// ChunkDef.h
// Interfaces to helper types for chunk definitions. Most modules want to include this instead of cChunk.h
#pragma once
#include "Vector3.h"
#include "BiomeDef.h"
// Used to smoothly convert to new axis ordering. One will be removed when deemed stable.
#define AXIS_ORDER_YZX 1 // Original (1.1-)
#define AXIS_ORDER_XZY 2 // New (1.2+)
#define AXIS_ORDER AXIS_ORDER_XZY
// fwd
class cBlockEntity;
class cEntity;
class cClientHandle;
class cBlockEntity;
typedef std::list<cEntity *> cEntityList;
typedef std::list<cBlockEntity *> cBlockEntityList;
// tolua_begin
/// The datatype used by blockdata
typedef unsigned char BLOCKTYPE;
/// The datatype used by nibbledata (meta, light, skylight)
typedef unsigned char NIBBLETYPE;
/// The type used by the heightmap
typedef unsigned char HEIGHTTYPE;
// tolua_end
/// Constants used throughout the code, useful typedefs and utility functions
class cChunkDef
{
public:
// Chunk dimensions:
static const int Width = 16;
static const int Height = 256;
static const int NumBlocks = Width * Height * Width;
/// If the data is collected into a single buffer, how large it needs to be:
static const int BlockDataSize = cChunkDef::NumBlocks * 2 + (cChunkDef::NumBlocks / 2); // 2.5 * numblocks
/// The type used for any heightmap operations and storage; idx = x + Width * z; Height points to the highest non-air block in the column
typedef HEIGHTTYPE HeightMap[Width * Width];
/** The type used for any biomemap operations and storage inside MCServer,
using MCServer biomes (need not correspond to client representation!)
idx = x + Width * z // Need to verify this with the protocol spec, currently unknown!
*/
typedef EMCSBiome BiomeMap[Width * Width];
/// The type used for block type operations and storage, AXIS_ORDER ordering
typedef BLOCKTYPE BlockTypes[NumBlocks];
/// The type used for block data in nibble format, AXIS_ORDER ordering
typedef NIBBLETYPE BlockNibbles[NumBlocks / 2];
/** The storage wrapper used for compressed blockdata residing in RAMz */
typedef std::vector<BLOCKTYPE> COMPRESSED_BLOCKTYPE;
/** The storage wrapper used for compressed nibbledata residing in RAMz */
typedef std::vector<NIBBLETYPE> COMPRESSED_NIBBLETYPE;
/// Converts absolute block coords into relative (chunk + block) coords:
inline static void AbsoluteToRelative(/* in-out */ int & a_X, int & a_Y, int & a_Z, /* out */ int & a_ChunkX, int & a_ChunkZ)
{
UNUSED(a_Y);
BlockToChunk(a_X, a_Z, a_ChunkX, a_ChunkZ);
a_X = a_X - a_ChunkX * Width;
a_Z = a_Z - a_ChunkZ * Width;
}
/// Converts absolute block coords to chunk coords:
inline static void BlockToChunk(int a_X, int a_Z, int & a_ChunkX, int & a_ChunkZ)
{
a_ChunkX = a_X / Width;
if ((a_X < 0) && (a_X % Width != 0))
{
a_ChunkX--;
}
a_ChunkZ = a_Z / cChunkDef::Width;
if ((a_Z < 0) && (a_Z % Width != 0))
{
a_ChunkZ--;
}
}
inline static int MakeIndex(int x, int y, int z)
{
if (
(x < Width) && (x > -1) &&
(y < Height) && (y > -1) &&
(z < Width) && (z > -1)
)
{
return MakeIndexNoCheck(x, y, z);
}
LOGERROR("cChunkDef::MakeIndex(): coords out of range: {%d, %d, %d}; returning fake index 0", x, y, z);
ASSERT(!"cChunkDef::MakeIndex(): coords out of chunk range!");
return 0;
}
inline static int MakeIndexNoCheck(int x, int y, int z)
{
#if AXIS_ORDER == AXIS_ORDER_XZY
// For some reason, NOT using the Horner schema is faster. Weird.
return x + (z * cChunkDef::Width) + (y * cChunkDef::Width * cChunkDef::Width); // 1.2 uses XZY
#elif AXIS_ORDER == AXIS_ORDER_YZX
return y + (z * cChunkDef::Width) + (x * cChunkDef::Height * cChunkDef::Width); // 1.1 uses YZX
#endif
}
inline static Vector3i IndexToCoordinate( unsigned int index)
{
#if AXIS_ORDER == AXIS_ORDER_XZY
return Vector3i( // 1.2
index % cChunkDef::Width, // X
index / (cChunkDef::Width * cChunkDef::Width), // Y
(index / cChunkDef::Width) % cChunkDef::Width // Z
);
#elif AXIS_ORDER == AXIS_ORDER_YZX
return Vector3i( // 1.1
index / (cChunkDef::Height * cChunkDef::Width), // X
index % cChunkDef::Height, // Y
(index / cChunkDef::Height) % cChunkDef::Width // Z
);
#endif
}
inline static void SetBlock(BLOCKTYPE * a_BlockTypes, int a_X, int a_Y, int a_Z, BLOCKTYPE a_Type)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Y >= 0) && (a_Y < Height));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_BlockTypes[MakeIndexNoCheck(a_X, a_Y, a_Z)] = a_Type;
}
inline static void SetBlock(BLOCKTYPE * a_BlockTypes, int a_Index, BLOCKTYPE a_Type)
{
ASSERT((a_Index >= 0) && (a_Index <= NumBlocks));
a_BlockTypes[a_Index] = a_Type;
}
inline static BLOCKTYPE GetBlock(const BLOCKTYPE * a_BlockTypes, int a_X, int a_Y, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Y >= 0) && (a_Y < Height));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_BlockTypes[MakeIndexNoCheck(a_X, a_Y, a_Z)];
}
inline static BLOCKTYPE GetBlock(const BLOCKTYPE * a_BlockTypes, int a_Idx)
{
ASSERT((a_Idx >= 0) && (a_Idx < NumBlocks));
return a_BlockTypes[a_Idx];
}
inline static int GetHeight(const HeightMap & a_HeightMap, int a_X, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_HeightMap[a_X + Width * a_Z];
}
inline static void SetHeight(HeightMap & a_HeightMap, int a_X, int a_Z, unsigned char a_Height)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_HeightMap[a_X + Width * a_Z] = a_Height;
}
inline static EMCSBiome GetBiome(const BiomeMap & a_BiomeMap, int a_X, int a_Z)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
return a_BiomeMap[a_X + Width * a_Z];
}
inline static void SetBiome(BiomeMap & a_BiomeMap, int a_X, int a_Z, EMCSBiome a_Biome)
{
ASSERT((a_X >= 0) && (a_X < Width));
ASSERT((a_Z >= 0) && (a_Z < Width));
a_BiomeMap[a_X + Width * a_Z] = a_Biome;
}
static NIBBLETYPE GetNibble(const COMPRESSED_NIBBLETYPE & a_Buffer, int a_BlockIdx, bool a_IsSkyLightNibble = false)
{
if ((a_BlockIdx > -1) && (a_BlockIdx < NumBlocks))
{
if (static_cast<size_t>((a_BlockIdx / 2)) >= a_Buffer.size())
{
return (a_IsSkyLightNibble ? 0xff : 0);
}
return (a_Buffer[static_cast<size_t>(a_BlockIdx / 2)] >> ((a_BlockIdx & 1) * 4)) & 0x0f;
}
ASSERT(!"cChunkDef::GetNibble(): index out of chunk range!");
return 0;
}
static NIBBLETYPE GetNibble(const COMPRESSED_NIBBLETYPE & a_Buffer, int x, int y, int z, bool a_IsSkyLightNibble = false)
{
if ((x < Width) && (x > -1) && (y < Height) && (y > -1) && (z < Width) && (z > -1))
{
size_t Index = static_cast<size_t>(MakeIndexNoCheck(x, y, z));
if ((Index / 2) >= a_Buffer.size())
{
return (a_IsSkyLightNibble ? 0xff : 0);
}
return ExpandNibble(a_Buffer, Index);
}
ASSERT(!"cChunkDef::GetNibble(): coords out of chunk range!");
return 0;
}
static NIBBLETYPE GetNibble(const NIBBLETYPE * a_Buffer, int x, int y, int z)
{
if ((x < Width) && (x > -1) && (y < Height) && (y > -1) && (z < Width) && (z > -1))
{
int Index = MakeIndexNoCheck(x, y, z);
return (a_Buffer[static_cast<size_t>(Index / 2)] >> ((Index & 1) * 4)) & 0x0f;
}
ASSERT(!"cChunkDef::GetNibble(): coords out of chunk range!");
return 0;
}
static void SetNibble(COMPRESSED_NIBBLETYPE & a_Buffer, int a_BlockIdx, NIBBLETYPE a_Nibble)
{
if ((a_BlockIdx < 0) || (a_BlockIdx >= NumBlocks))
{
ASSERT(!"cChunkDef::SetNibble(): index out of range!");
return;
}
if (static_cast<size_t>(a_BlockIdx / 2) >= a_Buffer.size())
{
a_Buffer.resize(static_cast<size_t>((a_BlockIdx / 2) + 1));
}
a_Buffer[static_cast<size_t>(a_BlockIdx / 2)] = PackNibble(a_Buffer, static_cast<size_t>(a_BlockIdx), a_Nibble);
}
static void SetNibble(COMPRESSED_NIBBLETYPE & a_Buffer, int x, int y, int z, NIBBLETYPE a_Nibble)
{
if (
(x >= Width) || (x < 0) ||
(y >= Height) || (y < 0) ||
(z >= Width) || (z < 0)
)
{
ASSERT(!"cChunkDef::SetNibble(): index out of range!");
return;
}
size_t Index = static_cast<size_t>(MakeIndexNoCheck(x, y, z));
if ((Index / 2) >= a_Buffer.size())
{
a_Buffer.resize(((Index / 2) + 1));
}
a_Buffer[(Index / 2)] = PackNibble(a_Buffer, Index, a_Nibble);
}
private:
inline static NIBBLETYPE PackNibble(const COMPRESSED_NIBBLETYPE & a_Buffer, size_t a_Index, NIBBLETYPE a_Nibble)
{
return static_cast<NIBBLETYPE>(
(a_Buffer[a_Index / 2] & (0xf0 >> ((a_Index & 1) * 4))) | // The untouched nibble
((a_Nibble & 0x0f) << ((a_Index & 1) * 4)) // The nibble being set
);
}
inline static NIBBLETYPE ExpandNibble(const COMPRESSED_NIBBLETYPE & a_Buffer, size_t a_Index)
{
return (a_Buffer[a_Index / 2] >> ((a_Index & 1) * 4)) & 0x0f;
}
} ;
/** Interface class used for comparing clients of two chunks.
Used primarily for entity moving while both chunks are locked.
*/
class cClientDiffCallback
{
public:
virtual ~cClientDiffCallback() {}
/// Called for clients that are in Chunk1 and not in Chunk2,
virtual void Removed(cClientHandle * a_Client) = 0;
/// Called for clients that are in Chunk2 and not in Chunk1.
virtual void Added(cClientHandle * a_Client) = 0;
} ;
struct sSetBlock
{
int x, y, z;
int ChunkX, ChunkZ;
BLOCKTYPE BlockType;
NIBBLETYPE BlockMeta;
sSetBlock( int a_BlockX, int a_BlockY, int a_BlockZ, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta); // absolute block position
sSetBlock(int a_ChunkX, int a_ChunkZ, int a_X, int a_Y, int a_Z, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta) :
x(a_X), y(a_Y), z(a_Z),
ChunkX(a_ChunkX), ChunkZ(a_ChunkZ),
BlockType(a_BlockType),
BlockMeta(a_BlockMeta)
{}
};
typedef std::list<sSetBlock> sSetBlockList;
typedef std::vector<sSetBlock> sSetBlockVector;
class cChunkCoords
{
public:
int m_ChunkX;
int m_ChunkZ;
cChunkCoords(int a_ChunkX, int a_ChunkZ) : m_ChunkX(a_ChunkX), m_ChunkZ(a_ChunkZ) {}
bool operator == (const cChunkCoords & a_Other) const
{
return ((m_ChunkX == a_Other.m_ChunkX) && (m_ChunkZ == a_Other.m_ChunkZ));
}
} ;
typedef std::list<cChunkCoords> cChunkCoordsList;
typedef std::vector<cChunkCoords> cChunkCoordsVector;
class cChunkCoordsWithBool
{
public:
int m_ChunkX;
int m_ChunkZ;
bool m_ForceGenerate;
cChunkCoordsWithBool(int a_ChunkX, int a_ChunkZ, bool a_ForceGenerate) : m_ChunkX(a_ChunkX), m_ChunkZ(a_ChunkZ), m_ForceGenerate(a_ForceGenerate){}
bool operator == (const cChunkCoordsWithBool & a_Other) const
{
return ((m_ChunkX == a_Other.m_ChunkX) && (m_ChunkZ == a_Other.m_ChunkZ) && (m_ForceGenerate == a_Other.m_ForceGenerate));
}
};
typedef std::list<cChunkCoordsWithBool> cChunkCoordsWithBoolList;
/// Interface class used as a callback for operations that involve chunk coords
class cChunkCoordCallback
{
public:
virtual ~cChunkCoordCallback() {}
virtual void Call(int a_ChunkX, int a_ChunkZ) = 0;
} ;
/** Generic template that can store any kind of data together with a triplet of 3 coords*/
template <typename X> class cCoordWithData
{
public:
int x;
int y;
int z;
X Data;
cCoordWithData(int a_X, int a_Y, int a_Z) :
x(a_X), y(a_Y), z(a_Z), Data()
{
}
cCoordWithData(int a_X, int a_Y, int a_Z, const X & a_Data) :
x(a_X), y(a_Y), z(a_Z), Data(a_Data)
{
}
} ;
typedef cCoordWithData<int> cCoordWithInt;
typedef cCoordWithData<BLOCKTYPE> cCoordWithBlock;
typedef std::list<cCoordWithInt> cCoordWithIntList;
typedef std::vector<cCoordWithInt> cCoordWithIntVector;
/** Generic template that can store two types of any kind of data together with a triplet of 3 coords */
template <typename X, typename Z> class cCoordWithDoubleData
{
public:
int x;
int y;
int z;
X Data;
Z DataTwo;
cCoordWithDoubleData(int a_X, int a_Y, int a_Z) :
x(a_X), y(a_Y), z(a_Z)
{
}
cCoordWithDoubleData(int a_X, int a_Y, int a_Z, const X & a_Data, const Z & a_DataTwo) :
x(a_X), y(a_Y), z(a_Z), Data(a_Data), DataTwo(a_DataTwo)
{
}
};
typedef cCoordWithDoubleData <BLOCKTYPE, bool> cCoordWithBlockAndBool;
typedef std::vector<cCoordWithBlockAndBool> cCoordWithBlockAndBoolVector;