#ifndef CRYPTOPP_XTR_H
#define CRYPTOPP_XTR_H
/** \file
"The XTR public key system" by Arjen K. Lenstra and Eric R. Verheul
*/
#include "modarith.h"
NAMESPACE_BEGIN(CryptoPP)
//! an element of GF(p^2)
class GFP2Element
{
public:
GFP2Element() {}
GFP2Element(const Integer &c1, const Integer &c2) : c1(c1), c2(c2) {}
GFP2Element(const byte *encodedElement, unsigned int size)
: c1(encodedElement, size/2), c2(encodedElement+size/2, size/2) {}
void Encode(byte *encodedElement, unsigned int size)
{
c1.Encode(encodedElement, size/2);
c2.Encode(encodedElement+size/2, size/2);
}
bool operator==(const GFP2Element &rhs) const {return c1 == rhs.c1 && c2 == rhs.c2;}
bool operator!=(const GFP2Element &rhs) const {return !operator==(rhs);}
void swap(GFP2Element &a)
{
c1.swap(a.c1);
c2.swap(a.c2);
}
static const GFP2Element & Zero();
Integer c1, c2;
};
//! GF(p^2), optimal normal basis
template <class F>
class GFP2_ONB : public AbstractRing<GFP2Element>
{
public:
typedef F BaseField;
GFP2_ONB(const Integer &p) : modp(p)
{
if (p%3 != 2)
throw InvalidArgument("GFP2_ONB: modulus must be equivalent to 2 mod 3");
}
const Integer& GetModulus() const {return modp.GetModulus();}
GFP2Element ConvertIn(const Integer &a) const
{
t = modp.Inverse(modp.ConvertIn(a));
return GFP2Element(t, t);
}
GFP2Element ConvertIn(const GFP2Element &a) const
{return GFP2Element(modp.ConvertIn(a.c1), modp.ConvertIn(a.c2));}
GFP2Element ConvertOut(const GFP2Element &a) const
{return GFP2Element(modp.ConvertOut(a.c1), modp.ConvertOut(a.c2));}
bool Equal(const GFP2Element &a, const GFP2Element &b) const
{
return modp.Equal(a.c1, b.c1) && modp.Equal(a.c2, b.c2);
}
const Element& Identity() const
{
return GFP2Element::Zero();
}
const Element& Add(const Element &a, const Element &b) const
{
result.c1 = modp.Add(a.c1, b.c1);
result.c2 = modp.Add(a.c2, b.c2);
return result;
}
const Element& Inverse(const Element &a) const
{
result.c1 = modp.Inverse(a.c1);
result.c2 = modp.Inverse(a.c2);
return result;
}
const Element& Double(const Element &a) const
{
result.c1 = modp.Double(a.c1);
result.c2 = modp.Double(a.c2);
return result;
}
const Element& Subtract(const Element &a, const Element &b) const
{
result.c1 = modp.Subtract(a.c1, b.c1);
result.c2 = modp.Subtract(a.c2, b.c2);
return result;
}
Element& Accumulate(Element &a, const Element &b) const
{
modp.Accumulate(a.c1, b.c1);
modp.Accumulate(a.c2, b.c2);
return a;
}
Element& Reduce(Element &a, const Element &b) const
{
modp.Reduce(a.c1, b.c1);
modp.Reduce(a.c2, b.c2);
return a;
}
bool IsUnit(const Element &a) const
{
return a.c1.NotZero() || a.c2.NotZero();
}
const Element& MultiplicativeIdentity() const
{
result.c1 = result.c2 = modp.Inverse(modp.MultiplicativeIdentity());
return result;
}
const Element& Multiply(const Element &a, const Element &b) const
{
t = modp.Add(a.c1, a.c2);
t = modp.Multiply(t, modp.Add(b.c1, b.c2));
result.c1 = modp.Multiply(a.c1, b.c1);
result.c2 = modp.Multiply(a.c2, b.c2);
result.c1.swap(result.c2);
modp.Reduce(t, result.c1);
modp.Reduce(t, result.c2);
modp.Reduce(result.c1, t);
modp.Reduce(result.c2, t);
return result;
}
const Element& MultiplicativeInverse(const Element &a) const
{
return result = Exponentiate(a, modp.GetModulus()-2);
}
const Element& Square(const Element &a) const
{
const Integer &ac1 = (&a == &result) ? (t = a.c1) : a.c1;
result.c1 = modp.Multiply(modp.Subtract(modp.Subtract(a.c2, a.c1), a.c1), a.c2);
result.c2 = modp.Multiply(modp.Subtract(modp.Subtract(ac1, a.c2), a.c2), ac1);
return result;
}
Element Exponentiate(const Element &a, const Integer &e) const
{
Integer edivp, emodp;
Integer::Divide(emodp, edivp, e, modp.GetModulus());
Element b = PthPower(a);
return AbstractRing<GFP2Element>::CascadeExponentiate(a, emodp, b, edivp);
}
const Element & PthPower(const Element &a) const
{
result = a;
result.c1.swap(result.c2);
return result;
}
void RaiseToPthPower(Element &a) const
{
a.c1.swap(a.c2);
}
// a^2 - 2a^p
const Element & SpecialOperation1(const Element &a) const
{
assert(&a != &result);
result = Square(a);
modp.Reduce(result.c1, a.c2);
modp.Reduce(result.c1, a.c2);
modp.Reduce(result.c2, a.c1);
modp.Reduce(result.c2, a.c1);
return result;
}
// x * z - y * z^p
const Element & SpecialOperation2(const Element &x, const Element &y, const Element &z) const
{
assert(&x != &result && &y != &result && &z != &result);
t = modp.Add(x.c2, y.c2);
result.c1 = modp.Multiply(z.c1, modp.Subtract(y.c1, t));
modp.Accumulate(result.c1, modp.Multiply(z.c2, modp.Subtract(t, x.c1)));
t = modp.Add(x.c1, y.c1);
result.c2 = modp.Multiply(z.c2, modp.Subtract(y.c2, t));
modp.Accumulate(result.c2, modp.Multiply(z.c1, modp.Subtract(t, x.c2)));
return result;
}
protected:
BaseField modp;
mutable GFP2Element result;
mutable Integer t;
};
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits);
GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p);
NAMESPACE_END
#endif