/// @ref gtx_quaternion /// @file glm/gtx/quaternion.inl #include #include "../gtc/constants.hpp" namespace glm { template GLM_FUNC_QUALIFIER tvec3 cross(tvec3 const& v, tquat const& q) { return inverse(q) * v; } template GLM_FUNC_QUALIFIER tvec3 cross(tquat const& q, tvec3 const& v) { return q * v; } template GLM_FUNC_QUALIFIER tquat squad ( tquat const & q1, tquat const & q2, tquat const & s1, tquat const & s2, T const & h) { return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast(2) * (static_cast(1) - h) * h); } template GLM_FUNC_QUALIFIER tquat intermediate ( tquat const & prev, tquat const & curr, tquat const & next ) { tquat invQuat = inverse(curr); return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast(-4)) * curr; } template GLM_FUNC_QUALIFIER tquat exp(tquat const& q) { tvec3 u(q.x, q.y, q.z); T const Angle = glm::length(u); if (Angle < epsilon()) return tquat(); tvec3 const v(u / Angle); return tquat(cos(Angle), sin(Angle) * v); } template GLM_FUNC_QUALIFIER tquat log(tquat const& q) { tvec3 u(q.x, q.y, q.z); T Vec3Len = length(u); if (Vec3Len < epsilon()) { if(q.w > static_cast(0)) return tquat(log(q.w), static_cast(0), static_cast(0), static_cast(0)); else if(q.w < static_cast(0)) return tquat(log(-q.w), pi(), static_cast(0), static_cast(0)); else return tquat(std::numeric_limits::infinity(), std::numeric_limits::infinity(), std::numeric_limits::infinity(), std::numeric_limits::infinity()); } else { T t = atan(Vec3Len, T(q.w)) / Vec3Len; T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w; return tquat(static_cast(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z); } } template GLM_FUNC_QUALIFIER tquat pow(tquat const & x, T const & y) { //Raising to the power of 0 should yield 1 //Needed to prevent a division by 0 error later on if(y > -epsilon() && y < epsilon()) return tquat(1,0,0,0); //To deal with non-unit quaternions T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w); //Equivalent to raising a real number to a power //Needed to prevent a division by 0 error later on if(abs(x.w / magnitude) > static_cast(1) - epsilon() && abs(x.w / magnitude) < static_cast(1) + epsilon()) return tquat(pow(x.w, y),0,0,0); T Angle = acos(x.w / magnitude); T NewAngle = Angle * y; T Div = sin(NewAngle) / sin(Angle); T Mag = pow(magnitude, y - static_cast(1)); return tquat(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag); } template GLM_FUNC_QUALIFIER tvec3 rotate(tquat const& q, tvec3 const& v) { return q * v; } template GLM_FUNC_QUALIFIER tvec4 rotate(tquat const& q, tvec4 const& v) { return q * v; } template GLM_FUNC_QUALIFIER T extractRealComponent(tquat const& q) { T w = static_cast(1) - q.x * q.x - q.y * q.y - q.z * q.z; if(w < T(0)) return T(0); else return -sqrt(w); } template GLM_FUNC_QUALIFIER T length2(tquat const& q) { return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w; } template GLM_FUNC_QUALIFIER tquat shortMix(tquat const& x, tquat const& y, T const& a) { if(a <= static_cast(0)) return x; if(a >= static_cast(1)) return y; T fCos = dot(x, y); tquat y2(y); //BUG!!! tquat y2; if(fCos < static_cast(0)) { y2 = -y; fCos = -fCos; } //if(fCos > 1.0f) // problem T k0, k1; if(fCos > (static_cast(1) - epsilon())) { k0 = static_cast(1) - a; k1 = static_cast(0) + a; //BUG!!! 1.0f + a; } else { T fSin = sqrt(T(1) - fCos * fCos); T fAngle = atan(fSin, fCos); T fOneOverSin = static_cast(1) / fSin; k0 = sin((static_cast(1) - a) * fAngle) * fOneOverSin; k1 = sin((static_cast(0) + a) * fAngle) * fOneOverSin; } return tquat( k0 * x.w + k1 * y2.w, k0 * x.x + k1 * y2.x, k0 * x.y + k1 * y2.y, k0 * x.z + k1 * y2.z); } template GLM_FUNC_QUALIFIER tquat fastMix(tquat const& x, tquat const& y, T const & a) { return glm::normalize(x * (static_cast(1) - a) + (y * a)); } template GLM_FUNC_QUALIFIER tquat rotation(tvec3 const& orig, tvec3 const& dest) { T cosTheta = dot(orig, dest); tvec3 rotationAxis; if(cosTheta >= static_cast(1) - epsilon()) return quat(); if(cosTheta < static_cast(-1) + epsilon()) { // special case when vectors in opposite directions : // there is no "ideal" rotation axis // So guess one; any will do as long as it's perpendicular to start // This implementation favors a rotation around the Up axis (Y), // since it's often what you want to do. rotationAxis = cross(tvec3(0, 0, 1), orig); if(length2(rotationAxis) < epsilon()) // bad luck, they were parallel, try again! rotationAxis = cross(tvec3(1, 0, 0), orig); rotationAxis = normalize(rotationAxis); return angleAxis(pi(), rotationAxis); } // Implementation from Stan Melax's Game Programming Gems 1 article rotationAxis = cross(orig, dest); T s = sqrt((T(1) + cosTheta) * static_cast(2)); T invs = static_cast(1) / s; return tquat( s * static_cast(0.5f), rotationAxis.x * invs, rotationAxis.y * invs, rotationAxis.z * invs); } }//namespace glm