#ifndef CRYPTOPP_INTEGER_H
#define CRYPTOPP_INTEGER_H
/** \file */
#include "cryptlib.h"
#include "secblock.h"
#include <iosfwd>
#include <algorithm>
NAMESPACE_BEGIN(CryptoPP)
struct InitializeInteger // used to initialize static variables
{
InitializeInteger();
};
typedef SecBlock<word, AllocatorWithCleanup<word, CRYPTOPP_BOOL_X86> > IntegerSecBlock;
//! multiple precision integer and basic arithmetics
/*! This class can represent positive and negative integers
with absolute value less than (256**sizeof(word)) ** (256**sizeof(int)).
\nosubgrouping
*/
class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object
{
public:
//! \name ENUMS, EXCEPTIONS, and TYPEDEFS
//@{
//! division by zero exception
class DivideByZero : public Exception
{
public:
DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {}
};
//!
class RandomNumberNotFound : public Exception
{
public:
RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {}
};
//!
enum Sign {POSITIVE=0, NEGATIVE=1};
//!
enum Signedness {
//!
UNSIGNED,
//!
SIGNED};
//!
enum RandomNumberType {
//!
ANY,
//!
PRIME};
//@}
//! \name CREATORS
//@{
//! creates the zero integer
Integer();
//! copy constructor
Integer(const Integer& t);
//! convert from signed long
Integer(signed long value);
//! convert from lword
Integer(Sign s, lword value);
//! convert from two words
Integer(Sign s, word highWord, word lowWord);
//! convert from string
/*! str can be in base 2, 8, 10, or 16. Base is determined by a
case insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10.
*/
explicit Integer(const char *str);
explicit Integer(const wchar_t *str);
//! convert from big-endian byte array
Integer(const byte *encodedInteger, size_t byteCount, Signedness s=UNSIGNED);
//! convert from big-endian form stored in a BufferedTransformation
Integer(BufferedTransformation &bt, size_t byteCount, Signedness s=UNSIGNED);
//! convert from BER encoded byte array stored in a BufferedTransformation object
explicit Integer(BufferedTransformation &bt);
//! create a random integer
/*! The random integer created is uniformly distributed over [0, 2**bitcount). */
Integer(RandomNumberGenerator &rng, size_t bitcount);
//! avoid calling constructors for these frequently used integers
static const Integer & CRYPTOPP_API Zero();
//! avoid calling constructors for these frequently used integers
static const Integer & CRYPTOPP_API One();
//! avoid calling constructors for these frequently used integers
static const Integer & CRYPTOPP_API Two();
//! create a random integer of special type
/*! Ideally, the random integer created should be uniformly distributed
over {x | min <= x <= max and x is of rnType and x % mod == equiv}.
However the actual distribution may not be uniform because sequential
search is used to find an appropriate number from a random starting
point.
May return (with very small probability) a pseudoprime when a prime
is requested and max > lastSmallPrime*lastSmallPrime (lastSmallPrime
is declared in nbtheory.h).
\throw RandomNumberNotFound if the set is empty.
*/
Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());
//! return the integer 2**e
static Integer CRYPTOPP_API Power2(size_t e);
//@}
//! \name ENCODE/DECODE
//@{
//! minimum number of bytes to encode this integer
/*! MinEncodedSize of 0 is 1 */
size_t MinEncodedSize(Signedness=UNSIGNED) const;
//! encode in big-endian format
/*! unsigned means encode absolute value, signed means encode two's complement if negative.
if outputLen < MinEncodedSize, the most significant bytes will be dropped
if outputLen > MinEncodedSize, the most significant bytes will be padded
*/
void Encode(byte *output, size_t outputLen, Signedness=UNSIGNED) const;
//!
void Encode(BufferedTransformation &bt, size_t outputLen, Signedness=UNSIGNED) const;
//! encode using Distinguished Encoding Rules, put result into a BufferedTransformation object
void DEREncode(BufferedTransformation &bt) const;
//! encode absolute value as big-endian octet string
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
//! encode absolute value in OpenPGP format, return length of output
size_t OpenPGPEncode(byte *output, size_t bufferSize) const;
//! encode absolute value in OpenPGP format, put result into a BufferedTransformation object
size_t OpenPGPEncode(BufferedTransformation &bt) const;
//!
void Decode(const byte *input, size_t inputLen, Signedness=UNSIGNED);
//!
//* Precondition: bt.MaxRetrievable() >= inputLen
void Decode(BufferedTransformation &bt, size_t inputLen, Signedness=UNSIGNED);
//!
void BERDecode(const byte *input, size_t inputLen);
//!
void BERDecode(BufferedTransformation &bt);
//! decode nonnegative value as big-endian octet string
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
class OpenPGPDecodeErr : public Exception
{
public:
OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {}
};
//!
void OpenPGPDecode(const byte *input, size_t inputLen);
//!
void OpenPGPDecode(BufferedTransformation &bt);
//@}
//! \name ACCESSORS
//@{
//! return true if *this can be represented as a signed long
bool IsConvertableToLong() const;
//! return equivalent signed long if possible, otherwise undefined
signed long ConvertToLong() const;
//! number of significant bits = floor(log2(abs(*this))) + 1
unsigned int BitCount() const;
//! number of significant bytes = ceiling(BitCount()/8)
unsigned int ByteCount() const;
//! number of significant words = ceiling(ByteCount()/sizeof(word))
unsigned int WordCount() const;
//! return the i-th bit, i=0 being the least significant bit
bool GetBit(size_t i) const;
//! return the i-th byte
byte GetByte(size_t i) const;
//! return n lowest bits of *this >> i
lword GetBits(size_t i, size_t n) const;
//!
bool IsZero() const {return !*this;}
//!
bool NotZero() const {return !IsZero();}
//!
bool IsNegative() const {return sign == NEGATIVE;}
//!
bool NotNegative() const {return !IsNegative();}
//!
bool IsPositive() const {return NotNegative() && NotZero();}
//!
bool NotPositive() const {return !IsPositive();}
//!
bool IsEven() const {return GetBit(0) == 0;}
//!
bool IsOdd() const {return GetBit(0) == 1;}
//@}
//! \name MANIPULATORS
//@{
//!
Integer& operator=(const Integer& t);
//!
Integer& operator+=(const Integer& t);
//!
Integer& operator-=(const Integer& t);
//!
Integer& operator*=(const Integer& t) {return *this = Times(t);}
//!
Integer& operator/=(const Integer& t) {return *this = DividedBy(t);}
//!
Integer& operator%=(const Integer& t) {return *this = Modulo(t);}
//!
Integer& operator/=(word t) {return *this = DividedBy(t);}
//!
Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));}
//!
Integer& operator<<=(size_t);
//!
Integer& operator>>=(size_t);
//!
void Randomize(RandomNumberGenerator &rng, size_t bitcount);
//!
void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max);
//! set this Integer to a random element of {x | min <= x <= max and x is of rnType and x % mod == equiv}
/*! returns false if the set is empty */
bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs);
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs)
{
if (!GenerateRandomNoThrow(rng, params))
throw RandomNumberNotFound();
}
//! set the n-th bit to value
void SetBit(size_t n, bool value=1);
//! set the n-th byte to value
void SetByte(size_t n, byte value);
//!
void Negate();
//!
void SetPositive() {sign = POSITIVE;}
//!
void SetNegative() {if (!!(*this)) sign = NEGATIVE;}
//!
void swap(Integer &a);
//@}
//! \name UNARY OPERATORS
//@{
//!
bool operator!() const;
//!
Integer operator+() const {return *this;}
//!
Integer operator-() const;
//!
Integer& operator++();
//!
Integer& operator--();
//!
Integer operator++(int) {Integer temp = *this; ++*this; return temp;}
//!
Integer operator--(int) {Integer temp = *this; --*this; return temp;}
//@}
//! \name BINARY OPERATORS
//@{
//! signed comparison
/*! \retval -1 if *this < a
\retval 0 if *this = a
\retval 1 if *this > a
*/
int Compare(const Integer& a) const;
//!
Integer Plus(const Integer &b) const;
//!
Integer Minus(const Integer &b) const;
//!
Integer Times(const Integer &b) const;
//!
Integer DividedBy(const Integer &b) const;
//!
Integer Modulo(const Integer &b) const;
//!
Integer DividedBy(word b) const;
//!
word Modulo(word b) const;
//!
Integer operator>>(size_t n) const {return Integer(*this)>>=n;}
//!
Integer operator<<(size_t n) const {return Integer(*this)<<=n;}
//@}
//! \name OTHER ARITHMETIC FUNCTIONS
//@{
//!
Integer AbsoluteValue() const;
//!
Integer Doubled() const {return Plus(*this);}
//!
Integer Squared() const {return Times(*this);}
//! extract square root, if negative return 0, else return floor of square root
Integer SquareRoot() const;
//! return whether this integer is a perfect square
bool IsSquare() const;
//! is 1 or -1
bool IsUnit() const;
//! return inverse if 1 or -1, otherwise return 0
Integer MultiplicativeInverse() const;
//! modular multiplication
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);
//! modular exponentiation
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);
//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
//! use a faster division algorithm when divisor is short
static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);
//! returns same result as Divide(r, q, a, Power2(n)), but faster
static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
//! greatest common divisor
static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n);
//! calculate multiplicative inverse of *this mod n
Integer InverseMod(const Integer &n) const;
//!
word InverseMod(word n) const;
//@}
//! \name INPUT/OUTPUT
//@{
//!
friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a);
//!
friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a);
//@}
private:
friend class ModularArithmetic;
friend class MontgomeryRepresentation;
friend class HalfMontgomeryRepresentation;
Integer(word value, size_t length);
int PositiveCompare(const Integer &t) const;
friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b);
friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b);
friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b);
friend void PositiveDivide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor);
IntegerSecBlock reg;
Sign sign;
};
//!
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}
//!
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}
//!
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}
//!
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}
//!
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}
//!
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}
//!
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}
//!
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}
//!
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}
//!
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}
//!
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}
//!
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}
//!
inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}
NAMESPACE_END
#ifndef __BORLANDC__
NAMESPACE_BEGIN(std)
inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b)
{
a.swap(b);
}
NAMESPACE_END
#endif
#endif