#include "Globals.h" // NOTE: MSVC stupidness requires this to be the same across all modules
#include "Tracer.h"
#include "World.h"
#include "Entities/Entity.h"
#ifndef _WIN32
#include <stdlib.h>
#endif
const float FLOAT_EPSILON = 0.0001f; // TODO: Stash this in some header where it can be reused
const std::array<const Vector3f, 6>& cTracer::m_NormalTable(void)
{
static std::array<const Vector3f, 6>* table =
new std::array<const Vector3f, 6>
{
{
Vector3f(-1, 0, 0), // 1: -x
Vector3f( 0, 0, -1), // 2: -z
Vector3f( 1, 0, 0), // 3: +x
Vector3f( 0, 0, 1), // 4: +z
Vector3f( 0, 1, 0), // 5: +y
Vector3f( 0, -1, 0) // 6: -y
}
};
return *table;
};
cTracer::cTracer(cWorld * a_World):
m_World(a_World)
{
}
cTracer::~cTracer()
{
}
int cTracer::SigNum(float a_Num)
{
if (a_Num < 0.f)
{
return -1;
}
if (a_Num > 0.f)
{
return 1;
}
return 0;
}
void cTracer::SetValues(const Vector3f & a_Start, const Vector3f & a_Direction)
{
// Since this method should only be called by Trace, zero length vectors should already have been taken care of
ASSERT(a_Direction.HasNonZeroLength());
// calculate the direction of the ray (linear algebra)
m_Dir = a_Direction;
// decide which direction to start walking in
m_Step.x = SigNum(m_Dir.x);
m_Step.y = SigNum(m_Dir.y);
m_Step.z = SigNum(m_Dir.z);
// normalize the direction vector
m_Dir.Normalize();
// how far we must move in the ray direction before
// we encounter a new voxel in x-direction
// same but y-direction
if (m_Dir.x != 0.f)
{
m_tDelta.x = 1 / std::abs(m_Dir.x);
}
else
{
m_tDelta.x = 0;
}
if (m_Dir.y != 0.f)
{
m_tDelta.y = 1 / std::abs(m_Dir.y);
}
else
{
m_tDelta.y = 0;
}
if (m_Dir.z != 0.f)
{
m_tDelta.z = 1 / std::abs(m_Dir.z);
}
else
{
m_tDelta.z = 0;
}
// start voxel coordinates
m_Pos.x = static_cast<int>(floorf(a_Start.x));
m_Pos.y = static_cast<int>(floorf(a_Start.y));
m_Pos.z = static_cast<int>(floorf(a_Start.z));
// calculate distance to first intersection in the voxel we start from
if (m_Dir.x < 0)
{
m_tMax.x = (static_cast<float>(m_Pos.x) - a_Start.x) / m_Dir.x;
}
else
{
m_tMax.x = (static_cast<float>(m_Pos.x + 1) - a_Start.x) / m_Dir.x; // TODO: Possible division by zero
}
if (m_Dir.y < 0)
{
m_tMax.y = (static_cast<float>(m_Pos.y) - a_Start.y) / m_Dir.y;
}
else
{
m_tMax.y = (static_cast<float>(m_Pos.y + 1) - a_Start.y) / m_Dir.y; // TODO: Possible division by zero
}
if (m_Dir.z < 0)
{
m_tMax.z = (static_cast<float>(m_Pos.z) - a_Start.z) / m_Dir.z;
}
else
{
m_tMax.z = (static_cast<float>(m_Pos.z + 1) - a_Start.z) / m_Dir.z; // TODO: Possible division by zero
}
}
bool cTracer::Trace(const Vector3f & a_Start, const Vector3f & a_Direction, int a_Distance, bool a_LineOfSight)
{
if (!a_Direction.HasNonZeroLength())
{
return false;
}
if ((a_Start.y < 0) || (a_Start.y >= cChunkDef::Height))
{
LOGD("%s: Start Y is outside the world (%.2f), not tracing.", __FUNCTION__, a_Start.y);
return false;
}
SetValues(a_Start, a_Direction);
Vector3f End = a_Start + (m_Dir * static_cast<float>(a_Distance));
if (End.y < 0)
{
float dist = -a_Start.y / m_Dir.y; // No division by 0 possible
End = a_Start + (m_Dir * dist);
}
// end voxel coordinates
m_End1.x = static_cast<int>(floorf(End.x));
m_End1.y = static_cast<int>(floorf(End.y));
m_End1.z = static_cast<int>(floorf(End.z));
// check if first is occupied
if (m_Pos.Equals(m_End1))
{
return false;
}
bool reachedX = false, reachedY = false, reachedZ = false;
int Iterations = 0;
while (Iterations < a_Distance)
{
Iterations++;
if ((m_tMax.x < m_tMax.y) && (m_tMax.x < m_tMax.z))
{
m_tMax.x += m_tDelta.x;
m_Pos.x += m_Step.x;
}
else if (m_tMax.y < m_tMax.z)
{
m_tMax.y += m_tDelta.y;
m_Pos.y += m_Step.y;
}
else
{
m_tMax.z += m_tDelta.z;
m_Pos.z += m_Step.z;
}
if (m_Step.x > 0.0f)
{
if (m_Pos.x >= m_End1.x)
{
reachedX = true;
}
}
else if (m_Pos.x <= m_End1.x)
{
reachedX = true;
}
if (m_Step.y > 0.0f)
{
if (m_Pos.y >= m_End1.y)
{
reachedY = true;
}
}
else if (m_Pos.y <= m_End1.y)
{
reachedY = true;
}
if (m_Step.z > 0.0f)
{
if (m_Pos.z >= m_End1.z)
{
reachedZ = true;
}
}
else if (m_Pos.z <= m_End1.z)
{
reachedZ = true;
}
if (reachedX && reachedY && reachedZ)
{
return false;
}
if ((m_Pos.y < 0) || (m_Pos.y >= cChunkDef::Height))
{
return false;
}
BLOCKTYPE BlockID = m_World->GetBlock(m_Pos);
// Block is counted as a collision if we are not doing a line of sight and it is solid,
// or if the block is not air and not water. That way mobs can still see underwater.
if ((!a_LineOfSight && cBlockInfo::IsSolid(BlockID)) || (a_LineOfSight && (BlockID != E_BLOCK_AIR) && !IsBlockWater(BlockID)))
{
BlockHitPosition = m_Pos;
int Normal = GetHitNormal(a_Start, End, m_Pos);
if (Normal > 0)
{
HitNormal = m_NormalTable()[static_cast<size_t>(Normal - 1)];
}
return true;
}
}
return false;
}
// return 1 = hit, other is not hit
static int LinesCross(float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3)
{
// float linx, liny;
float d = (x1 - x0) * (y3 - y2) - (y1 - y0) * (x3 - x2);
if (std::abs(d) < 0.001)
{
return 0;
}
float AB = ((y0 - y2) * (x3 - x2) - (x0 - x2) * (y3 - y2)) / d;
if ((AB >= 0.0) && (AB <= 1.0))
{
float CD = ((y0 - y2) * (x1 - x0) - (x0 - x2) * (y1 - y0)) / d;
if ((CD >= 0.0) && (CD <= 1.0))
{
// linx = x0 + AB * (x1 - x0);
// liny = y0 + AB * (y1 - y0);
return 1;
}
}
return 0;
}
// intersect3D_SegmentPlane(): intersect a segment and a plane
// Input: a_Ray = a segment, and a_Plane = a plane = {Point V0; Vector n;}
// Output: *I0 = the intersect point (when it exists)
// Return: 0 = disjoint (no intersection)
// 1 = intersection in the unique point *I0
// 2 = the segment lies in the plane
int cTracer::intersect3D_SegmentPlane(const Vector3f & a_Origin, const Vector3f & a_End, const Vector3f & a_PlanePos, const Vector3f & a_PlaneNormal)
{
Vector3f u = a_End - a_Origin; // a_Ray.P1 - S.P0;
Vector3f w = a_Origin - a_PlanePos; // S.P0 - Pn.V0;
float D = a_PlaneNormal.Dot(u); // dot(Pn.n, u);
float N = -(a_PlaneNormal.Dot(w)); // -dot(a_Plane.n, w);
if (std::abs(D) < FLOAT_EPSILON)
{
// segment is parallel to plane
if (N == 0.0)
{
// segment lies in plane
return 2;
}
return 0; // no intersection
}
// they are not parallel
// compute intersect param
float sI = N / D;
if ((sI < 0) || (sI > 1))
{
return 0; // no intersection
}
// Vector3f I (a_Ray->GetOrigin() + sI * u);// S.P0 + sI * u; // compute segment intersect point
RealHit = a_Origin + u * sI;
return 1;
}
int cTracer::GetHitNormal(const Vector3f & a_Start, const Vector3f & a_End, const Vector3i & a_BlockPos)
{
Vector3i SmallBlockPos = a_BlockPos;
BLOCKTYPE BlockID = static_cast<BLOCKTYPE>(m_World->GetBlock(a_BlockPos.x, a_BlockPos.y, a_BlockPos.z));
if ((BlockID == E_BLOCK_AIR) || IsBlockWater(BlockID))
{
return 0;
}
Vector3f BlockPos;
BlockPos = Vector3f(SmallBlockPos);
Vector3f Look = (a_End - a_Start);
Look.Normalize();
float dot = Look.Dot(Vector3f(-1, 0, 0)); // first face normal is x -1
if (dot < 0)
{
int Lines = LinesCross(a_Start.x, a_Start.y, a_End.x, a_End.y, BlockPos.x, BlockPos.y, BlockPos.x, BlockPos.y + 1);
if (Lines == 1)
{
Lines = LinesCross(a_Start.x, a_Start.z, a_End.x, a_End.z, BlockPos.x, BlockPos.z, BlockPos.x, BlockPos.z + 1);
if (Lines == 1)
{
intersect3D_SegmentPlane(a_Start, a_End, BlockPos, Vector3f(-1, 0, 0));
return 1;
}
}
}
dot = Look.Dot(Vector3f(0, 0, -1)); // second face normal is z -1
if (dot < 0)
{
int Lines = LinesCross(a_Start.z, a_Start.y, a_End.z, a_End.y, BlockPos.z, BlockPos.y, BlockPos.z, BlockPos.y + 1);
if (Lines == 1)
{
Lines = LinesCross(a_Start.z, a_Start.x, a_End.z, a_End.x, BlockPos.z, BlockPos.x, BlockPos.z, BlockPos.x + 1);
if (Lines == 1)
{
intersect3D_SegmentPlane(a_Start, a_End, BlockPos, Vector3f(0, 0, -1));
return 2;
}
}
}
dot = Look.Dot(Vector3f(1, 0, 0)); // third face normal is x 1
if (dot < 0)
{
int Lines = LinesCross(a_Start.x, a_Start.y, a_End.x, a_End.y, BlockPos.x + 1, BlockPos.y, BlockPos.x + 1, BlockPos.y + 1);
if (Lines == 1)
{
Lines = LinesCross(a_Start.x, a_Start.z, a_End.x, a_End.z, BlockPos.x + 1, BlockPos.z, BlockPos.x + 1, BlockPos.z + 1);
if (Lines == 1)
{
intersect3D_SegmentPlane(a_Start, a_End, BlockPos + Vector3f(1, 0, 0), Vector3f(1, 0, 0));
return 3;
}
}
}
dot = Look.Dot(Vector3f(0, 0, 1)); // fourth face normal is z 1
if (dot < 0)
{
int Lines = LinesCross(a_Start.z, a_Start.y, a_End.z, a_End.y, BlockPos.z + 1, BlockPos.y, BlockPos.z + 1, BlockPos.y + 1);
if (Lines == 1)
{
Lines = LinesCross(a_Start.z, a_Start.x, a_End.z, a_End.x, BlockPos.z + 1, BlockPos.x, BlockPos.z + 1, BlockPos.x + 1);
if (Lines == 1)
{
intersect3D_SegmentPlane(a_Start, a_End, BlockPos + Vector3f(0, 0, 1), Vector3f(0, 0, 1));
return 4;
}
}
}
dot = Look.Dot(Vector3f(0, 1, 0)); // fifth face normal is y 1
if (dot < 0)
{
int Lines = LinesCross(a_Start.y, a_Start.x, a_End.y, a_End.x, BlockPos.y + 1, BlockPos.x, BlockPos.y + 1, BlockPos.x + 1);
if (Lines == 1)
{
Lines = LinesCross(a_Start.y, a_Start.z, a_End.y, a_End.z, BlockPos.y + 1, BlockPos.z, BlockPos.y + 1, BlockPos.z + 1);
if (Lines == 1)
{
intersect3D_SegmentPlane(a_Start, a_End, BlockPos + Vector3f(0, 1, 0), Vector3f(0, 1, 0));
return 5;
}
}
}
dot = Look.Dot(Vector3f(0, -1, 0)); // sixth face normal is y -1
if (dot < 0)
{
int Lines = LinesCross(a_Start.y, a_Start.x, a_End.y, a_End.x, BlockPos.y, BlockPos.x, BlockPos.y, BlockPos.x + 1);
if (Lines == 1)
{
Lines = LinesCross(a_Start.y, a_Start.z, a_End.y, a_End.z, BlockPos.y, BlockPos.z, BlockPos.y, BlockPos.z + 1);
if (Lines == 1)
{
intersect3D_SegmentPlane(a_Start, a_End, BlockPos, Vector3f(0, -1, 0));
return 6;
}
}
}
return 0;
}