + template + struct compute_rgbToSrgb<4, T, Q> { - GLM_FUNC_QUALIFIER static tvec4 call(tvec4 const& ColorRGB, T GammaCorrection) + GLM_FUNC_QUALIFIER static vec<4, T, Q> call(vec<4, T, Q> const& ColorRGB, T GammaCorrection) { - return tvec4(compute_rgbToSrgb::call(tvec3(ColorRGB), GammaCorrection), ColorRGB.w); + return vec<4, T, Q>(compute_rgbToSrgb<3, T, Q>::call(vec<3, T, Q>(ColorRGB), GammaCorrection), ColorRGB.w); } }; - template class vecType> + template struct compute_srgbToRgb { - GLM_FUNC_QUALIFIER static vecType call(vecType const& ColorSRGB, T Gamma) + GLM_FUNC_QUALIFIER static vec call(vec const& ColorSRGB, T Gamma) { return mix( - pow((ColorSRGB + static_cast(0.055)) * static_cast(0.94786729857819905213270142180095), vecType(Gamma)), + pow((ColorSRGB + static_cast(0.055)) * static_cast(0.94786729857819905213270142180095), vec(Gamma)), ColorSRGB * static_cast(0.07739938080495356037151702786378), - lessThanEqual(ColorSRGB, vecType(static_cast(0.04045)))); + lessThanEqual(ColorSRGB, vec(static_cast(0.04045)))); } }; - template - struct compute_srgbToRgb + template + struct compute_srgbToRgb<4, T, Q> { - GLM_FUNC_QUALIFIER static tvec4 call(tvec4 const& ColorSRGB, T Gamma) + GLM_FUNC_QUALIFIER static vec<4, T, Q> call(vec<4, T, Q> const& ColorSRGB, T Gamma) { - return tvec4(compute_srgbToRgb::call(tvec3(ColorSRGB), Gamma), ColorSRGB.w); + return vec<4, T, Q>(compute_srgbToRgb<3, T, Q>::call(vec<3, T, Q>(ColorSRGB), Gamma), ColorSRGB.w); } }; }//namespace detail - template class vecType> - GLM_FUNC_QUALIFIER vecType convertLinearToSRGB(vecType const& ColorLinear) + template + GLM_FUNC_QUALIFIER vec convertLinearToSRGB(vec const& ColorLinear) { - return detail::compute_rgbToSrgb::call(ColorLinear, static_cast(0.41666)); + return detail::compute_rgbToSrgb::call(ColorLinear, static_cast(0.41666)); } - template class vecType> - GLM_FUNC_QUALIFIER vecType convertLinearToSRGB(vecType const& ColorLinear, T Gamma) + // Based on Ian Taylor http://chilliant.blogspot.fr/2012/08/srgb-approximations-for-hlsl.html + template<> + GLM_FUNC_QUALIFIER vec<3, float, lowp> convertLinearToSRGB(vec<3, float, lowp> const& ColorLinear) { - return detail::compute_rgbToSrgb::call(ColorLinear, static_cast(1) / Gamma); + vec<3, float, lowp> S1 = sqrt(ColorLinear); + vec<3, float, lowp> S2 = sqrt(S1); + vec<3, float, lowp> S3 = sqrt(S2); + return 0.662002687f * S1 + 0.684122060f * S2 - 0.323583601f * S3 - 0.0225411470f * ColorLinear; } - template class vecType> - GLM_FUNC_QUALIFIER vecType convertSRGBToLinear(vecType const& ColorSRGB) + template + GLM_FUNC_QUALIFIER vec convertLinearToSRGB(vec const& ColorLinear, T Gamma) { - return detail::compute_srgbToRgb::call(ColorSRGB, static_cast(2.4)); + return detail::compute_rgbToSrgb::call(ColorLinear, static_cast(1) / Gamma); } - - template class vecType> - GLM_FUNC_QUALIFIER vecType convertSRGBToLinear(vecType const& ColorSRGB, T Gamma) + + template + GLM_FUNC_QUALIFIER vec convertSRGBToLinear(vec const& ColorSRGB) + { + return detail::compute_srgbToRgb::call(ColorSRGB, static_cast(2.4)); + } + + template + GLM_FUNC_QUALIFIER vec convertSRGBToLinear(vec const& ColorSRGB, T Gamma) { - return detail::compute_srgbToRgb::call(ColorSRGB, Gamma); + return detail::compute_srgbToRgb::call(ColorSRGB, Gamma); } }//namespace glm diff --git a/external/include/glm/gtc/constants.hpp b/external/include/glm/gtc/constants.hpp index d3358c7..f55f619 100644 --- a/external/include/glm/gtc/constants.hpp +++ b/external/include/glm/gtc/constants.hpp @@ -2,14 +2,13 @@ /// @file glm/gtc/constants.hpp /// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// /// @defgroup gtc_constants GLM_GTC_constants /// @ingroup gtc -/// -/// @brief Provide a list of constants and precomputed useful values. -/// -/// need to be included to use these features. +/// +/// Include to use the features of this extension. +/// +/// Provide a list of constants and precomputed useful values. #pragma once @@ -27,147 +26,147 @@ namespace glm /// Return the epsilon constant for floating point types. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon(); /// Return 0. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType zero(); /// Return 1. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType one(); /// Return the pi constant. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType pi(); /// Return pi * 2. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType two_pi(); /// Return square root of pi. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType root_pi(); /// Return pi / 2. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType half_pi(); /// Return pi / 2 * 3. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType three_over_two_pi(); /// Return pi / 4. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType quarter_pi(); /// Return 1 / pi. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_pi(); /// Return 1 / (pi * 2). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_two_pi(); /// Return 2 / pi. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_pi(); /// Return 4 / pi. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType four_over_pi(); /// Return 2 / sqrt(pi). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_root_pi(); /// Return 1 / sqrt(2). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_root_two(); /// Return sqrt(pi / 2). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType root_half_pi(); /// Return sqrt(2 * pi). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType root_two_pi(); /// Return sqrt(ln(4)). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType root_ln_four(); /// Return e constant. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType e(); /// Return Euler's constant. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType euler(); /// Return sqrt(2). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType root_two(); /// Return sqrt(3). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType root_three(); /// Return sqrt(5). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType root_five(); /// Return ln(2). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType ln_two(); /// Return ln(10). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ten(); /// Return ln(ln(2)). /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ln_two(); /// Return 1 / 3. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType third(); /// Return 2 / 3. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType two_thirds(); /// Return the golden ratio constant. /// @see gtc_constants - template + template GLM_FUNC_DECL GLM_CONSTEXPR genType golden_ratio(); /// @} diff --git a/external/include/glm/gtc/constants.inl b/external/include/glm/gtc/constants.inl index cb451d0..b1d277c 100644 --- a/external/include/glm/gtc/constants.inl +++ b/external/include/glm/gtc/constants.inl @@ -5,175 +5,175 @@ namespace glm { - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType epsilon() { return std::numeric_limits::epsilon(); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType zero() { return genType(0); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one() { return genType(1); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType pi() { return genType(3.14159265358979323846264338327950288); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_pi() { return genType(6.28318530717958647692528676655900576); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_pi() { return genType(1.772453850905516027); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType half_pi() { return genType(1.57079632679489661923132169163975144); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType three_over_two_pi() { - return genType(4.71238898038468985769396507491925432); + return genType(4.71238898038468985769396507491925432); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType quarter_pi() { return genType(0.785398163397448309615660845819875721); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_pi() { return genType(0.318309886183790671537767526745028724); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_two_pi() { return genType(0.159154943091895335768883763372514362); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_pi() { return genType(0.636619772367581343075535053490057448); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType four_over_pi() { return genType(1.273239544735162686151070106980114898); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_root_pi() { return genType(1.12837916709551257389615890312154517); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_root_two() { return genType(0.707106781186547524400844362104849039); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_half_pi() { return genType(1.253314137315500251); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two_pi() { return genType(2.506628274631000502); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_ln_four() { return genType(1.17741002251547469); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType e() { return genType(2.71828182845904523536); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType euler() { return genType(0.577215664901532860606); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two() { return genType(1.41421356237309504880168872420969808); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_three() { return genType(1.73205080756887729352744634150587236); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_five() { return genType(2.23606797749978969640917366873127623); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_two() { return genType(0.693147180559945309417232121458176568); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ten() { return genType(2.30258509299404568401799145468436421); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ln_two() { return genType(-0.3665129205816643); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType third() { return genType(0.3333333333333333333333333333333333333333); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_thirds() { return genType(0.666666666666666666666666666666666666667); } - template + template GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType golden_ratio() { return genType(1.61803398874989484820458683436563811); diff --git a/external/include/glm/gtc/epsilon.hpp b/external/include/glm/gtc/epsilon.hpp index 289f5b7..dce03ef 100644 --- a/external/include/glm/gtc/epsilon.hpp +++ b/external/include/glm/gtc/epsilon.hpp @@ -1,22 +1,21 @@ /// @ref gtc_epsilon /// @file glm/gtc/epsilon.hpp -/// +/// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// @see gtc_quaternion (dependence) /// /// @defgroup gtc_epsilon GLM_GTC_epsilon /// @ingroup gtc -/// -/// @brief Comparison functions for a user defined epsilon values. -/// -/// need to be included to use these functionalities. +/// +/// Include to use the features of this extension. +/// +/// Comparison functions for a user defined epsilon values. #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) # pragma message("GLM: GLM_GTC_epsilon extension included") @@ -31,41 +30,29 @@ namespace glm /// True if this expression is satisfied. /// /// @see gtc_epsilon - template class vecType> - GLM_FUNC_DECL vecType epsilonEqual( - vecType const & x, - vecType const & y, - T const & epsilon); + template + GLM_FUNC_DECL vec epsilonEqual(vec const& x, vec const& y, T const& epsilon); /// Returns the component-wise comparison of |x - y| < epsilon. /// True if this expression is satisfied. /// /// @see gtc_epsilon - template - GLM_FUNC_DECL bool epsilonEqual( - genType const & x, - genType const & y, - genType const & epsilon); + template + GLM_FUNC_DECL bool epsilonEqual(genType const& x, genType const& y, genType const& epsilon); /// Returns the component-wise comparison of |x - y| < epsilon. /// True if this expression is not satisfied. /// /// @see gtc_epsilon - template - GLM_FUNC_DECL typename genType::boolType epsilonNotEqual( - genType const & x, - genType const & y, - typename genType::value_type const & epsilon); + template + GLM_FUNC_DECL vec epsilonNotEqual(vec const& x, vec const& y, T const& epsilon); /// Returns the component-wise comparison of |x - y| >= epsilon. /// True if this expression is not satisfied. /// /// @see gtc_epsilon - template - GLM_FUNC_DECL bool epsilonNotEqual( - genType const & x, - genType const & y, - genType const & epsilon); + template + GLM_FUNC_DECL bool epsilonNotEqual(genType const& x, genType const& y, genType const& epsilon); /// @} }//namespace glm diff --git a/external/include/glm/gtc/epsilon.inl b/external/include/glm/gtc/epsilon.inl index b5577d9..2478cab 100644 --- a/external/include/glm/gtc/epsilon.inl +++ b/external/include/glm/gtc/epsilon.inl @@ -5,121 +5,79 @@ #include "quaternion.hpp" #include "../vector_relational.hpp" #include "../common.hpp" -#include "../vec2.hpp" -#include "../vec3.hpp" -#include "../vec4.hpp" +#include "../detail/type_vec.hpp" namespace glm { - template <> + template<> GLM_FUNC_QUALIFIER bool epsilonEqual ( - float const & x, - float const & y, - float const & epsilon + float const& x, + float const& y, + float const& epsilon ) { return abs(x - y) < epsilon; } - template <> + template<> GLM_FUNC_QUALIFIER bool epsilonEqual ( - double const & x, - double const & y, - double const & epsilon + double const& x, + double const& y, + double const& epsilon ) { return abs(x - y) < epsilon; } - template <> - GLM_FUNC_QUALIFIER bool epsilonNotEqual - ( - float const & x, - float const & y, - float const & epsilon - ) + template + GLM_FUNC_QUALIFIER vec epsilonEqual(vec const& x, vec const& y, T const& epsilon) { - return abs(x - y) >= epsilon; + return lessThan(abs(x - y), vec(epsilon)); } - template <> - GLM_FUNC_QUALIFIER bool epsilonNotEqual - ( - double const & x, - double const & y, - double const & epsilon - ) + template + GLM_FUNC_QUALIFIER vec epsilonEqual(vec const& x, vec const& y, vec const& epsilon) { - return abs(x - y) >= epsilon; + return lessThan(abs(x - y), vec(epsilon)); } - template class vecType> - GLM_FUNC_QUALIFIER vecType epsilonEqual - ( - vecType const & x, - vecType const & y, - T const & epsilon - ) + template<> + GLM_FUNC_QUALIFIER bool epsilonNotEqual(float const& x, float const& y, float const& epsilon) { - return lessThan(abs(x - y), vecType(epsilon)); + return abs(x - y) >= epsilon; } - template class vecType> - GLM_FUNC_QUALIFIER vecType epsilonEqual - ( - vecType const & x, - vecType const & y, - vecType const & epsilon - ) + template<> + GLM_FUNC_QUALIFIER bool epsilonNotEqual(double const& x, double const& y, double const& epsilon) { - return lessThan(abs(x - y), vecType(epsilon)); + return abs(x - y) >= epsilon; } - template class vecType> - GLM_FUNC_QUALIFIER vecType epsilonNotEqual - ( - vecType const & x, - vecType const & y, - T const & epsilon - ) + template + GLM_FUNC_QUALIFIER vec epsilonNotEqual(vec const& x, vec const& y, T const& epsilon) { - return greaterThanEqual(abs(x - y), vecType(epsilon)); + return greaterThanEqual(abs(x - y), vec(epsilon)); } - template class vecType> - GLM_FUNC_QUALIFIER vecType epsilonNotEqual - ( - vecType const & x, - vecType const & y, - vecType const & epsilon - ) + template + GLM_FUNC_QUALIFIER vec epsilonNotEqual(vec const& x, vec const& y, vec const& epsilon) { - return greaterThanEqual(abs(x - y), vecType(epsilon)); + return greaterThanEqual(abs(x - y), vec(epsilon)); } - template - GLM_FUNC_QUALIFIER tvec4 epsilonEqual - ( - tquat const & x, - tquat const & y, - T const & epsilon - ) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> epsilonEqual(tquat const& x, tquat const& y, T const& epsilon) { - tvec4 v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); - return lessThan(abs(v), tvec4(epsilon)); + vec<4, T, Q> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return lessThan(abs(v), vec<4, T, Q>(epsilon)); } - template - GLM_FUNC_QUALIFIER tvec4 epsilonNotEqual - ( - tquat const & x, - tquat const & y, - T const & epsilon - ) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> epsilonNotEqual(tquat const& x, tquat const& y, T const& epsilon) { - tvec4 v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); - return greaterThanEqual(abs(v), tvec4(epsilon)); + vec<4, T, Q> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return greaterThanEqual(abs(v), vec<4, T, Q>(epsilon)); } }//namespace glm diff --git a/external/include/glm/gtc/functions.hpp b/external/include/glm/gtc/functions.hpp deleted file mode 100644 index ab1590b..0000000 --- a/external/include/glm/gtc/functions.hpp +++ /dev/null @@ -1,53 +0,0 @@ -/// @ref gtc_functions -/// @file glm/gtc/functions.hpp -/// -/// @see core (dependence) -/// @see gtc_half_float (dependence) -/// @see gtc_quaternion (dependence) -/// -/// @defgroup gtc_functions GLM_GTC_functions -/// @ingroup gtc -/// -/// @brief List of useful common functions. -/// -/// need to be included to use these functionalities. - -#pragma once - -// Dependencies -#include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/type_vec2.hpp" - -#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) -# pragma message("GLM: GLM_GTC_functions extension included") -#endif - -namespace glm -{ - /// @addtogroup gtc_functions - /// @{ - - /// 1D gauss function - /// - /// @see gtc_epsilon - template - GLM_FUNC_DECL T gauss( - T x, - T ExpectedValue, - T StandardDeviation); - - /// 2D gauss function - /// - /// @see gtc_epsilon - template - GLM_FUNC_DECL T gauss( - tvec2 const& Coord, - tvec2 const& ExpectedValue, - tvec2 const& StandardDeviation); - - /// @} -}//namespace glm - -#include "functions.inl" - diff --git a/external/include/glm/gtc/functions.inl b/external/include/glm/gtc/functions.inl deleted file mode 100644 index 1dbc496..0000000 --- a/external/include/glm/gtc/functions.inl +++ /dev/null @@ -1,31 +0,0 @@ -/// @ref gtc_functions -/// @file glm/gtc/functions.inl - -#include "../detail/func_exponential.hpp" - -namespace glm -{ - template - GLM_FUNC_QUALIFIER T gauss - ( - T x, - T ExpectedValue, - T StandardDeviation - ) - { - return exp(-((x - ExpectedValue) * (x - ExpectedValue)) / (static_cast(2) * StandardDeviation * StandardDeviation)) / (StandardDeviation * sqrt(static_cast(6.28318530717958647692528676655900576))); - } - - template - GLM_FUNC_QUALIFIER T gauss - ( - tvec2 const& Coord, - tvec2 const& ExpectedValue, - tvec2 const& StandardDeviation - ) - { - tvec2 const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast(2) * StandardDeviation * StandardDeviation); - return exp(-(Squared.x + Squared.y)); - } -}//namespace glm - diff --git a/external/include/glm/gtc/integer.hpp b/external/include/glm/gtc/integer.hpp index 69ffb1d..1d28c32 100644 --- a/external/include/glm/gtc/integer.hpp +++ b/external/include/glm/gtc/integer.hpp @@ -7,18 +7,18 @@ /// @defgroup gtc_integer GLM_GTC_integer /// @ingroup gtc /// -/// @brief Allow to perform bit operations on integer values +/// Include to use the features of this extension. /// -/// need to be included to use these functionalities. +/// @brief Allow to perform bit operations on integer values #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" -#include "../detail/func_common.hpp" -#include "../detail/func_integer.hpp" -#include "../detail/func_exponential.hpp" +#include "../detail/qualifier.hpp" +#include "../common.hpp" +#include "../integer.hpp" +#include "../exponential.hpp" #include #if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_EXT_INCLUDED) @@ -32,69 +32,32 @@ namespace glm /// Returns the log2 of x for integer values. Can be reliably using to compute mipmap count from the texture size. /// @see gtc_integer - template + template GLM_FUNC_DECL genIUType log2(genIUType x); - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam genIUType Integer-point scalar or vector types. - /// - /// @see gtc_integer - /// @see GLSL mod man page - /// @see GLSL 4.20.8 specification, section 8.3 Common Functions - template - GLM_FUNC_DECL genIUType mod(genIUType x, genIUType y); - - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam T Integer scalar types. - /// @tparam vecType vector types. - /// - /// @see gtc_integer - /// @see GLSL mod man page - /// @see GLSL 4.20.8 specification, section 8.3 Common Functions - template class vecType> - GLM_FUNC_DECL vecType mod(vecType const & x, T y); - - /// Modulus. Returns x % y - /// for each component in x using the floating point value y. - /// - /// @tparam T Integer scalar types. - /// @tparam vecType vector types. - /// - /// @see gtc_integer - /// @see GLSL mod man page - /// @see GLSL 4.20.8 specification, section 8.3 Common Functions - template class vecType> - GLM_FUNC_DECL vecType mod(vecType const & x, vecType const & y); - /// Returns a value equal to the nearest integer to x. /// The fraction 0.5 will round in a direction chosen by the /// implementation, presumably the direction that is fastest. - /// + /// /// @param x The values of the argument must be greater or equal to zero. /// @tparam T floating point scalar types. - /// @tparam vecType vector types. - /// + /// /// @see GLSL round man page /// @see gtc_integer - template class vecType> - GLM_FUNC_DECL vecType iround(vecType const & x); + template + GLM_FUNC_DECL vec iround(vec const& x); /// Returns a value equal to the nearest integer to x. /// The fraction 0.5 will round in a direction chosen by the /// implementation, presumably the direction that is fastest. - /// + /// /// @param x The values of the argument must be greater or equal to zero. /// @tparam T floating point scalar types. - /// @tparam vecType vector types. - /// + /// /// @see GLSL round man page /// @see gtc_integer - template class vecType> - GLM_FUNC_DECL vecType uround(vecType const & x); + template + GLM_FUNC_DECL vec uround(vec const& x); /// @} } //namespace glm diff --git a/external/include/glm/gtc/integer.inl b/external/include/glm/gtc/integer.inl index 7ce2918..9d4b618 100644 --- a/external/include/glm/gtc/integer.inl +++ b/external/include/glm/gtc/integer.inl @@ -4,36 +4,34 @@ namespace glm{ namespace detail { - template class vecType, bool Aligned> - struct compute_log2 + template + struct compute_log2 { - GLM_FUNC_QUALIFIER static vecType call(vecType const & vec) + GLM_FUNC_QUALIFIER static vec call(vec const& v) { //Equivalent to return findMSB(vec); but save one function call in ASM with VC //return findMSB(vec); - return vecType(detail::compute_findMSB_vec::call(vec)); + return vec(detail::compute_findMSB_vec::call(v)); } }; # if GLM_HAS_BITSCAN_WINDOWS - template - struct compute_log2 + template + struct compute_log2<4, int, Q, false, Aligned> { - GLM_FUNC_QUALIFIER static tvec4 call(tvec4 const & vec) + GLM_FUNC_QUALIFIER static vec<4, int, Q> call(vec<4, int, Q> const& v) { - tvec4 Result(glm::uninitialize); - - _BitScanReverse(reinterpret_cast(&Result.x), vec.x); - _BitScanReverse(reinterpret_cast(&Result.y), vec.y); - _BitScanReverse(reinterpret_cast(&Result.z), vec.z); - _BitScanReverse(reinterpret_cast(&Result.w), vec.w); - + vec<4, int, Q> Result; + _BitScanReverse(reinterpret_cast(&Result.x), v.x); + _BitScanReverse(reinterpret_cast(&Result.y), v.y); + _BitScanReverse(reinterpret_cast(&Result.z), v.z); + _BitScanReverse(reinterpret_cast(&Result.w), v.w); return Result; } }; # endif//GLM_HAS_BITSCAN_WINDOWS }//namespace detail - template + template GLM_FUNC_QUALIFIER int iround(genType x) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'iround' only accept floating-point inputs"); @@ -42,16 +40,16 @@ namespace detail return static_cast(x + static_cast(0.5)); } - template class vecType> - GLM_FUNC_QUALIFIER vecType iround(vecType const& x) + template + GLM_FUNC_QUALIFIER vec iround(vec const& x) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'iround' only accept floating-point inputs"); - assert(all(lessThanEqual(vecType(0), x))); + assert(all(lessThanEqual(vec(0), x))); - return vecType(x + static_cast(0.5)); + return vec(x + static_cast(0.5)); } - template + template GLM_FUNC_QUALIFIER uint uround(genType x) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'uround' only accept floating-point inputs"); @@ -60,12 +58,12 @@ namespace detail return static_cast(x + static_cast(0.5)); } - template class vecType> - GLM_FUNC_QUALIFIER vecType uround(vecType const& x) + template + GLM_FUNC_QUALIFIER vec uround(vec const& x) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'uround' only accept floating-point inputs"); - assert(all(lessThanEqual(vecType(0), x))); + assert(all(lessThanEqual(vec(0), x))); - return vecType(x + static_cast(0.5)); + return vec(x + static_cast(0.5)); } }//namespace glm diff --git a/external/include/glm/gtc/matrix_access.hpp b/external/include/glm/gtc/matrix_access.hpp index e4156ef..3a67cff 100644 --- a/external/include/glm/gtc/matrix_access.hpp +++ b/external/include/glm/gtc/matrix_access.hpp @@ -5,9 +5,10 @@ /// /// @defgroup gtc_matrix_access GLM_GTC_matrix_access /// @ingroup gtc -/// +/// +/// Include to use the features of this extension. +/// /// Defines functions to access rows or columns of a matrix easily. -/// need to be included to use these functionalities. #pragma once @@ -25,33 +26,33 @@ namespace glm /// Get a specific row of a matrix. /// @see gtc_matrix_access - template + template GLM_FUNC_DECL typename genType::row_type row( - genType const & m, + genType const& m, length_t index); /// Set a specific row to a matrix. /// @see gtc_matrix_access - template + template GLM_FUNC_DECL genType row( - genType const & m, + genType const& m, length_t index, - typename genType::row_type const & x); + typename genType::row_type const& x); /// Get a specific column of a matrix. /// @see gtc_matrix_access - template + template GLM_FUNC_DECL typename genType::col_type column( - genType const & m, + genType const& m, length_t index); /// Set a specific column to a matrix. /// @see gtc_matrix_access - template + template GLM_FUNC_DECL genType column( - genType const & m, + genType const& m, length_t index, - typename genType::col_type const & x); + typename genType::col_type const& x); /// @} }//namespace glm diff --git a/external/include/glm/gtc/matrix_access.inl b/external/include/glm/gtc/matrix_access.inl index 831b940..176136a 100644 --- a/external/include/glm/gtc/matrix_access.inl +++ b/external/include/glm/gtc/matrix_access.inl @@ -3,12 +3,12 @@ namespace glm { - template + template GLM_FUNC_QUALIFIER genType row ( - genType const & m, + genType const& m, length_t index, - typename genType::row_type const & x + typename genType::row_type const& x ) { assert(index >= 0 && index < m[0].length()); @@ -19,27 +19,27 @@ namespace glm return Result; } - template + template GLM_FUNC_QUALIFIER typename genType::row_type row ( - genType const & m, + genType const& m, length_t index ) { assert(index >= 0 && index < m[0].length()); - typename genType::row_type Result; + typename genType::row_type Result(0); for(length_t i = 0; i < m.length(); ++i) Result[i] = m[i][index]; return Result; } - template + template GLM_FUNC_QUALIFIER genType column ( - genType const & m, + genType const& m, length_t index, - typename genType::col_type const & x + typename genType::col_type const& x ) { assert(index >= 0 && index < m.length()); @@ -49,10 +49,10 @@ namespace glm return Result; } - template + template GLM_FUNC_QUALIFIER typename genType::col_type column ( - genType const & m, + genType const& m, length_t index ) { diff --git a/external/include/glm/gtc/matrix_integer.hpp b/external/include/glm/gtc/matrix_integer.hpp index fdc816d..59aec12 100644 --- a/external/include/glm/gtc/matrix_integer.hpp +++ b/external/include/glm/gtc/matrix_integer.hpp @@ -6,8 +6,9 @@ /// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer /// @ingroup gtc /// +/// Include to use the features of this extension. +/// /// Defines a number of matrices with integer types. -/// need to be included to use these functionalities. #pragma once @@ -31,302 +32,302 @@ namespace glm /// @addtogroup gtc_matrix_integer /// @{ - /// High-precision signed integer 2x2 matrix. + /// High-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 highp_imat2; + typedef mat<2, 2, int, highp> highp_imat2; - /// High-precision signed integer 3x3 matrix. + /// High-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 highp_imat3; + typedef mat<3, 3, int, highp> highp_imat3; - /// High-precision signed integer 4x4 matrix. + /// High-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 highp_imat4; + typedef mat<4, 4, int, highp> highp_imat4; - /// High-precision signed integer 2x2 matrix. + /// High-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 highp_imat2x2; + typedef mat<2, 2, int, highp> highp_imat2x2; - /// High-precision signed integer 2x3 matrix. + /// High-qualifier signed integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3 highp_imat2x3; + typedef mat<2, 3, int, highp> highp_imat2x3; - /// High-precision signed integer 2x4 matrix. + /// High-qualifier signed integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4 highp_imat2x4; + typedef mat<2, 4, int, highp> highp_imat2x4; - /// High-precision signed integer 3x2 matrix. + /// High-qualifier signed integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2 highp_imat3x2; + typedef mat<3, 2, int, highp> highp_imat3x2; - /// High-precision signed integer 3x3 matrix. + /// High-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 highp_imat3x3; + typedef mat<3, 3, int, highp> highp_imat3x3; - /// High-precision signed integer 3x4 matrix. + /// High-qualifier signed integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4 highp_imat3x4; + typedef mat<3, 4, int, highp> highp_imat3x4; - /// High-precision signed integer 4x2 matrix. + /// High-qualifier signed integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2 highp_imat4x2; + typedef mat<4, 2, int, highp> highp_imat4x2; - /// High-precision signed integer 4x3 matrix. + /// High-qualifier signed integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3 highp_imat4x3; + typedef mat<4, 3, int, highp> highp_imat4x3; - /// High-precision signed integer 4x4 matrix. + /// High-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 highp_imat4x4; + typedef mat<4, 4, int, highp> highp_imat4x4; - /// Medium-precision signed integer 2x2 matrix. + /// Medium-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 mediump_imat2; + typedef mat<2, 2, int, mediump> mediump_imat2; - /// Medium-precision signed integer 3x3 matrix. + /// Medium-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 mediump_imat3; + typedef mat<3, 3, int, mediump> mediump_imat3; - /// Medium-precision signed integer 4x4 matrix. + /// Medium-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 mediump_imat4; + typedef mat<4, 4, int, mediump> mediump_imat4; - /// Medium-precision signed integer 2x2 matrix. + /// Medium-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 mediump_imat2x2; + typedef mat<2, 2, int, mediump> mediump_imat2x2; - /// Medium-precision signed integer 2x3 matrix. + /// Medium-qualifier signed integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3 mediump_imat2x3; + typedef mat<2, 3, int, mediump> mediump_imat2x3; - /// Medium-precision signed integer 2x4 matrix. + /// Medium-qualifier signed integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4 mediump_imat2x4; + typedef mat<2, 4, int, mediump> mediump_imat2x4; - /// Medium-precision signed integer 3x2 matrix. + /// Medium-qualifier signed integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2 mediump_imat3x2; + typedef mat<3, 2, int, mediump> mediump_imat3x2; - /// Medium-precision signed integer 3x3 matrix. + /// Medium-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 mediump_imat3x3; + typedef mat<3, 3, int, mediump> mediump_imat3x3; - /// Medium-precision signed integer 3x4 matrix. + /// Medium-qualifier signed integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4 mediump_imat3x4; + typedef mat<3, 4, int, mediump> mediump_imat3x4; - /// Medium-precision signed integer 4x2 matrix. + /// Medium-qualifier signed integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2 mediump_imat4x2; + typedef mat<4, 2, int, mediump> mediump_imat4x2; - /// Medium-precision signed integer 4x3 matrix. + /// Medium-qualifier signed integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3 mediump_imat4x3; + typedef mat<4, 3, int, mediump> mediump_imat4x3; - /// Medium-precision signed integer 4x4 matrix. + /// Medium-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 mediump_imat4x4; + typedef mat<4, 4, int, mediump> mediump_imat4x4; - /// Low-precision signed integer 2x2 matrix. + /// Low-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 lowp_imat2; - - /// Low-precision signed integer 3x3 matrix. + typedef mat<2, 2, int, lowp> lowp_imat2; + + /// Low-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 lowp_imat3; + typedef mat<3, 3, int, lowp> lowp_imat3; - /// Low-precision signed integer 4x4 matrix. + /// Low-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 lowp_imat4; + typedef mat<4, 4, int, lowp> lowp_imat4; - /// Low-precision signed integer 2x2 matrix. + /// Low-qualifier signed integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 lowp_imat2x2; + typedef mat<2, 2, int, lowp> lowp_imat2x2; - /// Low-precision signed integer 2x3 matrix. + /// Low-qualifier signed integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3 lowp_imat2x3; + typedef mat<2, 3, int, lowp> lowp_imat2x3; - /// Low-precision signed integer 2x4 matrix. + /// Low-qualifier signed integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4 lowp_imat2x4; + typedef mat<2, 4, int, lowp> lowp_imat2x4; - /// Low-precision signed integer 3x2 matrix. + /// Low-qualifier signed integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2 lowp_imat3x2; + typedef mat<3, 2, int, lowp> lowp_imat3x2; - /// Low-precision signed integer 3x3 matrix. + /// Low-qualifier signed integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 lowp_imat3x3; + typedef mat<3, 3, int, lowp> lowp_imat3x3; - /// Low-precision signed integer 3x4 matrix. + /// Low-qualifier signed integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4 lowp_imat3x4; + typedef mat<3, 4, int, lowp> lowp_imat3x4; - /// Low-precision signed integer 4x2 matrix. + /// Low-qualifier signed integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2 lowp_imat4x2; + typedef mat<4, 2, int, lowp> lowp_imat4x2; - /// Low-precision signed integer 4x3 matrix. + /// Low-qualifier signed integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3 lowp_imat4x3; + typedef mat<4, 3, int, lowp> lowp_imat4x3; - /// Low-precision signed integer 4x4 matrix. + /// Low-qualifier signed integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 lowp_imat4x4; + typedef mat<4, 4, int, lowp> lowp_imat4x4; - /// High-precision unsigned integer 2x2 matrix. + /// High-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 highp_umat2; + typedef mat<2, 2, uint, highp> highp_umat2; - /// High-precision unsigned integer 3x3 matrix. + /// High-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 highp_umat3; + typedef mat<3, 3, uint, highp> highp_umat3; - /// High-precision unsigned integer 4x4 matrix. + /// High-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 highp_umat4; + typedef mat<4, 4, uint, highp> highp_umat4; - /// High-precision unsigned integer 2x2 matrix. + /// High-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 highp_umat2x2; + typedef mat<2, 2, uint, highp> highp_umat2x2; - /// High-precision unsigned integer 2x3 matrix. + /// High-qualifier unsigned integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3 highp_umat2x3; + typedef mat<2, 3, uint, highp> highp_umat2x3; - /// High-precision unsigned integer 2x4 matrix. + /// High-qualifier unsigned integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4 highp_umat2x4; + typedef mat<2, 4, uint, highp> highp_umat2x4; - /// High-precision unsigned integer 3x2 matrix. + /// High-qualifier unsigned integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2 highp_umat3x2; + typedef mat<3, 2, uint, highp> highp_umat3x2; - /// High-precision unsigned integer 3x3 matrix. + /// High-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 highp_umat3x3; + typedef mat<3, 3, uint, highp> highp_umat3x3; - /// High-precision unsigned integer 3x4 matrix. + /// High-qualifier unsigned integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4 highp_umat3x4; + typedef mat<3, 4, uint, highp> highp_umat3x4; - /// High-precision unsigned integer 4x2 matrix. + /// High-qualifier unsigned integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2 highp_umat4x2; + typedef mat<4, 2, uint, highp> highp_umat4x2; - /// High-precision unsigned integer 4x3 matrix. + /// High-qualifier unsigned integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3 highp_umat4x3; + typedef mat<4, 3, uint, highp> highp_umat4x3; - /// High-precision unsigned integer 4x4 matrix. + /// High-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 highp_umat4x4; + typedef mat<4, 4, uint, highp> highp_umat4x4; - /// Medium-precision unsigned integer 2x2 matrix. + /// Medium-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 mediump_umat2; + typedef mat<2, 2, uint, mediump> mediump_umat2; - /// Medium-precision unsigned integer 3x3 matrix. + /// Medium-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 mediump_umat3; + typedef mat<3, 3, uint, mediump> mediump_umat3; - /// Medium-precision unsigned integer 4x4 matrix. + /// Medium-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 mediump_umat4; + typedef mat<4, 4, uint, mediump> mediump_umat4; - /// Medium-precision unsigned integer 2x2 matrix. + /// Medium-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 mediump_umat2x2; + typedef mat<2, 2, uint, mediump> mediump_umat2x2; - /// Medium-precision unsigned integer 2x3 matrix. + /// Medium-qualifier unsigned integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3 mediump_umat2x3; + typedef mat<2, 3, uint, mediump> mediump_umat2x3; - /// Medium-precision unsigned integer 2x4 matrix. + /// Medium-qualifier unsigned integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4 mediump_umat2x4; + typedef mat<2, 4, uint, mediump> mediump_umat2x4; - /// Medium-precision unsigned integer 3x2 matrix. + /// Medium-qualifier unsigned integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2 mediump_umat3x2; + typedef mat<3, 2, uint, mediump> mediump_umat3x2; - /// Medium-precision unsigned integer 3x3 matrix. + /// Medium-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 mediump_umat3x3; + typedef mat<3, 3, uint, mediump> mediump_umat3x3; - /// Medium-precision unsigned integer 3x4 matrix. + /// Medium-qualifier unsigned integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4 mediump_umat3x4; + typedef mat<3, 4, uint, mediump> mediump_umat3x4; - /// Medium-precision unsigned integer 4x2 matrix. + /// Medium-qualifier unsigned integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2 mediump_umat4x2; + typedef mat<4, 2, uint, mediump> mediump_umat4x2; - /// Medium-precision unsigned integer 4x3 matrix. + /// Medium-qualifier unsigned integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3 mediump_umat4x3; + typedef mat<4, 3, uint, mediump> mediump_umat4x3; - /// Medium-precision unsigned integer 4x4 matrix. + /// Medium-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 mediump_umat4x4; + typedef mat<4, 4, uint, mediump> mediump_umat4x4; - /// Low-precision unsigned integer 2x2 matrix. + /// Low-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 lowp_umat2; - - /// Low-precision unsigned integer 3x3 matrix. + typedef mat<2, 2, uint, lowp> lowp_umat2; + + /// Low-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 lowp_umat3; + typedef mat<3, 3, uint, lowp> lowp_umat3; - /// Low-precision unsigned integer 4x4 matrix. + /// Low-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 lowp_umat4; + typedef mat<4, 4, uint, lowp> lowp_umat4; - /// Low-precision unsigned integer 2x2 matrix. + /// Low-qualifier unsigned integer 2x2 matrix. /// @see gtc_matrix_integer - typedef tmat2x2 lowp_umat2x2; + typedef mat<2, 2, uint, lowp> lowp_umat2x2; - /// Low-precision unsigned integer 2x3 matrix. + /// Low-qualifier unsigned integer 2x3 matrix. /// @see gtc_matrix_integer - typedef tmat2x3 lowp_umat2x3; + typedef mat<2, 3, uint, lowp> lowp_umat2x3; - /// Low-precision unsigned integer 2x4 matrix. + /// Low-qualifier unsigned integer 2x4 matrix. /// @see gtc_matrix_integer - typedef tmat2x4 lowp_umat2x4; + typedef mat<2, 4, uint, lowp> lowp_umat2x4; - /// Low-precision unsigned integer 3x2 matrix. + /// Low-qualifier unsigned integer 3x2 matrix. /// @see gtc_matrix_integer - typedef tmat3x2 lowp_umat3x2; + typedef mat<3, 2, uint, lowp> lowp_umat3x2; - /// Low-precision unsigned integer 3x3 matrix. + /// Low-qualifier unsigned integer 3x3 matrix. /// @see gtc_matrix_integer - typedef tmat3x3 lowp_umat3x3; + typedef mat<3, 3, uint, lowp> lowp_umat3x3; - /// Low-precision unsigned integer 3x4 matrix. + /// Low-qualifier unsigned integer 3x4 matrix. /// @see gtc_matrix_integer - typedef tmat3x4 lowp_umat3x4; + typedef mat<3, 4, uint, lowp> lowp_umat3x4; - /// Low-precision unsigned integer 4x2 matrix. + /// Low-qualifier unsigned integer 4x2 matrix. /// @see gtc_matrix_integer - typedef tmat4x2 lowp_umat4x2; + typedef mat<4, 2, uint, lowp> lowp_umat4x2; - /// Low-precision unsigned integer 4x3 matrix. + /// Low-qualifier unsigned integer 4x3 matrix. /// @see gtc_matrix_integer - typedef tmat4x3 lowp_umat4x3; + typedef mat<4, 3, uint, lowp> lowp_umat4x3; - /// Low-precision unsigned integer 4x4 matrix. + /// Low-qualifier unsigned integer 4x4 matrix. /// @see gtc_matrix_integer - typedef tmat4x4 lowp_umat4x4; + typedef mat<4, 4, uint, lowp> lowp_umat4x4; #if(defined(GLM_PRECISION_HIGHP_INT)) typedef highp_imat2 imat2; @@ -432,7 +433,7 @@ namespace glm typedef lowp_umat4x3 umat4x3; typedef lowp_umat4x4 umat4x4; #else //if(defined(GLM_PRECISION_MEDIUMP_UINT)) - + /// Unsigned integer 2x2 matrix. /// @see gtc_matrix_integer typedef mediump_umat2 umat2; diff --git a/external/include/glm/gtc/matrix_inverse.hpp b/external/include/glm/gtc/matrix_inverse.hpp index 589381d..97e8d89 100644 --- a/external/include/glm/gtc/matrix_inverse.hpp +++ b/external/include/glm/gtc/matrix_inverse.hpp @@ -6,8 +6,9 @@ /// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse /// @ingroup gtc /// +/// Include to use the features of this extension. +/// /// Defines additional matrix inverting functions. -/// need to be included to use these functionalities. #pragma once @@ -28,20 +29,20 @@ namespace glm /// @{ /// Fast matrix inverse for affine matrix. - /// + /// /// @param m Input matrix to invert. - /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. + /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-qualifier floating point value is highly innacurate. /// @see gtc_matrix_inverse - template - GLM_FUNC_DECL genType affineInverse(genType const & m); + template + GLM_FUNC_DECL genType affineInverse(genType const& m); /// Compute the inverse transpose of a matrix. - /// + /// /// @param m Input matrix to invert transpose. - /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate. + /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-qualifier floating point value is highly innacurate. /// @see gtc_matrix_inverse - template - GLM_FUNC_DECL genType inverseTranspose(genType const & m); + template + GLM_FUNC_DECL genType inverseTranspose(genType const& m); /// @} }//namespace glm diff --git a/external/include/glm/gtc/matrix_inverse.inl b/external/include/glm/gtc/matrix_inverse.inl index 36c9bf7..592e690 100644 --- a/external/include/glm/gtc/matrix_inverse.inl +++ b/external/include/glm/gtc/matrix_inverse.inl @@ -3,35 +3,35 @@ namespace glm { - template - GLM_FUNC_QUALIFIER tmat3x3 affineInverse(tmat3x3 const & m) + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> affineInverse(mat<3, 3, T, Q> const& m) { - tmat2x2 const Inv(inverse(tmat2x2(m))); + mat<2, 2, T, Q> const Inv(inverse(mat<2, 2, T, Q>(m))); - return tmat3x3( - tvec3(Inv[0], static_cast(0)), - tvec3(Inv[1], static_cast(0)), - tvec3(-Inv * tvec2(m[2]), static_cast(1))); + return mat<3, 3, T, Q>( + vec<3, T, Q>(Inv[0], static_cast(0)), + vec<3, T, Q>(Inv[1], static_cast(0)), + vec<3, T, Q>(-Inv * vec<2, T, Q>(m[2]), static_cast(1))); } - template - GLM_FUNC_QUALIFIER tmat4x4 affineInverse(tmat4x4 const & m) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> affineInverse(mat<4, 4, T, Q> const& m) { - tmat3x3 const Inv(inverse(tmat3x3(m))); + mat<3, 3, T, Q> const Inv(inverse(mat<3, 3, T, Q>(m))); - return tmat4x4( - tvec4(Inv[0], static_cast(0)), - tvec4(Inv[1], static_cast(0)), - tvec4(Inv[2], static_cast(0)), - tvec4(-Inv * tvec3(m[3]), static_cast(1))); + return mat<4, 4, T, Q>( + vec<4, T, Q>(Inv[0], static_cast(0)), + vec<4, T, Q>(Inv[1], static_cast(0)), + vec<4, T, Q>(Inv[2], static_cast(0)), + vec<4, T, Q>(-Inv * vec<3, T, Q>(m[3]), static_cast(1))); } - template - GLM_FUNC_QUALIFIER tmat2x2 inverseTranspose(tmat2x2 const & m) + template + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> inverseTranspose(mat<2, 2, T, Q> const& m) { T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1]; - tmat2x2 Inverse( + mat<2, 2, T, Q> Inverse( + m[1][1] / Determinant, - m[0][1] / Determinant, - m[1][0] / Determinant, @@ -40,15 +40,15 @@ namespace glm return Inverse; } - template - GLM_FUNC_QUALIFIER tmat3x3 inverseTranspose(tmat3x3 const & m) + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> inverseTranspose(mat<3, 3, T, Q> const& m) { T Determinant = + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); - tmat3x3 Inverse(uninitialize); + mat<3, 3, T, Q> Inverse; Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); @@ -63,8 +63,8 @@ namespace glm return Inverse; } - template - GLM_FUNC_QUALIFIER tmat4x4 inverseTranspose(tmat4x4 const & m) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> inverseTranspose(mat<4, 4, T, Q> const& m) { T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; @@ -86,7 +86,7 @@ namespace glm T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; - tmat4x4 Inverse(uninitialize); + mat<4, 4, T, Q> Inverse; Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02); Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04); Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05); diff --git a/external/include/glm/gtc/matrix_transform.hpp b/external/include/glm/gtc/matrix_transform.hpp index c97b89a..a9d5cd0 100644 --- a/external/include/glm/gtc/matrix_transform.hpp +++ b/external/include/glm/gtc/matrix_transform.hpp @@ -4,19 +4,19 @@ /// @see core (dependence) /// @see gtx_transform /// @see gtx_transform2 -/// +/// /// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform /// @ingroup gtc /// -/// @brief Defines functions that generate common transformation matrices. +/// Include to use the features of this extension. +/// +/// Defines functions that generate common transformation matrices. /// /// The matrices generated by this extension use standard OpenGL fixed-function /// conventions. For example, the lookAt function generates a transform from world -/// space into the specific eye space that the projective matrix functions +/// space into the specific eye space that the projective matrix functions /// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility /// specifications defines the particular layout of this eye space. -/// -/// need to be included to use these functionalities. #pragma once @@ -37,10 +37,10 @@ namespace glm /// @{ /// Builds a translation 4 * 4 matrix created from a vector of 3 components. - /// + /// /// @param m Input matrix multiplied by this translation matrix. /// @param v Coordinates of a translation vector. - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @code /// #include /// #include @@ -52,412 +52,674 @@ namespace glm /// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f /// @endcode /// @see gtc_matrix_transform - /// @see - translate(tmat4x4 const & m, T x, T y, T z) - /// @see - translate(tvec3 const & v) - template - GLM_FUNC_DECL tmat4x4 translate( - tmat4x4 const & m, - tvec3 const & v); - - /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle. - /// + /// @see - translate(mat<4, 4, T, Q> const& m, T x, T y, T z) + /// @see - translate(vec<3, T, Q> const& v) + /// @see glTranslate man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> translate( + mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v); + + /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle. + /// /// @param m Input matrix multiplied by this rotation matrix. /// @param angle Rotation angle expressed in radians. /// @param axis Rotation axis, recommended to be normalized. /// @tparam T Value type used to build the matrix. Supported: half, float or double. /// @see gtc_matrix_transform - /// @see - rotate(tmat4x4 const & m, T angle, T x, T y, T z) - /// @see - rotate(T angle, tvec3 const & v) - template - GLM_FUNC_DECL tmat4x4 rotate( - tmat4x4 const & m, - T angle, - tvec3 const & axis); - - /// Builds a scale 4 * 4 matrix created from 3 scalars. - /// + /// @see - rotate(mat<4, 4, T, Q> const& m, T angle, T x, T y, T z) + /// @see - rotate(T angle, vec<3, T, Q> const& v) + /// @see glRotate man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> rotate( + mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& axis); + + /// Builds a scale 4 * 4 matrix created from 3 scalars. + /// /// @param m Input matrix multiplied by this scale matrix. /// @param v Ratio of scaling for each axis. - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - scale(tmat4x4 const & m, T x, T y, T z) - /// @see - scale(tvec3 const & v) - template - GLM_FUNC_DECL tmat4x4 scale( - tmat4x4 const & m, - tvec3 const & v); - - /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template - GLM_FUNC_DECL tmat4x4 ortho( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); - - /// Creates a matrix for an orthographic parallel viewing volume, using left-handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template - GLM_FUNC_DECL tmat4x4 orthoLH( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); - - /// Creates a matrix for an orthographic parallel viewing volume, using right-handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param zNear - /// @param zFar - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top) - template - GLM_FUNC_DECL tmat4x4 orthoRH( - T left, - T right, - T bottom, - T top, - T zNear, - T zFar); + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - scale(mat<4, 4, T, Q> const& m, T x, T y, T z) + /// @see - scale(vec<3, T, Q> const& v) + /// @see glScale man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> scale( + mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v); /// Creates a matrix for projecting two-dimensional coordinates onto the screen. /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - /// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top, T const & zNear, T const & zFar) - template - GLM_FUNC_DECL tmat4x4 ortho( - T left, - T right, - T bottom, - T top); - - /// Creates a frustum matrix with default handedness. - /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 frustum( - T left, - T right, - T bottom, - T top, - T near, - T far); + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top, T const& zNear, T const& zFar) + /// @see gluOrtho2D man page + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( + T left, T right, T bottom, T top); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_ZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_NO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_ZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_NO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoNO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + /// @see glOrtho man page + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( + T left, T right, T bottom, T top, T zNear, T zFar); /// Creates a left handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 frustumLH( - T left, - T right, - T bottom, - T top, - T near, - T far); + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_ZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a left handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_NO( + T left, T right, T bottom, T top, T near, T far); /// Creates a right handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) /// - /// @param left - /// @param right - /// @param bottom - /// @param top - /// @param near - /// @param far - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. - /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 frustumRH( - T left, - T right, - T bottom, - T top, - T near, - T far); - - /// Creates a matrix for a symetric perspective-view frustum based on the default handedness. - /// - /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_ZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_NO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumNO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a left handed frustum matrix. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right handed frustum matrix. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix with default handedness, using the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see glFrustum man page + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum( + T left, T right, T bottom, T top, T near, T far); + + + /// Creates a matrix for a right handed, symetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 perspective( - T fovy, - T aspect, - T near, - T far); + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_ZO( + T fovy, T aspect, T near, T far); /// Creates a matrix for a right handed, symetric perspective-view frustum. - /// + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 perspectiveRH( - T fovy, - T aspect, - T near, - T far); + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_NO( + T fovy, T aspect, T near, T far); /// Creates a matrix for a left handed, symetric perspective-view frustum. - /// + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 perspectiveLH( - T fovy, - T aspect, - T near, - T far); + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_ZO( + T fovy, T aspect, T near, T far); - /// Builds a perspective projection matrix based on a field of view and the default handedness. - /// + /// Creates a matrix for a left handed, symetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_NO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveZO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveNO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a right handed, symetric perspective-view frustum. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a left handed, symetric perspective-view frustum. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum based on the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + /// @see gluPerspective man page + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective( + T fovy, T aspect, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_ZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// /// @param fov Expressed in radians. - /// @param width - /// @param height + /// @param width Width of the viewport + /// @param height Height of the viewport /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 perspectiveFov( - T fov, - T width, - T height, - T near, - T far); + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_NO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_ZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_NO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovNO( + T fov, T width, T height, T near, T far); /// Builds a right handed perspective projection matrix based on a field of view. - /// + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// /// @param fov Expressed in radians. - /// @param width - /// @param height + /// @param width Width of the viewport + /// @param height Height of the viewport /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 perspectiveFovRH( - T fov, - T width, - T height, - T near, - T far); + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH( + T fov, T width, T height, T near, T far); /// Builds a left handed perspective projection matrix based on a field of view. - /// + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// /// @param fov Expressed in radians. - /// @param width - /// @param height + /// @param width Width of the viewport + /// @param height Height of the viewport /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 perspectiveFovLH( - T fov, - T width, - T height, - T near, - T far); + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH( + T fov, T width, T height, T near, T far); - /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. + /// Builds a perspective projection matrix based on a field of view and the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// @see gtc_matrix_transform + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov( + T fov, T width, T height, T near, T far); + + /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 infinitePerspective( + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveLH( T fovy, T aspect, T near); - /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. + /// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite. /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 infinitePerspectiveLH( + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH( T fovy, T aspect, T near); - /// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite. + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 infinitePerspectiveRH( + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective( T fovy, T aspect, T near); /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. - /// + /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 tweakedInfinitePerspective( + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective( T fovy, T aspect, T near); /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. - /// + /// /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). - /// @param ep - /// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double. + /// @param ep Epsilon + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 tweakedInfinitePerspective( + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective( T fovy, T aspect, T near, T ep); /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. - /// + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param obj Specify the object coordinates. + /// @param model Specifies the current modelview matrix + /// @param proj Specifies the current projection matrix + /// @param viewport Specifies the current viewport + /// @return Return the computed window coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + /// @see gluProject man page + template + GLM_FUNC_DECL vec<3, T, Q> projectZO( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param obj Specify the object coordinates. + /// @param model Specifies the current modelview matrix + /// @param proj Specifies the current projection matrix + /// @param viewport Specifies the current viewport + /// @return Return the computed window coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + /// @see gluProject man page + template + GLM_FUNC_DECL vec<3, T, Q> projectNO( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates using default near and far clip planes definition. + /// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// /// @param obj Specify the object coordinates. /// @param model Specifies the current modelview matrix /// @param proj Specifies the current projection matrix /// @param viewport Specifies the current viewport /// @return Return the computed window coordinates. - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. /// @tparam U Currently supported: Floating-point types and integer types. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tvec3 project( - tvec3 const & obj, - tmat4x4 const & model, - tmat4x4 const & proj, - tvec4 const & viewport); + /// @see gluProject man page + template + GLM_FUNC_DECL vec<3, T, Q> project( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) /// /// @param win Specify the window coordinates to be mapped. /// @param model Specifies the modelview matrix /// @param proj Specifies the projection matrix /// @param viewport Specifies the viewport /// @return Returns the computed object coordinates. - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. /// @tparam U Currently supported: Floating-point types and integer types. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tvec3 unProject( - tvec3 const & win, - tmat4x4 const & model, - tmat4x4 const & proj, - tvec4 const & viewport); + /// @see gluUnProject man page + template + GLM_FUNC_DECL vec<3, T, Q> unProjectZO( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param win Specify the window coordinates to be mapped. + /// @param model Specifies the modelview matrix + /// @param proj Specifies the projection matrix + /// @param viewport Specifies the viewport + /// @return Returns the computed object coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + /// @see gluUnProject man page + template + GLM_FUNC_DECL vec<3, T, Q> unProjectNO( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using default near and far clip planes definition. + /// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param win Specify the window coordinates to be mapped. + /// @param model Specifies the modelview matrix + /// @param proj Specifies the projection matrix + /// @param viewport Specifies the viewport + /// @return Returns the computed object coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// @see gtc_matrix_transform + /// @see gluUnProject man page + template + GLM_FUNC_DECL vec<3, T, Q> unProject( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); /// Define a picking region /// - /// @param center - /// @param delta - /// @param viewport - /// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double. + /// @param center Specify the center of a picking region in window coordinates. + /// @param delta Specify the width and height, respectively, of the picking region in window coordinates. + /// @param viewport Rendering viewport + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. /// @tparam U Currently supported: Floating-point types and integer types. /// @see gtc_matrix_transform - template - GLM_FUNC_DECL tmat4x4 pickMatrix( - tvec2 const & center, - tvec2 const & delta, - tvec4 const & viewport); + /// @see gluPickMatrix man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> pickMatrix( + vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport); - /// Build a look at view matrix based on the default handedness. + /// Build a right handed look at view matrix. /// /// @param eye Position of the camera /// @param center Position where the camera is looking at /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template - GLM_FUNC_DECL tmat4x4 lookAt( - tvec3 const & eye, - tvec3 const & center, - tvec3 const & up); + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + template + GLM_FUNC_DECL mat<4, 4, T, Q> lookAtRH( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); - /// Build a right handed look at view matrix. + /// Build a left handed look at view matrix. /// /// @param eye Position of the camera /// @param center Position where the camera is looking at /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template - GLM_FUNC_DECL tmat4x4 lookAtRH( - tvec3 const & eye, - tvec3 const & center, - tvec3 const & up); + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + template + GLM_FUNC_DECL mat<4, 4, T, Q> lookAtLH( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); - /// Build a left handed look at view matrix. + /// Build a look at view matrix based on the default handedness. /// /// @param eye Position of the camera /// @param center Position where the camera is looking at /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) /// @see gtc_matrix_transform - /// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) - template - GLM_FUNC_DECL tmat4x4 lookAtLH( - tvec3 const & eye, - tvec3 const & center, - tvec3 const & up); + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + /// @see gluLookAt man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> lookAt( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); /// @} }//namespace glm diff --git a/external/include/glm/gtc/matrix_transform.inl b/external/include/glm/gtc/matrix_transform.inl index b9ff418..12623d7 100644 --- a/external/include/glm/gtc/matrix_transform.inl +++ b/external/include/glm/gtc/matrix_transform.inl @@ -7,25 +7,25 @@ namespace glm { - template - GLM_FUNC_QUALIFIER tmat4x4 translate(tmat4x4 const & m, tvec3 const & v) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> translate(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { - tmat4x4 Result(m); + mat<4, 4, T, Q> Result(m); Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; return Result; } - - template - GLM_FUNC_QUALIFIER tmat4x4 rotate(tmat4x4 const & m, T angle, tvec3 const & v) + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v) { T const a = angle; T const c = cos(a); T const s = sin(a); - tvec3 axis(normalize(v)); - tvec3 temp((T(1) - c) * axis); + vec<3, T, Q> axis(normalize(v)); + vec<3, T, Q> temp((T(1) - c) * axis); - tmat4x4 Rotate(uninitialize); + mat<4, 4, T, Q> Rotate; Rotate[0][0] = c + temp[0] * axis[0]; Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; @@ -38,23 +38,23 @@ namespace glm Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; Rotate[2][2] = c + temp[2] * axis[2]; - tmat4x4 Result(uninitialize); + mat<4, 4, T, Q> Result; Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; Result[3] = m[3]; return Result; } - - template - GLM_FUNC_QUALIFIER tmat4x4 rotate_slow(tmat4x4 const & m, T angle, tvec3 const & v) + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate_slow(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v) { T const a = angle; T const c = cos(a); T const s = sin(a); - tmat4x4 Result; + mat<4, 4, T, Q> Result; - tvec3 axis = normalize(v); + vec<3, T, Q> axis = normalize(v); Result[0][0] = c + (static_cast(1) - c) * axis.x * axis.x; Result[0][1] = (static_cast(1) - c) * axis.x * axis.y + s * axis.z; @@ -71,14 +71,14 @@ namespace glm Result[2][2] = c + (static_cast(1) - c) * axis.z * axis.z; Result[2][3] = static_cast(0); - Result[3] = tvec4(0, 0, 0, 1); + Result[3] = vec<4, T, Q>(0, 0, 0, 1); return m * Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 scale(tmat4x4 const & m, tvec3 const & v) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { - tmat4x4 Result(uninitialize); + mat<4, 4, T, Q> Result; Result[0] = m[0] * v[0]; Result[1] = m[1] * v[1]; Result[2] = m[2] * v[2]; @@ -86,296 +86,497 @@ namespace glm return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 scale_slow(tmat4x4 const & m, tvec3 const & v) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale_slow(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) { - tmat4x4 Result(T(1)); + mat<4, 4, T, Q> Result(T(1)); Result[0][0] = v.x; Result[1][1] = v.y; Result[2][2] = v.z; return m * Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 ortho - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top) { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return orthoLH(left, right, bottom, top, zNear, zFar); -# else - return orthoRH(left, right, bottom, top, zNear, zFar); -# endif + mat<4, 4, T, defaultp> Result(static_cast(1)); + Result[0][0] = static_cast(2) / (right - left); + Result[1][1] = static_cast(2) / (top - bottom); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 orthoLH - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) { - tmat4x4 Result(1); + mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); + Result[2][2] = static_cast(1) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); - -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = static_cast(1) / (zFar - zNear); - Result[3][2] = - zNear / (zFar - zNear); -# else - Result[2][2] = static_cast(2) / (zFar - zNear); - Result[3][2] = - (zFar + zNear) / (zFar - zNear); -# endif - + Result[3][2] = - zNear / (zFar - zNear); return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 orthoRH - ( - T left, T right, - T bottom, T top, - T zNear, T zFar - ) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar) { - tmat4x4 Result(1); + mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); + Result[2][2] = static_cast(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - (zFar + zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = - static_cast(1) / (zFar - zNear); - Result[3][2] = - zNear / (zFar - zNear); -# else - Result[2][2] = - static_cast(2) / (zFar - zNear); - Result[3][2] = - (zFar + zNear) / (zFar - zNear); -# endif - + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) + { + mat<4, 4, T, defaultp> Result(1); + Result[0][0] = static_cast(2) / (right - left); + Result[1][1] = static_cast(2) / (top - bottom); + Result[2][2] = - static_cast(1) / (zFar - zNear); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - zNear / (zFar - zNear); return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 ortho - ( - T left, T right, - T bottom, T top - ) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar) { - tmat4x4 Result(static_cast(1)); + mat<4, 4, T, defaultp> Result(1); Result[0][0] = static_cast(2) / (right - left); Result[1][1] = static_cast(2) / (top - bottom); - Result[2][2] = - static_cast(1); + Result[2][2] = - static_cast(2) / (zFar - zNear); Result[3][0] = - (right + left) / (right - left); Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - (zFar + zNear) / (zFar - zNear); return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 frustum - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return frustumLH(left, right, bottom, top, nearVal, farVal); + return orthoLH_NO(left, right, bottom, top, zNear, zFar); # else - return frustumRH(left, right, bottom, top, nearVal, farVal); + return orthoRH_NO(left, right, bottom, top, zNear, zFar); # endif } - template - GLM_FUNC_QUALIFIER tmat4x4 frustumLH - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar) { - tmat4x4 Result(0); +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoLH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoRH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return orthoLH_NO(left, right, bottom, top, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return orthoRH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = farVal / (farVal - nearVal); Result[2][3] = static_cast(1); + Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = farVal / (farVal - nearVal); - Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); -# else - Result[2][2] = (farVal + nearVal) / (farVal - nearVal); - Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); -# endif + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); + Result[0][0] = (static_cast(2) * nearVal) / (right - left); + Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); + Result[2][0] = (right + left) / (right - left); + Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = (farVal + nearVal) / (farVal - nearVal); + Result[2][3] = static_cast(1); + Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); + return Result; + } + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); + Result[0][0] = (static_cast(2) * nearVal) / (right - left); + Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); + Result[2][0] = (right + left) / (right - left); + Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = farVal / (nearVal - farVal); + Result[2][3] = static_cast(-1); + Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 frustumRH - ( - T left, T right, - T bottom, T top, - T nearVal, T farVal - ) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) { - tmat4x4 Result(0); + mat<4, 4, T, defaultp> Result(0); Result[0][0] = (static_cast(2) * nearVal) / (right - left); Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); Result[2][0] = (right + left) / (right - left); Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); Result[2][3] = static_cast(-1); + Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = farVal / (nearVal - farVal); - Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # else - Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); - Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); # endif - - return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 perspective(T fovy, T aspect, T zNear, T zFar) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return perspectiveLH(fovy, aspect, zNear, zFar); + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); +# else + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); # else - return perspectiveRH(fovy, aspect, zNear, zFar); + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); # endif } - template - GLM_FUNC_QUALIFIER tmat4x4 perspectiveRH(T fovy, T aspect, T zNear, T zFar) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); +# else + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); +# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); - tmat4x4 Result(static_cast(0)); + mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); + Result[2][2] = zFar / (zNear - zFar); Result[2][3] = - static_cast(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zNear - zFar); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = - (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); -# endif + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); + + T const tanHalfFovy = tan(fovy / static_cast(2)); + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast(1) / (tanHalfFovy); + Result[2][2] = - (zFar + zNear) / (zFar - zNear); + Result[2][3] = - static_cast(1); + Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } - - template - GLM_FUNC_QUALIFIER tmat4x4 perspectiveLH(T fovy, T aspect, T zNear, T zFar) + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar) { assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); T const tanHalfFovy = tan(fovy / static_cast(2)); - - tmat4x4 Result(static_cast(0)); + + mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); Result[1][1] = static_cast(1) / (tanHalfFovy); + Result[2][2] = zFar / (zFar - zNear); Result[2][3] = static_cast(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zFar - zNear); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); -# endif + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); + + T const tanHalfFovy = tan(fovy / static_cast(2)); + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast(1) / (tanHalfFovy); + Result[2][2] = (zFar + zNear) / (zFar - zNear); + Result[2][3] = static_cast(1); + Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 perspectiveFov(T fov, T width, T height, T zNear, T zFar) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return perspectiveFovLH(fov, width, height, zNear, zFar); + return perspectiveLH_NO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); # else - return perspectiveFovRH(fov, width, height, zNear, zFar); + return perspectiveLH_NO(fovy, aspect, zNear, zFar); # endif } - template - GLM_FUNC_QUALIFIER tmat4x4 perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return perspectiveLH_NO(fovy, aspect, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); - + T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? - tmat4x4 Result(static_cast(0)); + mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; + Result[2][2] = zFar / (zNear - zFar); Result[2][3] = - static_cast(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zNear - zFar); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = - (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); -# endif + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast(0)); + assert(height > static_cast(0)); + assert(fov > static_cast(0)); + + T const rad = fov; + T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][2] = - (zFar + zNear) / (zFar - zNear); + Result[2][3] = - static_cast(1); + Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar) { assert(width > static_cast(0)); assert(height > static_cast(0)); assert(fov > static_cast(0)); - + T const rad = fov; T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? - tmat4x4 Result(static_cast(0)); + mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = w; Result[1][1] = h; + Result[2][2] = zFar / (zFar - zNear); Result[2][3] = static_cast(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - Result[2][2] = zFar / (zFar - zNear); - Result[3][2] = -(zFar * zNear) / (zFar - zNear); -# else - Result[2][2] = (zFar + zNear) / (zFar - zNear); - Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); -# endif + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast(0)); + assert(height > static_cast(0)); + assert(fov > static_cast(0)); + + T const rad = fov; + T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][2] = (zFar + zNear) / (zFar - zNear); + Result[2][3] = static_cast(1); + Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 infinitePerspective(T fovy, T aspect, T zNear) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar) { # if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return infinitePerspectiveLH(fovy, aspect, zNear); + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); # else - return infinitePerspectiveRH(fovy, aspect, zNear); + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# else + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); +# else + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# else + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); # endif } - template - GLM_FUNC_QUALIFIER tmat4x4 infinitePerspectiveRH(T fovy, T aspect, T zNear) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# elif GLM_COORDINATE_SYSTEM == GLM_RIGHT_HANDED && GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_NEGATIVE_ONE_TO_ONE + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear) { T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; @@ -383,7 +584,7 @@ namespace glm T const bottom = -range; T const top = range; - tmat4x4 Result(static_cast(0)); + mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = - static_cast(1); @@ -392,8 +593,8 @@ namespace glm return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 infinitePerspectiveLH(T fovy, T aspect, T zNear) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear) { T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; @@ -401,7 +602,7 @@ namespace glm T const bottom = -range; T const top = range; - tmat4x4 Result(T(0)); + mat<4, 4, T, defaultp> Result(T(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = static_cast(1); @@ -410,17 +611,27 @@ namespace glm return Result; } + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return infinitePerspectiveLH(fovy, aspect, zNear); +# else + return infinitePerspectiveRH(fovy, aspect, zNear); +# endif + } + // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf - template - GLM_FUNC_QUALIFIER tmat4x4 tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) { - T const range = tan(fovy / static_cast(2)) * zNear; + T const range = tan(fovy / static_cast(2)) * zNear; T const left = -range * aspect; T const right = range * aspect; T const bottom = -range; T const top = range; - tmat4x4 Result(static_cast(0)); + mat<4, 4, T, defaultp> Result(static_cast(0)); Result[0][0] = (static_cast(2) * zNear) / (right - left); Result[1][1] = (static_cast(2) * zNear) / (top - bottom); Result[2][2] = ep - static_cast(1); @@ -429,107 +640,124 @@ namespace glm return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 tweakedInfinitePerspective(T fovy, T aspect, T zNear) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) { return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon()); } - template - GLM_FUNC_QUALIFIER tvec3 project - ( - tvec3 const & obj, - tmat4x4 const & model, - tmat4x4 const & proj, - tvec4 const & viewport - ) + template + GLM_FUNC_QUALIFIER vec<3, T, Q> projectZO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { - tvec4 tmp = tvec4(obj, static_cast(1)); + vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast(1)); tmp = model * tmp; tmp = proj * tmp; tmp /= tmp.w; -# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - tmp.x = tmp.x * static_cast(0.5) + static_cast(0.5); - tmp.y = tmp.y * static_cast(0.5) + static_cast(0.5); -# else - tmp = tmp * static_cast(0.5) + static_cast(0.5); -# endif + tmp.x = tmp.x * static_cast(0.5) + static_cast(0.5); + tmp.y = tmp.y * static_cast(0.5) + static_cast(0.5); + tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); - return tvec3(tmp); + return vec<3, T, Q>(tmp); } - template - GLM_FUNC_QUALIFIER tvec3 unProject - ( - tvec3 const & win, - tmat4x4 const & model, - tmat4x4 const & proj, - tvec4 const & viewport - ) + template + GLM_FUNC_QUALIFIER vec<3, T, Q> projectNO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) { - tmat4x4 Inverse = inverse(proj * model); + vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast(1)); + tmp = model * tmp; + tmp = proj * tmp; - tvec4 tmp = tvec4(win, T(1)); - tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); - tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); + tmp /= tmp.w; + tmp = tmp * static_cast(0.5) + static_cast(0.5); + tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); + tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); + + return vec<3, T, Q>(tmp); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> project(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { # if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE - tmp.x = tmp.x * static_cast(2) - static_cast(1); - tmp.y = tmp.y * static_cast(2) - static_cast(1); + return projectZO(obj, model, proj, viewport); # else - tmp = tmp * static_cast(2) - static_cast(1); + return projectNO(obj, model, proj, viewport); # endif + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectZO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { + mat<4, 4, T, Q> Inverse = inverse(proj * model); + + vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); + tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); + tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); + tmp.x = tmp.x * static_cast(2) - static_cast(1); + tmp.y = tmp.y * static_cast(2) - static_cast(1); + + vec<4, T, Q> obj = Inverse * tmp; + obj /= obj.w; + + return vec<3, T, Q>(obj); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectNO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { + mat<4, 4, T, Q> Inverse = inverse(proj * model); + + vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); + tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); + tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); + tmp = tmp * static_cast(2) - static_cast(1); - tvec4 obj = Inverse * tmp; + vec<4, T, Q> obj = Inverse * tmp; obj /= obj.w; - return tvec3(obj); + return vec<3, T, Q>(obj); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> unProject(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { +# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE + return unProjectZO(win, model, proj, viewport); +# else + return unProjectNO(win, model, proj, viewport); +# endif } - template - GLM_FUNC_QUALIFIER tmat4x4 pickMatrix(tvec2 const & center, tvec2 const & delta, tvec4 const & viewport) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport) { assert(delta.x > static_cast(0) && delta.y > static_cast(0)); - tmat4x4 Result(static_cast(1)); + mat<4, 4, T, Q> Result(static_cast(1)); if(!(delta.x > static_cast(0) && delta.y > static_cast(0))) return Result; // Error - tvec3 Temp( + vec<3, T, Q> Temp( (static_cast(viewport[2]) - static_cast(2) * (center.x - static_cast(viewport[0]))) / delta.x, (static_cast(viewport[3]) - static_cast(2) * (center.y - static_cast(viewport[1]))) / delta.y, static_cast(0)); // Translate and scale the picked region to the entire window Result = translate(Result, Temp); - return scale(Result, tvec3(static_cast(viewport[2]) / delta.x, static_cast(viewport[3]) / delta.y, static_cast(1))); + return scale(Result, vec<3, T, Q>(static_cast(viewport[2]) / delta.x, static_cast(viewport[3]) / delta.y, static_cast(1))); } - template - GLM_FUNC_QUALIFIER tmat4x4 lookAt(tvec3 const & eye, tvec3 const & center, tvec3 const & up) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtRH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) { -# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED - return lookAtLH(eye, center, up); -# else - return lookAtRH(eye, center, up); -# endif - } - - template - GLM_FUNC_QUALIFIER tmat4x4 lookAtRH - ( - tvec3 const & eye, - tvec3 const & center, - tvec3 const & up - ) - { - tvec3 const f(normalize(center - eye)); - tvec3 const s(normalize(cross(f, up))); - tvec3 const u(cross(s, f)); + vec<3, T, Q> const f(normalize(center - eye)); + vec<3, T, Q> const s(normalize(cross(f, up))); + vec<3, T, Q> const u(cross(s, f)); - tmat4x4 Result(1); + mat<4, 4, T, Q> Result(1); Result[0][0] = s.x; Result[1][0] = s.y; Result[2][0] = s.z; @@ -545,19 +773,14 @@ namespace glm return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 lookAtLH - ( - tvec3 const & eye, - tvec3 const & center, - tvec3 const & up - ) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtLH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) { - tvec3 const f(normalize(center - eye)); - tvec3 const s(normalize(cross(up, f))); - tvec3 const u(cross(f, s)); + vec<3, T, Q> const f(normalize(center - eye)); + vec<3, T, Q> const s(normalize(cross(up, f))); + vec<3, T, Q> const u(cross(f, s)); - tmat4x4 Result(1); + mat<4, 4, T, Q> Result(1); Result[0][0] = s.x; Result[1][0] = s.y; Result[2][0] = s.z; @@ -572,4 +795,14 @@ namespace glm Result[3][2] = -dot(f, eye); return Result; } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAt(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) + { +# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED + return lookAtLH(eye, center, up); +# else + return lookAtRH(eye, center, up); +# endif + } }//namespace glm diff --git a/external/include/glm/gtc/noise.hpp b/external/include/glm/gtc/noise.hpp index aec4f18..7b1ca40 100644 --- a/external/include/glm/gtc/noise.hpp +++ b/external/include/glm/gtc/noise.hpp @@ -6,18 +6,19 @@ /// @defgroup gtc_noise GLM_GTC_noise /// @ingroup gtc /// -/// Defines 2D, 3D and 4D procedural noise functions -/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": -/// https://github.com/ashima/webgl-noise -/// Following Stefan Gustavson's paper "Simplex noise demystified": +/// Include to use the features of this extension. +/// +/// Defines 2D, 3D and 4D procedural noise functions +/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": +/// https://github.com/ashima/webgl-noise +/// Following Stefan Gustavson's paper "Simplex noise demystified": /// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf -/// need to be included to use these functionalities. #pragma once // Dependencies #include "../detail/setup.hpp" -#include "../detail/precision.hpp" +#include "../detail/qualifier.hpp" #include "../detail/_noise.hpp" #include "../geometric.hpp" #include "../common.hpp" @@ -37,22 +38,22 @@ namespace glm /// Classic perlin noise. /// @see gtc_noise - template class vecType> + template GLM_FUNC_DECL T perlin( - vecType const & p); - + vec const& p); + /// Periodic perlin noise. /// @see gtc_noise - template class vecType> + template GLM_FUNC_DECL T perlin( - vecType const & p, - vecType const & rep); + vec const& p, + vec const& rep); /// Simplex noise. /// @see gtc_noise - template class vecType> + template GLM_FUNC_DECL T simplex( - vecType const & p); + vec const& p); /// @} }//namespace glm diff --git a/external/include/glm/gtc/noise.inl b/external/include/glm/gtc/noise.inl index 4f2731c..00a80ab 100644 --- a/external/include/glm/gtc/noise.inl +++ b/external/include/glm/gtc/noise.inl @@ -1,643 +1,643 @@ /// @ref gtc_noise /// @file glm/gtc/noise.inl /// -// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": -// https://github.com/ashima/webgl-noise -// Following Stefan Gustavson's paper "Simplex noise demystified": +// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": +// https://github.com/ashima/webgl-noise +// Following Stefan Gustavson's paper "Simplex noise demystified": // http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf namespace glm{ namespace gtc { - template - GLM_FUNC_QUALIFIER tvec4 grad4(T const & j, tvec4 const & ip) + template + GLM_FUNC_QUALIFIER vec<4, T, Q> grad4(T const& j, vec<4, T, Q> const& ip) { - tvec3 pXYZ = floor(fract(tvec3(j) * tvec3(ip)) * T(7)) * ip[2] - T(1); - T pW = static_cast(1.5) - dot(abs(pXYZ), tvec3(1)); - tvec4 s = tvec4(lessThan(tvec4(pXYZ, pW), tvec4(0.0))); - pXYZ = pXYZ + (tvec3(s) * T(2) - T(1)) * s.w; - return tvec4(pXYZ, pW); + vec<3, T, Q> pXYZ = floor(fract(vec<3, T, Q>(j) * vec<3, T, Q>(ip)) * T(7)) * ip[2] - T(1); + T pW = static_cast(1.5) - dot(abs(pXYZ), vec<3, T, Q>(1)); + vec<4, T, Q> s = vec<4, T, Q>(lessThan(vec<4, T, Q>(pXYZ, pW), vec<4, T, Q>(0.0))); + pXYZ = pXYZ + (vec<3, T, Q>(s) * T(2) - T(1)) * s.w; + return vec<4, T, Q>(pXYZ, pW); } }//namespace gtc // Classic Perlin noise - template - GLM_FUNC_QUALIFIER T perlin(tvec2 const & Position) + template + GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position) { - tvec4 Pi = glm::floor(tvec4(Position.x, Position.y, Position.x, Position.y)) + tvec4(0.0, 0.0, 1.0, 1.0); - tvec4 Pf = glm::fract(tvec4(Position.x, Position.y, Position.x, Position.y)) - tvec4(0.0, 0.0, 1.0, 1.0); - Pi = mod(Pi, tvec4(289)); // To avoid truncation effects in permutation - tvec4 ix(Pi.x, Pi.z, Pi.x, Pi.z); - tvec4 iy(Pi.y, Pi.y, Pi.w, Pi.w); - tvec4 fx(Pf.x, Pf.z, Pf.x, Pf.z); - tvec4 fy(Pf.y, Pf.y, Pf.w, Pf.w); - - tvec4 i = detail::permute(detail::permute(ix) + iy); - - tvec4 gx = static_cast(2) * glm::fract(i / T(41)) - T(1); - tvec4 gy = glm::abs(gx) - T(0.5); - tvec4 tx = glm::floor(gx + T(0.5)); + vec<4, T, Q> Pi = glm::floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + vec<4, T, Q> Pf = glm::fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation + vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z); + vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w); + vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z); + vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w); + + vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy); + + vec<4, T, Q> gx = static_cast(2) * glm::fract(i / T(41)) - T(1); + vec<4, T, Q> gy = glm::abs(gx) - T(0.5); + vec<4, T, Q> tx = glm::floor(gx + T(0.5)); gx = gx - tx; - tvec2 g00(gx.x, gy.x); - tvec2 g10(gx.y, gy.y); - tvec2 g01(gx.z, gy.z); - tvec2 g11(gx.w, gy.w); + vec<2, T, Q> g00(gx.x, gy.x); + vec<2, T, Q> g10(gx.y, gy.y); + vec<2, T, Q> g01(gx.z, gy.z); + vec<2, T, Q> g11(gx.w, gy.w); - tvec4 norm = detail::taylorInvSqrt(tvec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; - T n00 = dot(g00, tvec2(fx.x, fy.x)); - T n10 = dot(g10, tvec2(fx.y, fy.y)); - T n01 = dot(g01, tvec2(fx.z, fy.z)); - T n11 = dot(g11, tvec2(fx.w, fy.w)); + T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x)); + T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y)); + T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z)); + T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w)); - tvec2 fade_xy = detail::fade(tvec2(Pf.x, Pf.y)); - tvec2 n_x = mix(tvec2(n00, n01), tvec2(n10, n11), fade_xy.x); + vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y)); + vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x); T n_xy = mix(n_x.x, n_x.y, fade_xy.y); return T(2.3) * n_xy; } // Classic Perlin noise - template - GLM_FUNC_QUALIFIER T perlin(tvec3 const & Position) + template + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position) { - tvec3 Pi0 = floor(Position); // Integer part for indexing - tvec3 Pi1 = Pi0 + T(1); // Integer part + 1 + vec<3, T, Q> Pi0 = floor(Position); // Integer part for indexing + vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 Pi0 = detail::mod289(Pi0); Pi1 = detail::mod289(Pi1); - tvec3 Pf0 = fract(Position); // Fractional part for interpolation - tvec3 Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4 ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4 iy = tvec4(tvec2(Pi0.y), tvec2(Pi1.y)); - tvec4 iz0(Pi0.z); - tvec4 iz1(Pi1.z); - - tvec4 ixy = detail::permute(detail::permute(ix) + iy); - tvec4 ixy0 = detail::permute(ixy + iz0); - tvec4 ixy1 = detail::permute(ixy + iz1); - - tvec4 gx0 = ixy0 * T(1.0 / 7.0); - tvec4 gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5); + vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(vec<2, T, Q>(Pi0.y), vec<2, T, Q>(Pi1.y)); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 * T(1.0 / 7.0); + vec<4, T, Q> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5); gx0 = fract(gx0); - tvec4 gz0 = tvec4(0.5) - abs(gx0) - abs(gy0); - tvec4 sz0 = step(gz0, tvec4(0.0)); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0)); gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); - tvec4 gx1 = ixy1 * T(1.0 / 7.0); - tvec4 gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5); + vec<4, T, Q> gx1 = ixy1 * T(1.0 / 7.0); + vec<4, T, Q> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5); gx1 = fract(gx1); - tvec4 gz1 = tvec4(0.5) - abs(gx1) - abs(gy1); - tvec4 sz1 = step(gz1, tvec4(0.0)); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0)); gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - tvec3 g000(gx0.x, gy0.x, gz0.x); - tvec3 g100(gx0.y, gy0.y, gz0.y); - tvec3 g010(gx0.z, gy0.z, gz0.z); - tvec3 g110(gx0.w, gy0.w, gz0.w); - tvec3 g001(gx1.x, gy1.x, gz1.x); - tvec3 g101(gx1.y, gy1.y, gz1.y); - tvec3 g011(gx1.z, gy1.z, gz1.z); - tvec3 g111(gx1.w, gy1.w, gz1.w); + vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w); - tvec4 norm0 = detail::taylorInvSqrt(tvec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; - tvec4 norm1 = detail::taylorInvSqrt(tvec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3(Pf0.x, Pf1.y, Pf1.z)); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); T n111 = dot(g111, Pf1); - tvec3 fade_xyz = detail::fade(Pf0); - tvec4 n_z = mix(tvec4(n000, n100, n010, n110), tvec4(n001, n101, n011, n111), fade_xyz.z); - tvec2 n_yz = mix(tvec2(n_z.x, n_z.y), tvec2(n_z.z, n_z.w), fade_xyz.y); - T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + vec<3, T, Q> fade_xyz = detail::fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return T(2.2) * n_xyz; } /* // Classic Perlin noise - template - GLM_FUNC_QUALIFIER T perlin(tvec3 const & P) + template + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& P) { - tvec3 Pi0 = floor(P); // Integer part for indexing - tvec3 Pi1 = Pi0 + T(1); // Integer part + 1 + vec<3, T, Q> Pi0 = floor(P); // Integer part for indexing + vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 Pi0 = mod(Pi0, T(289)); Pi1 = mod(Pi1, T(289)); - tvec3 Pf0 = fract(P); // Fractional part for interpolation - tvec3 Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4 ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4 iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4 iz0(Pi0.z); - tvec4 iz1(Pi1.z); - - tvec4 ixy = permute(permute(ix) + iy); - tvec4 ixy0 = permute(ixy + iz0); - tvec4 ixy1 = permute(ixy + iz1); - - tvec4 gx0 = ixy0 / T(7); - tvec4 gy0 = fract(floor(gx0) / T(7)) - T(0.5); + vec<3, T, Q> Pf0 = fract(P); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = permute(permute(ix) + iy); + vec<4, T, Q> ixy0 = permute(ixy + iz0); + vec<4, T, Q> ixy1 = permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 / T(7); + vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5); gx0 = fract(gx0); - tvec4 gz0 = tvec4(0.5) - abs(gx0) - abs(gy0); - tvec4 sz0 = step(gz0, tvec4(0.0)); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0)); gx0 -= sz0 * (step(0.0, gx0) - T(0.5)); gy0 -= sz0 * (step(0.0, gy0) - T(0.5)); - tvec4 gx1 = ixy1 / T(7); - tvec4 gy1 = fract(floor(gx1) / T(7)) - T(0.5); + vec<4, T, Q> gx1 = ixy1 / T(7); + vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5); gx1 = fract(gx1); - tvec4 gz1 = tvec4(0.5) - abs(gx1) - abs(gy1); - tvec4 sz1 = step(gz1, tvec4(0.0)); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0)); gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - tvec3 g000(gx0.x, gy0.x, gz0.x); - tvec3 g100(gx0.y, gy0.y, gz0.y); - tvec3 g010(gx0.z, gy0.z, gz0.z); - tvec3 g110(gx0.w, gy0.w, gz0.w); - tvec3 g001(gx1.x, gy1.x, gz1.x); - tvec3 g101(gx1.y, gy1.y, gz1.y); - tvec3 g011(gx1.z, gy1.z, gz1.z); - tvec3 g111(gx1.w, gy1.w, gz1.w); + vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w); - tvec4 norm0 = taylorInvSqrt(tvec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + vec<4, T, Q> norm0 = taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; - tvec4 norm1 = taylorInvSqrt(tvec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + vec<4, T, Q> norm1 = taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3(Pf0.x, Pf1.y, Pf1.z)); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); T n111 = dot(g111, Pf1); - tvec3 fade_xyz = fade(Pf0); - tvec4 n_z = mix(tvec4(n000, n100, n010, n110), tvec4(n001, n101, n011, n111), fade_xyz.z); - tvec2 n_yz = mix( - tvec2(n_z.x, n_z.y), - tvec2(n_z.z, n_z.w), fade_xyz.y); - T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + vec<3, T, Q> fade_xyz = fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix( + vec<2, T, Q>(n_z.x, n_z.y), + vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return T(2.2) * n_xyz; } */ // Classic Perlin noise - template - GLM_FUNC_QUALIFIER T perlin(tvec4 const & Position) + template + GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position) { - tvec4 Pi0 = floor(Position); // Integer part for indexing - tvec4 Pi1 = Pi0 + T(1); // Integer part + 1 - Pi0 = mod(Pi0, tvec4(289)); - Pi1 = mod(Pi1, tvec4(289)); - tvec4 Pf0 = fract(Position); // Fractional part for interpolation - tvec4 Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4 ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4 iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4 iz0(Pi0.z); - tvec4 iz1(Pi1.z); - tvec4 iw0(Pi0.w); - tvec4 iw1(Pi1.w); - - tvec4 ixy = detail::permute(detail::permute(ix) + iy); - tvec4 ixy0 = detail::permute(ixy + iz0); - tvec4 ixy1 = detail::permute(ixy + iz1); - tvec4 ixy00 = detail::permute(ixy0 + iw0); - tvec4 ixy01 = detail::permute(ixy0 + iw1); - tvec4 ixy10 = detail::permute(ixy1 + iw0); - tvec4 ixy11 = detail::permute(ixy1 + iw1); - - tvec4 gx00 = ixy00 / T(7); - tvec4 gy00 = floor(gx00) / T(7); - tvec4 gz00 = floor(gy00) / T(6); + vec<4, T, Q> Pi0 = floor(Position); // Integer part for indexing + vec<4, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 + Pi0 = mod(Pi0, vec<4, T, Q>(289)); + Pi1 = mod(Pi1, vec<4, T, Q>(289)); + vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + vec<4, T, Q> iw0(Pi0.w); + vec<4, T, Q> iw1(Pi1.w); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0); + vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1); + vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0); + vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1); + + vec<4, T, Q> gx00 = ixy00 / T(7); + vec<4, T, Q> gy00 = floor(gx00) / T(7); + vec<4, T, Q> gz00 = floor(gy00) / T(6); gx00 = fract(gx00) - T(0.5); gy00 = fract(gy00) - T(0.5); gz00 = fract(gz00) - T(0.5); - tvec4 gw00 = tvec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00); - tvec4 sw00 = step(gw00, tvec4(0.0)); + vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0.0)); gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); - tvec4 gx01 = ixy01 / T(7); - tvec4 gy01 = floor(gx01) / T(7); - tvec4 gz01 = floor(gy01) / T(6); + vec<4, T, Q> gx01 = ixy01 / T(7); + vec<4, T, Q> gy01 = floor(gx01) / T(7); + vec<4, T, Q> gz01 = floor(gy01) / T(6); gx01 = fract(gx01) - T(0.5); gy01 = fract(gy01) - T(0.5); gz01 = fract(gz01) - T(0.5); - tvec4 gw01 = tvec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01); - tvec4 sw01 = step(gw01, tvec4(0.0)); + vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0)); gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); - tvec4 gx10 = ixy10 / T(7); - tvec4 gy10 = floor(gx10) / T(7); - tvec4 gz10 = floor(gy10) / T(6); + vec<4, T, Q> gx10 = ixy10 / T(7); + vec<4, T, Q> gy10 = floor(gx10) / T(7); + vec<4, T, Q> gz10 = floor(gy10) / T(6); gx10 = fract(gx10) - T(0.5); gy10 = fract(gy10) - T(0.5); gz10 = fract(gz10) - T(0.5); - tvec4 gw10 = tvec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10); - tvec4 sw10 = step(gw10, tvec4(0)); + vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0)); gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); - tvec4 gx11 = ixy11 / T(7); - tvec4 gy11 = floor(gx11) / T(7); - tvec4 gz11 = floor(gy11) / T(6); + vec<4, T, Q> gx11 = ixy11 / T(7); + vec<4, T, Q> gy11 = floor(gx11) / T(7); + vec<4, T, Q> gz11 = floor(gy11) / T(6); gx11 = fract(gx11) - T(0.5); gy11 = fract(gy11) - T(0.5); gz11 = fract(gz11) - T(0.5); - tvec4 gw11 = tvec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11); - tvec4 sw11 = step(gw11, tvec4(0.0)); + vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(0.0)); gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); - tvec4 g0000(gx00.x, gy00.x, gz00.x, gw00.x); - tvec4 g1000(gx00.y, gy00.y, gz00.y, gw00.y); - tvec4 g0100(gx00.z, gy00.z, gz00.z, gw00.z); - tvec4 g1100(gx00.w, gy00.w, gz00.w, gw00.w); - tvec4 g0010(gx10.x, gy10.x, gz10.x, gw10.x); - tvec4 g1010(gx10.y, gy10.y, gz10.y, gw10.y); - tvec4 g0110(gx10.z, gy10.z, gz10.z, gw10.z); - tvec4 g1110(gx10.w, gy10.w, gz10.w, gw10.w); - tvec4 g0001(gx01.x, gy01.x, gz01.x, gw01.x); - tvec4 g1001(gx01.y, gy01.y, gz01.y, gw01.y); - tvec4 g0101(gx01.z, gy01.z, gz01.z, gw01.z); - tvec4 g1101(gx01.w, gy01.w, gz01.w, gw01.w); - tvec4 g0011(gx11.x, gy11.x, gz11.x, gw11.x); - tvec4 g1011(gx11.y, gy11.y, gz11.y, gw11.y); - tvec4 g0111(gx11.z, gy11.z, gz11.z, gw11.z); - tvec4 g1111(gx11.w, gy11.w, gz11.w, gw11.w); - - tvec4 norm00 = detail::taylorInvSqrt(tvec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x); + vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y); + vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z); + vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w); + vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x); + vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y); + vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z); + vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w); + vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x); + vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y); + vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z); + vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w); + vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x); + vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y); + vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z); + vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w); + + vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); g0000 *= norm00.x; g0100 *= norm00.y; g1000 *= norm00.z; g1100 *= norm00.w; - tvec4 norm01 = detail::taylorInvSqrt(tvec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); g0001 *= norm01.x; g0101 *= norm01.y; g1001 *= norm01.z; g1101 *= norm01.w; - tvec4 norm10 = detail::taylorInvSqrt(tvec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); g0010 *= norm10.x; g0110 *= norm10.y; g1010 *= norm10.z; g1110 *= norm10.w; - tvec4 norm11 = detail::taylorInvSqrt(tvec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); g0011 *= norm11.x; g0111 *= norm11.y; g1011 *= norm11.z; g1111 *= norm11.w; T n0000 = dot(g0000, Pf0); - T n1000 = dot(g1000, tvec4(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); - T n0100 = dot(g0100, tvec4(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); - T n1100 = dot(g1100, tvec4(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); - T n0010 = dot(g0010, tvec4(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); - T n1010 = dot(g1010, tvec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); - T n0110 = dot(g0110, tvec4(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); - T n1110 = dot(g1110, tvec4(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); - T n0001 = dot(g0001, tvec4(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); - T n1001 = dot(g1001, tvec4(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); - T n0101 = dot(g0101, tvec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); - T n1101 = dot(g1101, tvec4(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); - T n0011 = dot(g0011, tvec4(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); - T n1011 = dot(g1011, tvec4(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); - T n0111 = dot(g0111, tvec4(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); + T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); + T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); + T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); + T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); + T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); + T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); + T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); + T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); + T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); + T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); + T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); + T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); T n1111 = dot(g1111, Pf1); - tvec4 fade_xyzw = detail::fade(Pf0); - tvec4 n_0w = mix(tvec4(n0000, n1000, n0100, n1100), tvec4(n0001, n1001, n0101, n1101), fade_xyzw.w); - tvec4 n_1w = mix(tvec4(n0010, n1010, n0110, n1110), tvec4(n0011, n1011, n0111, n1111), fade_xyzw.w); - tvec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z); - tvec2 n_yzw = mix(tvec2(n_zw.x, n_zw.y), tvec2(n_zw.z, n_zw.w), fade_xyzw.y); + vec<4, T, Q> fade_xyzw = detail::fade(Pf0); + vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w); + vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w); + vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z); + vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y); T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); return T(2.2) * n_xyzw; } // Classic Perlin noise, periodic variant - template - GLM_FUNC_QUALIFIER T perlin(tvec2 const & Position, tvec2 const & rep) + template + GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position, vec<2, T, Q> const& rep) { - tvec4 Pi = floor(tvec4(Position.x, Position.y, Position.x, Position.y)) + tvec4(0.0, 0.0, 1.0, 1.0); - tvec4 Pf = fract(tvec4(Position.x, Position.y, Position.x, Position.y)) - tvec4(0.0, 0.0, 1.0, 1.0); - Pi = mod(Pi, tvec4(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period - Pi = mod(Pi, tvec4(289)); // To avoid truncation effects in permutation - tvec4 ix(Pi.x, Pi.z, Pi.x, Pi.z); - tvec4 iy(Pi.y, Pi.y, Pi.w, Pi.w); - tvec4 fx(Pf.x, Pf.z, Pf.x, Pf.z); - tvec4 fy(Pf.y, Pf.y, Pf.w, Pf.w); - - tvec4 i = detail::permute(detail::permute(ix) + iy); - - tvec4 gx = static_cast(2) * fract(i / T(41)) - T(1); - tvec4 gy = abs(gx) - T(0.5); - tvec4 tx = floor(gx + T(0.5)); + vec<4, T, Q> Pi = floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + vec<4, T, Q> Pf = fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, vec<4, T, Q>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period + Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation + vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z); + vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w); + vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z); + vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w); + + vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy); + + vec<4, T, Q> gx = static_cast(2) * fract(i / T(41)) - T(1); + vec<4, T, Q> gy = abs(gx) - T(0.5); + vec<4, T, Q> tx = floor(gx + T(0.5)); gx = gx - tx; - tvec2 g00(gx.x, gy.x); - tvec2 g10(gx.y, gy.y); - tvec2 g01(gx.z, gy.z); - tvec2 g11(gx.w, gy.w); + vec<2, T, Q> g00(gx.x, gy.x); + vec<2, T, Q> g10(gx.y, gy.y); + vec<2, T, Q> g01(gx.z, gy.z); + vec<2, T, Q> g11(gx.w, gy.w); - tvec4 norm = detail::taylorInvSqrt(tvec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; - T n00 = dot(g00, tvec2(fx.x, fy.x)); - T n10 = dot(g10, tvec2(fx.y, fy.y)); - T n01 = dot(g01, tvec2(fx.z, fy.z)); - T n11 = dot(g11, tvec2(fx.w, fy.w)); + T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x)); + T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y)); + T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z)); + T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w)); - tvec2 fade_xy = detail::fade(tvec2(Pf.x, Pf.y)); - tvec2 n_x = mix(tvec2(n00, n01), tvec2(n10, n11), fade_xy.x); + vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y)); + vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x); T n_xy = mix(n_x.x, n_x.y, fade_xy.y); return T(2.3) * n_xy; } // Classic Perlin noise, periodic variant - template - GLM_FUNC_QUALIFIER T perlin(tvec3 const & Position, tvec3 const & rep) + template + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position, vec<3, T, Q> const& rep) { - tvec3 Pi0 = mod(floor(Position), rep); // Integer part, modulo period - tvec3 Pi1 = mod(Pi0 + tvec3(T(1)), rep); // Integer part + 1, mod period - Pi0 = mod(Pi0, tvec3(289)); - Pi1 = mod(Pi1, tvec3(289)); - tvec3 Pf0 = fract(Position); // Fractional part for interpolation - tvec3 Pf1 = Pf0 - tvec3(T(1)); // Fractional part - 1.0 - tvec4 ix = tvec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4 iy = tvec4(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4 iz0(Pi0.z); - tvec4 iz1(Pi1.z); - - tvec4 ixy = detail::permute(detail::permute(ix) + iy); - tvec4 ixy0 = detail::permute(ixy + iz0); - tvec4 ixy1 = detail::permute(ixy + iz1); - - tvec4 gx0 = ixy0 / T(7); - tvec4 gy0 = fract(floor(gx0) / T(7)) - T(0.5); + vec<3, T, Q> Pi0 = mod(floor(Position), rep); // Integer part, modulo period + vec<3, T, Q> Pi1 = mod(Pi0 + vec<3, T, Q>(T(1)), rep); // Integer part + 1, mod period + Pi0 = mod(Pi0, vec<3, T, Q>(289)); + Pi1 = mod(Pi1, vec<3, T, Q>(289)); + vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - vec<3, T, Q>(T(1)); // Fractional part - 1.0 + vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 / T(7); + vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5); gx0 = fract(gx0); - tvec4 gz0 = tvec4(0.5) - abs(gx0) - abs(gy0); - tvec4 sz0 = step(gz0, tvec4(0)); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0)); gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); - tvec4 gx1 = ixy1 / T(7); - tvec4 gy1 = fract(floor(gx1) / T(7)) - T(0.5); + vec<4, T, Q> gx1 = ixy1 / T(7); + vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5); gx1 = fract(gx1); - tvec4 gz1 = tvec4(0.5) - abs(gx1) - abs(gy1); - tvec4 sz1 = step(gz1, tvec4(T(0))); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(T(0))); gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); - tvec3 g000 = tvec3(gx0.x, gy0.x, gz0.x); - tvec3 g100 = tvec3(gx0.y, gy0.y, gz0.y); - tvec3 g010 = tvec3(gx0.z, gy0.z, gz0.z); - tvec3 g110 = tvec3(gx0.w, gy0.w, gz0.w); - tvec3 g001 = tvec3(gx1.x, gy1.x, gz1.x); - tvec3 g101 = tvec3(gx1.y, gy1.y, gz1.y); - tvec3 g011 = tvec3(gx1.z, gy1.z, gz1.z); - tvec3 g111 = tvec3(gx1.w, gy1.w, gz1.w); + vec<3, T, Q> g000 = vec<3, T, Q>(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100 = vec<3, T, Q>(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010 = vec<3, T, Q>(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110 = vec<3, T, Q>(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001 = vec<3, T, Q>(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101 = vec<3, T, Q>(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011 = vec<3, T, Q>(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111 = vec<3, T, Q>(gx1.w, gy1.w, gz1.w); - tvec4 norm0 = detail::taylorInvSqrt(tvec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; - tvec4 norm1 = detail::taylorInvSqrt(tvec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; T n000 = dot(g000, Pf0); - T n100 = dot(g100, tvec3(Pf1.x, Pf0.y, Pf0.z)); - T n010 = dot(g010, tvec3(Pf0.x, Pf1.y, Pf0.z)); - T n110 = dot(g110, tvec3(Pf1.x, Pf1.y, Pf0.z)); - T n001 = dot(g001, tvec3(Pf0.x, Pf0.y, Pf1.z)); - T n101 = dot(g101, tvec3(Pf1.x, Pf0.y, Pf1.z)); - T n011 = dot(g011, tvec3(Pf0.x, Pf1.y, Pf1.z)); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); T n111 = dot(g111, Pf1); - tvec3 fade_xyz = detail::fade(Pf0); - tvec4 n_z = mix(tvec4(n000, n100, n010, n110), tvec4(n001, n101, n011, n111), fade_xyz.z); - tvec2 n_yz = mix(tvec2(n_z.x, n_z.y), tvec2(n_z.z, n_z.w), fade_xyz.y); + vec<3, T, Q> fade_xyz = detail::fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return T(2.2) * n_xyz; } // Classic Perlin noise, periodic version - template - GLM_FUNC_QUALIFIER T perlin(tvec4 const & Position, tvec4 const & rep) + template + GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position, vec<4, T, Q> const& rep) { - tvec4 Pi0 = mod(floor(Position), rep); // Integer part modulo rep - tvec4 Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep - tvec4 Pf0 = fract(Position); // Fractional part for interpolation - tvec4 Pf1 = Pf0 - T(1); // Fractional part - 1.0 - tvec4 ix = tvec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); - tvec4 iy = tvec4(Pi0.y, Pi0.y, Pi1.y, Pi1.y); - tvec4 iz0(Pi0.z); - tvec4 iz1(Pi1.z); - tvec4 iw0(Pi0.w); - tvec4 iw1(Pi1.w); - - tvec4 ixy = detail::permute(detail::permute(ix) + iy); - tvec4 ixy0 = detail::permute(ixy + iz0); - tvec4 ixy1 = detail::permute(ixy + iz1); - tvec4 ixy00 = detail::permute(ixy0 + iw0); - tvec4 ixy01 = detail::permute(ixy0 + iw1); - tvec4 ixy10 = detail::permute(ixy1 + iw0); - tvec4 ixy11 = detail::permute(ixy1 + iw1); - - tvec4 gx00 = ixy00 / T(7); - tvec4 gy00 = floor(gx00) / T(7); - tvec4 gz00 = floor(gy00) / T(6); + vec<4, T, Q> Pi0 = mod(floor(Position), rep); // Integer part modulo rep + vec<4, T, Q> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep + vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + vec<4, T, Q> iw0(Pi0.w); + vec<4, T, Q> iw1(Pi1.w); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0); + vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1); + vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0); + vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1); + + vec<4, T, Q> gx00 = ixy00 / T(7); + vec<4, T, Q> gy00 = floor(gx00) / T(7); + vec<4, T, Q> gz00 = floor(gy00) / T(6); gx00 = fract(gx00) - T(0.5); gy00 = fract(gy00) - T(0.5); gz00 = fract(gz00) - T(0.5); - tvec4 gw00 = tvec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00); - tvec4 sw00 = step(gw00, tvec4(0)); + vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0)); gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); - tvec4 gx01 = ixy01 / T(7); - tvec4 gy01 = floor(gx01) / T(7); - tvec4 gz01 = floor(gy01) / T(6); + vec<4, T, Q> gx01 = ixy01 / T(7); + vec<4, T, Q> gy01 = floor(gx01) / T(7); + vec<4, T, Q> gz01 = floor(gy01) / T(6); gx01 = fract(gx01) - T(0.5); gy01 = fract(gy01) - T(0.5); gz01 = fract(gz01) - T(0.5); - tvec4 gw01 = tvec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01); - tvec4 sw01 = step(gw01, tvec4(0.0)); + vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0)); gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); - tvec4 gx10 = ixy10 / T(7); - tvec4 gy10 = floor(gx10) / T(7); - tvec4 gz10 = floor(gy10) / T(6); + vec<4, T, Q> gx10 = ixy10 / T(7); + vec<4, T, Q> gy10 = floor(gx10) / T(7); + vec<4, T, Q> gz10 = floor(gy10) / T(6); gx10 = fract(gx10) - T(0.5); gy10 = fract(gy10) - T(0.5); gz10 = fract(gz10) - T(0.5); - tvec4 gw10 = tvec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10); - tvec4 sw10 = step(gw10, tvec4(0.0)); + vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0.0)); gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); - tvec4 gx11 = ixy11 / T(7); - tvec4 gy11 = floor(gx11) / T(7); - tvec4 gz11 = floor(gy11) / T(6); + vec<4, T, Q> gx11 = ixy11 / T(7); + vec<4, T, Q> gy11 = floor(gx11) / T(7); + vec<4, T, Q> gz11 = floor(gy11) / T(6); gx11 = fract(gx11) - T(0.5); gy11 = fract(gy11) - T(0.5); gz11 = fract(gz11) - T(0.5); - tvec4 gw11 = tvec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11); - tvec4 sw11 = step(gw11, tvec4(T(0))); + vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(T(0))); gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); - tvec4 g0000(gx00.x, gy00.x, gz00.x, gw00.x); - tvec4 g1000(gx00.y, gy00.y, gz00.y, gw00.y); - tvec4 g0100(gx00.z, gy00.z, gz00.z, gw00.z); - tvec4 g1100(gx00.w, gy00.w, gz00.w, gw00.w); - tvec4 g0010(gx10.x, gy10.x, gz10.x, gw10.x); - tvec4 g1010(gx10.y, gy10.y, gz10.y, gw10.y); - tvec4 g0110(gx10.z, gy10.z, gz10.z, gw10.z); - tvec4 g1110(gx10.w, gy10.w, gz10.w, gw10.w); - tvec4 g0001(gx01.x, gy01.x, gz01.x, gw01.x); - tvec4 g1001(gx01.y, gy01.y, gz01.y, gw01.y); - tvec4 g0101(gx01.z, gy01.z, gz01.z, gw01.z); - tvec4 g1101(gx01.w, gy01.w, gz01.w, gw01.w); - tvec4 g0011(gx11.x, gy11.x, gz11.x, gw11.x); - tvec4 g1011(gx11.y, gy11.y, gz11.y, gw11.y); - tvec4 g0111(gx11.z, gy11.z, gz11.z, gw11.z); - tvec4 g1111(gx11.w, gy11.w, gz11.w, gw11.w); - - tvec4 norm00 = detail::taylorInvSqrt(tvec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x); + vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y); + vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z); + vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w); + vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x); + vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y); + vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z); + vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w); + vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x); + vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y); + vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z); + vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w); + vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x); + vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y); + vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z); + vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w); + + vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); g0000 *= norm00.x; g0100 *= norm00.y; g1000 *= norm00.z; g1100 *= norm00.w; - tvec4 norm01 = detail::taylorInvSqrt(tvec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); g0001 *= norm01.x; g0101 *= norm01.y; g1001 *= norm01.z; g1101 *= norm01.w; - tvec4 norm10 = detail::taylorInvSqrt(tvec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); g0010 *= norm10.x; g0110 *= norm10.y; g1010 *= norm10.z; g1110 *= norm10.w; - tvec4 norm11 = detail::taylorInvSqrt(tvec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); g0011 *= norm11.x; g0111 *= norm11.y; g1011 *= norm11.z; g1111 *= norm11.w; T n0000 = dot(g0000, Pf0); - T n1000 = dot(g1000, tvec4(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); - T n0100 = dot(g0100, tvec4(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); - T n1100 = dot(g1100, tvec4(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); - T n0010 = dot(g0010, tvec4(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); - T n1010 = dot(g1010, tvec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); - T n0110 = dot(g0110, tvec4(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); - T n1110 = dot(g1110, tvec4(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); - T n0001 = dot(g0001, tvec4(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); - T n1001 = dot(g1001, tvec4(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); - T n0101 = dot(g0101, tvec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); - T n1101 = dot(g1101, tvec4(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); - T n0011 = dot(g0011, tvec4(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); - T n1011 = dot(g1011, tvec4(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); - T n0111 = dot(g0111, tvec4(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); + T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); + T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); + T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); + T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); + T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); + T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); + T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); + T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); + T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); + T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); + T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); + T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); T n1111 = dot(g1111, Pf1); - tvec4 fade_xyzw = detail::fade(Pf0); - tvec4 n_0w = mix(tvec4(n0000, n1000, n0100, n1100), tvec4(n0001, n1001, n0101, n1101), fade_xyzw.w); - tvec4 n_1w = mix(tvec4(n0010, n1010, n0110, n1110), tvec4(n0011, n1011, n0111, n1111), fade_xyzw.w); - tvec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z); - tvec2 n_yzw = mix(tvec2(n_zw.x, n_zw.y), tvec2(n_zw.z, n_zw.w), fade_xyzw.y); + vec<4, T, Q> fade_xyzw = detail::fade(Pf0); + vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w); + vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w); + vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z); + vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y); T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); return T(2.2) * n_xyzw; } - template - GLM_FUNC_QUALIFIER T simplex(glm::tvec2 const & v) + template + GLM_FUNC_QUALIFIER T simplex(glm::vec<2, T, Q> const& v) { - tvec4 const C = tvec4( + vec<4, T, Q> const C = vec<4, T, Q>( T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0 T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0) T(-0.577350269189626), // -1.0 + 2.0 * C.x T( 0.024390243902439)); // 1.0 / 41.0 // First corner - tvec2 i = floor(v + dot(v, tvec2(C[1]))); - tvec2 x0 = v - i + dot(i, tvec2(C[0])); + vec<2, T, Q> i = floor(v + dot(v, vec<2, T, Q>(C[1]))); + vec<2, T, Q> x0 = v - i + dot(i, vec<2, T, Q>(C[0])); // Other corners //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 //i1.y = 1.0 - i1.x; - tvec2 i1 = (x0.x > x0.y) ? tvec2(1, 0) : tvec2(0, 1); + vec<2, T, Q> i1 = (x0.x > x0.y) ? vec<2, T, Q>(1, 0) : vec<2, T, Q>(0, 1); // x0 = x0 - 0.0 + 0.0 * C.xx ; // x1 = x0 - i1 + 1.0 * C.xx ; // x2 = x0 - 1.0 + 2.0 * C.xx ; - tvec4 x12 = tvec4(x0.x, x0.y, x0.x, x0.y) + tvec4(C.x, C.x, C.z, C.z); - x12 = tvec4(tvec2(x12) - i1, x12.z, x12.w); + vec<4, T, Q> x12 = vec<4, T, Q>(x0.x, x0.y, x0.x, x0.y) + vec<4, T, Q>(C.x, C.x, C.z, C.z); + x12 = vec<4, T, Q>(vec<2, T, Q>(x12) - i1, x12.z, x12.w); // Permutations - i = mod(i, tvec2(289)); // Avoid truncation effects in permutation - tvec3 p = detail::permute( - detail::permute(i.y + tvec3(T(0), i1.y, T(1))) - + i.x + tvec3(T(0), i1.x, T(1))); + i = mod(i, vec<2, T, Q>(289)); // Avoid truncation effects in permutation + vec<3, T, Q> p = detail::permute( + detail::permute(i.y + vec<3, T, Q>(T(0), i1.y, T(1))) + + i.x + vec<3, T, Q>(T(0), i1.x, T(1))); - tvec3 m = max(tvec3(0.5) - tvec3( + vec<3, T, Q> m = max(vec<3, T, Q>(0.5) - vec<3, T, Q>( dot(x0, x0), - dot(tvec2(x12.x, x12.y), tvec2(x12.x, x12.y)), - dot(tvec2(x12.z, x12.w), tvec2(x12.z, x12.w))), tvec3(0)); + dot(vec<2, T, Q>(x12.x, x12.y), vec<2, T, Q>(x12.x, x12.y)), + dot(vec<2, T, Q>(x12.z, x12.w), vec<2, T, Q>(x12.z, x12.w))), vec<3, T, Q>(0)); m = m * m ; m = m * m ; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) - tvec3 x = static_cast(2) * fract(p * C.w) - T(1); - tvec3 h = abs(x) - T(0.5); - tvec3 ox = floor(x + T(0.5)); - tvec3 a0 = x - ox; + vec<3, T, Q> x = static_cast(2) * fract(p * C.w) - T(1); + vec<3, T, Q> h = abs(x) - T(0.5); + vec<3, T, Q> ox = floor(x + T(0.5)); + vec<3, T, Q> a0 = x - ox; // Normalise gradients implicitly by scaling m // Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h ); m *= static_cast(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h); // Compute final noise value at P - tvec3 g; + vec<3, T, Q> g; g.x = a0.x * x0.x + h.x * x0.y; //g.yz = a0.yz * x12.xz + h.yz * x12.yw; g.y = a0.y * x12.x + h.y * x12.y; @@ -645,85 +645,85 @@ namespace gtc return T(130) * dot(m, g); } - template - GLM_FUNC_QUALIFIER T simplex(tvec3 const & v) + template + GLM_FUNC_QUALIFIER T simplex(vec<3, T, Q> const& v) { - tvec2 const C(1.0 / 6.0, 1.0 / 3.0); - tvec4 const D(0.0, 0.5, 1.0, 2.0); + vec<2, T, Q> const C(1.0 / 6.0, 1.0 / 3.0); + vec<4, T, Q> const D(0.0, 0.5, 1.0, 2.0); // First corner - tvec3 i(floor(v + dot(v, tvec3(C.y)))); - tvec3 x0(v - i + dot(i, tvec3(C.x))); + vec<3, T, Q> i(floor(v + dot(v, vec<3, T, Q>(C.y)))); + vec<3, T, Q> x0(v - i + dot(i, vec<3, T, Q>(C.x))); // Other corners - tvec3 g(step(tvec3(x0.y, x0.z, x0.x), x0)); - tvec3 l(T(1) - g); - tvec3 i1(min(g, tvec3(l.z, l.x, l.y))); - tvec3 i2(max(g, tvec3(l.z, l.x, l.y))); + vec<3, T, Q> g(step(vec<3, T, Q>(x0.y, x0.z, x0.x), x0)); + vec<3, T, Q> l(T(1) - g); + vec<3, T, Q> i1(min(g, vec<3, T, Q>(l.z, l.x, l.y))); + vec<3, T, Q> i2(max(g, vec<3, T, Q>(l.z, l.x, l.y))); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; - tvec3 x1(x0 - i1 + C.x); - tvec3 x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y - tvec3 x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y + vec<3, T, Q> x1(x0 - i1 + C.x); + vec<3, T, Q> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y + vec<3, T, Q> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = detail::mod289(i); - tvec4 p(detail::permute(detail::permute(detail::permute( - i.z + tvec4(T(0), i1.z, i2.z, T(1))) + - i.y + tvec4(T(0), i1.y, i2.y, T(1))) + - i.x + tvec4(T(0), i1.x, i2.x, T(1)))); + vec<4, T, Q> p(detail::permute(detail::permute(detail::permute( + i.z + vec<4, T, Q>(T(0), i1.z, i2.z, T(1))) + + i.y + vec<4, T, Q>(T(0), i1.y, i2.y, T(1))) + + i.x + vec<4, T, Q>(T(0), i1.x, i2.x, T(1)))); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) T n_ = static_cast(0.142857142857); // 1.0/7.0 - tvec3 ns(n_ * tvec3(D.w, D.y, D.z) - tvec3(D.x, D.z, D.x)); + vec<3, T, Q> ns(n_ * vec<3, T, Q>(D.w, D.y, D.z) - vec<3, T, Q>(D.x, D.z, D.x)); - tvec4 j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7) + vec<4, T, Q> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7) - tvec4 x_(floor(j * ns.z)); - tvec4 y_(floor(j - T(7) * x_)); // mod(j,N) + vec<4, T, Q> x_(floor(j * ns.z)); + vec<4, T, Q> y_(floor(j - T(7) * x_)); // mod(j,N) - tvec4 x(x_ * ns.x + ns.y); - tvec4 y(y_ * ns.x + ns.y); - tvec4 h(T(1) - abs(x) - abs(y)); + vec<4, T, Q> x(x_ * ns.x + ns.y); + vec<4, T, Q> y(y_ * ns.x + ns.y); + vec<4, T, Q> h(T(1) - abs(x) - abs(y)); - tvec4 b0(x.x, x.y, y.x, y.y); - tvec4 b1(x.z, x.w, y.z, y.w); + vec<4, T, Q> b0(x.x, x.y, y.x, y.y); + vec<4, T, Q> b1(x.z, x.w, y.z, y.w); // vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; // vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; - tvec4 s0(floor(b0) * T(2) + T(1)); - tvec4 s1(floor(b1) * T(2) + T(1)); - tvec4 sh(-step(h, tvec4(0.0))); + vec<4, T, Q> s0(floor(b0) * T(2) + T(1)); + vec<4, T, Q> s1(floor(b1) * T(2) + T(1)); + vec<4, T, Q> sh(-step(h, vec<4, T, Q>(0.0))); - tvec4 a0 = tvec4(b0.x, b0.z, b0.y, b0.w) + tvec4(s0.x, s0.z, s0.y, s0.w) * tvec4(sh.x, sh.x, sh.y, sh.y); - tvec4 a1 = tvec4(b1.x, b1.z, b1.y, b1.w) + tvec4(s1.x, s1.z, s1.y, s1.w) * tvec4(sh.z, sh.z, sh.w, sh.w); + vec<4, T, Q> a0 = vec<4, T, Q>(b0.x, b0.z, b0.y, b0.w) + vec<4, T, Q>(s0.x, s0.z, s0.y, s0.w) * vec<4, T, Q>(sh.x, sh.x, sh.y, sh.y); + vec<4, T, Q> a1 = vec<4, T, Q>(b1.x, b1.z, b1.y, b1.w) + vec<4, T, Q>(s1.x, s1.z, s1.y, s1.w) * vec<4, T, Q>(sh.z, sh.z, sh.w, sh.w); - tvec3 p0(a0.x, a0.y, h.x); - tvec3 p1(a0.z, a0.w, h.y); - tvec3 p2(a1.x, a1.y, h.z); - tvec3 p3(a1.z, a1.w, h.w); + vec<3, T, Q> p0(a0.x, a0.y, h.x); + vec<3, T, Q> p1(a0.z, a0.w, h.y); + vec<3, T, Q> p2(a1.x, a1.y, h.z); + vec<3, T, Q> p3(a1.z, a1.w, h.w); // Normalise gradients - tvec4 norm = detail::taylorInvSqrt(tvec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value - tvec4 m = max(T(0.6) - tvec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), tvec4(0)); + vec<4, T, Q> m = max(T(0.6) - vec<4, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), vec<4, T, Q>(0)); m = m * m; - return T(42) * dot(m * m, tvec4(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); + return T(42) * dot(m * m, vec<4, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); } - template - GLM_FUNC_QUALIFIER T simplex(tvec4 const & v) + template + GLM_FUNC_QUALIFIER T simplex(vec<4, T, Q> const& v) { - tvec4 const C( + vec<4, T, Q> const C( 0.138196601125011, // (5 - sqrt(5))/20 G4 0.276393202250021, // 2 * G4 0.414589803375032, // 3 * G4 @@ -733,63 +733,63 @@ namespace gtc T const F4 = static_cast(0.309016994374947451); // First corner - tvec4 i = floor(v + dot(v, vec4(F4))); - tvec4 x0 = v - i + dot(i, vec4(C.x)); + vec<4, T, Q> i = floor(v + dot(v, vec4(F4))); + vec<4, T, Q> x0 = v - i + dot(i, vec4(C.x)); // Other corners // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) - tvec4 i0; - tvec3 isX = step(tvec3(x0.y, x0.z, x0.w), tvec3(x0.x)); - tvec3 isYZ = step(tvec3(x0.z, x0.w, x0.w), tvec3(x0.y, x0.y, x0.z)); + vec<4, T, Q> i0; + vec<3, T, Q> isX = step(vec<3, T, Q>(x0.y, x0.z, x0.w), vec<3, T, Q>(x0.x)); + vec<3, T, Q> isYZ = step(vec<3, T, Q>(x0.z, x0.w, x0.w), vec<3, T, Q>(x0.y, x0.y, x0.z)); // i0.x = dot(isX, vec3(1.0)); //i0.x = isX.x + isX.y + isX.z; //i0.yzw = static_cast(1) - isX; - i0 = tvec4(isX.x + isX.y + isX.z, T(1) - isX); + i0 = vec<4, T, Q>(isX.x + isX.y + isX.z, T(1) - isX); // i0.y += dot(isYZ.xy, vec2(1.0)); i0.y += isYZ.x + isYZ.y; - //i0.zw += 1.0 - tvec2(isYZ.x, isYZ.y); + //i0.zw += 1.0 - vec<2, T, Q>(isYZ.x, isYZ.y); i0.z += static_cast(1) - isYZ.x; i0.w += static_cast(1) - isYZ.y; i0.z += isYZ.z; i0.w += static_cast(1) - isYZ.z; // i0 now contains the unique values 0,1,2,3 in each channel - tvec4 i3 = clamp(i0, T(0), T(1)); - tvec4 i2 = clamp(i0 - T(1), T(0), T(1)); - tvec4 i1 = clamp(i0 - T(2), T(0), T(1)); + vec<4, T, Q> i3 = clamp(i0, T(0), T(1)); + vec<4, T, Q> i2 = clamp(i0 - T(1), T(0), T(1)); + vec<4, T, Q> i1 = clamp(i0 - T(2), T(0), T(1)); // x0 = x0 - 0.0 + 0.0 * C.xxxx // x1 = x0 - i1 + 0.0 * C.xxxx // x2 = x0 - i2 + 0.0 * C.xxxx // x3 = x0 - i3 + 0.0 * C.xxxx // x4 = x0 - 1.0 + 4.0 * C.xxxx - tvec4 x1 = x0 - i1 + C.x; - tvec4 x2 = x0 - i2 + C.y; - tvec4 x3 = x0 - i3 + C.z; - tvec4 x4 = x0 + C.w; + vec<4, T, Q> x1 = x0 - i1 + C.x; + vec<4, T, Q> x2 = x0 - i2 + C.y; + vec<4, T, Q> x3 = x0 - i3 + C.z; + vec<4, T, Q> x4 = x0 + C.w; // Permutations - i = mod(i, tvec4(289)); + i = mod(i, vec<4, T, Q>(289)); T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x); - tvec4 j1 = detail::permute(detail::permute(detail::permute(detail::permute( - i.w + tvec4(i1.w, i2.w, i3.w, T(1))) + - i.z + tvec4(i1.z, i2.z, i3.z, T(1))) + - i.y + tvec4(i1.y, i2.y, i3.y, T(1))) + - i.x + tvec4(i1.x, i2.x, i3.x, T(1))); + vec<4, T, Q> j1 = detail::permute(detail::permute(detail::permute(detail::permute( + i.w + vec<4, T, Q>(i1.w, i2.w, i3.w, T(1))) + + i.z + vec<4, T, Q>(i1.z, i2.z, i3.z, T(1))) + + i.y + vec<4, T, Q>(i1.y, i2.y, i3.y, T(1))) + + i.x + vec<4, T, Q>(i1.x, i2.x, i3.x, T(1))); // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope // 7*7*6 = 294, which is close to the ring size 17*17 = 289. - tvec4 ip = tvec4(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0)); + vec<4, T, Q> ip = vec<4, T, Q>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0)); - tvec4 p0 = gtc::grad4(j0, ip); - tvec4 p1 = gtc::grad4(j1.x, ip); - tvec4 p2 = gtc::grad4(j1.y, ip); - tvec4 p3 = gtc::grad4(j1.z, ip); - tvec4 p4 = gtc::grad4(j1.w, ip); + vec<4, T, Q> p0 = gtc::grad4(j0, ip); + vec<4, T, Q> p1 = gtc::grad4(j1.x, ip); + vec<4, T, Q> p2 = gtc::grad4(j1.y, ip); + vec<4, T, Q> p3 = gtc::grad4(j1.z, ip); + vec<4, T, Q> p4 = gtc::grad4(j1.w, ip); // Normalise gradients - tvec4 norm = detail::taylorInvSqrt(tvec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; @@ -797,12 +797,12 @@ namespace gtc p4 *= detail::taylorInvSqrt(dot(p4, p4)); // Mix contributions from the five corners - tvec3 m0 = max(T(0.6) - tvec3(dot(x0, x0), dot(x1, x1), dot(x2, x2)), tvec3(0)); - tvec2 m1 = max(T(0.6) - tvec2(dot(x3, x3), dot(x4, x4) ), tvec2(0)); + vec<3, T, Q> m0 = max(T(0.6) - vec<3, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), vec<3, T, Q>(0)); + vec<2, T, Q> m1 = max(T(0.6) - vec<2, T, Q>(dot(x3, x3), dot(x4, x4) ), vec<2, T, Q>(0)); m0 = m0 * m0; m1 = m1 * m1; - return T(49) * - (dot(m0 * m0, tvec3(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + - dot(m1 * m1, tvec2(dot(p3, x3), dot(p4, x4)))); + return T(49) * + (dot(m0 * m0, vec<3, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + + dot(m1 * m1, vec<2, T, Q>(dot(p3, x3), dot(p4, x4)))); } }//namespace glm diff --git a/external/include/glm/gtc/packing.hpp b/external/include/glm/gtc/packing.hpp index 1389d95..96070c2 100644 --- a/external/include/glm/gtc/packing.hpp +++ b/external/include/glm/gtc/packing.hpp @@ -6,10 +6,10 @@ /// @defgroup gtc_packing GLM_GTC_packing /// @ingroup gtc /// -/// @brief This extension provides a set of function to convert vertors to packed -/// formats. +/// Include to use the features of this extension. /// -/// need to be included to use these features. +/// This extension provides a set of function to convert vertors to packed +/// formats. #pragma once @@ -32,17 +32,17 @@ namespace glm /// packUnorm1x8: round(clamp(c, 0, +1) * 255.0) /// /// @see gtc_packing - /// @see uint16 packUnorm2x8(vec2 const & v) - /// @see uint32 packUnorm4x8(vec4 const & v) + /// @see uint16 packUnorm2x8(vec2 const& v) + /// @see uint32 packUnorm4x8(vec4 const& v) /// @see GLSL packUnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL uint8 packUnorm1x8(float v); /// Convert a single 8-bit integer to a normalized floating-point value. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackUnorm4x8: f / 255.0 - /// + /// /// @see gtc_packing /// @see vec2 unpackUnorm2x8(uint16 p) /// @see vec4 unpackUnorm4x8(uint32 p) @@ -60,28 +60,28 @@ namespace glm /// the last component will be written to the most significant bits. /// /// @see gtc_packing - /// @see uint8 packUnorm1x8(float const & v) - /// @see uint32 packUnorm4x8(vec4 const & v) + /// @see uint8 packUnorm1x8(float const& v) + /// @see uint32 packUnorm4x8(vec4 const& v) /// @see GLSL packUnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions - GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v); + GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const& v); - /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers. + /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers. /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackUnorm4x8: f / 255.0 - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing /// @see float unpackUnorm1x8(uint8 v) /// @see vec4 unpackUnorm4x8(uint32 p) /// @see GLSL unpackUnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p); - + /// First, converts the normalized floating-point value v into 8-bit integer value. /// Then, the results are packed into the returned 8-bit unsigned integer. /// @@ -89,25 +89,25 @@ namespace glm /// packSnorm1x8: round(clamp(s, -1, +1) * 127.0) /// /// @see gtc_packing - /// @see uint16 packSnorm2x8(vec2 const & v) - /// @see uint32 packSnorm4x8(vec4 const & v) + /// @see uint16 packSnorm2x8(vec2 const& v) + /// @see uint32 packSnorm4x8(vec4 const& v) /// @see GLSL packSnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL uint8 packSnorm1x8(float s); - /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers. + /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers. /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm1x8: clamp(f / 127.0, -1, +1) - /// + /// /// @see gtc_packing /// @see vec2 unpackSnorm2x8(uint16 p) /// @see vec4 unpackSnorm4x8(uint32 p) /// @see GLSL unpackSnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL float unpackSnorm1x8(uint8 p); - + /// First, converts each component of the normalized floating-point value v into 8-bit integer values. /// Then, the results are packed into the returned 16-bit unsigned integer. /// @@ -118,28 +118,28 @@ namespace glm /// the last component will be written to the most significant bits. /// /// @see gtc_packing - /// @see uint8 packSnorm1x8(float const & v) - /// @see uint32 packSnorm4x8(vec4 const & v) + /// @see uint8 packSnorm1x8(float const& v) + /// @see uint32 packSnorm4x8(vec4 const& v) /// @see GLSL packSnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions - GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v); + GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const& v); - /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers. + /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm2x8: clamp(f / 127.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing /// @see float unpackSnorm1x8(uint8 p) /// @see vec4 unpackSnorm4x8(uint32 p) /// @see GLSL unpackSnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p); - + /// First, converts the normalized floating-point value v into a 16-bit integer value. /// Then, the results are packed into the returned 16-bit unsigned integer. /// @@ -147,18 +147,18 @@ namespace glm /// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0) /// /// @see gtc_packing - /// @see uint16 packSnorm1x16(float const & v) - /// @see uint64 packSnorm4x16(vec4 const & v) + /// @see uint16 packSnorm1x16(float const& v) + /// @see uint64 packSnorm4x16(vec4 const& v) /// @see GLSL packUnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL uint16 packUnorm1x16(float v); - /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers. + /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers. /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackUnorm1x16: f / 65535.0 - /// + /// unpackUnorm1x16: f / 65535.0 + /// /// @see gtc_packing /// @see vec2 unpackUnorm2x16(uint32 p) /// @see vec4 unpackUnorm4x16(uint64 p) @@ -176,21 +176,21 @@ namespace glm /// the last component will be written to the most significant bits. /// /// @see gtc_packing - /// @see uint16 packUnorm1x16(float const & v) - /// @see uint32 packUnorm2x16(vec2 const & v) + /// @see uint16 packUnorm1x16(float const& v) + /// @see uint32 packUnorm2x16(vec2 const& v) /// @see GLSL packUnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions - GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v); + GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const& v); - /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers. + /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers. /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: - /// unpackUnormx4x16: f / 65535.0 - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// unpackUnormx4x16: f / 65535.0 + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing /// @see float unpackUnorm1x16(uint16 p) /// @see vec2 unpackUnorm2x16(uint32 p) @@ -205,18 +205,18 @@ namespace glm /// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0) /// /// @see gtc_packing - /// @see uint32 packSnorm2x16(vec2 const & v) - /// @see uint64 packSnorm4x16(vec4 const & v) + /// @see uint32 packSnorm2x16(vec2 const& v) + /// @see uint64 packSnorm4x16(vec4 const& v) /// @see GLSL packSnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL uint16 packSnorm1x16(float v); - /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers. + /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned scalar. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm1x16: clamp(f / 32767.0, -1, +1) - /// + /// /// @see gtc_packing /// @see vec2 unpackSnorm2x16(uint32 p) /// @see vec4 unpackSnorm4x16(uint64 p) @@ -234,122 +234,122 @@ namespace glm /// the last component will be written to the most significant bits. /// /// @see gtc_packing - /// @see uint16 packSnorm1x16(float const & v) - /// @see uint32 packSnorm2x16(vec2 const & v) + /// @see uint16 packSnorm1x16(float const& v) + /// @see uint32 packSnorm2x16(vec2 const& v) /// @see GLSL packSnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions - GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v); + GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const& v); - /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers. + /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm4x16: clamp(f / 32767.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing /// @see float unpackSnorm1x16(uint16 p) /// @see vec2 unpackSnorm2x16(uint32 p) /// @see GLSL unpackSnorm4x8 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p); - + /// Returns an unsigned integer obtained by converting the components of a floating-point scalar /// to the 16-bit floating-point representation found in the OpenGL Specification, /// and then packing this 16-bit value into a 16-bit unsigned integer. /// /// @see gtc_packing - /// @see uint32 packHalf2x16(vec2 const & v) - /// @see uint64 packHalf4x16(vec4 const & v) + /// @see uint32 packHalf2x16(vec2 const& v) + /// @see uint64 packHalf4x16(vec4 const& v) /// @see GLSL packHalf2x16 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL uint16 packHalf1x16(float v); - + /// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value, /// interpreted as a 16-bit floating-point number according to the OpenGL Specification, /// and converting it to 32-bit floating-point values. /// /// @see gtc_packing - /// @see vec2 unpackHalf2x16(uint32 const & v) - /// @see vec4 unpackHalf4x16(uint64 const & v) + /// @see vec2 unpackHalf2x16(uint32 const& v) + /// @see vec4 unpackHalf4x16(uint64 const& v) /// @see GLSL unpackHalf2x16 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL float unpackHalf1x16(uint16 v); - /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector - /// to the 16-bit floating-point representation found in the OpenGL Specification, + /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification, /// and then packing these four 16-bit values into a 64-bit unsigned integer. - /// The first vector component specifies the 16 least-significant bits of the result; + /// The first vector component specifies the 16 least-significant bits of the result; /// the forth component specifies the 16 most-significant bits. - /// + /// /// @see gtc_packing - /// @see uint16 packHalf1x16(float const & v) - /// @see uint32 packHalf2x16(vec2 const & v) + /// @see uint16 packHalf1x16(float const& v) + /// @see uint32 packHalf2x16(vec2 const& v) /// @see GLSL packHalf2x16 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions - GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v); - + GLM_FUNC_DECL uint64 packHalf4x16(vec4 const& v); + /// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values, - /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification, + /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification, /// and converting them to 32-bit floating-point values. - /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// The first component of the vector is obtained from the 16 least-significant bits of v; /// the forth component is obtained from the 16 most-significant bits of v. - /// + /// /// @see gtc_packing - /// @see float unpackHalf1x16(uint16 const & v) - /// @see vec2 unpackHalf2x16(uint32 const & v) + /// @see float unpackHalf1x16(uint16 const& v) + /// @see vec2 unpackHalf2x16(uint32 const& v) /// @see GLSL unpackHalf2x16 man page /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p); - /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector - /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification, + /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector + /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification, /// and then packing these four values into a 32-bit unsigned integer. - /// The first vector component specifies the 10 least-significant bits of the result; + /// The first vector component specifies the 10 least-significant bits of the result; /// the forth component specifies the 2 most-significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packI3x10_1x2(uvec4 const & v) - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see ivec4 unpackI3x10_1x2(uint32 const & p) - GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v); + /// @see uint32 packI3x10_1x2(uvec4 const& v) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see ivec4 unpackI3x10_1x2(uint32 const& p) + GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const& v); - /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); - /// @see uvec4 unpackI3x10_1x2(uint32 const & p); + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p); + /// @see uvec4 unpackI3x10_1x2(uint32 const& p); GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p); - /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector - /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification, + /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector + /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification, /// and then packing these four values into a 32-bit unsigned integer. - /// The first vector component specifies the 10 least-significant bits of the result; + /// The first vector component specifies the 10 least-significant bits of the result; /// the forth component specifies the 2 most-significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packI3x10_1x2(ivec4 const & v) - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see ivec4 unpackU3x10_1x2(uint32 const & p) - GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v); + /// @see uint32 packI3x10_1x2(ivec4 const& v) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see ivec4 unpackU3x10_1x2(uint32 const& p) + GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const& v); - /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p); - /// @see uvec4 unpackI3x10_1x2(uint32 const & p); + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p); + /// @see uvec4 unpackI3x10_1x2(uint32 const& p); GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p); /// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values. @@ -360,31 +360,31 @@ namespace glm /// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0) /// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0) /// - /// The first vector component specifies the 10 least-significant bits of the result; + /// The first vector component specifies the 10 least-significant bits of the result; /// the forth component specifies the 2 most-significant bits. /// /// @see gtc_packing - /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see uint32 packI3x10_1x2(ivec4 const & v) - GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v); + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see uint32 packI3x10_1x2(ivec4 const& v) + GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const& v); - /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. + /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1) /// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)) - /// @see uvec4 unpackI3x10_1x2(uint32 const & p) - /// @see uvec4 unpackU3x10_1x2(uint32 const & p) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see vec4 unpackUnorm3x10_1x2(uint32 const& p)) + /// @see uvec4 unpackI3x10_1x2(uint32 const& p) + /// @see uvec4 unpackU3x10_1x2(uint32 const& p) GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p); /// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values. @@ -395,52 +395,52 @@ namespace glm /// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0) /// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0) /// - /// The first vector component specifies the 10 least-significant bits of the result; + /// The first vector component specifies the 10 least-significant bits of the result; /// the forth component specifies the 2 most-significant bits. /// /// @see gtc_packing - /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p) - /// @see uint32 packUnorm3x10_1x2(vec4 const & v) - /// @see uint32 packU3x10_1x2(uvec4 const & v) - /// @see uint32 packI3x10_1x2(ivec4 const & v) - GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v); + /// @see vec4 unpackUnorm3x10_1x2(uint32 const& p) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see uint32 packI3x10_1x2(ivec4 const& v) + GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const& v); - /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. + /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. - /// + /// /// The conversion for unpacked fixed-point value f to floating point is done as follows: /// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1) /// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1) - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packSnorm3x10_1x2(vec4 const & v) - /// @see vec4 unpackInorm3x10_1x2(uint32 const & p)) - /// @see uvec4 unpackI3x10_1x2(uint32 const & p) - /// @see uvec4 unpackU3x10_1x2(uint32 const & p) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see vec4 unpackInorm3x10_1x2(uint32 const& p)) + /// @see uvec4 unpackI3x10_1x2(uint32 const& p) + /// @see uvec4 unpackU3x10_1x2(uint32 const& p) GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p); /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. /// Then, the results are packed into the returned 32-bit unsigned integer. /// - /// The first vector component specifies the 11 least-significant bits of the result; + /// The first vector component specifies the 11 least-significant bits of the result; /// the last component specifies the 10 most-significant bits. /// /// @see gtc_packing - /// @see vec3 unpackF2x11_1x10(uint32 const & p) - GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v); + /// @see vec3 unpackF2x11_1x10(uint32 const& p) + GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const& v); - /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . + /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// /// @see gtc_packing - /// @see uint32 packF2x11_1x10(vec3 const & v) + /// @see uint32 packF2x11_1x10(vec3 const& v) GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p); @@ -448,131 +448,280 @@ namespace glm /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. /// Then, the results are packed into the returned 32-bit unsigned integer. /// - /// The first vector component specifies the 11 least-significant bits of the result; + /// The first vector component specifies the 11 least-significant bits of the result; /// the last component specifies the 10 most-significant bits. /// + /// packF3x9_E1x5 allows encoding into RGBE / RGB9E5 format + /// /// @see gtc_packing - /// @see vec3 unpackF3x9_E1x5(uint32 const & p) - GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const & v); + /// @see vec3 unpackF3x9_E1x5(uint32 const& p) + GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const& v); - /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . + /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. - /// - /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; /// the last component will be extracted from the most significant bits. - /// + /// + /// unpackF3x9_E1x5 allows decoding RGBE / RGB9E5 data + /// /// @see gtc_packing - /// @see uint32 packF3x9_E1x5(vec3 const & v) + /// @see uint32 packF3x9_E1x5(vec3 const& v) GLM_FUNC_DECL vec3 unpackF3x9_E1x5(uint32 p); /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector /// to the 16-bit floating-point representation found in the OpenGL Specification. - /// The first vector component specifies the 16 least-significant bits of the result; + /// The first vector component specifies the 16 least-significant bits of the result; + /// the forth component specifies the 16 most-significant bits. + /// + /// @see gtc_packing + /// @see vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& p) + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + template + GLM_FUNC_DECL vec<4, T, Q> packRGBM(vec<3, T, Q> const& rgb); + + /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. + /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// the forth component is obtained from the 16 most-significant bits of v. + /// + /// @see gtc_packing + /// @see vec<4, T, Q> packRGBM(vec<3, float, Q> const& v) + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + template + GLM_FUNC_DECL vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& rgbm); + + /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification. + /// The first vector component specifies the 16 least-significant bits of the result; /// the forth component specifies the 16 most-significant bits. - /// + /// /// @see gtc_packing - /// @see vecType unpackHalf(vecType const & p) + /// @see vec unpackHalf(vec const& p) /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions - template class vecType> - GLM_FUNC_DECL vecType packHalf(vecType const & v); + template + GLM_FUNC_DECL vec packHalf(vec const& v); /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. /// The first component of the vector is obtained from the 16 least-significant bits of v; /// the forth component is obtained from the 16 most-significant bits of v. - /// + /// /// @see gtc_packing - /// @see vecType packHalf(vecType const & v) + /// @see vec packHalf(vec const& v) /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions - template class vecType> - GLM_FUNC_DECL vecType unpackHalf(vecType const & p); + template + GLM_FUNC_DECL vec unpackHalf(vec const& p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing - /// @see vecType unpackUnorm(vecType const & p); - template class vecType> - GLM_FUNC_DECL vecType packUnorm(vecType const & v); + /// @see vec unpackUnorm(vec const& p); + template + GLM_FUNC_DECL vec packUnorm(vec const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see vecType packUnorm(vecType const & v) - template class vecType> - GLM_FUNC_DECL vecType unpackUnorm(vecType const & v); + /// @see vec packUnorm(vec const& v) + template + GLM_FUNC_DECL vec unpackUnorm(vec const& v); /// Convert each component of the normalized floating-point vector into signed integer values. /// /// @see gtc_packing - /// @see vecType unpackSnorm(vecType const & p); - template class vecType> - GLM_FUNC_DECL vecType packSnorm(vecType const & v); + /// @see vec unpackSnorm(vec const& p); + template + GLM_FUNC_DECL vec packSnorm(vec const& v); - /// Convert each signed integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see vecType packSnorm(vecType const & v) - template class vecType> - GLM_FUNC_DECL vecType unpackSnorm(vecType const & v); + /// @see vec packSnorm(vec const& v) + template + GLM_FUNC_DECL vec unpackSnorm(vec const& v); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec2 unpackUnorm2x4(uint8 p) - GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const & v); + GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint8 packUnorm2x4(vec2 const & v) + /// @see uint8 packUnorm2x4(vec2 const& v) GLM_FUNC_DECL vec2 unpackUnorm2x4(uint8 p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec4 unpackUnorm4x4(uint16 p) - GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const & v); + GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint16 packUnorm4x4(vec4 const & v) + /// @see uint16 packUnorm4x4(vec4 const& v) GLM_FUNC_DECL vec4 unpackUnorm4x4(uint16 p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec3 unpackUnorm1x5_1x6_1x5(uint16 p) - GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const & v); + GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint16 packUnorm1x5_1x6_1x5(vec3 const & v) + /// @see uint16 packUnorm1x5_1x6_1x5(vec3 const& v) GLM_FUNC_DECL vec3 unpackUnorm1x5_1x6_1x5(uint16 p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec4 unpackUnorm3x5_1x1(uint16 p) - GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const & v); + GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint16 packUnorm3x5_1x1(vec4 const & v) + /// @see uint16 packUnorm3x5_1x1(vec4 const& v) GLM_FUNC_DECL vec4 unpackUnorm3x5_1x1(uint16 p); /// Convert each component of the normalized floating-point vector into unsigned integer values. /// /// @see gtc_packing /// @see vec3 unpackUnorm2x3_1x2(uint8 p) - GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const & v); + GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const& v); - /// Convert each unsigned integer components of a vector to normalized floating-point values. - /// + /// Convert a packed integer to a normalized floating-point vector. + /// /// @see gtc_packing - /// @see uint8 packUnorm2x3_1x2(vec3 const & v) + /// @see uint8 packUnorm2x3_1x2(vec3 const& v) GLM_FUNC_DECL vec3 unpackUnorm2x3_1x2(uint8 p); + + + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i8vec2 unpackInt2x8(int16 p) + GLM_FUNC_DECL int16 packInt2x8(i8vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int16 packInt2x8(i8vec2 const& v) + GLM_FUNC_DECL i8vec2 unpackInt2x8(int16 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u8vec2 unpackInt2x8(uint16 p) + GLM_FUNC_DECL uint16 packUint2x8(u8vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint16 packInt2x8(u8vec2 const& v) + GLM_FUNC_DECL u8vec2 unpackUint2x8(uint16 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i8vec4 unpackInt4x8(int32 p) + GLM_FUNC_DECL int32 packInt4x8(i8vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int32 packInt2x8(i8vec4 const& v) + GLM_FUNC_DECL i8vec4 unpackInt4x8(int32 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u8vec4 unpackUint4x8(uint32 p) + GLM_FUNC_DECL uint32 packUint4x8(u8vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint32 packUint4x8(u8vec2 const& v) + GLM_FUNC_DECL u8vec4 unpackUint4x8(uint32 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i16vec2 unpackInt2x16(int p) + GLM_FUNC_DECL int packInt2x16(i16vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packInt2x16(i16vec2 const& v) + GLM_FUNC_DECL i16vec2 unpackInt2x16(int p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i16vec4 unpackInt4x16(int64 p) + GLM_FUNC_DECL int64 packInt4x16(i16vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int64 packInt4x16(i16vec4 const& v) + GLM_FUNC_DECL i16vec4 unpackInt4x16(int64 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u16vec2 unpackUint2x16(uint p) + GLM_FUNC_DECL uint packUint2x16(u16vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint packUint2x16(u16vec2 const& v) + GLM_FUNC_DECL u16vec2 unpackUint2x16(uint p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u16vec4 unpackUint4x16(uint64 p) + GLM_FUNC_DECL uint64 packUint4x16(u16vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint64 packUint4x16(u16vec4 const& v) + GLM_FUNC_DECL u16vec4 unpackUint4x16(uint64 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see i32vec2 unpackInt2x32(int p) + GLM_FUNC_DECL int64 packInt2x32(i32vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packInt2x16(i32vec2 const& v) + GLM_FUNC_DECL i32vec2 unpackInt2x32(int64 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u32vec2 unpackUint2x32(int p) + GLM_FUNC_DECL uint64 packUint2x32(u32vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packUint2x16(u32vec2 const& v) + GLM_FUNC_DECL u32vec2 unpackUint2x32(uint64 p); + + /// @} }// namespace glm diff --git a/external/include/glm/gtc/packing.inl b/external/include/glm/gtc/packing.inl index 618fb9e..c12c140 100644 --- a/external/include/glm/gtc/packing.inl +++ b/external/include/glm/gtc/packing.inl @@ -2,6 +2,7 @@ /// @file glm/gtc/packing.inl #include "../common.hpp" +#include "../vector_relational.hpp" #include "../vec2.hpp" #include "../vec3.hpp" #include "../vec4.hpp" @@ -270,83 +271,83 @@ namespace detail uint32 pack; }; - template class vecType> + template struct compute_half {}; - template - struct compute_half + template + struct compute_half<1, Q> { - GLM_FUNC_QUALIFIER static tvec1 pack(tvec1 const & v) + GLM_FUNC_QUALIFIER static vec<1, uint16, Q> pack(vec<1, float, Q> const& v) { int16 const Unpack(detail::toFloat16(v.x)); - u16vec1 Packed(uninitialize); + u16vec1 Packed; memcpy(&Packed, &Unpack, sizeof(Packed)); return Packed; } - GLM_FUNC_QUALIFIER static tvec1 unpack(tvec1 const & v) + GLM_FUNC_QUALIFIER static vec<1, float, Q> unpack(vec<1, uint16, Q> const& v) { - i16vec1 Unpack(uninitialize); + i16vec1 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec1(detail::toFloat32(v.x)); + return vec<1, float, Q>(detail::toFloat32(v.x)); } }; - template - struct compute_half + template + struct compute_half<2, Q> { - GLM_FUNC_QUALIFIER static tvec2 pack(tvec2 const & v) + GLM_FUNC_QUALIFIER static vec<2, uint16, Q> pack(vec<2, float, Q> const& v) { - tvec2 const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y)); - u16vec2 Packed(uninitialize); + vec<2, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y)); + u16vec2 Packed; memcpy(&Packed, &Unpack, sizeof(Packed)); return Packed; } - GLM_FUNC_QUALIFIER static tvec2 unpack(tvec2 const & v) + GLM_FUNC_QUALIFIER static vec<2, float, Q> unpack(vec<2, uint16, Q> const& v) { - i16vec2 Unpack(uninitialize); + i16vec2 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec2(detail::toFloat32(v.x), detail::toFloat32(v.y)); + return vec<2, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y)); } }; - template - struct compute_half + template + struct compute_half<3, Q> { - GLM_FUNC_QUALIFIER static tvec3 pack(tvec3 const & v) + GLM_FUNC_QUALIFIER static vec<3, uint16, Q> pack(vec<3, float, Q> const& v) { - tvec3 const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z)); - u16vec3 Packed(uninitialize); + vec<3, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z)); + u16vec3 Packed; memcpy(&Packed, &Unpack, sizeof(Packed)); return Packed; } - GLM_FUNC_QUALIFIER static tvec3 unpack(tvec3 const & v) + GLM_FUNC_QUALIFIER static vec<3, float, Q> unpack(vec<3, uint16, Q> const& v) { - i16vec3 Unpack(uninitialize); + i16vec3 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec3(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z)); + return vec<3, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z)); } }; - template - struct compute_half + template + struct compute_half<4, Q> { - GLM_FUNC_QUALIFIER static tvec4 pack(tvec4 const & v) + GLM_FUNC_QUALIFIER static vec<4, uint16, Q> pack(vec<4, float, Q> const& v) { - tvec4 const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); - u16vec4 Packed(uninitialize); + vec<4, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); + u16vec4 Packed; memcpy(&Packed, &Unpack, sizeof(Packed)); return Packed; } - GLM_FUNC_QUALIFIER static tvec4 unpack(tvec4 const & v) + GLM_FUNC_QUALIFIER static vec<4, float, Q> unpack(vec<4, uint16, Q> const& v) { - i16vec4 Unpack(uninitialize); + i16vec4 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); - return tvec4(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w)); + return vec<4, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w)); } }; }//namespace detail @@ -355,14 +356,14 @@ namespace detail { return static_cast(round(clamp(v, 0.0f, 1.0f) * 255.0f)); } - + GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p) { float const Unpack(p); return Unpack * static_cast(0.0039215686274509803921568627451); // 1 / 255 } - - GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v) + + GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const& v) { u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f)); @@ -370,10 +371,10 @@ namespace detail memcpy(&Unpack, &Topack, sizeof(Unpack)); return Unpack; } - + GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p) { - u8vec2 Unpack(uninitialize); + u8vec2 Unpack; memcpy(&Unpack, &p, sizeof(Unpack)); return vec2(Unpack) * float(0.0039215686274509803921568627451); // 1 / 255 } @@ -385,7 +386,7 @@ namespace detail memcpy(&Packed, &Topack, sizeof(Packed)); return Packed; } - + GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p) { int8 Unpack = 0; @@ -394,18 +395,18 @@ namespace detail static_cast(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f -1.0f, 1.0f); } - - GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v) + + GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const& v) { i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f)); uint16 Packed = 0; memcpy(&Packed, &Topack, sizeof(Packed)); return Packed; } - + GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p) { - i8vec2 Unpack(uninitialize); + i8vec2 Unpack; memcpy(&Unpack, &p, sizeof(Unpack)); return clamp( vec2(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f @@ -423,7 +424,7 @@ namespace detail return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 } - GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v) + GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const& v) { u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f)); uint64 Packed = 0; @@ -433,7 +434,7 @@ namespace detail GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p) { - u16vec4 Unpack(uninitialize); + u16vec4 Unpack; memcpy(&Unpack, &p, sizeof(Unpack)); return vec4(Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 } @@ -451,11 +452,11 @@ namespace detail int16 Unpack = 0; memcpy(&Unpack, &p, sizeof(Unpack)); return clamp( - static_cast(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, + static_cast(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, -1.0f, 1.0f); } - GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v) + GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const& v) { i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); uint64 Packed = 0; @@ -465,7 +466,7 @@ namespace detail GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p) { - i16vec4 Unpack(uninitialize); + i16vec4 Unpack; memcpy(&Unpack, &p, sizeof(Unpack)); return clamp( vec4(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, @@ -487,7 +488,7 @@ namespace detail return detail::toFloat32(Unpack); } - GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v) + GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const& v) { i16vec4 const Unpack( detail::toFloat16(v.x), @@ -501,7 +502,7 @@ namespace detail GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v) { - i16vec4 Unpack(uninitialize); + i16vec4 Unpack; memcpy(&Unpack, &v, sizeof(Unpack)); return vec4( detail::toFloat32(Unpack.x), @@ -510,14 +511,14 @@ namespace detail detail::toFloat32(Unpack.w)); } - GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v) + GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const& v) { detail::i10i10i10i2 Result; Result.data.x = v.x; Result.data.y = v.y; Result.data.z = v.z; Result.data.w = v.w; - return Result.pack; + return Result.pack; } GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v) @@ -531,14 +532,14 @@ namespace detail Unpack.data.w); } - GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v) + GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const& v) { detail::u10u10u10u2 Result; Result.data.x = v.x; Result.data.y = v.y; Result.data.z = v.z; Result.data.w = v.w; - return Result.pack; + return Result.pack; } GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v) @@ -552,13 +553,15 @@ namespace detail Unpack.data.w); } - GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v) + GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const& v) { + ivec4 const Pack(round(clamp(v,-1.0f, 1.0f) * vec4(511.f, 511.f, 511.f, 1.f))); + detail::i10i10i10i2 Result; - Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f)); - Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f)); - Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f)); - Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f)); + Result.data.x = Pack.x; + Result.data.y = Pack.y; + Result.data.z = Pack.z; + Result.data.w = Pack.w; return Result.pack; } @@ -566,15 +569,13 @@ namespace detail { detail::i10i10i10i2 Unpack; Unpack.pack = v; - vec4 Result; - Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f); - Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f); - Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f); - Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f); - return Result; + + vec4 const Result(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w); + + return clamp(Result * vec4(1.f / 511.f, 1.f / 511.f, 1.f / 511.f, 1.f), -1.0f, 1.0f); } - GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v) + GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const& v) { uvec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(1023.f, 1023.f, 1023.f, 3.f))); @@ -595,7 +596,7 @@ namespace detail return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactors; } - GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v) + GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const& v) { return ((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) | @@ -611,15 +612,15 @@ namespace detail detail::packed10bitToFloat(v >> 22)); } - GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const & v) + GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const& v) { float const SharedExpMax = (pow(2.0f, 9.0f - 1.0f) / pow(2.0f, 9.0f)) * pow(2.0f, 31.f - 15.f); vec3 const Color = clamp(v, 0.0f, SharedExpMax); float const MaxColor = max(Color.x, max(Color.y, Color.z)); float const ExpSharedP = max(-15.f - 1.f, floor(log2(MaxColor))) + 1.0f + 15.f; - float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 16.f - 9.f)) + 0.5f); - float const ExpShared = MaxShared == pow(2.0f, 9.0f) ? ExpSharedP + 1.0f : ExpSharedP; + float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 15.f - 9.f)) + 0.5f); + float const ExpShared = detail::compute_equal::call(MaxShared, pow(2.0f, 9.0f)) ? ExpSharedP + 1.0f : ExpSharedP; uvec3 const ColorComp(floor(Color / pow(2.f, (ExpShared - 15.f - 9.f)) + 0.5f)); @@ -639,55 +640,71 @@ namespace detail return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * pow(2.0f, Unpack.data.w - 15.f - 9.f); } - template class vecType> - GLM_FUNC_QUALIFIER vecType packHalf(vecType const & v) + // Based on Brian Karis http://graphicrants.blogspot.fr/2009/04/rgbm-color-encoding.html + template + GLM_FUNC_QUALIFIER vec<4, T, Q> packRGBM(vec<3, T, Q> const& rgb) { - return detail::compute_half::pack(v); + vec<3, T, Q> const Color(rgb * static_cast(1.0 / 6.0)); + T Alpha = clamp(max(max(Color.x, Color.y), max(Color.z, static_cast(1e-6))), static_cast(0), static_cast(1)); + Alpha = ceil(Alpha * static_cast(255.0)) / static_cast(255.0); + return vec<4, T, Q>(Color / Alpha, Alpha); } - template class vecType> - GLM_FUNC_QUALIFIER vecType unpackHalf(vecType const & v) + template + GLM_FUNC_QUALIFIER vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& rgbm) { - return detail::compute_half::unpack(v); + return vec<3, T, Q>(rgbm.x, rgbm.y, rgbm.z) * rgbm.w * static_cast(6); } - template class vecType> - GLM_FUNC_QUALIFIER vecType packUnorm(vecType const & v) + template + GLM_FUNC_QUALIFIER vec packHalf(vec const& v) + { + return detail::compute_half::pack(v); + } + + template + GLM_FUNC_QUALIFIER vec unpackHalf(vec const& v) + { + return detail::compute_half::unpack(v); + } + + template + GLM_FUNC_QUALIFIER vec packUnorm(vec const& v) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "uintType must be an integer type"); GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "floatType must be a floating point type"); - return vecType(round(clamp(v, static_cast(0), static_cast(1)) * static_cast(std::numeric_limits::max()))); + return vec(round(clamp(v, static_cast(0), static_cast(1)) * static_cast(std::numeric_limits::max()))); } - template class vecType> - GLM_FUNC_QUALIFIER vecType unpackUnorm(vecType const & v) + template + GLM_FUNC_QUALIFIER vec unpackUnorm(vec const& v) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "uintType must be an integer type"); GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "floatType must be a floating point type"); - return vecType(v) * (static_cast(1) / static_cast(std::numeric_limits::max())); + return vec(v) * (static_cast(1) / static_cast(std::numeric_limits::max())); } - template class vecType> - GLM_FUNC_QUALIFIER vecType packSnorm(vecType const & v) + template + GLM_FUNC_QUALIFIER vec packSnorm(vec const& v) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "uintType must be an integer type"); GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "floatType must be a floating point type"); - return vecType(round(clamp(v , static_cast(-1), static_cast(1)) * static_cast(std::numeric_limits::max()))); + return vec(round(clamp(v , static_cast(-1), static_cast(1)) * static_cast(std::numeric_limits::max()))); } - template class vecType> - GLM_FUNC_QUALIFIER vecType unpackSnorm(vecType const & v) + template + GLM_FUNC_QUALIFIER vec unpackSnorm(vec const& v) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "uintType must be an integer type"); GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "floatType must be a floating point type"); - return clamp(vecType(v) * (static_cast(1) / static_cast(std::numeric_limits::max())), static_cast(-1), static_cast(1)); + return clamp(vec(v) * (static_cast(1) / static_cast(std::numeric_limits::max())), static_cast(-1), static_cast(1)); } - GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const & v) + GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const& v) { u32vec2 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); detail::u4u4 Result; @@ -704,7 +721,7 @@ namespace detail return vec2(Unpack.data.x, Unpack.data.y) * ScaleFactor; } - GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const & v) + GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const& v) { u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); detail::u4u4u4u4 Result; @@ -723,7 +740,7 @@ namespace detail return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; } - GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const & v) + GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const& v) { u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(31.f, 63.f, 31.f))); detail::u5u6u5 Result; @@ -741,7 +758,7 @@ namespace detail return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; } - GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const & v) + GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const& v) { u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(31.f, 31.f, 31.f, 1.f))); detail::u5u5u5u1 Result; @@ -760,7 +777,7 @@ namespace detail return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; } - GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const & v) + GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const& v) { u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(7.f, 7.f, 3.f))); detail::u3u3u2 Result; @@ -777,5 +794,145 @@ namespace detail Unpack.pack = v; return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; } + + GLM_FUNC_QUALIFIER int16 packInt2x8(i8vec2 const& v) + { + int16 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i8vec2 unpackInt2x8(int16 p) + { + i8vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint16 packUint2x8(u8vec2 const& v) + { + uint16 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u8vec2 unpackUint2x8(uint16 p) + { + u8vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int32 packInt4x8(i8vec4 const& v) + { + int32 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i8vec4 unpackInt4x8(int32 p) + { + i8vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint32 packUint4x8(u8vec4 const& v) + { + uint32 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u8vec4 unpackUint4x8(uint32 p) + { + u8vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int packInt2x16(i16vec2 const& v) + { + int Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i16vec2 unpackInt2x16(int p) + { + i16vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int64 packInt4x16(i16vec4 const& v) + { + int64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i16vec4 unpackInt4x16(int64 p) + { + i16vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint packUint2x16(u16vec2 const& v) + { + uint Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u16vec2 unpackUint2x16(uint p) + { + u16vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint64 packUint4x16(u16vec4 const& v) + { + uint64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u16vec4 unpackUint4x16(uint64 p) + { + u16vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int64 packInt2x32(i32vec2 const& v) + { + int64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i32vec2 unpackInt2x32(int64 p) + { + i32vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint64 packUint2x32(u32vec2 const& v) + { + uint64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u32vec2 unpackUint2x32(uint64 p) + { + u32vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } }//namespace glm diff --git a/external/include/glm/gtc/quaternion.hpp b/external/include/glm/gtc/quaternion.hpp index 8af1c8b..25f741c 100644 --- a/external/include/glm/gtc/quaternion.hpp +++ b/external/include/glm/gtc/quaternion.hpp @@ -2,15 +2,14 @@ /// @file glm/gtc/quaternion.hpp /// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// @see gtc_constants (dependence) /// /// @defgroup gtc_quaternion GLM_GTC_quaternion /// @ingroup gtc /// -/// @brief Defines a templated quaternion type and several quaternion operations. +/// Include to use the features of this extension. /// -/// need to be included to use these functionalities. +/// Defines a templated quaternion type and several quaternion operations. #pragma once @@ -30,12 +29,12 @@ namespace glm /// @addtogroup gtc_quaternion /// @{ - template + template struct tquat { // -- Implementation detail -- - typedef tquat type; + typedef tquat type; typedef T value_type; // -- Data -- @@ -50,13 +49,13 @@ namespace glm # pragma clang diagnostic ignored "-Wgnu-anonymous-struct" # pragma clang diagnostic ignored "-Wnested-anon-types" # endif - + union { struct { T x, y, z, w;}; - typename detail::storage::value>::type data; + typename detail::storage::value>::type data; }; - + # if GLM_COMPILER & GLM_COMPILER_CLANG # pragma clang diagnostic pop # endif @@ -71,33 +70,32 @@ namespace glm typedef length_t length_type; /// Return the count of components of a quaternion - GLM_FUNC_DECL static length_type length(){return 4;} + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 4;} GLM_FUNC_DECL T & operator[](length_type i); - GLM_FUNC_DECL T const & operator[](length_type i) const; + GLM_FUNC_DECL T const& operator[](length_type i) const; // -- Implicit basic constructors -- GLM_FUNC_DECL GLM_CONSTEXPR tquat() GLM_DEFAULT_CTOR; - GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat const & q) GLM_DEFAULT; - template - GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat const & q); + GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat const& q) GLM_DEFAULT; + template + GLM_FUNC_DECL GLM_CONSTEXPR tquat(tquat const& q); // -- Explicit basic constructors -- - GLM_FUNC_DECL GLM_CONSTEXPR_CTOR explicit tquat(ctor); - GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & s, tvec3 const & v); - GLM_FUNC_DECL GLM_CONSTEXPR tquat(T const & w, T const & x, T const & y, T const & z); + GLM_FUNC_DECL GLM_CONSTEXPR tquat(T s, vec<3, T, Q> const& v); + GLM_FUNC_DECL GLM_CONSTEXPR tquat(T w, T x, T y, T z); // -- Conversion constructors -- - template - GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat const & q); + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tquat(tquat const& q); /// Explicit conversion operators # if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - GLM_FUNC_DECL explicit operator tmat3x3(); - GLM_FUNC_DECL explicit operator tmat4x4(); + GLM_FUNC_DECL explicit operator mat<3, 3, T, Q>(); + GLM_FUNC_DECL explicit operator mat<4, 4, T, Q>(); # endif /// Create a quaternion from two normalized axis @@ -106,290 +104,332 @@ namespace glm /// @param v A second normalized axis /// @see gtc_quaternion /// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors - GLM_FUNC_DECL tquat(tvec3 const & u, tvec3 const & v); + GLM_FUNC_DECL tquat(vec<3, T, Q> const& u, vec<3, T, Q> const& v); /// Build a quaternion from euler angles (pitch, yaw, roll), in radians. - GLM_FUNC_DECL GLM_EXPLICIT tquat(tvec3 const & eulerAngles); - GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat3x3 const & m); - GLM_FUNC_DECL GLM_EXPLICIT tquat(tmat4x4 const & m); + GLM_FUNC_DECL GLM_EXPLICIT tquat(vec<3, T, Q> const& eulerAngles); + GLM_FUNC_DECL GLM_EXPLICIT tquat(mat<3, 3, T, Q> const& q); + GLM_FUNC_DECL GLM_EXPLICIT tquat(mat<4, 4, T, Q> const& q); // -- Unary arithmetic operators -- - GLM_FUNC_DECL tquat & operator=(tquat const & m) GLM_DEFAULT; - - template - GLM_FUNC_DECL tquat & operator=(tquat const & m); - template - GLM_FUNC_DECL tquat & operator+=(tquat const & q); - template - GLM_FUNC_DECL tquat & operator-=(tquat const & q); - template - GLM_FUNC_DECL tquat & operator*=(tquat const & q); - template - GLM_FUNC_DECL tquat & operator*=(U s); - template - GLM_FUNC_DECL tquat & operator/=(U s); + GLM_FUNC_DECL tquat & operator=(tquat const& q) GLM_DEFAULT; + + template + GLM_FUNC_DECL tquat & operator=(tquat const& q); + template + GLM_FUNC_DECL tquat & operator+=(tquat const& q); + template + GLM_FUNC_DECL tquat & operator-=(tquat const& q); + template + GLM_FUNC_DECL tquat & operator*=(tquat const& q); + template + GLM_FUNC_DECL tquat & operator*=(U s); + template + GLM_FUNC_DECL tquat & operator/=(U s); }; // -- Unary bit operators -- - template - GLM_FUNC_DECL tquat operator+(tquat const & q); + template + GLM_FUNC_DECL tquat operator+(tquat const& q); - template - GLM_FUNC_DECL tquat operator-(tquat const & q); + template + GLM_FUNC_DECL tquat operator-(tquat const& q); // -- Binary operators -- - template - GLM_FUNC_DECL tquat operator+(tquat const & q, tquat const & p); + template + GLM_FUNC_DECL tquat operator+(tquat const& q, tquat const& p); - template - GLM_FUNC_DECL tquat operator*(tquat const & q, tquat const & p); + template + GLM_FUNC_DECL tquat operator-(tquat const& q, tquat const& p); - template - GLM_FUNC_DECL tvec3 operator*(tquat const & q, tvec3 const & v); + template + GLM_FUNC_DECL tquat operator*(tquat const& q, tquat const& p); - template - GLM_FUNC_DECL tvec3 operator*(tvec3 const & v, tquat const & q); + template + GLM_FUNC_DECL vec<3, T, Q> operator*(tquat const& q, vec<3, T, Q> const& v); - template - GLM_FUNC_DECL tvec4 operator*(tquat const & q, tvec4 const & v); + template + GLM_FUNC_DECL vec<3, T, Q> operator*(vec<3, T, Q> const& v, tquat const& q); - template - GLM_FUNC_DECL tvec4 operator*(tvec4 const & v, tquat const & q); + template + GLM_FUNC_DECL vec<4, T, Q> operator*(tquat const& q, vec<4, T, Q> const& v); - template - GLM_FUNC_DECL tquat operator*(tquat const & q, T const & s); + template + GLM_FUNC_DECL vec<4, T, Q> operator*(vec<4, T, Q> const& v, tquat const& q); - template - GLM_FUNC_DECL tquat operator*(T const & s, tquat const & q); + template + GLM_FUNC_DECL tquat operator*(tquat const& q, T const& s); - template - GLM_FUNC_DECL tquat operator/(tquat const & q, T const & s); + template + GLM_FUNC_DECL tquat operator*(T const& s, tquat const& q); + + template + GLM_FUNC_DECL tquat operator/(tquat const& q, T const& s); // -- Boolean operators -- - template - GLM_FUNC_DECL bool operator==(tquat const & q1, tquat const & q2); + template + GLM_FUNC_DECL bool operator==(tquat const& q1, tquat const& q2); - template - GLM_FUNC_DECL bool operator!=(tquat const & q1, tquat const & q2); + template + GLM_FUNC_DECL bool operator!=(tquat const& q1, tquat const& q2); /// Returns the length of the quaternion. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL T length(tquat const & q); + template + GLM_FUNC_DECL T length(tquat const& q); /// Returns the normalized quaternion. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat normalize(tquat const & q); - + template + GLM_FUNC_DECL tquat normalize(tquat const& q); + /// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template class quatType> - GLM_FUNC_DECL T dot(quatType const & x, quatType const & y); + template + GLM_FUNC_DECL T dot(tquat const& x, tquat const& y); /// Spherical linear interpolation of two quaternions. /// The interpolation is oriented and the rotation is performed at constant speed. /// For short path spherical linear interpolation, use the slerp function. - /// + /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @tparam T Floating-point scalar types. + /// + /// @see - slerp(tquat const& x, tquat const& y, T const& a) /// @see gtc_quaternion - /// @see - slerp(tquat const & x, tquat const & y, T const & a) - template - GLM_FUNC_DECL tquat mix(tquat const & x, tquat const & y, T a); + template + GLM_FUNC_DECL tquat mix(tquat const& x, tquat const& y, T a); /// Linear interpolation of two quaternions. /// The interpolation is oriented. - /// + /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat lerp(tquat const & x, tquat const & y, T a); + template + GLM_FUNC_DECL tquat lerp(tquat const& x, tquat const& y, T a); /// Spherical linear interpolation of two quaternions. /// The interpolation always take the short path and the rotation is performed at constant speed. - /// + /// /// @param x A quaternion /// @param y A quaternion /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. - /// @tparam T Value type used to build the quaternion. Supported: half, float or double. + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat slerp(tquat const & x, tquat const & y, T a); + template + GLM_FUNC_DECL tquat slerp(tquat const& x, tquat const& y, T a); /// Returns the q conjugate. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat conjugate(tquat const & q); + template + GLM_FUNC_DECL tquat conjugate(tquat const& q); /// Returns the q inverse. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat inverse(tquat const & q); + template + GLM_FUNC_DECL tquat inverse(tquat const& q); /// Rotates a quaternion from a vector of 3 components axis and an angle. - /// + /// /// @param q Source orientation /// @param angle Angle expressed in radians. /// @param axis Axis of the rotation - /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat rotate(tquat const & q, T const & angle, tvec3 const & axis); + template + GLM_FUNC_DECL tquat rotate(tquat const& q, T const& angle, vec<3, T, Q> const& axis); /// Returns euler angles, pitch as x, yaw as y, roll as z. - /// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise. - /// + /// The result is expressed in radians. + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tvec3 eulerAngles(tquat const & x); + template + GLM_FUNC_DECL vec<3, T, Q> eulerAngles(tquat const& x); /// Returns roll value of euler angles expressed in radians. /// - /// @see gtx_quaternion - template - GLM_FUNC_DECL T roll(tquat const & x); + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL T roll(tquat const& x); /// Returns pitch value of euler angles expressed in radians. /// - /// @see gtx_quaternion - template - GLM_FUNC_DECL T pitch(tquat const & x); + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL T pitch(tquat const& x); /// Returns yaw value of euler angles expressed in radians. /// - /// @see gtx_quaternion - template - GLM_FUNC_DECL T yaw(tquat const & x); + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL T yaw(tquat const& x); /// Converts a quaternion to a 3 * 3 matrix. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tmat3x3 mat3_cast(tquat const & x); + template + GLM_FUNC_DECL mat<3, 3, T, Q> mat3_cast(tquat const& x); /// Converts a quaternion to a 4 * 4 matrix. - /// + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tmat4x4 mat4_cast(tquat const & x); + template + GLM_FUNC_DECL mat<4, 4, T, Q> mat4_cast(tquat const& x); - /// Converts a 3 * 3 matrix to a quaternion. - /// + /// Converts a pure rotation 3 * 3 matrix to a quaternion. + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat quat_cast(tmat3x3 const & x); + template + GLM_FUNC_DECL tquat quat_cast(mat<3, 3, T, Q> const& x); - /// Converts a 4 * 4 matrix to a quaternion. - /// + /// Converts a pure rotation 4 * 4 matrix to a quaternion. + /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat quat_cast(tmat4x4 const & x); + template + GLM_FUNC_DECL tquat quat_cast(mat<4, 4, T, Q> const& x); /// Returns the quaternion rotation angle. /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL T angle(tquat const & x); + template + GLM_FUNC_DECL T angle(tquat const& x); /// Returns the q rotation axis. /// + /// @tparam T Floating-point scalar types. + /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tvec3 axis(tquat const & x); + template + GLM_FUNC_DECL vec<3, T, Q> axis(tquat const& x); /// Build a quaternion from an angle and a normalized axis. /// /// @param angle Angle expressed in radians. /// @param axis Axis of the quaternion, must be normalized. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tquat angleAxis(T const & angle, tvec3 const & axis); + template + GLM_FUNC_DECL tquat angleAxis(T const& angle, vec<3, T, Q> const& axis); /// Returns the component-wise comparison result of x < y. - /// - /// @tparam quatType Floating-point quaternion types. + /// + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tvec4 lessThan(tquat const & x, tquat const & y); + template + GLM_FUNC_DECL vec<4, bool, Q> lessThan(tquat const& x, tquat const& y); /// Returns the component-wise comparison of result x <= y. /// - /// @tparam quatType Floating-point quaternion types. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tvec4 lessThanEqual(tquat const & x, tquat const & y); + template + GLM_FUNC_DECL vec<4, bool, Q> lessThanEqual(tquat const& x, tquat const& y); /// Returns the component-wise comparison of result x > y. /// - /// @tparam quatType Floating-point quaternion types. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tvec4 greaterThan(tquat const & x, tquat const & y); + template + GLM_FUNC_DECL vec<4, bool, Q> greaterThan(tquat const& x, tquat const& y); /// Returns the component-wise comparison of result x >= y. /// - /// @tparam quatType Floating-point quaternion types. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tvec4 greaterThanEqual(tquat const & x, tquat const & y); + template + GLM_FUNC_DECL vec<4, bool, Q> greaterThanEqual(tquat const& x, tquat const& y); /// Returns the component-wise comparison of result x == y. /// - /// @tparam quatType Floating-point quaternion types. + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tvec4 equal(tquat const & x, tquat const & y); + template + GLM_FUNC_DECL vec<4, bool, Q> equal(tquat const& x, tquat const& y); /// Returns the component-wise comparison of result x != y. - /// - /// @tparam quatType Floating-point quaternion types. + /// + /// @tparam T Floating-point scalar types. /// /// @see gtc_quaternion - template - GLM_FUNC_DECL tvec4 notEqual(tquat const & x, tquat const & y); + template + GLM_FUNC_DECL vec<4, bool, Q> notEqual(tquat const& x, tquat const& y); /// Returns true if x holds a NaN (not a number) /// representation in the underlying implementation's set of /// floating point representations. Returns false otherwise, /// including for implementations with no NaN /// representations. - /// + /// /// /!\ When using compiler fast math, this function may fail. - /// - /// @tparam genType Floating-point scalar or vector types. - template - GLM_FUNC_DECL tvec4 isnan(tquat const & x); + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL vec<4, bool, Q> isnan(tquat const& x); /// Returns true if x holds a positive infinity or negative /// infinity representation in the underlying implementation's /// set of floating point representations. Returns false /// otherwise, including for implementations with no infinity /// representations. - /// - /// @tparam genType Floating-point scalar or vector types. - template - GLM_FUNC_DECL tvec4 isinf(tquat const & x); + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL vec<4, bool, Q> isinf(tquat const& x); /// @} } //namespace glm diff --git a/external/include/glm/gtc/quaternion.inl b/external/include/glm/gtc/quaternion.inl index c9b2af7..df4a5f7 100644 --- a/external/include/glm/gtc/quaternion.inl +++ b/external/include/glm/gtc/quaternion.inl @@ -4,78 +4,80 @@ #include "../trigonometric.hpp" #include "../geometric.hpp" #include "../exponential.hpp" +#include "../detail/compute_vector_relational.hpp" +#include "epsilon.hpp" #include namespace glm{ namespace detail { - template - struct compute_dot + template + struct compute_dot, T, Aligned> { - static GLM_FUNC_QUALIFIER T call(tquat const& x, tquat const& y) + static GLM_FUNC_QUALIFIER T call(tquat const& a, tquat const& b) { - tvec4 tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w); + vec<4, T, Q> tmp(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); return (tmp.x + tmp.y) + (tmp.z + tmp.w); } }; - template + template struct compute_quat_add { - static tquat call(tquat const& q, tquat const& p) + static tquat call(tquat const& q, tquat const& p) { - return tquat(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); + return tquat(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); } }; - template + template struct compute_quat_sub { - static tquat call(tquat const& q, tquat const& p) + static tquat call(tquat const& q, tquat const& p) { - return tquat(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); + return tquat(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); } }; - template + template struct compute_quat_mul_scalar { - static tquat call(tquat const& q, T s) + static tquat call(tquat const& q, T s) { - return tquat(q.w * s, q.x * s, q.y * s, q.z * s); + return tquat(q.w * s, q.x * s, q.y * s, q.z * s); } }; - template + template struct compute_quat_div_scalar { - static tquat call(tquat const& q, T s) + static tquat call(tquat const& q, T s) { - return tquat(q.w / s, q.x / s, q.y / s, q.z / s); + return tquat(q.w / s, q.x / s, q.y / s, q.z / s); } }; - template + template struct compute_quat_mul_vec4 { - static tvec4 call(tquat const & q, tvec4 const & v) + static vec<4, T, Q> call(tquat const& q, vec<4, T, Q> const& v) { - return tvec4(q * tvec3(v), v.w); + return vec<4, T, Q>(q * vec<3, T, Q>(v), v.w); } }; }//namespace detail // -- Component accesses -- - template - GLM_FUNC_QUALIFIER T & tquat::operator[](typename tquat::length_type i) + template + GLM_FUNC_QUALIFIER T & tquat::operator[](typename tquat::length_type i) { assert(i >= 0 && i < this->length()); return (&x)[i]; } - template - GLM_FUNC_QUALIFIER T const & tquat::operator[](typename tquat::length_type i) const + template + GLM_FUNC_QUALIFIER T const& tquat::operator[](typename tquat::length_type i) const { assert(i >= 0 && i < this->length()); return (&x)[i]; @@ -83,129 +85,139 @@ namespace detail // -- Implicit basic constructors -- -# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT) - template - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat() -# ifndef GLM_FORCE_NO_CTOR_INIT - : x(0), y(0), z(0), w(1) +# if !GLM_HAS_DEFAULTED_FUNCTIONS || defined(GLM_FORCE_CTOR_INIT) + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat() +# ifdef GLM_FORCE_CTOR_INIT + : x(0), y(0), z(0), w(1) # endif {} # endif # if !GLM_HAS_DEFAULTED_FUNCTIONS - template - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(tquat const & q) + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(tquat const& q) : x(q.x), y(q.y), z(q.z), w(q.w) {} # endif//!GLM_HAS_DEFAULTED_FUNCTIONS - template - template - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(tquat const & q) + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(tquat const& q) : x(q.x), y(q.y), z(q.z), w(q.w) {} // -- Explicit basic constructors -- - template - GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tquat::tquat(ctor) - {} - - template - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(T const & s, tvec3 const & v) + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(T s, vec<3, T, Q> const& v) : x(v.x), y(v.y), z(v.z), w(s) {} - template - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(T const & w, T const & x, T const & y, T const & z) - : x(x), y(y), z(z), w(w) + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(T _w, T _x, T _y, T _z) + : x(_x), y(_y), z(_z), w(_w) {} // -- Conversion constructors -- - template - template - GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(tquat const & q) + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tquat::tquat(tquat const& q) : x(static_cast(q.x)) , y(static_cast(q.y)) , z(static_cast(q.z)) , w(static_cast(q.w)) {} - //template + //template //GLM_FUNC_QUALIFIER tquat::tquat //( - // valType const & pitch, - // valType const & yaw, - // valType const & roll + // valType const& pitch, + // valType const& yaw, + // valType const& roll //) //{ - // tvec3 eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); - // tvec3 c = glm::cos(eulerAngle * valType(0.5)); - // tvec3 s = glm::sin(eulerAngle * valType(0.5)); - // + // vec<3, valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); + // vec<3, valType> c = glm::cos(eulerAngle * valType(0.5)); + // vec<3, valType> s = glm::sin(eulerAngle * valType(0.5)); + // // this->w = c.x * c.y * c.z + s.x * s.y * s.z; // this->x = s.x * c.y * c.z - c.x * s.y * s.z; // this->y = c.x * s.y * c.z + s.x * c.y * s.z; // this->z = c.x * c.y * s.z - s.x * s.y * c.z; //} - template - GLM_FUNC_QUALIFIER tquat::tquat(tvec3 const & u, tvec3 const & v) + template + GLM_FUNC_QUALIFIER tquat::tquat(vec<3, T, Q> const& u, vec<3, T, Q> const& v) { - tvec3 const LocalW(cross(u, v)); - T Dot = detail::compute_dot::value>::call(u, v); - tquat q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z); + T norm_u_norm_v = sqrt(dot(u, u) * dot(v, v)); + T real_part = norm_u_norm_v + dot(u, v); + vec<3, T, Q> t; + + if(real_part < static_cast(1.e-6f) * norm_u_norm_v) + { + // If u and v are exactly opposite, rotate 180 degrees + // around an arbitrary orthogonal axis. Axis normalisation + // can happen later, when we normalise the quaternion. + real_part = static_cast(0); + t = abs(u.x) > abs(u.z) ? vec<3, T, Q>(-u.y, u.x, static_cast(0)) : vec<3, T, Q>(static_cast(0), -u.z, u.y); + } + else + { + // Otherwise, build quaternion the standard way. + t = cross(u, v); + } - *this = normalize(q); + *this = normalize(tquat(real_part, t.x, t.y, t.z)); } - template - GLM_FUNC_QUALIFIER tquat::tquat(tvec3 const & eulerAngle) + template + GLM_FUNC_QUALIFIER tquat::tquat(vec<3, T, Q> const& eulerAngle) { - tvec3 c = glm::cos(eulerAngle * T(0.5)); - tvec3 s = glm::sin(eulerAngle * T(0.5)); - + vec<3, T, Q> c = glm::cos(eulerAngle * T(0.5)); + vec<3, T, Q> s = glm::sin(eulerAngle * T(0.5)); + this->w = c.x * c.y * c.z + s.x * s.y * s.z; this->x = s.x * c.y * c.z - c.x * s.y * s.z; this->y = c.x * s.y * c.z + s.x * c.y * s.z; this->z = c.x * c.y * s.z - s.x * s.y * c.z; } - template - GLM_FUNC_QUALIFIER tquat::tquat(tmat3x3 const & m) + template + GLM_FUNC_QUALIFIER tquat::tquat(mat<3, 3, T, Q> const& m) { *this = quat_cast(m); } - template - GLM_FUNC_QUALIFIER tquat::tquat(tmat4x4 const & m) + template + GLM_FUNC_QUALIFIER tquat::tquat(mat<4, 4, T, Q> const& m) { *this = quat_cast(m); } # if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - template - GLM_FUNC_QUALIFIER tquat::operator tmat3x3() + template + GLM_FUNC_QUALIFIER tquat::operator mat<3, 3, T, Q>() { return mat3_cast(*this); } - - template - GLM_FUNC_QUALIFIER tquat::operator tmat4x4() + + template + GLM_FUNC_QUALIFIER tquat::operator mat<4, 4, T, Q>() { return mat4_cast(*this); } # endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS - template - GLM_FUNC_QUALIFIER tquat conjugate(tquat const & q) + template + GLM_FUNC_QUALIFIER tquat conjugate(tquat const& q) { - return tquat(q.w, -q.x, -q.y, -q.z); + return tquat(q.w, -q.x, -q.y, -q.z); } - template - GLM_FUNC_QUALIFIER tquat inverse(tquat const & q) + template + GLM_FUNC_QUALIFIER tquat inverse(tquat const& q) { return conjugate(q) / dot(q, q); } @@ -213,8 +225,8 @@ namespace detail // -- Unary arithmetic operators -- # if !GLM_HAS_DEFAULTED_FUNCTIONS - template - GLM_FUNC_QUALIFIER tquat & tquat::operator=(tquat const & q) + template + GLM_FUNC_QUALIFIER tquat & tquat::operator=(tquat const& q) { this->w = q.w; this->x = q.x; @@ -224,9 +236,9 @@ namespace detail } # endif//!GLM_HAS_DEFAULTED_FUNCTIONS - template - template - GLM_FUNC_QUALIFIER tquat & tquat::operator=(tquat const & q) + template + template + GLM_FUNC_QUALIFIER tquat & tquat::operator=(tquat const& q) { this->w = static_cast(q.w); this->x = static_cast(q.x); @@ -235,26 +247,26 @@ namespace detail return *this; } - template - template - GLM_FUNC_QUALIFIER tquat & tquat::operator+=(tquat const& q) + template + template + GLM_FUNC_QUALIFIER tquat & tquat::operator+=(tquat const& q) { - return (*this = detail::compute_quat_add::value>::call(*this, tquat(q))); + return (*this = detail::compute_quat_add::value>::call(*this, tquat(q))); } - template - template - GLM_FUNC_QUALIFIER tquat & tquat::operator-=(tquat const& q) + template + template + GLM_FUNC_QUALIFIER tquat & tquat::operator-=(tquat const& q) { - return (*this = detail::compute_quat_sub::value>::call(*this, tquat(q))); + return (*this = detail::compute_quat_sub::value>::call(*this, tquat(q))); } - template - template - GLM_FUNC_QUALIFIER tquat & tquat::operator*=(tquat const & r) + template + template + GLM_FUNC_QUALIFIER tquat & tquat::operator*=(tquat const& r) { - tquat const p(*this); - tquat const q(r); + tquat const p(*this); + tquat const q(r); this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; @@ -263,132 +275,145 @@ namespace detail return *this; } - template - template - GLM_FUNC_QUALIFIER tquat & tquat::operator*=(U s) + template + template + GLM_FUNC_QUALIFIER tquat & tquat::operator*=(U s) { - return (*this = detail::compute_quat_mul_scalar::value>::call(*this, static_cast(s))); + return (*this = detail::compute_quat_mul_scalar::value>::call(*this, static_cast(s))); } - template - template - GLM_FUNC_QUALIFIER tquat & tquat::operator/=(U s) + template + template + GLM_FUNC_QUALIFIER tquat & tquat::operator/=(U s) { - return (*this = detail::compute_quat_div_scalar::value>::call(*this, static_cast(s))); + return (*this = detail::compute_quat_div_scalar::value>::call(*this, static_cast(s))); } // -- Unary bit operators -- - template - GLM_FUNC_QUALIFIER tquat operator+(tquat const & q) + template + GLM_FUNC_QUALIFIER tquat operator+(tquat const& q) { return q; } - template - GLM_FUNC_QUALIFIER tquat operator-(tquat const & q) + template + GLM_FUNC_QUALIFIER tquat operator-(tquat const& q) { - return tquat(-q.w, -q.x, -q.y, -q.z); + return tquat(-q.w, -q.x, -q.y, -q.z); } // -- Binary operators -- - template - GLM_FUNC_QUALIFIER tquat operator+(tquat const & q, tquat const & p) + template + GLM_FUNC_QUALIFIER tquat operator+(tquat const& q, tquat const& p) { - return tquat(q) += p; + return tquat(q) += p; } - template - GLM_FUNC_QUALIFIER tquat operator*(tquat const & q, tquat const & p) + template + GLM_FUNC_QUALIFIER tquat operator-(tquat const& q, tquat const& p) { - return tquat(q) *= p; + return tquat(q) -= p; } - template - GLM_FUNC_QUALIFIER tvec3 operator*(tquat const & q, tvec3 const & v) + template + GLM_FUNC_QUALIFIER tquat operator*(tquat const& q, tquat const& p) { - tvec3 const QuatVector(q.x, q.y, q.z); - tvec3 const uv(glm::cross(QuatVector, v)); - tvec3 const uuv(glm::cross(QuatVector, uv)); + return tquat(q) *= p; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> operator*(tquat const& q, vec<3, T, Q> const& v) + { + vec<3, T, Q> const QuatVector(q.x, q.y, q.z); + vec<3, T, Q> const uv(glm::cross(QuatVector, v)); + vec<3, T, Q> const uuv(glm::cross(QuatVector, uv)); return v + ((uv * q.w) + uuv) * static_cast(2); } - template - GLM_FUNC_QUALIFIER tvec3 operator*(tvec3 const & v, tquat const & q) + template + GLM_FUNC_QUALIFIER vec<3, T, Q> operator*(vec<3, T, Q> const& v, tquat const& q) { return glm::inverse(q) * v; } - template - GLM_FUNC_QUALIFIER tvec4 operator*(tquat const& q, tvec4 const& v) + template + GLM_FUNC_QUALIFIER vec<4, T, Q> operator*(tquat const& q, vec<4, T, Q> const& v) { - return detail::compute_quat_mul_vec4::value>::call(q, v); + return detail::compute_quat_mul_vec4::value>::call(q, v); } - template - GLM_FUNC_QUALIFIER tvec4 operator*(tvec4 const & v, tquat const & q) + template + GLM_FUNC_QUALIFIER vec<4, T, Q> operator*(vec<4, T, Q> const& v, tquat const& q) { return glm::inverse(q) * v; } - template - GLM_FUNC_QUALIFIER tquat operator*(tquat const & q, T const & s) + template + GLM_FUNC_QUALIFIER tquat operator*(tquat const& q, T const& s) { - return tquat( + return tquat( q.w * s, q.x * s, q.y * s, q.z * s); } - template - GLM_FUNC_QUALIFIER tquat operator*(T const & s, tquat const & q) + template + GLM_FUNC_QUALIFIER tquat operator*(T const& s, tquat const& q) { return q * s; } - template - GLM_FUNC_QUALIFIER tquat operator/(tquat const & q, T const & s) + template + GLM_FUNC_QUALIFIER tquat operator/(tquat const& q, T const& s) { - return tquat( + return tquat( q.w / s, q.x / s, q.y / s, q.z / s); } // -- Boolean operators -- - template - GLM_FUNC_QUALIFIER bool operator==(tquat const & q1, tquat const & q2) + template + GLM_FUNC_QUALIFIER bool operator==(tquat const& q1, tquat const& q2) { - return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w); + return all(epsilonEqual(q1, q2, epsilon())); } - template - GLM_FUNC_QUALIFIER bool operator!=(tquat const & q1, tquat const & q2) + template + GLM_FUNC_QUALIFIER bool operator!=(tquat const& q1, tquat const& q2) { - return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w); + return any(epsilonNotEqual(q1, q2, epsilon())); } // -- Operations -- - template - GLM_FUNC_QUALIFIER T length(tquat const & q) + template + GLM_FUNC_QUALIFIER T dot(tquat const& x, tquat const& y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'dot' accepts only floating-point inputs"); + return detail::compute_dot, T, detail::is_aligned::value>::call(x, y); + } + + template + GLM_FUNC_QUALIFIER T length(tquat const& q) { return glm::sqrt(dot(q, q)); } - template - GLM_FUNC_QUALIFIER tquat normalize(tquat const & q) + template + GLM_FUNC_QUALIFIER tquat normalize(tquat const& q) { T len = length(q); if(len <= T(0)) // Problem - return tquat(1, 0, 0, 0); + return tquat(static_cast(1), static_cast(0), static_cast(0), static_cast(0)); T oneOverLen = T(1) / len; - return tquat(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); + return tquat(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); } - template - GLM_FUNC_QUALIFIER tquat cross(tquat const & q1, tquat const & q2) + template + GLM_FUNC_QUALIFIER tquat cross(tquat const& q1, tquat const& q2) { - return tquat( + return tquat( q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, @@ -396,14 +421,14 @@ namespace detail } /* // (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle)) - template - GLM_FUNC_QUALIFIER tquat mix(tquat const & x, tquat const & y, T const & a) + template + GLM_FUNC_QUALIFIER tquat mix(tquat const& x, tquat const& y, T const& a) { if(a <= T(0)) return x; if(a >= T(1)) return y; float fCos = dot(x, y); - tquat y2(y); //BUG!!! tquat y2; + tquat y2(y); //BUG!!! tquat y2; if(fCos < T(0)) { y2 = -y; @@ -426,19 +451,19 @@ namespace detail k1 = sin((T(0) + a) * fAngle) * fOneOverSin; } - return tquat( + return tquat( k0 * x.w + k1 * y2.w, k0 * x.x + k1 * y2.x, k0 * x.y + k1 * y2.y, k0 * x.z + k1 * y2.z); } - template - GLM_FUNC_QUALIFIER tquat mix2 + template + GLM_FUNC_QUALIFIER tquat mix2 ( - tquat const & x, - tquat const & y, - T const & a + tquat const& x, + tquat const& y, + T const& a ) { bool flip = false; @@ -466,13 +491,13 @@ namespace detail if(flip) alpha = -alpha; - + return normalize(beta * x + alpha * y); } */ - template - GLM_FUNC_QUALIFIER tquat mix(tquat const & x, tquat const & y, T a) + template + GLM_FUNC_QUALIFIER tquat mix(tquat const& x, tquat const& y, T a) { T cosTheta = dot(x, y); @@ -480,7 +505,7 @@ namespace detail if(cosTheta > T(1) - epsilon()) { // Linear interpolation - return tquat( + return tquat( mix(x.w, y.w, a), mix(x.x, y.x, a), mix(x.y, y.y, a), @@ -494,8 +519,8 @@ namespace detail } } - template - GLM_FUNC_QUALIFIER tquat lerp(tquat const & x, tquat const & y, T a) + template + GLM_FUNC_QUALIFIER tquat lerp(tquat const& x, tquat const& y, T a) { // Lerp is only defined in [0, 1] assert(a >= static_cast(0)); @@ -504,14 +529,14 @@ namespace detail return x * (T(1) - a) + (y * a); } - template - GLM_FUNC_QUALIFIER tquat slerp(tquat const & x, tquat const & y, T a) + template + GLM_FUNC_QUALIFIER tquat slerp(tquat const& x, tquat const& y, T a) { - tquat z = y; + tquat z = y; T cosTheta = dot(x, y); - // If cosTheta < 0, the interpolation will take the long way around the sphere. + // If cosTheta < 0, the interpolation will take the long way around the sphere. // To fix this, one quat must be negated. if (cosTheta < T(0)) { @@ -523,7 +548,7 @@ namespace detail if(cosTheta > T(1) - epsilon()) { // Linear interpolation - return tquat( + return tquat( mix(x.w, z.w, a), mix(x.x, z.x, a), mix(x.y, z.y, a), @@ -537,10 +562,10 @@ namespace detail } } - template - GLM_FUNC_QUALIFIER tquat rotate(tquat const & q, T const & angle, tvec3 const & v) + template + GLM_FUNC_QUALIFIER tquat rotate(tquat const& q, T const& angle, vec<3, T, Q> const& v) { - tvec3 Tmp = v; + vec<3, T, Q> Tmp = v; // Axis of rotation must be normalised T len = glm::length(Tmp); @@ -555,38 +580,45 @@ namespace detail T const AngleRad(angle); T const Sin = sin(AngleRad * T(0.5)); - return q * tquat(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); - //return gtc::quaternion::cross(q, tquat(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); + return q * tquat(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); + //return gtc::quaternion::cross(q, tquat(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); } - template - GLM_FUNC_QUALIFIER tvec3 eulerAngles(tquat const & x) + template + GLM_FUNC_QUALIFIER vec<3, T, Q> eulerAngles(tquat const& x) { - return tvec3(pitch(x), yaw(x), roll(x)); + return vec<3, T, Q>(pitch(x), yaw(x), roll(x)); } - template - GLM_FUNC_QUALIFIER T roll(tquat const & q) + template + GLM_FUNC_QUALIFIER T roll(tquat const& q) { - return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); + return static_cast(atan(static_cast(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z)); } - template - GLM_FUNC_QUALIFIER T pitch(tquat const & q) + template + GLM_FUNC_QUALIFIER T pitch(tquat const& q) { - return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); + //return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); + const T y = static_cast(2) * (q.y * q.z + q.w * q.x); + const T x = q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z; + + if(detail::compute_equal::call(y, static_cast(0)) && detail::compute_equal::call(x, static_cast(0))) //avoid atan2(0,0) - handle singularity - Matiis + return static_cast(static_cast(2) * atan(q.x,q.w)); + + return static_cast(atan(y,x)); } - template - GLM_FUNC_QUALIFIER T yaw(tquat const & q) + template + GLM_FUNC_QUALIFIER T yaw(tquat const& q) { - return asin(clamp(T(-2) * (q.x * q.z - q.w * q.y), T(-1), T(1))); + return asin(clamp(static_cast(-2) * (q.x * q.z - q.w * q.y), static_cast(-1), static_cast(1))); } - template - GLM_FUNC_QUALIFIER tmat3x3 mat3_cast(tquat const & q) + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> mat3_cast(tquat const& q) { - tmat3x3 Result(T(1)); + mat<3, 3, T, Q> Result(T(1)); T qxx(q.x * q.x); T qyy(q.y * q.y); T qzz(q.z * q.z); @@ -611,14 +643,14 @@ namespace detail return Result; } - template - GLM_FUNC_QUALIFIER tmat4x4 mat4_cast(tquat const & q) + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> mat4_cast(tquat const& q) { - return tmat4x4(mat3_cast(q)); + return mat<4, 4, T, Q>(mat3_cast(q)); } - template - GLM_FUNC_QUALIFIER tquat quat_cast(tmat3x3 const & m) + template + GLM_FUNC_QUALIFIER tquat quat_cast(mat<3, 3, T, Q> const& m) { T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; @@ -643,70 +675,51 @@ namespace detail biggestIndex = 3; } - T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5); + T biggestVal = sqrt(fourBiggestSquaredMinus1 + static_cast(1)) * static_cast(0.5); T mult = static_cast(0.25) / biggestVal; - tquat Result(uninitialize); switch(biggestIndex) { case 0: - Result.w = biggestVal; - Result.x = (m[1][2] - m[2][1]) * mult; - Result.y = (m[2][0] - m[0][2]) * mult; - Result.z = (m[0][1] - m[1][0]) * mult; - break; + return tquat(biggestVal, (m[1][2] - m[2][1]) * mult, (m[2][0] - m[0][2]) * mult, (m[0][1] - m[1][0]) * mult); case 1: - Result.w = (m[1][2] - m[2][1]) * mult; - Result.x = biggestVal; - Result.y = (m[0][1] + m[1][0]) * mult; - Result.z = (m[2][0] + m[0][2]) * mult; - break; + return tquat((m[1][2] - m[2][1]) * mult, biggestVal, (m[0][1] + m[1][0]) * mult, (m[2][0] + m[0][2]) * mult); case 2: - Result.w = (m[2][0] - m[0][2]) * mult; - Result.x = (m[0][1] + m[1][0]) * mult; - Result.y = biggestVal; - Result.z = (m[1][2] + m[2][1]) * mult; - break; + return tquat((m[2][0] - m[0][2]) * mult, (m[0][1] + m[1][0]) * mult, biggestVal, (m[1][2] + m[2][1]) * mult); case 3: - Result.w = (m[0][1] - m[1][0]) * mult; - Result.x = (m[2][0] + m[0][2]) * mult; - Result.y = (m[1][2] + m[2][1]) * mult; - Result.z = biggestVal; - break; - - default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. + return tquat((m[0][1] - m[1][0]) * mult, (m[2][0] + m[0][2]) * mult, (m[1][2] + m[2][1]) * mult, biggestVal); + default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. assert(false); - break; + return tquat(1, 0, 0, 0); } - return Result; } - template - GLM_FUNC_QUALIFIER tquat quat_cast(tmat4x4 const & m4) + template + GLM_FUNC_QUALIFIER tquat quat_cast(mat<4, 4, T, Q> const& m4) { - return quat_cast(tmat3x3(m4)); + return quat_cast(mat<3, 3, T, Q>(m4)); } - template - GLM_FUNC_QUALIFIER T angle(tquat const & x) + template + GLM_FUNC_QUALIFIER T angle(tquat const& x) { - return acos(x.w) * T(2); + return acos(x.w) * static_cast(2); } - template - GLM_FUNC_QUALIFIER tvec3 axis(tquat const & x) + template + GLM_FUNC_QUALIFIER vec<3, T, Q> axis(tquat const& x) { T tmp1 = static_cast(1) - x.w * x.w; if(tmp1 <= static_cast(0)) - return tvec3(0, 0, 1); + return vec<3, T, Q>(0, 0, 1); T tmp2 = static_cast(1) / sqrt(tmp1); - return tvec3(x.x * tmp2, x.y * tmp2, x.z * tmp2); + return vec<3, T, Q>(x.x * tmp2, x.y * tmp2, x.z * tmp2); } - template - GLM_FUNC_QUALIFIER tquat angleAxis(T const & angle, tvec3 const & v) + template + GLM_FUNC_QUALIFIER tquat angleAxis(T const& angle, vec<3, T, Q> const& v) { - tquat Result(uninitialize); + tquat Result; T const a(angle); T const s = glm::sin(a * static_cast(0.5)); @@ -718,74 +731,74 @@ namespace detail return Result; } - template - GLM_FUNC_QUALIFIER tvec4 lessThan(tquat const & x, tquat const & y) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> lessThan(tquat const& x, tquat const& y) { - tvec4 Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] < y[i]; return Result; } - template - GLM_FUNC_QUALIFIER tvec4 lessThanEqual(tquat const & x, tquat const & y) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> lessThanEqual(tquat const& x, tquat const& y) { - tvec4 Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] <= y[i]; return Result; } - template - GLM_FUNC_QUALIFIER tvec4 greaterThan(tquat const & x, tquat const & y) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> greaterThan(tquat const& x, tquat const& y) { - tvec4 Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] > y[i]; return Result; } - template - GLM_FUNC_QUALIFIER tvec4 greaterThanEqual(tquat const & x, tquat const & y) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> greaterThanEqual(tquat const& x, tquat const& y) { - tvec4 Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) Result[i] = x[i] >= y[i]; return Result; } - template - GLM_FUNC_QUALIFIER tvec4 equal(tquat const & x, tquat const & y) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> equal(tquat const& x, tquat const& y) { - tvec4 Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] == y[i]; + Result[i] = detail::compute_equal::call(x[i], y[i]); return Result; } - template - GLM_FUNC_QUALIFIER tvec4 notEqual(tquat const & x, tquat const & y) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> notEqual(tquat const& x, tquat const& y) { - tvec4 Result(uninitialize); + vec<4, bool, Q> Result; for(length_t i = 0; i < x.length(); ++i) - Result[i] = x[i] != y[i]; + Result[i] = !detail::compute_equal::call(x[i], y[i]); return Result; } - template - GLM_FUNC_QUALIFIER tvec4 isnan(tquat const& q) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> isnan(tquat const& q) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'isnan' only accept floating-point inputs"); - return tvec4(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); + return vec<4, bool, Q>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); } - template - GLM_FUNC_QUALIFIER tvec4 isinf(tquat const& q) + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> isinf(tquat const& q) { GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'isinf' only accept floating-point inputs"); - return tvec4(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); + return vec<4, bool, Q>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); } }//namespace glm diff --git a/external/include/glm/gtc/quaternion_simd.inl b/external/include/glm/gtc/quaternion_simd.inl index cca874b..06ca7b7 100644 --- a/external/include/glm/gtc/quaternion_simd.inl +++ b/external/include/glm/gtc/quaternion_simd.inl @@ -7,10 +7,10 @@ namespace glm{ namespace detail { /* - template - struct compute_quat_mul + template + struct compute_quat_mul { - static tquat call(tquat const& q1, tquat const& q2) + static tquat call(tquat const& q1, tquat const& q2) { // SSE2 STATS: 11 shuffle, 8 mul, 8 add // SSE4 STATS: 3 shuffle, 4 mul, 4 dpps @@ -51,7 +51,7 @@ namespace detail // //return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0)); - tquat Result(uninitialize); + tquat Result; _mm_store_ss(&Result.x, add4); _mm_store_ss(&Result.y, add5); _mm_store_ss(&Result.z, add6); @@ -61,122 +61,122 @@ namespace detail }; */ - template - struct compute_dot + template + struct compute_dot, float, true> { - static GLM_FUNC_QUALIFIER float call(tquat const& x, tquat const& y) + static GLM_FUNC_QUALIFIER float call(tquat const& x, tquat const& y) { return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); } }; - template - struct compute_quat_add + template + struct compute_quat_add { - static tquat call(tquat const& q, tquat const& p) + static tquat call(tquat const& q, tquat const& p) { - tquat Result(uninitialize); + tquat Result; Result.data = _mm_add_ps(q.data, p.data); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT - template - struct compute_quat_add + template + struct compute_quat_add { - static tquat call(tquat const & a, tquat const & b) + static tquat call(tquat const& a, tquat const& b) { - tquat Result(uninitialize); + tquat Result; Result.data = _mm256_add_pd(a.data, b.data); return Result; } }; # endif - template - struct compute_quat_sub + template + struct compute_quat_sub { - static tquat call(tquat const& q, tquat const& p) + static tquat call(tquat const& q, tquat const& p) { - tvec4 Result(uninitialize); + vec<4, float, Q> Result; Result.data = _mm_sub_ps(q.data, p.data); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT - template - struct compute_quat_sub + template + struct compute_quat_sub { - static tquat call(tquat const & a, tquat const & b) + static tquat call(tquat const& a, tquat const& b) { - tquat Result(uninitialize); + tquat Result; Result.data = _mm256_sub_pd(a.data, b.data); return Result; } }; # endif - template - struct compute_quat_mul_scalar + template + struct compute_quat_mul_scalar { - static tquat call(tquat const& q, float s) + static tquat call(tquat const& q, float s) { - tvec4 Result(uninitialize); + vec<4, float, Q> Result; Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s)); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT - template - struct compute_quat_mul_scalar + template + struct compute_quat_mul_scalar { - static tquat call(tquat const& q, double s) + static tquat call(tquat const& q, double s) { - tquat Result(uninitialize); + tquat Result; Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s)); return Result; } }; # endif - template - struct compute_quat_div_scalar + template + struct compute_quat_div_scalar { - static tquat call(tquat const& q, float s) + static tquat call(tquat const& q, float s) { - tvec4 Result(uninitialize); + vec<4, float, Q> Result; Result.data = _mm_div_ps(q.data, _mm_set_ps1(s)); return Result; } }; # if GLM_ARCH & GLM_ARCH_AVX_BIT - template - struct compute_quat_div_scalar + template + struct compute_quat_div_scalar { - static tquat call(tquat const& q, double s) + static tquat call(tquat const& q, double s) { - tquat Result(uninitialize); + tquat Result; Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s)); return Result; } }; # endif - template - struct compute_quat_mul_vec4 + template + struct compute_quat_mul_vec4 { - static tvec4 call(tquat const& q, tvec4 const& v) + static vec<4, float, Q> call(tquat const& q, vec<4, float, Q> const& v) { __m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3)); __m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1)); __m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2)); __m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1)); __m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2)); - + __m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0)); __m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1)); __m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2)); @@ -186,7 +186,7 @@ namespace detail uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two)); uuv = _mm_mul_ps(uuv, two); - tvec4 Result(uninitialize); + vec<4, float, Q> Result; Result.data = _mm_add_ps(v.Data, _mm_add_ps(uv, uuv)); return Result; } diff --git a/external/include/glm/gtc/random.hpp b/external/include/glm/gtc/random.hpp index fa3956e..9156e43 100644 --- a/external/include/glm/gtc/random.hpp +++ b/external/include/glm/gtc/random.hpp @@ -2,15 +2,14 @@ /// @file glm/gtc/random.hpp /// /// @see core (dependence) -/// @see gtc_half_float (dependence) /// @see gtx_random (extended) /// /// @defgroup gtc_random GLM_GTC_random /// @ingroup gtc /// -/// @brief Generate random number from various distribution methods. +/// Include to use the features of this extension. /// -/// need to be included to use these functionalities. +/// Generate random number from various distribution methods. #pragma once @@ -26,72 +25,56 @@ namespace glm { /// @addtogroup gtc_random /// @{ - - /// Generate random numbers in the interval [Min, Max], according a linear distribution - /// - /// @param Min - /// @param Max + + /// Generate random numbers in the interval [Min, Max], according a linear distribution + /// + /// @param Min Minimum value included in the sampling + /// @param Max Maximum value included in the sampling /// @tparam genType Value type. Currently supported: float or double scalars. /// @see gtc_random - template - GLM_FUNC_DECL genTYpe linearRand( - genTYpe Min, - genTYpe Max); + template + GLM_FUNC_DECL genType linearRand(genType Min, genType Max); - /// Generate random numbers in the interval [Min, Max], according a linear distribution - /// - /// @param Min - /// @param Max + /// Generate random numbers in the interval [Min, Max], according a linear distribution + /// + /// @param Min Minimum value included in the sampling + /// @param Max Maximum value included in the sampling /// @tparam T Value type. Currently supported: float or double. - /// @tparam vecType A vertor type: tvec1, tvec2, tvec3, tvec4 or compatible + /// /// @see gtc_random - template class vecType> - GLM_FUNC_DECL vecType linearRand( - vecType const & Min, - vecType const & Max); + template + GLM_FUNC_DECL vec linearRand(vec const& Min, vec const& Max); - /// Generate random numbers in the interval [Min, Max], according a gaussian distribution - /// - /// @param Mean - /// @param Deviation + /// Generate random numbers in the interval [Min, Max], according a gaussian distribution + /// /// @see gtc_random - template - GLM_FUNC_DECL genType gaussRand( - genType Mean, - genType Deviation); - + template + GLM_FUNC_DECL genType gaussRand(genType Mean, genType Deviation); + /// Generate a random 2D vector which coordinates are regulary distributed on a circle of a given radius - /// - /// @param Radius + /// /// @see gtc_random - template - GLM_FUNC_DECL tvec2 circularRand( - T Radius); - + template + GLM_FUNC_DECL vec<2, T, defaultp> circularRand(T Radius); + /// Generate a random 3D vector which coordinates are regulary distributed on a sphere of a given radius - /// - /// @param Radius + /// /// @see gtc_random - template - GLM_FUNC_DECL tvec3 sphericalRand( - T Radius); - + template + GLM_FUNC_DECL vec<3, T, defaultp> sphericalRand(T Radius); + /// Generate a random 2D vector which coordinates are regulary distributed within the area of a disk of a given radius - /// - /// @param Radius + /// /// @see gtc_random - template - GLM_FUNC_DECL tvec2 diskRand( - T Radius); - + template + GLM_FUNC_DECL vec<2, T, defaultp> diskRand(T Radius); + /// Generate a random 3D vector which coordinates are regulary distributed within the volume of a ball of a given radius - /// - /// @param Radius + /// /// @see gtc_random - template - GLM_FUNC_DECL tvec3 ballRand( - T Radius); - + template + GLM_FUNC_DECL vec<3, T, defaultp> ballRand(T Radius); + /// @} }//namespace glm diff --git a/external/include/glm/gtc/random.inl b/external/include/glm/gtc/random.inl index ad5926e..5301c59 100644 --- a/external/include/glm/gtc/random.inl +++ b/external/include/glm/gtc/random.inl @@ -3,58 +3,61 @@ #include "../geometric.hpp" #include "../exponential.hpp" +#include "../trigonometric.hpp" +#include "../ext/vec1.hpp" #include #include #include +#include namespace glm{ namespace detail { - template class vecType> + template struct compute_rand { - GLM_FUNC_QUALIFIER static vecType call(); + GLM_FUNC_QUALIFIER static vec call(); }; - template - struct compute_rand + template + struct compute_rand<1, uint8, P> { - GLM_FUNC_QUALIFIER static tvec1 call() + GLM_FUNC_QUALIFIER static vec<1, uint8, P> call() { - return tvec1( + return vec<1, uint8, P>( std::rand() % std::numeric_limits::max()); } }; - template - struct compute_rand + template + struct compute_rand<2, uint8, P> { - GLM_FUNC_QUALIFIER static tvec2 call() + GLM_FUNC_QUALIFIER static vec<2, uint8, P> call() { - return tvec2( + return vec<2, uint8, P>( std::rand() % std::numeric_limits::max(), std::rand() % std::numeric_limits::max()); } }; - template - struct compute_rand + template + struct compute_rand<3, uint8, P> { - GLM_FUNC_QUALIFIER static tvec3 call() + GLM_FUNC_QUALIFIER static vec<3, uint8, P> call() { - return tvec3( + return vec<3, uint8, P>( std::rand() % std::numeric_limits::max(), std::rand() % std::numeric_limits::max(), std::rand() % std::numeric_limits::max()); } }; - template - struct compute_rand + template + struct compute_rand<4, uint8, P> { - GLM_FUNC_QUALIFIER static tvec4 call() + GLM_FUNC_QUALIFIER static vec<4, uint8, P> call() { - return tvec4( + return vec<4, uint8, P>( std::rand() % std::numeric_limits::max(), std::rand() % std::numeric_limits::max(), std::rand() % std::numeric_limits::max(), @@ -62,289 +65,234 @@ namespace detail } }; - template class vecType> - struct compute_rand + template + struct compute_rand { - GLM_FUNC_QUALIFIER static vecType call() + GLM_FUNC_QUALIFIER static vec call() { return - (vecType(compute_rand::call()) << static_cast(8)) | - (vecType(compute_rand::call()) << static_cast(0)); + (vec(compute_rand::call()) << static_cast(8)) | + (vec(compute_rand::call()) << static_cast(0)); } }; - template class vecType> - struct compute_rand + template + struct compute_rand { - GLM_FUNC_QUALIFIER static vecType call() + GLM_FUNC_QUALIFIER static vec call() { return - (vecType(compute_rand::call()) << static_cast(16)) | - (vecType(compute_rand::call()) << static_cast(0)); + (vec(compute_rand::call()) << static_cast(16)) | + (vec(compute_rand::call()) << static_cast(0)); } }; - template class vecType> - struct compute_rand + template + struct compute_rand { - GLM_FUNC_QUALIFIER static vecType call() + GLM_FUNC_QUALIFIER static vec call() { return - (vecType(compute_rand::call()) << static_cast(32)) | - (vecType(compute_rand::call()) << static_cast(0)); + (vec(compute_rand::call()) << static_cast(32)) | + (vec(compute_rand::call()) << static_cast(0)); } }; - template class vecType> + template struct compute_linearRand { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max); + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max); }; - template class vecType> - struct compute_linearRand + template + struct compute_linearRand { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max) + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) { - return (vecType(compute_rand::call() % vecType(Max + static_cast(1) - Min))) + Min; + return (vec(compute_rand::call() % vec(Max + static_cast(1) - Min))) + Min; } }; - template class vecType> - struct compute_linearRand + template + struct compute_linearRand { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max) + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) { - return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; + return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; } }; - template class vecType> - struct compute_linearRand + template + struct compute_linearRand { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max) + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) { - return (vecType(compute_rand::call() % vecType(Max + static_cast(1) - Min))) + Min; + return (vec(compute_rand::call() % vec(Max + static_cast(1) - Min))) + Min; } }; - template class vecType> - struct compute_linearRand + template + struct compute_linearRand { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max) + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) { - return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; + return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; } }; - template class vecType> - struct compute_linearRand + template + struct compute_linearRand { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max) + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) { - return (vecType(compute_rand::call() % vecType(Max + static_cast(1) - Min))) + Min; + return (vec(compute_rand::call() % vec(Max + static_cast(1) - Min))) + Min; } }; - template class vecType> - struct compute_linearRand + template + struct compute_linearRand { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max) + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) { - return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; - } - }; - - template class vecType> - struct compute_linearRand - { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max) - { - return (vecType(compute_rand::call() % vecType(Max + static_cast(1) - Min))) + Min; - } - }; - - template class vecType> - struct compute_linearRand - { - GLM_FUNC_QUALIFIER static vecType call(vecType const & Min, vecType const & Max) - { - return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; - } - }; - - template