/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Android Log Priority Tags */ #include #include #include #include #include #include #include #include /* Android Log packet format */ #include /* private pmsg functions */ #include #include "adb_install.h" #include "common.h" #include "device.h" #include "error_code.h" #include "fuse_sdcard_provider.h" #include "fuse_sideload.h" #include "install.h" #include "minui/minui.h" #include "minzip/DirUtil.h" #include "minzip/Zip.h" #include "roots.h" #include "ui.h" #include "unique_fd.h" #include "screen_ui.h" struct selabel_handle *sehandle; static const struct option OPTIONS[] = { { "send_intent", required_argument, NULL, 'i' }, { "update_package", required_argument, NULL, 'u' }, { "retry_count", required_argument, NULL, 'n' }, { "wipe_data", no_argument, NULL, 'w' }, { "wipe_cache", no_argument, NULL, 'c' }, { "show_text", no_argument, NULL, 't' }, { "sideload", no_argument, NULL, 's' }, { "sideload_auto_reboot", no_argument, NULL, 'a' }, { "just_exit", no_argument, NULL, 'x' }, { "locale", required_argument, NULL, 'l' }, { "stages", required_argument, NULL, 'g' }, { "shutdown_after", no_argument, NULL, 'p' }, { "reason", required_argument, NULL, 'r' }, { "security", no_argument, NULL, 'e'}, { "wipe_ab", no_argument, NULL, 0 }, { "wipe_package_size", required_argument, NULL, 0 }, { NULL, 0, NULL, 0 }, }; // More bootreasons can be found in "system/core/bootstat/bootstat.cpp". static const std::vector bootreason_blacklist { "kernel_panic", "Panic", }; static const char *CACHE_LOG_DIR = "/cache/recovery"; static const char *COMMAND_FILE = "/cache/recovery/command"; static const char *INTENT_FILE = "/cache/recovery/intent"; static const char *LOG_FILE = "/cache/recovery/log"; static const char *LAST_INSTALL_FILE = "/cache/recovery/last_install"; static const char *LOCALE_FILE = "/cache/recovery/last_locale"; static const char *CONVERT_FBE_DIR = "/tmp/convert_fbe"; static const char *CONVERT_FBE_FILE = "/tmp/convert_fbe/convert_fbe"; static const char *CACHE_ROOT = "/cache"; static const char *DATA_ROOT = "/data"; static const char *SDCARD_ROOT = "/sdcard"; static const char *TEMPORARY_LOG_FILE = "/tmp/recovery.log"; static const char *TEMPORARY_INSTALL_FILE = "/tmp/last_install"; static const char *LAST_KMSG_FILE = "/cache/recovery/last_kmsg"; static const char *LAST_LOG_FILE = "/cache/recovery/last_log"; static const int KEEP_LOG_COUNT = 10; // We will try to apply the update package 5 times at most in case of an I/O error. static const int EIO_RETRY_COUNT = 4; static const int BATTERY_READ_TIMEOUT_IN_SEC = 10; // GmsCore enters recovery mode to install package when having enough battery // percentage. Normally, the threshold is 40% without charger and 20% with charger. // So we should check battery with a slightly lower limitation. static const int BATTERY_OK_PERCENTAGE = 20; static const int BATTERY_WITH_CHARGER_OK_PERCENTAGE = 15; constexpr const char* RECOVERY_WIPE = "/etc/recovery.wipe"; RecoveryUI* ui = NULL; static const char* locale = "en_US"; char* stage = NULL; char* reason = NULL; bool modified_flash = false; static bool has_cache = false; /* * The recovery tool communicates with the main system through /cache files. * /cache/recovery/command - INPUT - command line for tool, one arg per line * /cache/recovery/log - OUTPUT - combined log file from recovery run(s) * /cache/recovery/intent - OUTPUT - intent that was passed in * * The arguments which may be supplied in the recovery.command file: * --send_intent=anystring - write the text out to recovery.intent * --update_package=path - verify install an OTA package file * --wipe_data - erase user data (and cache), then reboot * --wipe_cache - wipe cache (but not user data), then reboot * --set_encrypted_filesystem=on|off - enables / diasables encrypted fs * --just_exit - do nothing; exit and reboot * * After completing, we remove /cache/recovery/command and reboot. * Arguments may also be supplied in the bootloader control block (BCB). * These important scenarios must be safely restartable at any point: * * FACTORY RESET * 1. user selects "factory reset" * 2. main system writes "--wipe_data" to /cache/recovery/command * 3. main system reboots into recovery * 4. get_args() writes BCB with "boot-recovery" and "--wipe_data" * -- after this, rebooting will restart the erase -- * 5. erase_volume() reformats /data * 6. erase_volume() reformats /cache * 7. finish_recovery() erases BCB * -- after this, rebooting will restart the main system -- * 8. main() calls reboot() to boot main system * * OTA INSTALL * 1. main system downloads OTA package to /cache/some-filename.zip * 2. main system writes "--update_package=/cache/some-filename.zip" * 3. main system reboots into recovery * 4. get_args() writes BCB with "boot-recovery" and "--update_package=..." * -- after this, rebooting will attempt to reinstall the update -- * 5. install_package() attempts to install the update * NOTE: the package install must itself be restartable from any point * 6. finish_recovery() erases BCB * -- after this, rebooting will (try to) restart the main system -- * 7. ** if install failed ** * 7a. prompt_and_wait() shows an error icon and waits for the user * 7b; the user reboots (pulling the battery, etc) into the main system * 8. main() calls maybe_install_firmware_update() * ** if the update contained radio/hboot firmware **: * 8a. m_i_f_u() writes BCB with "boot-recovery" and "--wipe_cache" * -- after this, rebooting will reformat cache & restart main system -- * 8b. m_i_f_u() writes firmware image into raw cache partition * 8c. m_i_f_u() writes BCB with "update-radio/hboot" and "--wipe_cache" * -- after this, rebooting will attempt to reinstall firmware -- * 8d. bootloader tries to flash firmware * 8e. bootloader writes BCB with "boot-recovery" (keeping "--wipe_cache") * -- after this, rebooting will reformat cache & restart main system -- * 8f. erase_volume() reformats /cache * 8g. finish_recovery() erases BCB * -- after this, rebooting will (try to) restart the main system -- * 9. main() calls reboot() to boot main system */ static const int MAX_ARG_LENGTH = 4096; static const int MAX_ARGS = 100; // open a given path, mounting partitions as necessary FILE* fopen_path(const char *path, const char *mode) { if (ensure_path_mounted(path) != 0) { LOGE("Can't mount %s\n", path); return NULL; } // When writing, try to create the containing directory, if necessary. // Use generous permissions, the system (init.rc) will reset them. if (strchr("wa", mode[0])) dirCreateHierarchy(path, 0777, NULL, 1, sehandle); FILE *fp = fopen(path, mode); return fp; } // close a file, log an error if the error indicator is set static void check_and_fclose(FILE *fp, const char *name) { fflush(fp); if (ferror(fp)) LOGE("Error in %s\n(%s)\n", name, strerror(errno)); fclose(fp); } bool is_ro_debuggable() { char value[PROPERTY_VALUE_MAX+1]; return (property_get("ro.debuggable", value, NULL) == 1 && value[0] == '1'); } static void redirect_stdio(const char* filename) { int pipefd[2]; if (pipe(pipefd) == -1) { LOGE("pipe failed: %s\n", strerror(errno)); // Fall back to traditional logging mode without timestamps. // If these fail, there's not really anywhere to complain... freopen(filename, "a", stdout); setbuf(stdout, NULL); freopen(filename, "a", stderr); setbuf(stderr, NULL); return; } pid_t pid = fork(); if (pid == -1) { LOGE("fork failed: %s\n", strerror(errno)); // Fall back to traditional logging mode without timestamps. // If these fail, there's not really anywhere to complain... freopen(filename, "a", stdout); setbuf(stdout, NULL); freopen(filename, "a", stderr); setbuf(stderr, NULL); return; } if (pid == 0) { /// Close the unused write end. close(pipefd[1]); auto start = std::chrono::steady_clock::now(); // Child logger to actually write to the log file. FILE* log_fp = fopen(filename, "a"); if (log_fp == nullptr) { LOGE("fopen \"%s\" failed: %s\n", filename, strerror(errno)); close(pipefd[0]); _exit(1); } FILE* pipe_fp = fdopen(pipefd[0], "r"); if (pipe_fp == nullptr) { LOGE("fdopen failed: %s\n", strerror(errno)); check_and_fclose(log_fp, filename); close(pipefd[0]); _exit(1); } char* line = nullptr; size_t len = 0; while (getline(&line, &len, pipe_fp) != -1) { auto now = std::chrono::steady_clock::now(); double duration = std::chrono::duration_cast>( now - start).count(); if (line[0] == '\n') { fprintf(log_fp, "[%12.6lf]\n", duration); } else { fprintf(log_fp, "[%12.6lf] %s", duration, line); } fflush(log_fp); } LOGE("getline failed: %s\n", strerror(errno)); free(line); check_and_fclose(log_fp, filename); close(pipefd[0]); _exit(1); } else { // Redirect stdout/stderr to the logger process. // Close the unused read end. close(pipefd[0]); setbuf(stdout, nullptr); setbuf(stderr, nullptr); if (dup2(pipefd[1], STDOUT_FILENO) == -1) { LOGE("dup2 stdout failed: %s\n", strerror(errno)); } if (dup2(pipefd[1], STDERR_FILENO) == -1) { LOGE("dup2 stderr failed: %s\n", strerror(errno)); } close(pipefd[1]); } } // command line args come from, in decreasing precedence: // - the actual command line // - the bootloader control block (one per line, after "recovery") // - the contents of COMMAND_FILE (one per line) static void get_args(int *argc, char ***argv) { bootloader_message boot = {}; std::string err; if (!read_bootloader_message(&boot, &err)) { LOGE("%s\n", err.c_str()); // If fails, leave a zeroed bootloader_message. memset(&boot, 0, sizeof(boot)); } stage = strndup(boot.stage, sizeof(boot.stage)); if (boot.command[0] != 0 && boot.command[0] != 255) { LOGI("Boot command: %.*s\n", (int)sizeof(boot.command), boot.command); } if (boot.status[0] != 0 && boot.status[0] != 255) { LOGI("Boot status: %.*s\n", (int)sizeof(boot.status), boot.status); } // --- if arguments weren't supplied, look in the bootloader control block if (*argc <= 1) { boot.recovery[sizeof(boot.recovery) - 1] = '\0'; // Ensure termination const char *arg = strtok(boot.recovery, "\n"); if (arg != NULL && !strcmp(arg, "recovery")) { *argv = (char **) malloc(sizeof(char *) * MAX_ARGS); (*argv)[0] = strdup(arg); for (*argc = 1; *argc < MAX_ARGS; ++*argc) { if ((arg = strtok(NULL, "\n")) == NULL) break; (*argv)[*argc] = strdup(arg); } LOGI("Got arguments from boot message\n"); } else if (boot.recovery[0] != 0 && boot.recovery[0] != 255) { LOGE("Bad boot message\n\"%.20s\"\n", boot.recovery); } } // --- if that doesn't work, try the command file (if we have /cache). if (*argc <= 1 && has_cache) { FILE *fp = fopen_path(COMMAND_FILE, "r"); if (fp != NULL) { char *token; char *argv0 = (*argv)[0]; *argv = (char **) malloc(sizeof(char *) * MAX_ARGS); (*argv)[0] = argv0; // use the same program name char buf[MAX_ARG_LENGTH]; for (*argc = 1; *argc < MAX_ARGS; ++*argc) { if (!fgets(buf, sizeof(buf), fp)) break; token = strtok(buf, "\r\n"); if (token != NULL) { (*argv)[*argc] = strdup(token); // Strip newline. } else { --*argc; } } check_and_fclose(fp, COMMAND_FILE); LOGI("Got arguments from %s\n", COMMAND_FILE); } } // --> write the arguments we have back into the bootloader control block // always boot into recovery after this (until finish_recovery() is called) strlcpy(boot.command, "boot-recovery", sizeof(boot.command)); strlcpy(boot.recovery, "recovery\n", sizeof(boot.recovery)); int i; for (i = 1; i < *argc; ++i) { strlcat(boot.recovery, (*argv)[i], sizeof(boot.recovery)); strlcat(boot.recovery, "\n", sizeof(boot.recovery)); } if (!write_bootloader_message(boot, &err)) { LOGE("%s\n", err.c_str()); } } static void set_sdcard_update_bootloader_message() { bootloader_message boot = {}; strlcpy(boot.command, "boot-recovery", sizeof(boot.command)); strlcpy(boot.recovery, "recovery\n", sizeof(boot.recovery)); std::string err; if (!write_bootloader_message(boot, &err)) { LOGE("%s\n", err.c_str()); } } // Read from kernel log into buffer and write out to file. static void save_kernel_log(const char* destination) { int klog_buf_len = klogctl(KLOG_SIZE_BUFFER, 0, 0); if (klog_buf_len <= 0) { LOGE("Error getting klog size: %s\n", strerror(errno)); return; } std::string buffer(klog_buf_len, 0); int n = klogctl(KLOG_READ_ALL, &buffer[0], klog_buf_len); if (n == -1) { LOGE("Error in reading klog: %s\n", strerror(errno)); return; } buffer.resize(n); android::base::WriteStringToFile(buffer, destination); } // write content to the current pmsg session. static ssize_t __pmsg_write(const char *filename, const char *buf, size_t len) { return __android_log_pmsg_file_write(LOG_ID_SYSTEM, ANDROID_LOG_INFO, filename, buf, len); } static void copy_log_file_to_pmsg(const char* source, const char* destination) { std::string content; android::base::ReadFileToString(source, &content); __pmsg_write(destination, content.c_str(), content.length()); } // How much of the temp log we have copied to the copy in cache. static long tmplog_offset = 0; static void copy_log_file(const char* source, const char* destination, bool append) { FILE* dest_fp = fopen_path(destination, append ? "a" : "w"); if (dest_fp == nullptr) { LOGE("Can't open %s\n", destination); } else { FILE* source_fp = fopen(source, "r"); if (source_fp != nullptr) { if (append) { fseek(source_fp, tmplog_offset, SEEK_SET); // Since last write } char buf[4096]; size_t bytes; while ((bytes = fread(buf, 1, sizeof(buf), source_fp)) != 0) { fwrite(buf, 1, bytes, dest_fp); } if (append) { tmplog_offset = ftell(source_fp); } check_and_fclose(source_fp, source); } check_and_fclose(dest_fp, destination); } } // Rename last_log -> last_log.1 -> last_log.2 -> ... -> last_log.$max. // Similarly rename last_kmsg -> last_kmsg.1 -> ... -> last_kmsg.$max. // Overwrite any existing last_log.$max and last_kmsg.$max. static void rotate_logs(int max) { // Logs should only be rotated once. static bool rotated = false; if (rotated) { return; } rotated = true; ensure_path_mounted(LAST_LOG_FILE); ensure_path_mounted(LAST_KMSG_FILE); for (int i = max-1; i >= 0; --i) { std::string old_log = android::base::StringPrintf("%s", LAST_LOG_FILE); if (i > 0) { old_log += "." + std::to_string(i); } std::string new_log = android::base::StringPrintf("%s.%d", LAST_LOG_FILE, i+1); // Ignore errors if old_log doesn't exist. rename(old_log.c_str(), new_log.c_str()); std::string old_kmsg = android::base::StringPrintf("%s", LAST_KMSG_FILE); if (i > 0) { old_kmsg += "." + std::to_string(i); } std::string new_kmsg = android::base::StringPrintf("%s.%d", LAST_KMSG_FILE, i+1); rename(old_kmsg.c_str(), new_kmsg.c_str()); } } static void copy_logs() { // We only rotate and record the log of the current session if there are // actual attempts to modify the flash, such as wipes, installs from BCB // or menu selections. This is to avoid unnecessary rotation (and // possible deletion) of log files, if it does not do anything loggable. if (!modified_flash) { return; } // Always write to pmsg, this allows the OTA logs to be caught in logcat -L copy_log_file_to_pmsg(TEMPORARY_LOG_FILE, LAST_LOG_FILE); copy_log_file_to_pmsg(TEMPORARY_INSTALL_FILE, LAST_INSTALL_FILE); // We can do nothing for now if there's no /cache partition. if (!has_cache) { return; } rotate_logs(KEEP_LOG_COUNT); // Copy logs to cache so the system can find out what happened. copy_log_file(TEMPORARY_LOG_FILE, LOG_FILE, true); copy_log_file(TEMPORARY_LOG_FILE, LAST_LOG_FILE, false); copy_log_file(TEMPORARY_INSTALL_FILE, LAST_INSTALL_FILE, false); save_kernel_log(LAST_KMSG_FILE); chmod(LOG_FILE, 0600); chown(LOG_FILE, 1000, 1000); // system user chmod(LAST_KMSG_FILE, 0600); chown(LAST_KMSG_FILE, 1000, 1000); // system user chmod(LAST_LOG_FILE, 0640); chmod(LAST_INSTALL_FILE, 0644); sync(); } // clear the recovery command and prepare to boot a (hopefully working) system, // copy our log file to cache as well (for the system to read), and // record any intent we were asked to communicate back to the system. // this function is idempotent: call it as many times as you like. static void finish_recovery(const char *send_intent) { // By this point, we're ready to return to the main system... if (send_intent != NULL && has_cache) { FILE *fp = fopen_path(INTENT_FILE, "w"); if (fp == NULL) { LOGE("Can't open %s\n", INTENT_FILE); } else { fputs(send_intent, fp); check_and_fclose(fp, INTENT_FILE); } } // Save the locale to cache, so if recovery is next started up // without a --locale argument (eg, directly from the bootloader) // it will use the last-known locale. if (locale != NULL) { size_t len = strlen(locale); __pmsg_write(LOCALE_FILE, locale, len); if (has_cache) { LOGI("Saving locale \"%s\"\n", locale); FILE* fp = fopen_path(LOCALE_FILE, "w"); fwrite(locale, 1, len, fp); fflush(fp); fsync(fileno(fp)); check_and_fclose(fp, LOCALE_FILE); } } copy_logs(); // Reset to normal system boot so recovery won't cycle indefinitely. bootloader_message boot = {}; std::string err; if (!write_bootloader_message(boot, &err)) { LOGE("%s\n", err.c_str()); } // Remove the command file, so recovery won't repeat indefinitely. if (has_cache) { if (ensure_path_mounted(COMMAND_FILE) != 0 || (unlink(COMMAND_FILE) && errno != ENOENT)) { LOGW("Can't unlink %s\n", COMMAND_FILE); } ensure_path_unmounted(CACHE_ROOT); } sync(); // For good measure. } typedef struct _saved_log_file { char* name; struct stat st; unsigned char* data; struct _saved_log_file* next; } saved_log_file; static bool erase_volume(const char* volume) { bool is_cache = (strcmp(volume, CACHE_ROOT) == 0); bool is_data = (strcmp(volume, DATA_ROOT) == 0); ui->SetBackground(RecoveryUI::ERASING); ui->SetProgressType(RecoveryUI::INDETERMINATE); saved_log_file* head = NULL; if (is_cache) { // If we're reformatting /cache, we load any past logs // (i.e. "/cache/recovery/last_*") and the current log // ("/cache/recovery/log") into memory, so we can restore them after // the reformat. ensure_path_mounted(volume); DIR* d; struct dirent* de; d = opendir(CACHE_LOG_DIR); if (d) { char path[PATH_MAX]; strcpy(path, CACHE_LOG_DIR); strcat(path, "/"); int path_len = strlen(path); while ((de = readdir(d)) != NULL) { if (strncmp(de->d_name, "last_", 5) == 0 || strcmp(de->d_name, "log") == 0) { saved_log_file* p = (saved_log_file*) malloc(sizeof(saved_log_file)); strcpy(path+path_len, de->d_name); p->name = strdup(path); if (stat(path, &(p->st)) == 0) { // truncate files to 512kb if (p->st.st_size > (1 << 19)) { p->st.st_size = 1 << 19; } p->data = (unsigned char*) malloc(p->st.st_size); FILE* f = fopen(path, "rb"); fread(p->data, 1, p->st.st_size, f); fclose(f); p->next = head; head = p; } else { free(p); } } } closedir(d); } else { if (errno != ENOENT) { printf("opendir failed: %s\n", strerror(errno)); } } } ui->Print("Formatting %s...\n", volume); ensure_path_unmounted(volume); int result; if (is_data && reason && strcmp(reason, "convert_fbe") == 0) { // Create convert_fbe breadcrumb file to signal to init // to convert to file based encryption, not full disk encryption if (mkdir(CONVERT_FBE_DIR, 0700) != 0) { ui->Print("Failed to make convert_fbe dir %s\n", strerror(errno)); return true; } FILE* f = fopen(CONVERT_FBE_FILE, "wb"); if (!f) { ui->Print("Failed to convert to file encryption %s\n", strerror(errno)); return true; } fclose(f); result = format_volume(volume, CONVERT_FBE_DIR); remove(CONVERT_FBE_FILE); rmdir(CONVERT_FBE_DIR); } else { result = format_volume(volume); } if (is_cache) { while (head) { FILE* f = fopen_path(head->name, "wb"); if (f) { fwrite(head->data, 1, head->st.st_size, f); fclose(f); chmod(head->name, head->st.st_mode); chown(head->name, head->st.st_uid, head->st.st_gid); } free(head->name); free(head->data); saved_log_file* temp = head->next; free(head); head = temp; } // Any part of the log we'd copied to cache is now gone. // Reset the pointer so we copy from the beginning of the temp // log. tmplog_offset = 0; copy_logs(); } return (result == 0); } static int get_menu_selection(const char* const * headers, const char* const * items, int menu_only, int initial_selection, Device* device) { // throw away keys pressed previously, so user doesn't // accidentally trigger menu items. ui->FlushKeys(); ui->StartMenu(headers, items, initial_selection); int selected = initial_selection; int chosen_item = -1; while (chosen_item < 0) { int key = ui->WaitKey(); int visible = ui->IsTextVisible(); if (key == -1) { // ui_wait_key() timed out if (ui->WasTextEverVisible()) { continue; } else { LOGI("timed out waiting for key input; rebooting.\n"); ui->EndMenu(); return 0; // XXX fixme } } int action = device->HandleMenuKey(key, visible); if (action < 0) { switch (action) { case Device::kHighlightUp: selected = ui->SelectMenu(--selected); break; case Device::kHighlightDown: selected = ui->SelectMenu(++selected); break; case Device::kInvokeItem: chosen_item = selected; break; case Device::kNoAction: break; } } else if (!menu_only) { chosen_item = action; } } ui->EndMenu(); return chosen_item; } static int compare_string(const void* a, const void* b) { return strcmp(*(const char**)a, *(const char**)b); } // Returns a malloc'd path, or NULL. static char* browse_directory(const char* path, Device* device) { ensure_path_mounted(path); DIR* d = opendir(path); if (d == NULL) { LOGE("error opening %s: %s\n", path, strerror(errno)); return NULL; } int d_size = 0; int d_alloc = 10; char** dirs = (char**)malloc(d_alloc * sizeof(char*)); int z_size = 1; int z_alloc = 10; char** zips = (char**)malloc(z_alloc * sizeof(char*)); zips[0] = strdup("../"); struct dirent* de; while ((de = readdir(d)) != NULL) { int name_len = strlen(de->d_name); if (de->d_type == DT_DIR) { // skip "." and ".." entries if (name_len == 1 && de->d_name[0] == '.') continue; if (name_len == 2 && de->d_name[0] == '.' && de->d_name[1] == '.') continue; if (d_size >= d_alloc) { d_alloc *= 2; dirs = (char**)realloc(dirs, d_alloc * sizeof(char*)); } dirs[d_size] = (char*)malloc(name_len + 2); strcpy(dirs[d_size], de->d_name); dirs[d_size][name_len] = '/'; dirs[d_size][name_len+1] = '\0'; ++d_size; } else if (de->d_type == DT_REG && name_len >= 4 && strncasecmp(de->d_name + (name_len-4), ".zip", 4) == 0) { if (z_size >= z_alloc) { z_alloc *= 2; zips = (char**)realloc(zips, z_alloc * sizeof(char*)); } zips[z_size++] = strdup(de->d_name); } } closedir(d); qsort(dirs, d_size, sizeof(char*), compare_string); qsort(zips, z_size, sizeof(char*), compare_string); // append dirs to the zips list if (d_size + z_size + 1 > z_alloc) { z_alloc = d_size + z_size + 1; zips = (char**)realloc(zips, z_alloc * sizeof(char*)); } memcpy(zips + z_size, dirs, d_size * sizeof(char*)); free(dirs); z_size += d_size; zips[z_size] = NULL; const char* headers[] = { "Choose a package to install:", path, NULL }; char* result; int chosen_item = 0; while (true) { chosen_item = get_menu_selection(headers, zips, 1, chosen_item, device); char* item = zips[chosen_item]; int item_len = strlen(item); if (chosen_item == 0) { // item 0 is always "../" // go up but continue browsing (if the caller is update_directory) result = NULL; break; } char new_path[PATH_MAX]; strlcpy(new_path, path, PATH_MAX); strlcat(new_path, "/", PATH_MAX); strlcat(new_path, item, PATH_MAX); if (item[item_len-1] == '/') { // recurse down into a subdirectory new_path[strlen(new_path)-1] = '\0'; // truncate the trailing '/' result = browse_directory(new_path, device); if (result) break; } else { // selected a zip file: return the malloc'd path to the caller. result = strdup(new_path); break; } } for (int i = 0; i < z_size; ++i) free(zips[i]); free(zips); return result; } static bool yes_no(Device* device, const char* question1, const char* question2) { const char* headers[] = { question1, question2, NULL }; const char* items[] = { " No", " Yes", NULL }; int chosen_item = get_menu_selection(headers, items, 1, 0, device); return (chosen_item == 1); } // Return true on success. static bool wipe_data(int should_confirm, Device* device) { if (should_confirm && !yes_no(device, "Wipe all user data?", " THIS CAN NOT BE UNDONE!")) { return false; } modified_flash = true; ui->Print("\n-- Wiping data...\n"); bool success = device->PreWipeData() && erase_volume("/data") && (has_cache ? erase_volume("/cache") : true) && device->PostWipeData(); ui->Print("Data wipe %s.\n", success ? "complete" : "failed"); return success; } // Return true on success. static bool wipe_cache(bool should_confirm, Device* device) { if (!has_cache) { ui->Print("No /cache partition found.\n"); return false; } if (should_confirm && !yes_no(device, "Wipe cache?", " THIS CAN NOT BE UNDONE!")) { return false; } modified_flash = true; ui->Print("\n-- Wiping cache...\n"); bool success = erase_volume("/cache"); ui->Print("Cache wipe %s.\n", success ? "complete" : "failed"); return success; } // Secure-wipe a given partition. It uses BLKSECDISCARD, if supported. // Otherwise, it goes with BLKDISCARD (if device supports BLKDISCARDZEROES) or // BLKZEROOUT. static bool secure_wipe_partition(const std::string& partition) { unique_fd fd(TEMP_FAILURE_RETRY(open(partition.c_str(), O_WRONLY))); if (fd.get() == -1) { LOGE("failed to open \"%s\": %s\n", partition.c_str(), strerror(errno)); return false; } uint64_t range[2] = {0, 0}; if (ioctl(fd.get(), BLKGETSIZE64, &range[1]) == -1 || range[1] == 0) { LOGE("failed to get partition size: %s\n", strerror(errno)); return false; } printf("Secure-wiping \"%s\" from %" PRIu64 " to %" PRIu64 ".\n", partition.c_str(), range[0], range[1]); printf("Trying BLKSECDISCARD...\t"); if (ioctl(fd.get(), BLKSECDISCARD, &range) == -1) { printf("failed: %s\n", strerror(errno)); // Use BLKDISCARD if it zeroes out blocks, otherwise use BLKZEROOUT. unsigned int zeroes; if (ioctl(fd.get(), BLKDISCARDZEROES, &zeroes) == 0 && zeroes != 0) { printf("Trying BLKDISCARD...\t"); if (ioctl(fd.get(), BLKDISCARD, &range) == -1) { printf("failed: %s\n", strerror(errno)); return false; } } else { printf("Trying BLKZEROOUT...\t"); if (ioctl(fd.get(), BLKZEROOUT, &range) == -1) { printf("failed: %s\n", strerror(errno)); return false; } } } printf("done\n"); return true; } // Check if the wipe package matches expectation: // 1. verify the package. // 2. check metadata (ota-type, pre-device and serial number if having one). static bool check_wipe_package(size_t wipe_package_size) { if (wipe_package_size == 0) { LOGE("wipe_package_size is zero.\n"); return false; } std::string wipe_package; std::string err_str; if (!read_wipe_package(&wipe_package, wipe_package_size, &err_str)) { LOGE("Failed to read wipe package: %s\n", err_str.c_str()); return false; } if (!verify_package(reinterpret_cast(wipe_package.data()), wipe_package.size())) { LOGE("Failed to verify package.\n"); return false; } // Extract metadata ZipArchive zip; int err = mzOpenZipArchive(reinterpret_cast(&wipe_package[0]), wipe_package.size(), &zip); if (err != 0) { LOGE("Can't open wipe package: %s\n", err != -1 ? strerror(err) : "bad"); return false; } std::string metadata; if (!read_metadata_from_package(&zip, &metadata)) { mzCloseZipArchive(&zip); return false; } mzCloseZipArchive(&zip); // Check metadata std::vector lines = android::base::Split(metadata, "\n"); bool ota_type_matched = false; bool device_type_matched = false; bool has_serial_number = false; bool serial_number_matched = false; for (const auto& line : lines) { if (line == "ota-type=BRICK") { ota_type_matched = true; } else if (android::base::StartsWith(line, "pre-device=")) { std::string device_type = line.substr(strlen("pre-device=")); char real_device_type[PROPERTY_VALUE_MAX]; property_get("ro.build.product", real_device_type, ""); device_type_matched = (device_type == real_device_type); } else if (android::base::StartsWith(line, "serialno=")) { std::string serial_no = line.substr(strlen("serialno=")); char real_serial_no[PROPERTY_VALUE_MAX]; property_get("ro.serialno", real_serial_no, ""); has_serial_number = true; serial_number_matched = (serial_no == real_serial_no); } } return ota_type_matched && device_type_matched && (!has_serial_number || serial_number_matched); } // Wipe the current A/B device, with a secure wipe of all the partitions in // RECOVERY_WIPE. static bool wipe_ab_device(size_t wipe_package_size) { ui->SetBackground(RecoveryUI::ERASING); ui->SetProgressType(RecoveryUI::INDETERMINATE); if (!check_wipe_package(wipe_package_size)) { LOGE("Failed to verify wipe package\n"); return false; } std::string partition_list; if (!android::base::ReadFileToString(RECOVERY_WIPE, &partition_list)) { LOGE("failed to read \"%s\".\n", RECOVERY_WIPE); return false; } std::vector lines = android::base::Split(partition_list, "\n"); for (const std::string& line : lines) { std::string partition = android::base::Trim(line); // Ignore '#' comment or empty lines. if (android::base::StartsWith(partition, "#") || partition.empty()) { continue; } // Proceed anyway even if it fails to wipe some partition. secure_wipe_partition(partition); } return true; } static void choose_recovery_file(Device* device) { // "Back" + KEEP_LOG_COUNT * 2 + terminating nullptr entry char* entries[1 + KEEP_LOG_COUNT * 2 + 1]; memset(entries, 0, sizeof(entries)); unsigned int n = 0; if (has_cache) { // Add LAST_LOG_FILE + LAST_LOG_FILE.x // Add LAST_KMSG_FILE + LAST_KMSG_FILE.x for (int i = 0; i < KEEP_LOG_COUNT; i++) { char* log_file; int ret; ret = (i == 0) ? asprintf(&log_file, "%s", LAST_LOG_FILE) : asprintf(&log_file, "%s.%d", LAST_LOG_FILE, i); if (ret == -1) { // memory allocation failure - return early. Should never happen. return; } if ((ensure_path_mounted(log_file) != 0) || (access(log_file, R_OK) == -1)) { free(log_file); } else { entries[n++] = log_file; } char* kmsg_file; ret = (i == 0) ? asprintf(&kmsg_file, "%s", LAST_KMSG_FILE) : asprintf(&kmsg_file, "%s.%d", LAST_KMSG_FILE, i); if (ret == -1) { // memory allocation failure - return early. Should never happen. return; } if ((ensure_path_mounted(kmsg_file) != 0) || (access(kmsg_file, R_OK) == -1)) { free(kmsg_file); } else { entries[n++] = kmsg_file; } } } else { // If cache partition is not found, view /tmp/recovery.log instead. ui->Print("No /cache partition found.\n"); if (access(TEMPORARY_LOG_FILE, R_OK) == -1) { return; } else{ entries[n++] = strdup(TEMPORARY_LOG_FILE); } } entries[n++] = strdup("Back"); const char* headers[] = { "Select file to view", nullptr }; while (true) { int chosen_item = get_menu_selection(headers, entries, 1, 0, device); if (strcmp(entries[chosen_item], "Back") == 0) break; ui->ShowFile(entries[chosen_item]); } for (size_t i = 0; i < (sizeof(entries) / sizeof(*entries)); i++) { free(entries[i]); } } static void run_graphics_test(Device* device) { // Switch to graphics screen. ui->ShowText(false); ui->SetProgressType(RecoveryUI::INDETERMINATE); ui->SetBackground(RecoveryUI::INSTALLING_UPDATE); sleep(1); ui->SetBackground(RecoveryUI::ERROR); sleep(1); ui->SetBackground(RecoveryUI::NO_COMMAND); sleep(1); ui->SetBackground(RecoveryUI::ERASING); sleep(1); ui->SetBackground(RecoveryUI::INSTALLING_UPDATE); ui->SetProgressType(RecoveryUI::DETERMINATE); ui->ShowProgress(1.0, 10.0); float fraction = 0.0; for (size_t i = 0; i < 100; ++i) { fraction += .01; ui->SetProgress(fraction); usleep(100000); } ui->ShowText(true); } // How long (in seconds) we wait for the fuse-provided package file to // appear, before timing out. #define SDCARD_INSTALL_TIMEOUT 10 static int apply_from_sdcard(Device* device, bool* wipe_cache) { modified_flash = true; if (ensure_path_mounted(SDCARD_ROOT) != 0) { ui->Print("\n-- Couldn't mount %s.\n", SDCARD_ROOT); return INSTALL_ERROR; } char* path = browse_directory(SDCARD_ROOT, device); if (path == NULL) { ui->Print("\n-- No package file selected.\n"); ensure_path_unmounted(SDCARD_ROOT); return INSTALL_ERROR; } ui->Print("\n-- Install %s ...\n", path); set_sdcard_update_bootloader_message(); // We used to use fuse in a thread as opposed to a process. Since accessing // through fuse involves going from kernel to userspace to kernel, it leads // to deadlock when a page fault occurs. (Bug: 26313124) pid_t child; if ((child = fork()) == 0) { bool status = start_sdcard_fuse(path); _exit(status ? EXIT_SUCCESS : EXIT_FAILURE); } // FUSE_SIDELOAD_HOST_PATHNAME will start to exist once the fuse in child // process is ready. int result = INSTALL_ERROR; int status; bool waited = false; for (int i = 0; i < SDCARD_INSTALL_TIMEOUT; ++i) { if (waitpid(child, &status, WNOHANG) == -1) { result = INSTALL_ERROR; waited = true; break; } struct stat sb; if (stat(FUSE_SIDELOAD_HOST_PATHNAME, &sb) == -1) { if (errno == ENOENT && i < SDCARD_INSTALL_TIMEOUT-1) { sleep(1); continue; } else { LOGE("Timed out waiting for the fuse-provided package.\n"); result = INSTALL_ERROR; kill(child, SIGKILL); break; } } result = install_package(FUSE_SIDELOAD_HOST_PATHNAME, wipe_cache, TEMPORARY_INSTALL_FILE, false, 0/*retry_count*/); break; } if (!waited) { // Calling stat() on this magic filename signals the fuse // filesystem to shut down. struct stat sb; stat(FUSE_SIDELOAD_HOST_EXIT_PATHNAME, &sb); waitpid(child, &status, 0); } if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { LOGE("Error exit from the fuse process: %d\n", WEXITSTATUS(status)); } ensure_path_unmounted(SDCARD_ROOT); return result; } // Return REBOOT, SHUTDOWN, or REBOOT_BOOTLOADER. Returning NO_ACTION // means to take the default, which is to reboot or shutdown depending // on if the --shutdown_after flag was passed to recovery. static Device::BuiltinAction prompt_and_wait(Device* device, int status) { for (;;) { finish_recovery(NULL); switch (status) { case INSTALL_SUCCESS: case INSTALL_NONE: ui->SetBackground(RecoveryUI::NO_COMMAND); break; case INSTALL_ERROR: case INSTALL_CORRUPT: ui->SetBackground(RecoveryUI::ERROR); break; } ui->SetProgressType(RecoveryUI::EMPTY); int chosen_item = get_menu_selection(nullptr, device->GetMenuItems(), 0, 0, device); // device-specific code may take some action here. It may // return one of the core actions handled in the switch // statement below. Device::BuiltinAction chosen_action = device->InvokeMenuItem(chosen_item); bool should_wipe_cache = false; switch (chosen_action) { case Device::NO_ACTION: break; case Device::REBOOT: case Device::SHUTDOWN: case Device::REBOOT_BOOTLOADER: return chosen_action; case Device::WIPE_DATA: wipe_data(ui->IsTextVisible(), device); if (!ui->IsTextVisible()) return Device::NO_ACTION; break; case Device::WIPE_CACHE: wipe_cache(ui->IsTextVisible(), device); if (!ui->IsTextVisible()) return Device::NO_ACTION; break; case Device::APPLY_ADB_SIDELOAD: case Device::APPLY_SDCARD: { bool adb = (chosen_action == Device::APPLY_ADB_SIDELOAD); if (adb) { status = apply_from_adb(ui, &should_wipe_cache, TEMPORARY_INSTALL_FILE); } else { status = apply_from_sdcard(device, &should_wipe_cache); } if (status == INSTALL_SUCCESS && should_wipe_cache) { if (!wipe_cache(false, device)) { status = INSTALL_ERROR; } } if (status != INSTALL_SUCCESS) { ui->SetBackground(RecoveryUI::ERROR); ui->Print("Installation aborted.\n"); copy_logs(); } else if (!ui->IsTextVisible()) { return Device::NO_ACTION; // reboot if logs aren't visible } else { ui->Print("\nInstall from %s complete.\n", adb ? "ADB" : "SD card"); } } break; case Device::VIEW_RECOVERY_LOGS: choose_recovery_file(device); break; case Device::RUN_GRAPHICS_TEST: run_graphics_test(device); break; case Device::MOUNT_SYSTEM: char system_root_image[PROPERTY_VALUE_MAX]; property_get("ro.build.system_root_image", system_root_image, ""); // For a system image built with the root directory (i.e. // system_root_image == "true"), we mount it to /system_root, and symlink /system // to /system_root/system to make adb shell work (the symlink is created through // the build system). // Bug: 22855115 if (strcmp(system_root_image, "true") == 0) { if (ensure_path_mounted_at("/", "/system_root") != -1) { ui->Print("Mounted /system.\n"); } } else { if (ensure_path_mounted("/system") != -1) { ui->Print("Mounted /system.\n"); } } break; } } } static void print_property(const char *key, const char *name, void *cookie) { printf("%s=%s\n", key, name); } static void load_locale_from_cache() { FILE* fp = fopen_path(LOCALE_FILE, "r"); char buffer[80]; if (fp != NULL) { fgets(buffer, sizeof(buffer), fp); int j = 0; unsigned int i; for (i = 0; i < sizeof(buffer) && buffer[i]; ++i) { if (!isspace(buffer[i])) { buffer[j++] = buffer[i]; } } buffer[j] = 0; locale = strdup(buffer); check_and_fclose(fp, LOCALE_FILE); } } static RecoveryUI* gCurrentUI = NULL; void ui_print(const char* format, ...) { char buffer[256]; va_list ap; va_start(ap, format); vsnprintf(buffer, sizeof(buffer), format, ap); va_end(ap); if (gCurrentUI != NULL) { gCurrentUI->Print("%s", buffer); } else { fputs(buffer, stdout); } } static bool is_battery_ok() { struct healthd_config healthd_config = { .batteryStatusPath = android::String8(android::String8::kEmptyString), .batteryHealthPath = android::String8(android::String8::kEmptyString), .batteryPresentPath = android::String8(android::String8::kEmptyString), .batteryCapacityPath = android::String8(android::String8::kEmptyString), .batteryVoltagePath = android::String8(android::String8::kEmptyString), .batteryTemperaturePath = android::String8(android::String8::kEmptyString), .batteryTechnologyPath = android::String8(android::String8::kEmptyString), .batteryCurrentNowPath = android::String8(android::String8::kEmptyString), .batteryCurrentAvgPath = android::String8(android::String8::kEmptyString), .batteryChargeCounterPath = android::String8(android::String8::kEmptyString), .batteryFullChargePath = android::String8(android::String8::kEmptyString), .batteryCycleCountPath = android::String8(android::String8::kEmptyString), .energyCounter = NULL, .boot_min_cap = 0, .screen_on = NULL }; healthd_board_init(&healthd_config); android::BatteryMonitor monitor; monitor.init(&healthd_config); int wait_second = 0; while (true) { int charge_status = monitor.getChargeStatus(); // Treat unknown status as charged. bool charged = (charge_status != android::BATTERY_STATUS_DISCHARGING && charge_status != android::BATTERY_STATUS_NOT_CHARGING); android::BatteryProperty capacity; android::status_t status = monitor.getProperty(android::BATTERY_PROP_CAPACITY, &capacity); ui_print("charge_status %d, charged %d, status %d, capacity %lld\n", charge_status, charged, status, capacity.valueInt64); // At startup, the battery drivers in devices like N5X/N6P take some time to load // the battery profile. Before the load finishes, it reports value 50 as a fake // capacity. BATTERY_READ_TIMEOUT_IN_SEC is set that the battery drivers are expected // to finish loading the battery profile earlier than 10 seconds after kernel startup. if (status == 0 && capacity.valueInt64 == 50) { if (wait_second < BATTERY_READ_TIMEOUT_IN_SEC) { sleep(1); wait_second++; continue; } } // If we can't read battery percentage, it may be a device without battery. In this // situation, use 100 as a fake battery percentage. if (status != 0) { capacity.valueInt64 = 100; } return (charged && capacity.valueInt64 >= BATTERY_WITH_CHARGER_OK_PERCENTAGE) || (!charged && capacity.valueInt64 >= BATTERY_OK_PERCENTAGE); } } static void set_retry_bootloader_message(int retry_count, int argc, char** argv) { bootloader_message boot = {}; strlcpy(boot.command, "boot-recovery", sizeof(boot.command)); strlcpy(boot.recovery, "recovery\n", sizeof(boot.recovery)); for (int i = 1; i < argc; ++i) { if (strstr(argv[i], "retry_count") == nullptr) { strlcat(boot.recovery, argv[i], sizeof(boot.recovery)); strlcat(boot.recovery, "\n", sizeof(boot.recovery)); } } // Initialize counter to 1 if it's not in BCB, otherwise increment it by 1. if (retry_count == 0) { strlcat(boot.recovery, "--retry_count=1\n", sizeof(boot.recovery)); } else { char buffer[20]; snprintf(buffer, sizeof(buffer), "--retry_count=%d\n", retry_count+1); strlcat(boot.recovery, buffer, sizeof(boot.recovery)); } std::string err; if (!write_bootloader_message(boot, &err)) { LOGE("%s\n", err.c_str()); } } static bool bootreason_in_blacklist() { char bootreason[PROPERTY_VALUE_MAX]; if (property_get("ro.boot.bootreason", bootreason, nullptr) > 0) { for (const auto& str : bootreason_blacklist) { if (strcasecmp(str.c_str(), bootreason) == 0) { return true; } } } return false; } static void log_failure_code(ErrorCode code, const char *update_package) { std::vector log_buffer = { update_package, "0", // install result "error: " + std::to_string(code), }; std::string log_content = android::base::Join(log_buffer, "\n"); if (!android::base::WriteStringToFile(log_content, TEMPORARY_INSTALL_FILE)) { LOGE("failed to write %s: %s\n", TEMPORARY_INSTALL_FILE, strerror(errno)); } // Also write the info into last_log. LOGI("%s\n", log_content.c_str()); } static ssize_t logbasename( log_id_t /* logId */, char /* prio */, const char *filename, const char * /* buf */, size_t len, void *arg) { if (strstr(LAST_KMSG_FILE, filename) || strstr(LAST_LOG_FILE, filename)) { bool *doRotate = reinterpret_cast(arg); *doRotate = true; } return len; } static ssize_t logrotate( log_id_t logId, char prio, const char *filename, const char *buf, size_t len, void *arg) { bool *doRotate = reinterpret_cast(arg); if (!*doRotate) { return __android_log_pmsg_file_write(logId, prio, filename, buf, len); } std::string name(filename); size_t dot = name.find_last_of("."); std::string sub = name.substr(0, dot); if (!strstr(LAST_KMSG_FILE, sub.c_str()) && !strstr(LAST_LOG_FILE, sub.c_str())) { return __android_log_pmsg_file_write(logId, prio, filename, buf, len); } // filename rotation if (dot == std::string::npos) { name += ".1"; } else { std::string number = name.substr(dot + 1); if (!isdigit(number.data()[0])) { name += ".1"; } else { unsigned long long i = std::stoull(number); name = sub + "." + std::to_string(i + 1); } } return __android_log_pmsg_file_write(logId, prio, name.c_str(), buf, len); } int main(int argc, char **argv) { // Take last pmsg contents and rewrite it to the current pmsg session. static const char filter[] = "recovery/"; // Do we need to rotate? bool doRotate = false; __android_log_pmsg_file_read( LOG_ID_SYSTEM, ANDROID_LOG_INFO, filter, logbasename, &doRotate); // Take action to refresh pmsg contents __android_log_pmsg_file_read( LOG_ID_SYSTEM, ANDROID_LOG_INFO, filter, logrotate, &doRotate); // If this binary is started with the single argument "--adbd", // instead of being the normal recovery binary, it turns into kind // of a stripped-down version of adbd that only supports the // 'sideload' command. Note this must be a real argument, not // anything in the command file or bootloader control block; the // only way recovery should be run with this argument is when it // starts a copy of itself from the apply_from_adb() function. if (argc == 2 && strcmp(argv[1], "--adbd") == 0) { adb_server_main(0, DEFAULT_ADB_PORT, -1); return 0; } time_t start = time(NULL); // redirect_stdio should be called only in non-sideload mode. Otherwise // we may have two logger instances with different timestamps. redirect_stdio(TEMPORARY_LOG_FILE); printf("Starting recovery (pid %d) on %s", getpid(), ctime(&start)); load_volume_table(); has_cache = volume_for_path(CACHE_ROOT) != nullptr; get_args(&argc, &argv); const char *send_intent = NULL; const char *update_package = NULL; bool should_wipe_data = false; bool should_wipe_cache = false; bool should_wipe_ab = false; size_t wipe_package_size = 0; bool show_text = false; bool sideload = false; bool sideload_auto_reboot = false; bool just_exit = false; bool shutdown_after = false; int retry_count = 0; bool security_update = false; int arg; int option_index; while ((arg = getopt_long(argc, argv, "", OPTIONS, &option_index)) != -1) { switch (arg) { case 'i': send_intent = optarg; break; case 'n': android::base::ParseInt(optarg, &retry_count, 0); break; case 'u': update_package = optarg; break; case 'w': should_wipe_data = true; break; case 'c': should_wipe_cache = true; break; case 't': show_text = true; break; case 's': sideload = true; break; case 'a': sideload = true; sideload_auto_reboot = true; break; case 'x': just_exit = true; break; case 'l': locale = optarg; break; case 'g': { if (stage == NULL || *stage == '\0') { char buffer[20] = "1/"; strncat(buffer, optarg, sizeof(buffer)-3); stage = strdup(buffer); } break; } case 'p': shutdown_after = true; break; case 'r': reason = optarg; break; case 'e': security_update = true; break; case 0: { if (strcmp(OPTIONS[option_index].name, "wipe_ab") == 0) { should_wipe_ab = true; break; } else if (strcmp(OPTIONS[option_index].name, "wipe_package_size") == 0) { android::base::ParseUint(optarg, &wipe_package_size); break; } break; } case '?': LOGE("Invalid command argument\n"); continue; } } if (locale == nullptr && has_cache) { load_locale_from_cache(); } printf("locale is [%s]\n", locale); printf("stage is [%s]\n", stage); printf("reason is [%s]\n", reason); Device* device = make_device(); ui = device->GetUI(); gCurrentUI = ui; ui->SetLocale(locale); ui->Init(); // Set background string to "installing security update" for security update, // otherwise set it to "installing system update". ui->SetSystemUpdateText(security_update); int st_cur, st_max; if (stage != NULL && sscanf(stage, "%d/%d", &st_cur, &st_max) == 2) { ui->SetStage(st_cur, st_max); } ui->SetBackground(RecoveryUI::NONE); if (show_text) ui->ShowText(true); struct selinux_opt seopts[] = { { SELABEL_OPT_PATH, "/file_contexts" } }; sehandle = selabel_open(SELABEL_CTX_FILE, seopts, 1); if (!sehandle) { ui->Print("Warning: No file_contexts\n"); } device->StartRecovery(); printf("Command:"); for (arg = 0; arg < argc; arg++) { printf(" \"%s\"", argv[arg]); } printf("\n"); if (update_package) { // For backwards compatibility on the cache partition only, if // we're given an old 'root' path "CACHE:foo", change it to // "/cache/foo". if (strncmp(update_package, "CACHE:", 6) == 0) { int len = strlen(update_package) + 10; char* modified_path = (char*)malloc(len); if (modified_path) { strlcpy(modified_path, "/cache/", len); strlcat(modified_path, update_package+6, len); printf("(replacing path \"%s\" with \"%s\")\n", update_package, modified_path); update_package = modified_path; } else printf("modified_path allocation failed\n"); } } printf("\n"); property_list(print_property, NULL); printf("\n"); ui->Print("Supported API: %d\n", RECOVERY_API_VERSION); int status = INSTALL_SUCCESS; if (update_package != NULL) { // It's not entirely true that we will modify the flash. But we want // to log the update attempt since update_package is non-NULL. modified_flash = true; if (!is_battery_ok()) { ui->Print("battery capacity is not enough for installing package, needed is %d%%\n", BATTERY_OK_PERCENTAGE); // Log the error code to last_install when installation skips due to // low battery. log_failure_code(kLowBattery, update_package); status = INSTALL_SKIPPED; } else if (bootreason_in_blacklist()) { // Skip update-on-reboot when bootreason is kernel_panic or similar ui->Print("bootreason is in the blacklist; skip OTA installation\n"); log_failure_code(kBootreasonInBlacklist, update_package); status = INSTALL_SKIPPED; } else { status = install_package(update_package, &should_wipe_cache, TEMPORARY_INSTALL_FILE, true, retry_count); if (status == INSTALL_SUCCESS && should_wipe_cache) { wipe_cache(false, device); } if (status != INSTALL_SUCCESS) { ui->Print("Installation aborted.\n"); // When I/O error happens, reboot and retry installation EIO_RETRY_COUNT // times before we abandon this OTA update. if (status == INSTALL_RETRY && retry_count < EIO_RETRY_COUNT) { copy_logs(); set_retry_bootloader_message(retry_count, argc, argv); // Print retry count on screen. ui->Print("Retry attempt %d\n", retry_count); // Reboot and retry the update int ret = property_set(ANDROID_RB_PROPERTY, "reboot,recovery"); if (ret < 0) { ui->Print("Reboot failed\n"); } else { while (true) { pause(); } } } // If this is an eng or userdebug build, then automatically // turn the text display on if the script fails so the error // message is visible. if (is_ro_debuggable()) { ui->ShowText(true); } } } } else if (should_wipe_data) { if (!wipe_data(false, device)) { status = INSTALL_ERROR; } } else if (should_wipe_cache) { if (!wipe_cache(false, device)) { status = INSTALL_ERROR; } } else if (should_wipe_ab) { if (!wipe_ab_device(wipe_package_size)) { status = INSTALL_ERROR; } } else if (sideload) { // 'adb reboot sideload' acts the same as user presses key combinations // to enter the sideload mode. When 'sideload-auto-reboot' is used, text // display will NOT be turned on by default. And it will reboot after // sideload finishes even if there are errors. Unless one turns on the // text display during the installation. This is to enable automated // testing. if (!sideload_auto_reboot) { ui->ShowText(true); } status = apply_from_adb(ui, &should_wipe_cache, TEMPORARY_INSTALL_FILE); if (status == INSTALL_SUCCESS && should_wipe_cache) { if (!wipe_cache(false, device)) { status = INSTALL_ERROR; } } ui->Print("\nInstall from ADB complete (status: %d).\n", status); if (sideload_auto_reboot) { ui->Print("Rebooting automatically.\n"); } } else if (!just_exit) { status = INSTALL_NONE; // No command specified ui->SetBackground(RecoveryUI::NO_COMMAND); // http://b/17489952 // If this is an eng or userdebug build, automatically turn on the // text display if no command is specified. if (is_ro_debuggable()) { ui->ShowText(true); } } if (!sideload_auto_reboot && (status == INSTALL_ERROR || status == INSTALL_CORRUPT)) { copy_logs(); ui->SetBackground(RecoveryUI::ERROR); } Device::BuiltinAction after = shutdown_after ? Device::SHUTDOWN : Device::REBOOT; if ((status != INSTALL_SUCCESS && status != INSTALL_SKIPPED && !sideload_auto_reboot) || ui->IsTextVisible()) { Device::BuiltinAction temp = prompt_and_wait(device, status); if (temp != Device::NO_ACTION) { after = temp; } } // Save logs and clean up before rebooting or shutting down. finish_recovery(send_intent); switch (after) { case Device::SHUTDOWN: ui->Print("Shutting down...\n"); property_set(ANDROID_RB_PROPERTY, "shutdown,"); break; case Device::REBOOT_BOOTLOADER: ui->Print("Rebooting to bootloader...\n"); property_set(ANDROID_RB_PROPERTY, "reboot,bootloader"); break; default: ui->Print("Rebooting...\n"); property_set(ANDROID_RB_PROPERTY, "reboot,"); break; } while (true) { pause(); } // Should be unreachable. return EXIT_SUCCESS; }