// ClassicFluidSimulator.cpp
// Implements the cClassicFluidSimulator class representing the original MCServer's fluid simulator
#include "Globals.h" // NOTE: MSVC stupidness requires this to be the same across all modules
#include "ClassicFluidSimulator.h"
#include "../World.h"
#include "../BlockID.h"
#include "../Defines.h"
#include "../Item.h"
#include "../Blocks/BlockHandler.h"
// #define DEBUG_FLUID
#ifdef DEBUG_FLUID
#define LOG_FLUID(...) LOGD( __VA_ARGS__ )
#else
#define LOG_FLUID(...)
#endif
class cClassicFluidSimulator::FluidData
{
public:
FluidData(cWorld * a_World, cClassicFluidSimulator * a_Simulator )
: m_ActiveFluid( new std::set < Vector3i >() )
, m_Simulator (a_Simulator)
, m_Buffer( new std::set< Vector3i >() )
, m_World( a_World )
{
}
~FluidData()
{
delete m_Buffer;
delete m_ActiveFluid;
}
void UpdateWave(Vector3i a_LeftCorner, Vector3i a_CurBlock)
{
Vector3i LevelPoints [] = {
Vector3i(a_CurBlock.x - 1, a_CurBlock.y, a_CurBlock.z),
Vector3i(a_CurBlock.x + 1, a_CurBlock.y, a_CurBlock.z),
Vector3i(a_CurBlock.x, a_CurBlock.y, a_CurBlock.z - 1),
Vector3i(a_CurBlock.x, a_CurBlock.y, a_CurBlock.z + 1),
};
for (int i = 0; i < 4; i++)
{
Vector3i cur = LevelPoints[i];
switch (m_Relief[cur.x][cur.z])
{
case E_HOLE:
{
m_StartSide[cur.x][cur.z] = m_StartSide[a_CurBlock.x][a_CurBlock.z];
m_CurResult|=m_StartSide[cur.x][cur.z];
m_NearestHole = m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1;
LOG_FLUID("Hole found: %d \t curResult: %d", int(m_StartSide[cur.x][cur.z]), int(m_CurResult) );
LOG_FLUID("Coordinates: (%d, %d)", cur.x, cur.z);
break;
}
case E_BLOCK:
{
break;
}
case E_PLAIN:
{
if (m_WayLength[cur.x][cur.z] > m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1)
{
m_WayLength[cur.x][cur.z] = m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1;
m_StartSide[cur.x][cur.z] = m_StartSide[a_CurBlock.x][a_CurBlock.z];
m_WaveQueue.push(cur);
}
else if(m_WayLength[cur.x][cur.z] == m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1)
{
m_StartSide[cur.x][cur.z] |= m_StartSide[a_CurBlock.x][a_CurBlock.z];
}
LOG_FLUID("Plain step: (%d, %d) from %d", cur.x, cur.z, m_StartSide[cur.x][cur.z]);
break;
}
}
}
}
std::vector< Vector3i > GetLowestPoints(int a_BlockX, int a_BlockY, int a_BlockZ)
{
std::vector< Vector3i > Points; // result
Vector3i CornerGlobal(a_BlockX - AREA_WIDTH / 2, a_BlockY, a_BlockZ - AREA_WIDTH / 2);
// TODO: Rewrite without relief, get blocks directly in algorithm
for (int x = 0; x < AREA_WIDTH; x++)
{
for (int z = 0; z < AREA_WIDTH; z++)
{
char UpperBlock = m_World->GetBlock(CornerGlobal.x + x, CornerGlobal.y, CornerGlobal.z + z);
char DownBlock = m_World->GetBlock(CornerGlobal.x + x, CornerGlobal.y - 1, CornerGlobal.z + z);
if (m_Simulator->IsSolidBlock(UpperBlock) || (m_Simulator->IsStationaryFluidBlock(UpperBlock)))
{
m_Relief[x][z] = E_BLOCK;
}
else if (m_Simulator->IsSolidBlock(DownBlock))
{
m_Relief[x][z] = E_PLAIN;
}
else
{
m_Relief[x][z] = E_HOLE;
}
m_WayLength[x][z] = 255;
m_StartSide[x][z] = E_SIDE_NONE;
}
LOG_FLUID("%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t", m_Relief[x][0], m_Relief[x][1], m_Relief[x][2], m_Relief[x][3], m_Relief[x][4], m_Relief[x][5], m_Relief[x][6], m_Relief[x][7], m_Relief[x][8], m_Relief[x][9], m_Relief[x][10]);
}
m_NearestHole = 5;
m_CurResult = 0;
while (!m_WaveQueue.empty()) m_WaveQueue.pop(); // _X 2012_10_13: WTF? why not use m_WaveQueue.clear() ?
int left = AREA_WIDTH / 2 - 1;
int right = AREA_WIDTH / 2 + 1;
int center = AREA_WIDTH / 2;
Vector3i r(right, 0, center); // right block
Vector3i l(left, 0, center); // left block
Vector3i f(center, 0, right); // front block
Vector3i b(center, 0, left); // back block
Vector3i c(center, 0, center); // center block
m_WayLength[c.x][c.z] = 0;
Vector3i Nearest[] = {r, l, f, b};
unsigned char Sides[] = {E_SIDE_RIGHT, E_SIDE_LEFT, E_SIDE_FRONT, E_SIDE_BACK};
for (int i = 0; i < 4; i++)
{
Vector3i cur = Nearest[i];
switch (m_Relief[cur.x][cur.z])
{
case E_HOLE:
{
m_StartSide[cur.x][cur.z] = Sides[i];
m_CurResult |= m_StartSide[cur.x][cur.z];
m_NearestHole = 1;
LOG_FLUID("Hole found: %d \t curResult: %d", int(Sides[i]), int(m_CurResult) );
break;
}
case E_BLOCK:
{
break;
}
case E_PLAIN:
{
m_WaveQueue.push(cur);
m_StartSide[cur.x][cur.z] = Sides[i];
m_WayLength[cur.x][cur.z] = 1;
LOG_FLUID("Plain found: %d", int(Sides[i]));
break;
}
}
}
Vector3i curBlock;
bool bContinue = !m_WaveQueue.empty();
if (!m_WaveQueue.empty())
{
curBlock = m_WaveQueue.front();
bContinue = (m_WayLength[curBlock.x][curBlock.z] < m_NearestHole);
}
while (bContinue)
{
LOG_FLUID("while iteration" );
curBlock = m_WaveQueue.front();
UpdateWave(CornerGlobal, curBlock);
m_WaveQueue.pop();
bContinue = ( (!m_WaveQueue.empty()) && (m_WayLength[m_WaveQueue.front().x][m_WaveQueue.front().z] < m_NearestHole) );
}
if (m_CurResult & E_SIDE_LEFT) Points.push_back(Vector3i(a_BlockX - 1, a_BlockY, a_BlockZ));
if (m_CurResult & E_SIDE_RIGHT) Points.push_back(Vector3i(a_BlockX + 1, a_BlockY, a_BlockZ));
if (m_CurResult & E_SIDE_FRONT) Points.push_back(Vector3i(a_BlockX, a_BlockY, a_BlockZ + 1));
if (m_CurResult & E_SIDE_BACK) Points.push_back(Vector3i(a_BlockX, a_BlockY, a_BlockZ - 1));
if (Points.empty())
{
Vector3i LevelPoints [] = {
Vector3i(a_BlockX - 1, a_BlockY, a_BlockZ),
Vector3i(a_BlockX + 1, a_BlockY, a_BlockZ),
Vector3i(a_BlockX, a_BlockY, a_BlockZ - 1),
Vector3i(a_BlockX, a_BlockY, a_BlockZ + 1),
};
for (int i = 0; i < 4; ++i)
{
char Block = m_World->GetBlock(LevelPoints[i].x, a_BlockY, LevelPoints[i].z);
if (m_Simulator->IsPassableForFluid(Block))
{
Points.push_back(LevelPoints[i]);
}
}
}
return Points;
}
std::set< Vector3i > * m_ActiveFluid;
std::set< Vector3i > * m_Buffer;
cWorld * m_World;
cClassicFluidSimulator * m_Simulator;
const static int AREA_WIDTH = 11;
const static unsigned char E_SIDE_RIGHT = 0x10;
const static unsigned char E_SIDE_LEFT = 0x20;
const static unsigned char E_SIDE_FRONT = 0x40;
const static unsigned char E_SIDE_BACK = 0x80;
const static unsigned char E_SIDE_NONE = 0x00;
enum eRelief
{
E_HOLE = 0,
E_PLAIN = 1,
E_BLOCK = 2
};
eRelief m_Relief[AREA_WIDTH][AREA_WIDTH];
unsigned char m_WayLength[AREA_WIDTH][AREA_WIDTH];
unsigned char m_StartSide[AREA_WIDTH][AREA_WIDTH];
std::queue<Vector3i> m_WaveQueue;
int m_NearestHole;
unsigned char m_CurResult;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cClassicFluidSimulator:
cClassicFluidSimulator::cClassicFluidSimulator(cWorld * a_World, BLOCKTYPE a_Fluid, BLOCKTYPE a_StationaryFluid, NIBBLETYPE a_MaxHeight, NIBBLETYPE a_Falloff) :
cFluidSimulator(a_World, a_Fluid, a_StationaryFluid),
m_Data(NULL),
m_MaxHeight(a_MaxHeight),
m_Falloff(a_Falloff)
{
m_Data = new FluidData(a_World, this);
}
cClassicFluidSimulator::~cClassicFluidSimulator()
{
delete m_Data;
}
void cClassicFluidSimulator::AddBlock(int a_BlockX, int a_BlockY, int a_BlockZ)
{
BLOCKTYPE BlockType = m_World->GetBlock(a_BlockX, a_BlockY, a_BlockZ);
if (!IsAllowedBlock(BlockType)) // This should save very much time because it doesn´t have to iterate through all blocks
{
return;
}
std::set< Vector3i > & ActiveFluid = *m_Data->m_ActiveFluid;
ActiveFluid.insert(Vector3i(a_BlockX, a_BlockY, a_BlockZ));
}
NIBBLETYPE cClassicFluidSimulator::GetHighestLevelAround(int a_BlockX, int a_BlockY, int a_BlockZ)
{
NIBBLETYPE Max = m_MaxHeight + m_Falloff;
#define __HIGHLEVEL_CHECK__( x, y, z ) \
if (IsAllowedBlock(m_World->GetBlock( x, y, z ) ) ) \
{ \
NIBBLETYPE Meta; \
if ((Meta = m_World->GetBlockMeta( x, y, z ) ) < Max ) Max = Meta; \
else if (Meta == m_MaxHeight + m_Falloff) Max = 0; \
if (Max == 0) return 0; \
}
__HIGHLEVEL_CHECK__(a_BlockX - 1, a_BlockY, a_BlockZ );
__HIGHLEVEL_CHECK__(a_BlockX + 1, a_BlockY, a_BlockZ );
__HIGHLEVEL_CHECK__(a_BlockX, a_BlockY, a_BlockZ - 1);
__HIGHLEVEL_CHECK__(a_BlockX, a_BlockY, a_BlockZ + 1);
return Max;
}
void cClassicFluidSimulator::Simulate(float a_Dt)
{
m_Timer += a_Dt;
if (m_Data->m_ActiveFluid->empty()) // Nothing to do if there is no active fluid ;) saves very little time ;D
{
return;
}
std::swap( m_Data->m_ActiveFluid, m_Data->m_Buffer ); // Swap so blocks can be added to empty ActiveFluid array
m_Data->m_ActiveFluid->clear();
std::set< Vector3i > & FluidBlocks = *m_Data->m_Buffer;
for( std::set< Vector3i >::iterator itr = FluidBlocks.begin(); itr != FluidBlocks.end(); ++itr )
{
const Vector3i & pos = *itr;
if(UniqueSituation(pos))
{
continue;
}
char BlockID = m_World->GetBlock( pos.x, pos.y, pos.z );
if( IsAllowedBlock( BlockID ) ) // only care about own fluid
{
bool bIsFed = false;
NIBBLETYPE Meta = m_World->GetBlockMeta( pos.x, pos.y, pos.z );
NIBBLETYPE Feed = Meta;
if (BlockID == m_StationaryFluidBlock) Meta = 0;
if (Meta == 8 ) // Falling fluid
{
if (IsAllowedBlock( m_World->GetBlock(pos.x, pos.y+1, pos.z) ) ) // Block above is fluid
{
bIsFed = true;
Meta = 0; // Make it a full block
}
}
else if (Meta < m_Falloff) // It's a full block, so it's always fed
{
bIsFed = true;
}
else
{
if ((Feed = GetHighestLevelAround( pos.x, pos.y, pos.z )) < Meta)
bIsFed = true;
}
if( bIsFed )
{
char DownID = m_World->GetBlock(pos.x, pos.y - 1, pos.z);
bool bWashedAwayItem = CanWashAway(DownID);
if ((IsPassableForFluid(DownID) || bWashedAwayItem) && !IsStationaryFluidBlock(DownID) ) // free for fluid
{
if (bWashedAwayItem)
{
cBlockHandler * Handler = BlockHandler(DownID);
if (Handler->DoesDropOnUnsuitable())
{
Handler->DropBlock(m_World, pos.x, pos.y - 1, pos.z);
}
}
if (pos.y > 0)
{
m_World->FastSetBlock( pos.x, pos.y-1, pos.z, m_FluidBlock, 8 ); // falling
AddBlock( pos.x, pos.y-1, pos.z );
ApplyUniqueToNearest(pos - Vector3i(0, 1, 0));
}
}
if (IsSolidBlock(DownID)||( BlockID == m_StationaryFluidBlock)) // Not falling
{
if (Feed + m_Falloff < Meta)
{
m_World->FastSetBlock( pos.x, pos.y, pos.z, m_FluidBlock, Feed + m_Falloff);
AddBlock( pos.x, pos.y, pos.z );
ApplyUniqueToNearest(pos);
}
else if ((Meta < m_MaxHeight ) || (BlockID == m_StationaryFluidBlock)) // max is the lowest, so it cannot spread
{
std::vector< Vector3i > Points = m_Data->GetLowestPoints( pos.x, pos.y, pos.z );
for( std::vector< Vector3i >::iterator itr = Points.begin(); itr != Points.end(); ++itr )
{
Vector3i & p = *itr;
char BlockID = m_World->GetBlock( p.x, p.y, p.z );
bool bWashedAwayItem = CanWashAway( BlockID );
if (!IsPassableForFluid(BlockID)) continue;
if (!IsAllowedBlock(BlockID))
{
if (bWashedAwayItem)
{
cBlockHandler * Handler = BlockHandler(DownID);
if (Handler->DoesDropOnUnsuitable())
{
Handler->DropBlock(m_World, p.x, p.y, p.z);
}
}
if (p.y == pos.y)
{
m_World->FastSetBlock(p.x, p.y, p.z, m_FluidBlock, Meta + m_Falloff);
}
else
{
m_World->FastSetBlock(p.x, p.y, p.z, m_FluidBlock, 8);
}
AddBlock( p.x, p.y, p.z );
ApplyUniqueToNearest(p);
}
else // it's fluid
{
char PointMeta = m_World->GetBlockMeta( p.x, p.y, p.z );
if( PointMeta > Meta + m_Falloff)
{
AddBlock( p.x, p.y, p.z );
ApplyUniqueToNearest(p);
}
}
}
}
}
}
else// not fed
{
m_World->FastSetBlock( pos.x, pos.y, pos.z, E_BLOCK_AIR, 0 );
WakeUp( pos.x, pos.y, pos.z );
}
}
}
}
bool cClassicFluidSimulator::UniqueSituation(Vector3i a_Pos)
{
bool result = false;
char BlockId = m_World->GetBlock( a_Pos.x, a_Pos.y, a_Pos.z );
char Meta = m_World->GetBlockMeta( a_Pos.x, a_Pos.y, a_Pos.z );
if(IsBlockWater(BlockId))
{
char UpperBlock = m_World->GetBlock( a_Pos.x, a_Pos.y + 1, a_Pos.z );
if(IsBlockLava(UpperBlock))
{
m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_STONE, 0);
}
if(BlockId != E_BLOCK_STATIONARY_WATER)
{
char DownBlockId = m_World->GetBlock( a_Pos.x, a_Pos.y-1, a_Pos.z );
if(IsSolidBlock(DownBlockId))
{
Vector3i LevelPoints [] = {
Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ),
};
int SourceBlocksCount = 0;
for(int i=0; i<4; i++)
{
if (m_World->GetBlock(LevelPoints[i].x, LevelPoints[i].y, LevelPoints[i].z)==E_BLOCK_STATIONARY_WATER)
{
SourceBlocksCount++;
}
}
if(SourceBlocksCount>=2)
{
m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_STATIONARY_WATER, 0);
}
}
}
}
if(IsBlockLava(BlockId))
{
bool bWater = false;
char UpperBlock = m_World->GetBlock( a_Pos.x, a_Pos.y + 1, a_Pos.z );
if (IsBlockWater(UpperBlock))
{
bWater = true;
}
else
{
Vector3i LevelPoints [] = {
Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ),
};
for(int i=0; i<4; i++)
{
if (IsBlockWater(m_World->GetBlock(LevelPoints[i].x, LevelPoints[i].y, LevelPoints[i].z)))
{
bWater = true;
}
}
}
if (bWater)
{
if (BlockId == E_BLOCK_STATIONARY_LAVA)
{
m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_OBSIDIAN, 0);
}
else if (Meta<m_MaxHeight)
{
m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_COBBLESTONE, 0);
}
}
}
return result;
}
void cClassicFluidSimulator::ApplyUniqueToNearest(Vector3i a_Pos)
{
Vector3i NearPoints [] = {
Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ),
Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ),
Vector3i( a_Pos.x, a_Pos.y-1, a_Pos.z )
};
for (int i = 0; i < ARRAYCOUNT(NearPoints); i++)
{
UniqueSituation(NearPoints[i]);
}
}