diff options
Diffstat (limited to 'CryptoPP/algebra.h')
-rw-r--r-- | CryptoPP/algebra.h | 285 |
1 files changed, 0 insertions, 285 deletions
diff --git a/CryptoPP/algebra.h b/CryptoPP/algebra.h deleted file mode 100644 index 13038bd80..000000000 --- a/CryptoPP/algebra.h +++ /dev/null @@ -1,285 +0,0 @@ -#ifndef CRYPTOPP_ALGEBRA_H -#define CRYPTOPP_ALGEBRA_H - -#include "config.h" - -NAMESPACE_BEGIN(CryptoPP) - -class Integer; - -// "const Element&" returned by member functions are references -// to internal data members. Since each object may have only -// one such data member for holding results, the following code -// will produce incorrect results: -// abcd = group.Add(group.Add(a,b), group.Add(c,d)); -// But this should be fine: -// abcd = group.Add(a, group.Add(b, group.Add(c,d)); - -//! Abstract Group -template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup -{ -public: - typedef T Element; - - virtual ~AbstractGroup() {} - - virtual bool Equal(const Element &a, const Element &b) const =0; - virtual const Element& Identity() const =0; - virtual const Element& Add(const Element &a, const Element &b) const =0; - virtual const Element& Inverse(const Element &a) const =0; - virtual bool InversionIsFast() const {return false;} - - virtual const Element& Double(const Element &a) const; - virtual const Element& Subtract(const Element &a, const Element &b) const; - virtual Element& Accumulate(Element &a, const Element &b) const; - virtual Element& Reduce(Element &a, const Element &b) const; - - virtual Element ScalarMultiply(const Element &a, const Integer &e) const; - virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; - - virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; -}; - -//! Abstract Ring -template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T> -{ -public: - typedef T Element; - - AbstractRing() {m_mg.m_pRing = this;} - AbstractRing(const AbstractRing &source) {m_mg.m_pRing = this;} - AbstractRing& operator=(const AbstractRing &source) {return *this;} - - virtual bool IsUnit(const Element &a) const =0; - virtual const Element& MultiplicativeIdentity() const =0; - virtual const Element& Multiply(const Element &a, const Element &b) const =0; - virtual const Element& MultiplicativeInverse(const Element &a) const =0; - - virtual const Element& Square(const Element &a) const; - virtual const Element& Divide(const Element &a, const Element &b) const; - - virtual Element Exponentiate(const Element &a, const Integer &e) const; - virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const; - - virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; - - virtual const AbstractGroup<T>& MultiplicativeGroup() const - {return m_mg;} - -private: - class MultiplicativeGroupT : public AbstractGroup<T> - { - public: - const AbstractRing<T>& GetRing() const - {return *m_pRing;} - - bool Equal(const Element &a, const Element &b) const - {return GetRing().Equal(a, b);} - - const Element& Identity() const - {return GetRing().MultiplicativeIdentity();} - - const Element& Add(const Element &a, const Element &b) const - {return GetRing().Multiply(a, b);} - - Element& Accumulate(Element &a, const Element &b) const - {return a = GetRing().Multiply(a, b);} - - const Element& Inverse(const Element &a) const - {return GetRing().MultiplicativeInverse(a);} - - const Element& Subtract(const Element &a, const Element &b) const - {return GetRing().Divide(a, b);} - - Element& Reduce(Element &a, const Element &b) const - {return a = GetRing().Divide(a, b);} - - const Element& Double(const Element &a) const - {return GetRing().Square(a);} - - Element ScalarMultiply(const Element &a, const Integer &e) const - {return GetRing().Exponentiate(a, e);} - - Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const - {return GetRing().CascadeExponentiate(x, e1, y, e2);} - - void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const - {GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);} - - const AbstractRing<T> *m_pRing; - }; - - MultiplicativeGroupT m_mg; -}; - -// ******************************************************** - -//! Base and Exponent -template <class T, class E = Integer> -struct BaseAndExponent -{ -public: - BaseAndExponent() {} - BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {} - bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;} - T base; - E exponent; -}; - -// VC60 workaround: incomplete member template support -template <class Element, class Iterator> - Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end); -template <class Element, class Iterator> - Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end); - -// ******************************************************** - -//! Abstract Euclidean Domain -template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T> -{ -public: - typedef T Element; - - virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0; - - virtual const Element& Mod(const Element &a, const Element &b) const =0; - virtual const Element& Gcd(const Element &a, const Element &b) const; - -protected: - mutable Element result; -}; - -// ******************************************************** - -//! EuclideanDomainOf -template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T> -{ -public: - typedef T Element; - - EuclideanDomainOf() {} - - bool Equal(const Element &a, const Element &b) const - {return a==b;} - - const Element& Identity() const - {return Element::Zero();} - - const Element& Add(const Element &a, const Element &b) const - {return result = a+b;} - - Element& Accumulate(Element &a, const Element &b) const - {return a+=b;} - - const Element& Inverse(const Element &a) const - {return result = -a;} - - const Element& Subtract(const Element &a, const Element &b) const - {return result = a-b;} - - Element& Reduce(Element &a, const Element &b) const - {return a-=b;} - - const Element& Double(const Element &a) const - {return result = a.Doubled();} - - const Element& MultiplicativeIdentity() const - {return Element::One();} - - const Element& Multiply(const Element &a, const Element &b) const - {return result = a*b;} - - const Element& Square(const Element &a) const - {return result = a.Squared();} - - bool IsUnit(const Element &a) const - {return a.IsUnit();} - - const Element& MultiplicativeInverse(const Element &a) const - {return result = a.MultiplicativeInverse();} - - const Element& Divide(const Element &a, const Element &b) const - {return result = a/b;} - - const Element& Mod(const Element &a, const Element &b) const - {return result = a%b;} - - void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const - {Element::Divide(r, q, a, d);} - - bool operator==(const EuclideanDomainOf<T> &rhs) const - {return true;} - -private: - mutable Element result; -}; - -//! Quotient Ring -template <class T> class QuotientRing : public AbstractRing<typename T::Element> -{ -public: - typedef T EuclideanDomain; - typedef typename T::Element Element; - - QuotientRing(const EuclideanDomain &domain, const Element &modulus) - : m_domain(domain), m_modulus(modulus) {} - - const EuclideanDomain & GetDomain() const - {return m_domain;} - - const Element& GetModulus() const - {return m_modulus;} - - bool Equal(const Element &a, const Element &b) const - {return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());} - - const Element& Identity() const - {return m_domain.Identity();} - - const Element& Add(const Element &a, const Element &b) const - {return m_domain.Add(a, b);} - - Element& Accumulate(Element &a, const Element &b) const - {return m_domain.Accumulate(a, b);} - - const Element& Inverse(const Element &a) const - {return m_domain.Inverse(a);} - - const Element& Subtract(const Element &a, const Element &b) const - {return m_domain.Subtract(a, b);} - - Element& Reduce(Element &a, const Element &b) const - {return m_domain.Reduce(a, b);} - - const Element& Double(const Element &a) const - {return m_domain.Double(a);} - - bool IsUnit(const Element &a) const - {return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));} - - const Element& MultiplicativeIdentity() const - {return m_domain.MultiplicativeIdentity();} - - const Element& Multiply(const Element &a, const Element &b) const - {return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);} - - const Element& Square(const Element &a) const - {return m_domain.Mod(m_domain.Square(a), m_modulus);} - - const Element& MultiplicativeInverse(const Element &a) const; - - bool operator==(const QuotientRing<T> &rhs) const - {return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;} - -protected: - EuclideanDomain m_domain; - Element m_modulus; -}; - -NAMESPACE_END - -#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES -#include "algebra.cpp" -#endif - -#endif |