// ChunkDataSerializer.cpp
// Implements the cChunkDataSerializer class representing the object that can:
// - serialize chunk data to different protocol versions
// - cache such serialized data for multiple clients
#include "Globals.h"
#include "ChunkDataSerializer.h"
#include "zlib/zlib.h"
#include "ByteBuffer.h"
#include "Protocol18x.h"
#include "Protocol19x.h"
cChunkDataSerializer::cChunkDataSerializer(
const cChunkDef::BlockTypes & a_BlockTypes,
const cChunkDef::BlockNibbles & a_BlockMetas,
const cChunkDef::BlockNibbles & a_BlockLight,
const cChunkDef::BlockNibbles & a_BlockSkyLight,
const unsigned char * a_BiomeData,
const eDimension a_Dimension
) :
m_BlockTypes(a_BlockTypes),
m_BlockMetas(a_BlockMetas),
m_BlockLight(a_BlockLight),
m_BlockSkyLight(a_BlockSkyLight),
m_BiomeData(a_BiomeData),
m_Dimension(a_Dimension)
{
}
const AString & cChunkDataSerializer::Serialize(int a_Version, int a_ChunkX, int a_ChunkZ)
{
Serializations::const_iterator itr = m_Serializations.find(a_Version);
if (itr != m_Serializations.end())
{
return itr->second;
}
AString data;
switch (a_Version)
{
case RELEASE_1_3_2: Serialize39(data); break;
case RELEASE_1_8_0: Serialize47(data, a_ChunkX, a_ChunkZ); break;
case RELEASE_1_9_0: Serialize107(data, a_ChunkX, a_ChunkZ); break;
case RELEASE_1_9_4: Serialize110(data, a_ChunkX, a_ChunkZ); break;
// TODO: Other protocol versions may serialize the data differently; implement here
default:
{
LOGERROR("cChunkDataSerializer::Serialize(): Unknown version: %d", a_Version);
ASSERT(!"Unknown chunk data serialization version");
break;
}
}
if (!data.empty())
{
m_Serializations[a_Version] = data;
}
return m_Serializations[a_Version];
}
void cChunkDataSerializer::Serialize39(AString & a_Data)
{
// TODO: Do not copy data and then compress it; rather, compress partial blocks of data (zlib can stream)
const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
const int MetadataOffset = sizeof(m_BlockTypes);
const int BlockLightOffset = MetadataOffset + sizeof(m_BlockMetas);
const int SkyLightOffset = BlockLightOffset + sizeof(m_BlockLight);
const int BiomeOffset = SkyLightOffset + sizeof(m_BlockSkyLight);
const int DataSize = BiomeOffset + BiomeDataSize;
// Temporary buffer for the composed data:
char AllData [DataSize];
memcpy(AllData, m_BlockTypes, sizeof(m_BlockTypes));
memcpy(AllData + MetadataOffset, m_BlockMetas, sizeof(m_BlockMetas));
memcpy(AllData + BlockLightOffset, m_BlockLight, sizeof(m_BlockLight));
memcpy(AllData + SkyLightOffset, m_BlockSkyLight, sizeof(m_BlockSkyLight));
memcpy(AllData + BiomeOffset, m_BiomeData, BiomeDataSize);
// Compress the data:
// In order not to use allocation, use a fixed-size buffer, with the size
// that uses the same calculation as compressBound():
const uLongf CompressedMaxSize = DataSize + (DataSize >> 12) + (DataSize >> 14) + (DataSize >> 25) + 16;
char CompressedBlockData[CompressedMaxSize];
uLongf CompressedSize = compressBound(DataSize);
// Run-time check that our compile-time guess about CompressedMaxSize was enough:
ASSERT(CompressedSize <= CompressedMaxSize);
compress2(reinterpret_cast<Bytef*>(CompressedBlockData), &CompressedSize, reinterpret_cast<const Bytef*>(AllData), sizeof(AllData), Z_DEFAULT_COMPRESSION);
// Now put all those data into a_Data:
// "Ground-up continuous", or rather, "biome data present" flag:
a_Data.push_back('\x01');
// Two bitmaps; we're aways sending the full chunk with no additional data, so the bitmaps are 0xffff and 0, respectively
// Also, no endian flipping is needed because of the const values
unsigned short BitMap1 = 0xffff;
unsigned short BitMap2 = 0;
a_Data.append(reinterpret_cast<const char *>(&BitMap1), sizeof(short));
a_Data.append(reinterpret_cast<const char *>(&BitMap2), sizeof(short));
UInt32 CompressedSizeBE = htonl(static_cast<UInt32>(CompressedSize));
a_Data.append(reinterpret_cast<const char *>(&CompressedSizeBE), sizeof(CompressedSizeBE));
// Unlike 29, 39 doesn't have the "unused" int
a_Data.append(CompressedBlockData, CompressedSize);
}
void cChunkDataSerializer::Serialize47(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
// This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet:
cByteBuffer Packet(512 KiB);
Packet.WriteVarInt32(0x21); // Packet id (Chunk Data packet)
Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteBEUInt16(0xffff); // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
// Write the chunk size:
const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
UInt32 ChunkSize = (
(cChunkDef::NumBlocks * 2) + // Block meta + type
sizeof(m_BlockLight) + // Block light
sizeof(m_BlockSkyLight) + // Block sky light
BiomeDataSize // Biome data
);
Packet.WriteVarInt32(ChunkSize);
// Write the block types to the packet:
for (size_t Index = 0; Index < cChunkDef::NumBlocks; Index++)
{
BLOCKTYPE BlockType = m_BlockTypes[Index] & 0xFF;
NIBBLETYPE BlockMeta = m_BlockMetas[Index / 2] >> ((Index & 1) * 4) & 0x0f;
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType << 4) | BlockMeta);
Packet.WriteBEUInt8(static_cast<unsigned char>(BlockType >> 4));
}
// Write the rest:
Packet.WriteBuf(m_BlockLight, sizeof(m_BlockLight));
Packet.WriteBuf(m_BlockSkyLight, sizeof(m_BlockSkyLight));
Packet.WriteBuf(m_BiomeData, BiomeDataSize);
AString PacketData;
Packet.ReadAll(PacketData);
Packet.CommitRead();
cByteBuffer Buffer(20);
if (PacketData.size() >= 256)
{
if (!cProtocol180::CompressPacket(PacketData, a_Data))
{
ASSERT(!"Packet compression failed.");
a_Data.clear();
return;
}
}
else
{
AString PostData;
Buffer.WriteVarInt32(static_cast<UInt32>(Packet.GetUsedSpace() + 1));
Buffer.WriteVarInt32(0);
Buffer.ReadAll(PostData);
Buffer.CommitRead();
a_Data.clear();
a_Data.reserve(PostData.size() + PacketData.size());
a_Data.append(PostData.data(), PostData.size());
a_Data.append(PacketData.data(), PacketData.size());
}
}
void cChunkDataSerializer::Serialize107(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
// This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet:
cByteBuffer Packet(512 KiB);
Packet.WriteVarInt32(0x20); // Packet id (Chunk Data packet)
Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteVarInt32(0x0000ffff); // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
// Write the chunk size:
const size_t NumChunkSections = 16;
const size_t ChunkSectionBlocks = 16 * 16 * 16;
const size_t BitsPerEntry = 13;
const size_t Mask = (1 << BitsPerEntry) - 1; // Creates a mask that is 13 bits long, ie 0b1111111111111
const size_t ChunkSectionDataArraySize = (ChunkSectionBlocks * BitsPerEntry) / 8 / 8; // Convert from bit count to long count
size_t ChunkSectionSize = (
1 + // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
1 + // Palette length
2 + // Data array length VarInt - 2 bytes for the current value
ChunkSectionDataArraySize * 8 + // Actual block data - multiplied by 8 because first number is longs
sizeof(m_BlockLight) / NumChunkSections // Block light
);
if (m_Dimension == dimOverworld)
{
// Sky light is only sent in the overworld.
ChunkSectionSize += sizeof(m_BlockSkyLight) / NumChunkSections;
}
const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
size_t ChunkSize = (
ChunkSectionSize * 16 +
BiomeDataSize
);
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));
// Write each chunk section...
for (size_t SectionIndex = 0; SectionIndex < 16; SectionIndex++)
{
Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(0); // Palette length is 0
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
size_t StartIndex = SectionIndex * ChunkSectionBlocks;
UInt64 TempLong = 0; // Temporary value that will be stored into
UInt64 CurrentlyWrittenIndex = 0; // "Index" of the long that would be written to
for (size_t Index = 0; Index < ChunkSectionBlocks; Index++)
{
UInt64 Value = static_cast<UInt64>(m_BlockTypes[StartIndex + Index] << 4);
if (Index % 2 == 0)
{
Value |= m_BlockMetas[(StartIndex + Index) / 2] & 0x0f;
}
else
{
Value |= m_BlockMetas[(StartIndex + Index) / 2] >> 4;
}
Value &= Mask; // It shouldn't go out of bounds, but it's still worth being careful
// Painful part where we write data into the long array. Based off of the normal code.
size_t BitPosition = Index * BitsPerEntry;
size_t FirstIndex = BitPosition / 64;
size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
size_t BitOffset = BitPosition % 64;
if (FirstIndex != CurrentlyWrittenIndex)
{
// Write the current data before modifiying it.
Packet.WriteBEUInt64(TempLong);
TempLong = 0;
CurrentlyWrittenIndex = FirstIndex;
}
TempLong |= (Value << BitOffset);
if (FirstIndex != SecondIndex)
{
// Part of the data is now in the second long; write the first one first
Packet.WriteBEUInt64(TempLong);
CurrentlyWrittenIndex = SecondIndex;
TempLong = (Value >> (64 - BitOffset));
}
}
// The last long will generally not be written
Packet.WriteBEUInt64(TempLong);
// Light - stored as a nibble, so we need half sizes
// As far as I know, there isn't a method to only write a range of the array
for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
{
Packet.WriteBEUInt8(m_BlockLight[(StartIndex / 2) + Index]);
}
if (m_Dimension == dimOverworld)
{
// Skylight is only sent in the overworld; the nether and end do not use it
for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
{
Packet.WriteBEUInt8(m_BlockSkyLight[(StartIndex / 2) + Index]);
}
}
}
// Write the biome data
Packet.WriteBuf(m_BiomeData, BiomeDataSize);
AString PacketData;
Packet.ReadAll(PacketData);
Packet.CommitRead();
cByteBuffer Buffer(20);
if (PacketData.size() >= 256)
{
if (!cProtocol190::CompressPacket(PacketData, a_Data))
{
ASSERT(!"Packet compression failed.");
a_Data.clear();
return;
}
}
else
{
AString PostData;
Buffer.WriteVarInt32(static_cast<UInt32>(Packet.GetUsedSpace() + 1));
Buffer.WriteVarInt32(0);
Buffer.ReadAll(PostData);
Buffer.CommitRead();
a_Data.clear();
a_Data.reserve(PostData.size() + PacketData.size());
a_Data.append(PostData.data(), PostData.size());
a_Data.append(PacketData.data(), PacketData.size());
}
}
void cChunkDataSerializer::Serialize110(AString & a_Data, int a_ChunkX, int a_ChunkZ)
{
// This function returns the fully compressed packet (including packet size), not the raw packet!
// Create the packet:
cByteBuffer Packet(512 KiB);
Packet.WriteVarInt32(0x20); // Packet id (Chunk Data packet)
Packet.WriteBEInt32(a_ChunkX);
Packet.WriteBEInt32(a_ChunkZ);
Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag
Packet.WriteVarInt32(0x0000ffff); // We're aways sending the full chunk with no additional data, so the bitmap is 0xffff
// Write the chunk size:
const size_t NumChunkSections = 16;
const size_t ChunkSectionBlocks = 16 * 16 * 16;
const size_t BitsPerEntry = 13;
const size_t Mask = (1 << BitsPerEntry) - 1; // Creates a mask that is 13 bits long, ie 0b1111111111111
const size_t ChunkSectionDataArraySize = (ChunkSectionBlocks * BitsPerEntry) / 8 / 8; // Convert from bit count to long count
size_t ChunkSectionSize = (
1 + // Bits per block - set to 13, so the global palette is used and the palette has a length of 0
1 + // Palette length
2 + // Data array length VarInt - 2 bytes for the current value
ChunkSectionDataArraySize * 8 + // Actual block data - multiplied by 8 because first number is longs
sizeof(m_BlockLight) / NumChunkSections // Block light
);
if (m_Dimension == dimOverworld)
{
// Sky light is only sent in the overworld.
ChunkSectionSize += sizeof(m_BlockSkyLight) / NumChunkSections;
}
const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width;
size_t ChunkSize = (
ChunkSectionSize * 16 +
BiomeDataSize
);
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSize));
// Write each chunk section...
for (size_t SectionIndex = 0; SectionIndex < 16; SectionIndex++)
{
Packet.WriteBEUInt8(BitsPerEntry);
Packet.WriteVarInt32(0); // Palette length is 0
Packet.WriteVarInt32(static_cast<UInt32>(ChunkSectionDataArraySize));
size_t StartIndex = SectionIndex * ChunkSectionBlocks;
UInt64 TempLong = 0; // Temporary value that will be stored into
UInt64 CurrentlyWrittenIndex = 0; // "Index" of the long that would be written to
for (size_t Index = 0; Index < ChunkSectionBlocks; Index++)
{
UInt64 Value = static_cast<UInt64>(m_BlockTypes[StartIndex + Index] << 4);
if (Index % 2 == 0)
{
Value |= m_BlockMetas[(StartIndex + Index) / 2] & 0x0f;
}
else
{
Value |= m_BlockMetas[(StartIndex + Index) / 2] >> 4;
}
Value &= Mask; // It shouldn't go out of bounds, but it's still worth being careful
// Painful part where we write data into the long array. Based off of the normal code.
size_t BitPosition = Index * BitsPerEntry;
size_t FirstIndex = BitPosition / 64;
size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64;
size_t BitOffset = BitPosition % 64;
if (FirstIndex != CurrentlyWrittenIndex)
{
// Write the current data before modifiying it.
Packet.WriteBEUInt64(TempLong);
TempLong = 0;
CurrentlyWrittenIndex = FirstIndex;
}
TempLong |= (Value << BitOffset);
if (FirstIndex != SecondIndex)
{
// Part of the data is now in the second long; write the first one first
Packet.WriteBEUInt64(TempLong);
CurrentlyWrittenIndex = SecondIndex;
TempLong = (Value >> (64 - BitOffset));
}
}
// The last long will generally not be written
Packet.WriteBEUInt64(TempLong);
// Light - stored as a nibble, so we need half sizes
// As far as I know, there isn't a method to only write a range of the array
for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
{
Packet.WriteBEUInt8(m_BlockLight[(StartIndex / 2) + Index]);
}
if (m_Dimension == dimOverworld)
{
// Skylight is only sent in the overworld; the nether and end do not use it
for (size_t Index = 0; Index < ChunkSectionBlocks / 2; Index++)
{
Packet.WriteBEUInt8(m_BlockSkyLight[(StartIndex / 2) + Index]);
}
}
}
// Write the biome data
Packet.WriteBuf(m_BiomeData, BiomeDataSize);
// Identify 1.9.4's tile entity list as empty
Packet.WriteBEUInt8(0);
AString PacketData;
Packet.ReadAll(PacketData);
Packet.CommitRead();
cByteBuffer Buffer(20);
if (PacketData.size() >= 256)
{
if (!cProtocol190::CompressPacket(PacketData, a_Data))
{
ASSERT(!"Packet compression failed.");
a_Data.clear();
return;
}
}
else
{
AString PostData;
Buffer.WriteVarInt32(static_cast<UInt32>(Packet.GetUsedSpace() + 1));
Buffer.WriteVarInt32(0);
Buffer.ReadAll(PostData);
Buffer.CommitRead();
a_Data.clear();
a_Data.reserve(PostData.size() + PacketData.size());
a_Data.append(PostData.data(), PostData.size());
a_Data.append(PacketData.data(), PacketData.size());
}
}