#include "Globals.h"
#include <cmath>
#include "Path.h"
#include "../Chunk.h"
#define DISTANCE_MANHATTAN 0 // 1: More speed, a bit less accuracy 0: Max accuracy, less speed.
#define HEURISTICS_ONLY 0 // 1: Much more speed, much less accurate.
#define CALCULATIONS_PER_STEP 60 // Higher means more CPU load but faster path calculations.
// The only version which guarantees the shortest path is 0, 0.
enum class eCellStatus {OPENLIST, CLOSEDLIST, NOLIST};
struct cPathCell
{
Vector3i m_Location; // Location of the cell in the world.
int m_F, m_G, m_H; // F, G, H as defined in regular A*.
eCellStatus m_Status; // Which list is the cell in? Either non, open, or closed.
cPathCell * m_Parent; // Cell's parent, as defined in regular A*.
bool m_IsSolid; // Is the cell an air or a solid? Partial solids are currently considered solids.
};
bool compareHeuristics::operator()(cPathCell * & a_Cell1, cPathCell * & a_Cell2)
{
return a_Cell1->m_F > a_Cell2->m_F;
}
/* cPath implementation */
cPath::cPath(
cChunk & a_Chunk,
const Vector3i & a_StartingPoint, const Vector3i & a_EndingPoint, int a_MaxSteps,
double a_BoundingBoxWidth, double a_BoundingBoxHeight,
int a_MaxUp, int a_MaxDown
) :
m_Destination(a_EndingPoint.Floor()),
m_Source(a_StartingPoint.Floor()),
m_CurrentPoint(0), // GetNextPoint increments this to 1, but that's fine, since the first cell is always a_StartingPoint
m_Chunk(&a_Chunk)
{
// TODO: if src not walkable OR dest not walkable, then abort.
// Borrow a new "isWalkable" from ProcessIfWalkable, make ProcessIfWalkable also call isWalkable
if (GetCell(m_Source)->m_IsSolid || GetCell(m_Destination)->m_IsSolid)
{
m_Status = ePathFinderStatus::PATH_NOT_FOUND;
return;
}
// If destination in water, set water surface as destination.
cChunk * Chunk = m_Chunk->GetNeighborChunk(m_Destination.x, m_Destination.z);
if ((Chunk != nullptr) && Chunk->IsValid())
{
BLOCKTYPE BlockType;
NIBBLETYPE BlockMeta;
int RelX = m_Destination.x - m_Chunk->GetPosX() * cChunkDef::Width;
int RelZ = m_Destination.z - m_Chunk->GetPosZ() * cChunkDef::Width;
bool inwater = false;
for (;;)
{
m_Chunk->GetBlockTypeMeta(RelX, m_Destination.y, RelZ, BlockType, BlockMeta);
if (BlockType != E_BLOCK_STATIONARY_WATER)
{
break;
}
inwater = true;
m_Destination+=Vector3d(0, 1, 0);
}
if (inwater)
{
m_Destination+=Vector3d(0, -1, 0);
}
}
m_Status = ePathFinderStatus::CALCULATING;
m_StepsLeft = a_MaxSteps;
ProcessCell(GetCell(a_StartingPoint), nullptr, 0);
m_Chunk = nullptr;
}
cPath::~cPath()
{
if (m_Status == ePathFinderStatus::CALCULATING)
{
FinishCalculation();
}
}
ePathFinderStatus cPath::Step(cChunk & a_Chunk)
{
m_Chunk = &a_Chunk;
if (m_Status != ePathFinderStatus::CALCULATING)
{
return m_Status;
}
if (m_StepsLeft == 0)
{
FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND);
}
else
{
--m_StepsLeft;
int i;
for (i = 0; i < CALCULATIONS_PER_STEP; ++i)
{
if (Step_Internal()) // Step_Internal returns true when no more calculation is needed.
{
break; // if we're here, m_Status must have changed either to PATH_FOUND or PATH_NOT_FOUND.
}
}
}
m_Chunk = nullptr;
return m_Status;
}
bool cPath::IsSolid(const Vector3i & a_Location)
{
ASSERT(m_Chunk != nullptr);
auto Chunk = m_Chunk->GetNeighborChunk(a_Location.x, a_Location.z);
if ((Chunk == nullptr) || !Chunk->IsValid())
{
return true;
}
m_Chunk = Chunk;
BLOCKTYPE BlockType;
NIBBLETYPE BlockMeta;
int RelX = a_Location.x - m_Chunk->GetPosX() * cChunkDef::Width;
int RelZ = a_Location.z - m_Chunk->GetPosZ() * cChunkDef::Width;
m_Chunk->GetBlockTypeMeta(RelX, a_Location.y, RelZ, BlockType, BlockMeta);
if ((BlockType == E_BLOCK_FENCE) || (BlockType == E_BLOCK_FENCE_GATE))
{
GetCell(a_Location + Vector3i(0, 1, 0))->m_IsSolid = true; // Mobs will always think that the fence is 2 blocks high and therefore won't jump over.
}
if (BlockType == E_BLOCK_STATIONARY_WATER)
{
GetCell(a_Location + Vector3i(0, -1, 0))->m_IsSolid = true; // Mobs will always think that the fence is 2 blocks high and therefore won't jump over.
}
return cBlockInfo::IsSolid(BlockType);
}
bool cPath::Step_Internal()
{
cPathCell * CurrentCell = OpenListPop();
// Path not reachable, open list exauhsted.
if (CurrentCell == nullptr)
{
FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND);
ASSERT(m_Status == ePathFinderStatus::PATH_NOT_FOUND);
return true;
}
// Path found.
if (
(CurrentCell->m_Location == m_Destination + Vector3i(0, 0, 1)) ||
(CurrentCell->m_Location == m_Destination + Vector3i(1, 0, 0)) ||
(CurrentCell->m_Location == m_Destination + Vector3i(-1, 0, 0)) ||
(CurrentCell->m_Location == m_Destination + Vector3i(0, 0, -1)) ||
(CurrentCell->m_Location == m_Destination + Vector3i(0, -1, 0))
)
{
do
{
m_PathPoints.push_back(CurrentCell->m_Location); // Populate the cPath with points.
CurrentCell = CurrentCell->m_Parent;
} while (CurrentCell != nullptr);
FinishCalculation(ePathFinderStatus::PATH_FOUND);
return true;
}
// Calculation not finished yet, process a currentCell by inspecting all neighbors.
// Check North, South, East, West on all 3 different heights.
int i;
for (i = -1; i <= 1; ++i)
{
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(1, i, 0), CurrentCell, 10);
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(-1, i, 0), CurrentCell, 10);
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, i, 1), CurrentCell, 10);
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, i, -1), CurrentCell, 10);
}
// Check diagonals on mob's height only.
int x, z;
for (x = -1; x <= 1; x += 2)
{
for (z = -1; z <= 1; z += 2)
{
// This condition prevents diagonal corner cutting.
if (!GetCell(CurrentCell->m_Location + Vector3i(x, 0, 0))->m_IsSolid && !GetCell(CurrentCell->m_Location + Vector3i(0, 0, z))->m_IsSolid)
{
// This prevents falling of "sharp turns" e.g. a 1x1x20 rectangle in the air which breaks in a right angle suddenly.
if (GetCell(CurrentCell->m_Location + Vector3i(x, -1, 0))->m_IsSolid && GetCell(CurrentCell->m_Location + Vector3i(0, -1, z))->m_IsSolid)
{
ProcessIfWalkable(CurrentCell->m_Location + Vector3i(x, 0, z), CurrentCell, 14); // 14 is a good enough approximation of sqrt(10 + 10).
}
}
}
}
return false;
}
void cPath::FinishCalculation()
{
for (auto && pair : m_Map)
{
delete pair.second;
}
m_Map.clear();
m_OpenList.empty();
}
void cPath::FinishCalculation(ePathFinderStatus a_NewStatus)
{
m_Status = a_NewStatus;
FinishCalculation();
}
void cPath::OpenListAdd(cPathCell * a_Cell)
{
a_Cell->m_Status = eCellStatus::OPENLIST;
m_OpenList.push(a_Cell);
#ifdef COMPILING_PATHFIND_DEBUGGER
si::setBlock(a_Cell->m_Location.x, a_Cell->m_Location.y, a_Cell->m_Location.z, debug_open, SetMini(a_Cell));
#endif
}
cPathCell * cPath::OpenListPop() // Popping from the open list also means adding to the closed list.
{
if (m_OpenList.size() == 0)
{
return nullptr; // We've exhausted the search space and nothing was found, this will trigger a PATH_NOT_FOUND status.
}
cPathCell * Ret = m_OpenList.top();
m_OpenList.pop();
Ret->m_Status = eCellStatus::CLOSEDLIST;
#ifdef COMPILING_PATHFIND_DEBUGGER
si::setBlock((Ret)->m_Location.x, (Ret)->m_Location.y, (Ret)->m_Location.z, debug_closed, SetMini(Ret));
#endif
return Ret;
}
void cPath::ProcessIfWalkable(const Vector3i & a_Location, cPathCell * a_Parent, int a_Cost)
{
cPathCell * cell = GetCell(a_Location);
if (!cell->m_IsSolid && GetCell(a_Location + Vector3i(0, -1, 0))->m_IsSolid && !GetCell(a_Location + Vector3i(0, 1, 0))->m_IsSolid)
{
ProcessCell(cell, a_Parent, a_Cost);
}
}
void cPath::ProcessCell(cPathCell * a_Cell, cPathCell * a_Caller, int a_GDelta)
{
// Case 1: Cell is in the closed list, ignore it.
if (a_Cell->m_Status == eCellStatus::CLOSEDLIST)
{
return;
}
if (a_Cell->m_Status == eCellStatus::NOLIST) // Case 2: The cell is not in any list.
{
// Cell is walkable, add it to the open list.
// Note that non-walkable cells are filtered out in Step_internal();
// Special case: Start cell goes here, gDelta is 0, caller is NULL.
a_Cell->m_Parent = a_Caller;
if (a_Caller != nullptr)
{
a_Cell->m_G = a_Caller->m_G + a_GDelta;
}
else
{
a_Cell->m_G = 0;
}
// Calculate H. This is A*'s Heuristics value.
#if DISTANCE_MANHATTAN == 1
// Manhattan distance. DeltaX + DeltaY + DeltaZ.
a_Cell->m_H = 10 * (abs(a_Cell->m_Location.x-m_Destination.x) + abs(a_Cell->m_Location.y-m_Destination.y) + abs(a_Cell->m_Location.z-m_Destination.z));
#else
// Euclidian distance. sqrt(DeltaX^2 + DeltaY^2 + DeltaZ^2), more precise.
a_Cell->m_H = static_cast<decltype(a_Cell->m_H)>((a_Cell->m_Location - m_Destination).Length() * 10);
#endif
#if HEURISTICS_ONLY == 1
a_Cell->m_F = a_Cell->m_H; // Greedy search. https://en.wikipedia.org/wiki/Greedy_search
#else
a_Cell->m_F = a_Cell->m_H + a_Cell->m_G; // Regular A*.
#endif
OpenListAdd(a_Cell);
return;
}
// Case 3: Cell is in the open list, check if G and H need an update.
int NewG = a_Caller->m_G + a_GDelta;
if (NewG < a_Cell->m_G)
{
a_Cell->m_G = NewG;
a_Cell->m_H = a_Cell->m_F + a_Cell->m_G;
a_Cell->m_Parent = a_Caller;
}
}
cPathCell * cPath::GetCell(const Vector3i & a_Location)
{
// Create the cell in the hash table if it's not already there.
cPathCell * Cell;
if (m_Map.count(a_Location) == 0) // Case 1: Cell is not on any list. We've never checked this cell before.
{
Cell = new cPathCell();
Cell->m_Location = a_Location;
m_Map[a_Location] = Cell;
Cell->m_IsSolid = IsSolid(a_Location);
Cell->m_Status = eCellStatus::NOLIST;
#ifdef COMPILING_PATHFIND_DEBUGGER
#ifdef COMPILING_PATHFIND_DEBUGGER_MARK_UNCHECKED
si::setBlock(a_Location.x, a_Location.y, a_Location.z, debug_unchecked, Cell->m_IsSolid ? NORMAL : MINI);
#endif
#endif
return Cell;
}
else
{
return m_Map[a_Location];
}
}