summaryrefslogtreecommitdiffstats
path: root/source/LinearInterpolation.cpp
diff options
context:
space:
mode:
authorAlexander Harkness <bearbin@gmail.com>2013-07-29 13:13:03 +0200
committerAlexander Harkness <bearbin@gmail.com>2013-07-29 13:13:03 +0200
commit53e22b11857fed62e2313d6d84d90f88ed412ffb (patch)
treec61e56725da7dff0154d566722651e2c39c9d6c6 /source/LinearInterpolation.cpp
parentWebAdmin: Removed the duplicate memory usage querying (diff)
downloadcuberite-53e22b11857fed62e2313d6d84d90f88ed412ffb.tar
cuberite-53e22b11857fed62e2313d6d84d90f88ed412ffb.tar.gz
cuberite-53e22b11857fed62e2313d6d84d90f88ed412ffb.tar.bz2
cuberite-53e22b11857fed62e2313d6d84d90f88ed412ffb.tar.lz
cuberite-53e22b11857fed62e2313d6d84d90f88ed412ffb.tar.xz
cuberite-53e22b11857fed62e2313d6d84d90f88ed412ffb.tar.zst
cuberite-53e22b11857fed62e2313d6d84d90f88ed412ffb.zip
Diffstat (limited to '')
-rw-r--r--source/LinearInterpolation.cpp502
1 files changed, 251 insertions, 251 deletions
diff --git a/source/LinearInterpolation.cpp b/source/LinearInterpolation.cpp
index d4536662e..d4975418b 100644
--- a/source/LinearInterpolation.cpp
+++ b/source/LinearInterpolation.cpp
@@ -1,251 +1,251 @@
-
-// LinearInterpolation.cpp
-
-// Implements methods for linear interpolation over 1D, 2D and 3D arrays
-
-#include "Globals.h"
-#include "LinearInterpolation.h"
-
-
-
-
-
-/*
-// Perform an automatic test upon program start (use breakpoints to debug):
-
-extern void Debug3DNoise(float * a_Noise, int a_SizeX, int a_SizeY, int a_SizeZ, const AString & a_FileNameBase);
-
-class Test
-{
-public:
- Test(void)
- {
- // DoTest1();
- DoTest2();
- }
-
-
- void DoTest1(void)
- {
- float In[8] = {0, 1, 2, 3, 1, 2, 2, 2};
- float Out[3 * 3 * 3];
- LinearInterpolate1DArray(In, 4, Out, 9);
- LinearInterpolate2DArray(In, 2, 2, Out, 3, 3);
- LinearInterpolate3DArray(In, 2, 2, 2, Out, 3, 3, 3);
- LOGD("Out[0]: %f", Out[0]);
- }
-
-
- void DoTest2(void)
- {
- float In[3 * 3 * 3];
- for (int i = 0; i < ARRAYCOUNT(In); i++)
- {
- In[i] = (float)(i % 5);
- }
- float Out[15 * 16 * 17];
- LinearInterpolate3DArray(In, 3, 3, 3, Out, 15, 16, 17);
- Debug3DNoise(Out, 15, 16, 17, "LERP test");
- }
-} gTest;
-//*/
-
-
-
-
-
-// Puts linearly interpolated values from one array into another array. 1D version
-void LinearInterpolate1DArray(
- float * a_Src,
- int a_SrcSizeX,
- float * a_Dst,
- int a_DstSizeX
-)
-{
- a_Dst[0] = a_Src[0];
- int DstSizeXm1 = a_DstSizeX - 1;
- int SrcSizeXm1 = a_SrcSizeX - 1;
- float fDstSizeXm1 = (float)DstSizeXm1;
- float fSrcSizeXm1 = (float)SrcSizeXm1;
- for (int x = 1; x < DstSizeXm1; x++)
- {
- int SrcIdx = x * SrcSizeXm1 / DstSizeXm1;
- float ValLo = a_Src[SrcIdx];
- float ValHi = a_Src[SrcIdx + 1];
- float Ratio = (float)x * fSrcSizeXm1 / fDstSizeXm1 - SrcIdx;
- a_Dst[x] = ValLo + (ValHi - ValLo) * Ratio;
- }
- a_Dst[a_DstSizeX - 1] = a_Src[a_SrcSizeX - 1];
-}
-
-
-
-
-
-// Puts linearly interpolated values from one array into another array. 2D version
-void LinearInterpolate2DArray(
- float * a_Src,
- int a_SrcSizeX, int a_SrcSizeY,
- float * a_Dst,
- int a_DstSizeX, int a_DstSizeY
-)
-{
- ASSERT(a_DstSizeX > 0);
- ASSERT(a_DstSizeX < MAX_INTERPOL_SIZEX);
- ASSERT(a_DstSizeY > 0);
- ASSERT(a_DstSizeY < MAX_INTERPOL_SIZEY);
-
- // Calculate interpolation ratios and src indices along each axis:
- float RatioX[MAX_INTERPOL_SIZEX];
- float RatioY[MAX_INTERPOL_SIZEY];
- int SrcIdxX[MAX_INTERPOL_SIZEX];
- int SrcIdxY[MAX_INTERPOL_SIZEY];
- for (int x = 1; x < a_DstSizeX; x++)
- {
- SrcIdxX[x] = x * (a_SrcSizeX - 1) / (a_DstSizeX - 1);
- RatioX[x] = ((float)(x * (a_SrcSizeX - 1)) / (a_DstSizeX - 1)) - SrcIdxX[x];
- }
- for (int y = 1; y < a_DstSizeY; y++)
- {
- SrcIdxY[y] = y * (a_SrcSizeY - 1) / (a_DstSizeY - 1);
- RatioY[y] = ((float)(y * (a_SrcSizeY - 1)) / (a_DstSizeY - 1)) - SrcIdxY[y];
- }
-
- // Special values at the ends. Notice especially the last indices being (size - 2) with ratio set to 1, to avoid index overflow:
- SrcIdxX[0] = 0;
- RatioX[0] = 0;
- SrcIdxY[0] = 0;
- RatioY[0] = 0;
- SrcIdxX[a_DstSizeX - 1] = a_SrcSizeX - 2;
- RatioX[a_DstSizeX - 1] = 1;
- SrcIdxY[a_DstSizeY - 1] = a_SrcSizeY - 2;
- RatioY[a_DstSizeY - 1] = 1;
-
- // Output all the dst array values using the indices and ratios:
- int idx = 0;
- for (int y = 0; y < a_DstSizeY; y++)
- {
- int idxLoY = a_SrcSizeX * SrcIdxY[y];
- int idxHiY = a_SrcSizeX * (SrcIdxY[y] + 1);
- float ry = RatioY[y];
- for (int x = 0; x < a_DstSizeX; x++)
- {
- // The four src corners of the current "cell":
- float LoXLoY = a_Src[SrcIdxX[x] + idxLoY];
- float HiXLoY = a_Src[SrcIdxX[x] + 1 + idxLoY];
- float LoXHiY = a_Src[SrcIdxX[x] + idxHiY];
- float HiXHiY = a_Src[SrcIdxX[x] + 1 + idxHiY];
-
- // Linear interpolation along the X axis:
- float InterpXLoY = LoXLoY + (HiXLoY - LoXLoY) * RatioX[x];
- float InterpXHiY = LoXHiY + (HiXHiY - LoXHiY) * RatioX[x];
-
- // Linear interpolation along the Y axis:
- a_Dst[idx] = InterpXLoY + (InterpXHiY - InterpXLoY) * ry;
- idx += 1;
- }
- }
-}
-
-
-
-
-
-/// Puts linearly interpolated values from one array into another array. 3D version
-void LinearInterpolate3DArray(
- float * a_Src,
- int a_SrcSizeX, int a_SrcSizeY, int a_SrcSizeZ,
- float * a_Dst,
- int a_DstSizeX, int a_DstSizeY, int a_DstSizeZ
-)
-{
- ASSERT(a_DstSizeX > 0);
- ASSERT(a_DstSizeX < MAX_INTERPOL_SIZEX);
- ASSERT(a_DstSizeY > 0);
- ASSERT(a_DstSizeY < MAX_INTERPOL_SIZEY);
- ASSERT(a_DstSizeZ > 0);
- ASSERT(a_DstSizeZ < MAX_INTERPOL_SIZEZ);
-
- // Calculate interpolation ratios and src indices along each axis:
- float RatioX[MAX_INTERPOL_SIZEX];
- float RatioY[MAX_INTERPOL_SIZEY];
- float RatioZ[MAX_INTERPOL_SIZEZ];
- int SrcIdxX[MAX_INTERPOL_SIZEX];
- int SrcIdxY[MAX_INTERPOL_SIZEY];
- int SrcIdxZ[MAX_INTERPOL_SIZEZ];
- for (int x = 1; x < a_DstSizeX; x++)
- {
- SrcIdxX[x] = x * (a_SrcSizeX - 1) / (a_DstSizeX - 1);
- RatioX[x] = ((float)(x * (a_SrcSizeX - 1)) / (a_DstSizeX - 1)) - SrcIdxX[x];
- }
- for (int y = 1; y < a_DstSizeY; y++)
- {
- SrcIdxY[y] = y * (a_SrcSizeY - 1) / (a_DstSizeY - 1);
- RatioY[y] = ((float)(y * (a_SrcSizeY - 1)) / (a_DstSizeY - 1)) - SrcIdxY[y];
- }
- for (int z = 1; z < a_DstSizeZ; z++)
- {
- SrcIdxZ[z] = z * (a_SrcSizeZ - 1) / (a_DstSizeZ - 1);
- RatioZ[z] = ((float)(z * (a_SrcSizeZ - 1)) / (a_DstSizeZ - 1)) - SrcIdxZ[z];
- }
-
- // Special values at the ends. Notice especially the last indices being (size - 2) with ratio set to 1, to avoid index overflow:
- SrcIdxX[0] = 0;
- RatioX[0] = 0;
- SrcIdxY[0] = 0;
- RatioY[0] = 0;
- SrcIdxZ[0] = 0;
- RatioZ[0] = 0;
- SrcIdxX[a_DstSizeX - 1] = a_SrcSizeX - 2;
- RatioX[a_DstSizeX - 1] = 1;
- SrcIdxY[a_DstSizeY - 1] = a_SrcSizeY - 2;
- RatioY[a_DstSizeY - 1] = 1;
- SrcIdxZ[a_DstSizeZ - 1] = a_SrcSizeZ - 2;
- RatioZ[a_DstSizeZ - 1] = 1;
-
- // Output all the dst array values using the indices and ratios:
- int idx = 0;
- for (int z = 0; z < a_DstSizeZ; z++)
- {
- int idxLoZ = a_SrcSizeX * a_SrcSizeY * SrcIdxZ[z];
- int idxHiZ = a_SrcSizeX * a_SrcSizeY * (SrcIdxZ[z] + 1);
- float rz = RatioZ[z];
- for (int y = 0; y < a_DstSizeY; y++)
- {
- int idxLoY = a_SrcSizeX * SrcIdxY[y];
- int idxHiY = a_SrcSizeX * (SrcIdxY[y] + 1);
- float ry = RatioY[y];
- for (int x = 0; x < a_DstSizeX; x++)
- {
- // The eight src corners of the current "cell":
- float LoXLoYLoZ = a_Src[SrcIdxX[x] + idxLoY + idxLoZ];
- float HiXLoYLoZ = a_Src[SrcIdxX[x] + 1 + idxLoY + idxLoZ];
- float LoXHiYLoZ = a_Src[SrcIdxX[x] + idxHiY + idxLoZ];
- float HiXHiYLoZ = a_Src[SrcIdxX[x] + 1 + idxHiY + idxLoZ];
- float LoXLoYHiZ = a_Src[SrcIdxX[x] + idxLoY + idxHiZ];
- float HiXLoYHiZ = a_Src[SrcIdxX[x] + 1 + idxLoY + idxHiZ];
- float LoXHiYHiZ = a_Src[SrcIdxX[x] + idxHiY + idxHiZ];
- float HiXHiYHiZ = a_Src[SrcIdxX[x] + 1 + idxHiY + idxHiZ];
-
- // Linear interpolation along the Z axis:
- float LoXLoYInZ = LoXLoYLoZ + (LoXLoYHiZ - LoXLoYLoZ) * rz;
- float HiXLoYInZ = HiXLoYLoZ + (HiXLoYHiZ - HiXLoYLoZ) * rz;
- float LoXHiYInZ = LoXHiYLoZ + (LoXHiYHiZ - LoXHiYLoZ) * rz;
- float HiXHiYInZ = HiXHiYLoZ + (HiXHiYHiZ - HiXHiYLoZ) * rz;
-
- // Linear interpolation along the Y axis:
- float LoXInYInZ = LoXLoYInZ + (LoXHiYInZ - LoXLoYInZ) * ry;
- float HiXInYInZ = HiXLoYInZ + (HiXHiYInZ - HiXLoYInZ) * ry;
-
- // Linear interpolation along the X axis:
- a_Dst[idx] = LoXInYInZ + (HiXInYInZ - LoXInYInZ) * RatioX[x];
- idx += 1;
- } // for x
- } // for y
- } // for z
-}
-
-
-
-
-
+
+// LinearInterpolation.cpp
+
+// Implements methods for linear interpolation over 1D, 2D and 3D arrays
+
+#include "Globals.h"
+#include "LinearInterpolation.h"
+
+
+
+
+
+/*
+// Perform an automatic test upon program start (use breakpoints to debug):
+
+extern void Debug3DNoise(float * a_Noise, int a_SizeX, int a_SizeY, int a_SizeZ, const AString & a_FileNameBase);
+
+class Test
+{
+public:
+ Test(void)
+ {
+ // DoTest1();
+ DoTest2();
+ }
+
+
+ void DoTest1(void)
+ {
+ float In[8] = {0, 1, 2, 3, 1, 2, 2, 2};
+ float Out[3 * 3 * 3];
+ LinearInterpolate1DArray(In, 4, Out, 9);
+ LinearInterpolate2DArray(In, 2, 2, Out, 3, 3);
+ LinearInterpolate3DArray(In, 2, 2, 2, Out, 3, 3, 3);
+ LOGD("Out[0]: %f", Out[0]);
+ }
+
+
+ void DoTest2(void)
+ {
+ float In[3 * 3 * 3];
+ for (int i = 0; i < ARRAYCOUNT(In); i++)
+ {
+ In[i] = (float)(i % 5);
+ }
+ float Out[15 * 16 * 17];
+ LinearInterpolate3DArray(In, 3, 3, 3, Out, 15, 16, 17);
+ Debug3DNoise(Out, 15, 16, 17, "LERP test");
+ }
+} gTest;
+//*/
+
+
+
+
+
+// Puts linearly interpolated values from one array into another array. 1D version
+void LinearInterpolate1DArray(
+ float * a_Src,
+ int a_SrcSizeX,
+ float * a_Dst,
+ int a_DstSizeX
+)
+{
+ a_Dst[0] = a_Src[0];
+ int DstSizeXm1 = a_DstSizeX - 1;
+ int SrcSizeXm1 = a_SrcSizeX - 1;
+ float fDstSizeXm1 = (float)DstSizeXm1;
+ float fSrcSizeXm1 = (float)SrcSizeXm1;
+ for (int x = 1; x < DstSizeXm1; x++)
+ {
+ int SrcIdx = x * SrcSizeXm1 / DstSizeXm1;
+ float ValLo = a_Src[SrcIdx];
+ float ValHi = a_Src[SrcIdx + 1];
+ float Ratio = (float)x * fSrcSizeXm1 / fDstSizeXm1 - SrcIdx;
+ a_Dst[x] = ValLo + (ValHi - ValLo) * Ratio;
+ }
+ a_Dst[a_DstSizeX - 1] = a_Src[a_SrcSizeX - 1];
+}
+
+
+
+
+
+// Puts linearly interpolated values from one array into another array. 2D version
+void LinearInterpolate2DArray(
+ float * a_Src,
+ int a_SrcSizeX, int a_SrcSizeY,
+ float * a_Dst,
+ int a_DstSizeX, int a_DstSizeY
+)
+{
+ ASSERT(a_DstSizeX > 0);
+ ASSERT(a_DstSizeX < MAX_INTERPOL_SIZEX);
+ ASSERT(a_DstSizeY > 0);
+ ASSERT(a_DstSizeY < MAX_INTERPOL_SIZEY);
+
+ // Calculate interpolation ratios and src indices along each axis:
+ float RatioX[MAX_INTERPOL_SIZEX];
+ float RatioY[MAX_INTERPOL_SIZEY];
+ int SrcIdxX[MAX_INTERPOL_SIZEX];
+ int SrcIdxY[MAX_INTERPOL_SIZEY];
+ for (int x = 1; x < a_DstSizeX; x++)
+ {
+ SrcIdxX[x] = x * (a_SrcSizeX - 1) / (a_DstSizeX - 1);
+ RatioX[x] = ((float)(x * (a_SrcSizeX - 1)) / (a_DstSizeX - 1)) - SrcIdxX[x];
+ }
+ for (int y = 1; y < a_DstSizeY; y++)
+ {
+ SrcIdxY[y] = y * (a_SrcSizeY - 1) / (a_DstSizeY - 1);
+ RatioY[y] = ((float)(y * (a_SrcSizeY - 1)) / (a_DstSizeY - 1)) - SrcIdxY[y];
+ }
+
+ // Special values at the ends. Notice especially the last indices being (size - 2) with ratio set to 1, to avoid index overflow:
+ SrcIdxX[0] = 0;
+ RatioX[0] = 0;
+ SrcIdxY[0] = 0;
+ RatioY[0] = 0;
+ SrcIdxX[a_DstSizeX - 1] = a_SrcSizeX - 2;
+ RatioX[a_DstSizeX - 1] = 1;
+ SrcIdxY[a_DstSizeY - 1] = a_SrcSizeY - 2;
+ RatioY[a_DstSizeY - 1] = 1;
+
+ // Output all the dst array values using the indices and ratios:
+ int idx = 0;
+ for (int y = 0; y < a_DstSizeY; y++)
+ {
+ int idxLoY = a_SrcSizeX * SrcIdxY[y];
+ int idxHiY = a_SrcSizeX * (SrcIdxY[y] + 1);
+ float ry = RatioY[y];
+ for (int x = 0; x < a_DstSizeX; x++)
+ {
+ // The four src corners of the current "cell":
+ float LoXLoY = a_Src[SrcIdxX[x] + idxLoY];
+ float HiXLoY = a_Src[SrcIdxX[x] + 1 + idxLoY];
+ float LoXHiY = a_Src[SrcIdxX[x] + idxHiY];
+ float HiXHiY = a_Src[SrcIdxX[x] + 1 + idxHiY];
+
+ // Linear interpolation along the X axis:
+ float InterpXLoY = LoXLoY + (HiXLoY - LoXLoY) * RatioX[x];
+ float InterpXHiY = LoXHiY + (HiXHiY - LoXHiY) * RatioX[x];
+
+ // Linear interpolation along the Y axis:
+ a_Dst[idx] = InterpXLoY + (InterpXHiY - InterpXLoY) * ry;
+ idx += 1;
+ }
+ }
+}
+
+
+
+
+
+/// Puts linearly interpolated values from one array into another array. 3D version
+void LinearInterpolate3DArray(
+ float * a_Src,
+ int a_SrcSizeX, int a_SrcSizeY, int a_SrcSizeZ,
+ float * a_Dst,
+ int a_DstSizeX, int a_DstSizeY, int a_DstSizeZ
+)
+{
+ ASSERT(a_DstSizeX > 0);
+ ASSERT(a_DstSizeX < MAX_INTERPOL_SIZEX);
+ ASSERT(a_DstSizeY > 0);
+ ASSERT(a_DstSizeY < MAX_INTERPOL_SIZEY);
+ ASSERT(a_DstSizeZ > 0);
+ ASSERT(a_DstSizeZ < MAX_INTERPOL_SIZEZ);
+
+ // Calculate interpolation ratios and src indices along each axis:
+ float RatioX[MAX_INTERPOL_SIZEX];
+ float RatioY[MAX_INTERPOL_SIZEY];
+ float RatioZ[MAX_INTERPOL_SIZEZ];
+ int SrcIdxX[MAX_INTERPOL_SIZEX];
+ int SrcIdxY[MAX_INTERPOL_SIZEY];
+ int SrcIdxZ[MAX_INTERPOL_SIZEZ];
+ for (int x = 1; x < a_DstSizeX; x++)
+ {
+ SrcIdxX[x] = x * (a_SrcSizeX - 1) / (a_DstSizeX - 1);
+ RatioX[x] = ((float)(x * (a_SrcSizeX - 1)) / (a_DstSizeX - 1)) - SrcIdxX[x];
+ }
+ for (int y = 1; y < a_DstSizeY; y++)
+ {
+ SrcIdxY[y] = y * (a_SrcSizeY - 1) / (a_DstSizeY - 1);
+ RatioY[y] = ((float)(y * (a_SrcSizeY - 1)) / (a_DstSizeY - 1)) - SrcIdxY[y];
+ }
+ for (int z = 1; z < a_DstSizeZ; z++)
+ {
+ SrcIdxZ[z] = z * (a_SrcSizeZ - 1) / (a_DstSizeZ - 1);
+ RatioZ[z] = ((float)(z * (a_SrcSizeZ - 1)) / (a_DstSizeZ - 1)) - SrcIdxZ[z];
+ }
+
+ // Special values at the ends. Notice especially the last indices being (size - 2) with ratio set to 1, to avoid index overflow:
+ SrcIdxX[0] = 0;
+ RatioX[0] = 0;
+ SrcIdxY[0] = 0;
+ RatioY[0] = 0;
+ SrcIdxZ[0] = 0;
+ RatioZ[0] = 0;
+ SrcIdxX[a_DstSizeX - 1] = a_SrcSizeX - 2;
+ RatioX[a_DstSizeX - 1] = 1;
+ SrcIdxY[a_DstSizeY - 1] = a_SrcSizeY - 2;
+ RatioY[a_DstSizeY - 1] = 1;
+ SrcIdxZ[a_DstSizeZ - 1] = a_SrcSizeZ - 2;
+ RatioZ[a_DstSizeZ - 1] = 1;
+
+ // Output all the dst array values using the indices and ratios:
+ int idx = 0;
+ for (int z = 0; z < a_DstSizeZ; z++)
+ {
+ int idxLoZ = a_SrcSizeX * a_SrcSizeY * SrcIdxZ[z];
+ int idxHiZ = a_SrcSizeX * a_SrcSizeY * (SrcIdxZ[z] + 1);
+ float rz = RatioZ[z];
+ for (int y = 0; y < a_DstSizeY; y++)
+ {
+ int idxLoY = a_SrcSizeX * SrcIdxY[y];
+ int idxHiY = a_SrcSizeX * (SrcIdxY[y] + 1);
+ float ry = RatioY[y];
+ for (int x = 0; x < a_DstSizeX; x++)
+ {
+ // The eight src corners of the current "cell":
+ float LoXLoYLoZ = a_Src[SrcIdxX[x] + idxLoY + idxLoZ];
+ float HiXLoYLoZ = a_Src[SrcIdxX[x] + 1 + idxLoY + idxLoZ];
+ float LoXHiYLoZ = a_Src[SrcIdxX[x] + idxHiY + idxLoZ];
+ float HiXHiYLoZ = a_Src[SrcIdxX[x] + 1 + idxHiY + idxLoZ];
+ float LoXLoYHiZ = a_Src[SrcIdxX[x] + idxLoY + idxHiZ];
+ float HiXLoYHiZ = a_Src[SrcIdxX[x] + 1 + idxLoY + idxHiZ];
+ float LoXHiYHiZ = a_Src[SrcIdxX[x] + idxHiY + idxHiZ];
+ float HiXHiYHiZ = a_Src[SrcIdxX[x] + 1 + idxHiY + idxHiZ];
+
+ // Linear interpolation along the Z axis:
+ float LoXLoYInZ = LoXLoYLoZ + (LoXLoYHiZ - LoXLoYLoZ) * rz;
+ float HiXLoYInZ = HiXLoYLoZ + (HiXLoYHiZ - HiXLoYLoZ) * rz;
+ float LoXHiYInZ = LoXHiYLoZ + (LoXHiYHiZ - LoXHiYLoZ) * rz;
+ float HiXHiYInZ = HiXHiYLoZ + (HiXHiYHiZ - HiXHiYLoZ) * rz;
+
+ // Linear interpolation along the Y axis:
+ float LoXInYInZ = LoXLoYInZ + (LoXHiYInZ - LoXLoYInZ) * ry;
+ float HiXInYInZ = HiXLoYInZ + (HiXHiYInZ - HiXLoYInZ) * ry;
+
+ // Linear interpolation along the X axis:
+ a_Dst[idx] = LoXInYInZ + (HiXInYInZ - LoXInYInZ) * RatioX[x];
+ idx += 1;
+ } // for x
+ } // for y
+ } // for z
+}
+
+
+
+
+