#pragma once
template <typename T>
// tolua_begin
class Vector3
{
TOLUA_TEMPLATE_BIND((T, int, float, double))
public:
T x, y, z;
constexpr Vector3(void) : x(0), y(0), z(0) {}
constexpr Vector3(T a_x, T a_y, T a_z) : x(a_x), y(a_y), z(a_z) {}
#ifdef TOLUA_EXPOSITION // Hardcoded copy constructors (tolua++ does not support function templates .. yet)
Vector3(const Vector3<float> & a_Rhs);
Vector3(const Vector3<double> & a_Rhs);
Vector3(const Vector3<int> & a_Rhs);
#endif
// tolua_end
// Conversion constructors where U is not the same as T leaving the copy-constructor implicitly generated
template <typename U, typename = typename std::enable_if<!std::is_same<U, T>::value>::type>
constexpr Vector3(const Vector3<U> & a_Rhs):
x(static_cast<T>(a_Rhs.x)),
y(static_cast<T>(a_Rhs.y)),
z(static_cast<T>(a_Rhs.z))
{
}
// tolua_begin
inline void Set(T a_x, T a_y, T a_z)
{
x = a_x;
y = a_y;
z = a_z;
}
inline void Normalize(void)
{
double Len = 1.0 / Length();
x = static_cast<T>(x * Len);
y = static_cast<T>(y * Len);
z = static_cast<T>(z * Len);
}
inline Vector3<T> NormalizeCopy(void) const
{
double Len = 1.0 / Length();
return Vector3<T>(
static_cast<T>(x * Len),
static_cast<T>(y * Len),
static_cast<T>(z * Len)
);
}
// tolua_end
/** Sets the given vector to the normalized version of this vector.
Removed from LuaAPI, because Lua doesn't need distinguishing from the other overload. */
inline void NormalizeCopy(Vector3<T> & a_Rhs) const
{
double Len = 1.0 / Length();
a_Rhs.Set(
static_cast<T>(x * Len),
static_cast<T>(y * Len),
static_cast<T>(z * Len)
);
}
// tolua_begin
inline bool HasNonZeroLength(void) const
{
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
#endif
return ((x != 0) || (y != 0) || (z != 0));
#ifdef __clang__
#pragma clang diagnostic pop
#endif
}
inline double Length(void) const
{
return sqrt(static_cast<double>(x * x + y * y + z * z));
}
inline double SqrLength(void) const
{
return x * x + y * y + z * z;
}
inline T Dot(const Vector3<T> & a_Rhs) const
{
return x * a_Rhs.x + y * a_Rhs.y + z * a_Rhs.z;
}
/** Updates each coord to its absolute value */
inline void Abs()
{
x = std::abs(x);
y = std::abs(y);
z = std::abs(z);
}
/** Clamps each coord into the specified range. */
inline void Clamp(T a_Min, T a_Max)
{
x = ::Clamp(x, a_Min, a_Max);
y = ::Clamp(y, a_Min, a_Max);
z = ::Clamp(z, a_Min, a_Max);
}
inline Vector3<T> Cross(const Vector3<T> & a_Rhs) const
{
return Vector3<T>(
y * a_Rhs.z - z * a_Rhs.y,
z * a_Rhs.x - x * a_Rhs.z,
x * a_Rhs.y - y * a_Rhs.x
);
}
inline bool Equals(const Vector3<T> & a_Rhs) const
{
// Perform a strict comparison of the contents - we want to know whether this object is exactly equal
// To perform EPS-based comparison, use the EqualsEps() function
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfloat-equal"
#endif
return !((x != a_Rhs.x) || (y != a_Rhs.y) || (z != a_Rhs.z));
#ifdef __clang__
#pragma clang diagnostic pop
#endif
}
inline bool EqualsEps(const Vector3<T> & a_Rhs, T a_Eps) const
{
return (std::abs(x - a_Rhs.x) < a_Eps) && (std::abs(y - a_Rhs.y) < a_Eps) && (std::abs(z - a_Rhs.z) < a_Eps);
}
inline void Move(T a_X, T a_Y, T a_Z)
{
x += a_X;
y += a_Y;
z += a_Z;
}
inline void Move(const Vector3<T> & a_Diff)
{
x += a_Diff.x;
y += a_Diff.y;
z += a_Diff.z;
}
/** Returns a new Vector3i with coords set to std::floor() of this vector's coords. */
inline Vector3<int> Floor(void) const
{
return Vector3<int>(
FloorC(x),
FloorC(y),
FloorC(z)
);
}
/** Returns a new Vector3i with coords set to std::ceil() of this vector's coords. */
inline Vector3<int> Ceil() const
{
return Vector3<int>(
CeilC(x),
CeilC(y),
CeilC(z)
);
}
// tolua_end
inline bool operator != (const Vector3<T> & a_Rhs) const
{
return !Equals(a_Rhs);
}
inline bool operator == (const Vector3<T> & a_Rhs) const
{
return Equals(a_Rhs);
}
inline bool operator > (const Vector3<T> & a_Rhs) const
{
return (SqrLength() > a_Rhs.SqrLength());
}
inline bool operator < (const Vector3<T> & a_Rhs) const
{
return (SqrLength() < a_Rhs.SqrLength());
}
inline void operator += (const Vector3<T> & a_Rhs)
{
x += a_Rhs.x;
y += a_Rhs.y;
z += a_Rhs.z;
}
inline void operator -= (const Vector3<T> & a_Rhs)
{
x -= a_Rhs.x;
y -= a_Rhs.y;
z -= a_Rhs.z;
}
inline void operator *= (const Vector3<T> & a_Rhs)
{
x *= a_Rhs.x;
y *= a_Rhs.y;
z *= a_Rhs.z;
}
inline void operator *= (T a_v)
{
x *= a_v;
y *= a_v;
z *= a_v;
}
// tolua_begin
inline Vector3<T> operator + (const Vector3<T>& a_Rhs) const
{
return Vector3<T>(
x + a_Rhs.x,
y + a_Rhs.y,
z + a_Rhs.z
);
}
inline Vector3<T> operator - (const Vector3<T>& a_Rhs) const
{
return Vector3<T>(
x - a_Rhs.x,
y - a_Rhs.y,
z - a_Rhs.z
);
}
inline Vector3<T> operator - (void) const
{
return Vector3<T>(-x, -y, -z);
}
inline Vector3<T> operator * (const Vector3<T>& a_Rhs) const
{
return Vector3<T>(
x * a_Rhs.x,
y * a_Rhs.y,
z * a_Rhs.z
);
}
inline Vector3<T> operator / (const Vector3<T> & a_Rhs)
{
return Vector3<T>(
x / a_Rhs.x,
y / a_Rhs.y,
z / a_Rhs.z
);
}
inline Vector3<T> operator * (T a_v) const
{
return Vector3<T>(
x * a_v,
y * a_v,
z * a_v
);
}
inline Vector3<T> operator / (T a_v) const
{
return Vector3<T>(
x / a_v,
y / a_v,
z / a_v
);
}
/** Returns a copy of this vector moved by the specified amount on the X axis. */
inline Vector3<T> addedX(T a_AddX) const
{
return Vector3<T>(x + a_AddX, y, z);
}
/** Returns a copy of this vector moved by the specified amount on the y axis. */
inline Vector3<T> addedY(T a_AddY) const
{
return Vector3<T>(x, y + a_AddY, z);
}
/** Returns a copy of this vector moved by the specified amount on the Z axis. */
inline Vector3<T> addedZ(T a_AddZ) const
{
return Vector3<T>(x, y, z + a_AddZ);
}
/** Returns a copy of this vector moved by the specified amount on the X and Z axes. */
inline Vector3<T> addedXZ(T a_AddX, T a_AddZ) const
{
return Vector3<T>(x + a_AddX, y, z + a_AddZ);
}
/** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified Z coord.
The result satisfies the following equation:
(*this + Result * (a_OtherEnd - *this)).z = a_Z
If the line is too close to being parallel, this function returns NO_INTERSECTION
*/
inline double LineCoeffToXYPlane(const Vector3<T> & a_OtherEnd, T a_Z) const
{
if (std::abs(z - a_OtherEnd.z) < EPS)
{
return NO_INTERSECTION;
}
return (a_Z - z) / (a_OtherEnd.z - z);
}
/** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified Y coord.
The result satisfies the following equation:
(*this + Result * (a_OtherEnd - *this)).y = a_Y
If the line is too close to being parallel, this function returns NO_INTERSECTION
*/
inline double LineCoeffToXZPlane(const Vector3<T> & a_OtherEnd, T a_Y) const
{
if (std::abs(y - a_OtherEnd.y) < EPS)
{
return NO_INTERSECTION;
}
return (a_Y - y) / (a_OtherEnd.y - y);
}
/** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified X coord.
The result satisfies the following equation:
(*this + Result * (a_OtherEnd - *this)).x = a_X
If the line is too close to being parallel, this function returns NO_INTERSECTION
*/
inline double LineCoeffToYZPlane(const Vector3<T> & a_OtherEnd, T a_X) const
{
if (std::abs(x - a_OtherEnd.x) < EPS)
{
return NO_INTERSECTION;
}
return (a_X - x) / (a_OtherEnd.x - x);
}
/** Rotates the vector 90 degrees clockwise around the vertical axis.
Note that this is specific to minecraft's axis ordering, which is X+ left, Z+ down. */
inline void TurnCW(void)
{
std::swap(x, z);
x = -x;
}
/** Rotates the vector 90 degrees counterclockwise around the vertical axis.
Note that this is specific to minecraft's axis ordering, which is X+ left, Z+ down. */
inline void TurnCCW(void)
{
std::swap(x, z);
z = -z;
}
/** The max difference between two coords for which the coords are assumed equal. */
static const double EPS;
/** Return value of LineCoeffToPlane() if the line is parallel to the plane. */
static const double NO_INTERSECTION;
};
// tolua_end
/** Allows formatting a Vector<T> using the same format specifiers as for T
e.g. `fmt::format("{0:0.2f}", Vector3f{0.0231f, 1.2146f, 1.0f}) == "{0.02, 1.21, 1.00}"` */
template <typename What>
class fmt::formatter<Vector3<What>> : public fmt::formatter<What>
{
using Super = fmt::formatter<What>;
template <typename FormatContext, size_t Len>
void Write(FormatContext & a_Ctx, const char (& a_Str)[Len])
{
const auto Itr = std::copy_n(&a_Str[0], Len - 1, a_Ctx.out());
a_Ctx.advance_to(Itr);
}
template <typename FormatContext>
void Write(FormatContext & a_Ctx, const What & a_Arg)
{
const auto Itr = Super::format(a_Arg, a_Ctx);
a_Ctx.advance_to(Itr);
}
public:
template <typename FormatContext>
auto format(const Vector3<What> & a_Vec, FormatContext & a_Ctx)
{
Write(a_Ctx, "{");
Write(a_Ctx, a_Vec.x);
Write(a_Ctx, ", ");
Write(a_Ctx, a_Vec.y);
Write(a_Ctx, ", ");
Write(a_Ctx, a_Vec.z);
Write(a_Ctx, "}");
return a_Ctx.out();
}
};
template <> inline Vector3<int> Vector3<int>::Floor(void) const
{
return *this;
}
template <typename What>
class VectorHasher
{
public:
/** Provides a hash of a vector's contents */
size_t operator()(const Vector3<What> & a_Vector) const
{
// Guaranteed to have non repeating hashes for any 128x128x128 area
size_t Hash = static_cast<size_t>(a_Vector.y);
Hash <<= 16;
Hash ^= static_cast<size_t>(a_Vector.x);
Hash ^= static_cast<size_t>(a_Vector.z) << 8;
return Hash;
}
};
template <typename T>
const double Vector3<T>::EPS = 0.000001;
template <typename T>
const double Vector3<T>::NO_INTERSECTION = 1e70;
// tolua_begin
typedef Vector3<double> Vector3d;
typedef Vector3<float> Vector3f;
typedef Vector3<int> Vector3i;
// tolua_end
typedef std::vector<Vector3i> cVector3iArray;