summaryrefslogtreecommitdiffstats
path: root/CryptoPP/integer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'CryptoPP/integer.cpp')
-rw-r--r--CryptoPP/integer.cpp4235
1 files changed, 0 insertions, 4235 deletions
diff --git a/CryptoPP/integer.cpp b/CryptoPP/integer.cpp
deleted file mode 100644
index f07cce873..000000000
--- a/CryptoPP/integer.cpp
+++ /dev/null
@@ -1,4235 +0,0 @@
-// integer.cpp - written and placed in the public domain by Wei Dai
-// contains public domain code contributed by Alister Lee and Leonard Janke
-
-#include "pch.h"
-
-#ifndef CRYPTOPP_IMPORTS
-
-#include "integer.h"
-#include "modarith.h"
-#include "nbtheory.h"
-#include "asn.h"
-#include "oids.h"
-#include "words.h"
-#include "algparam.h"
-#include "pubkey.h" // for P1363_KDF2
-#include "sha.h"
-#include "cpu.h"
-
-#include <iostream>
-
-#if _MSC_VER >= 1400
- #include <intrin.h>
-#endif
-
-#ifdef __DECCXX
- #include <c_asm.h>
-#endif
-
-#ifdef CRYPTOPP_MSVC6_NO_PP
- #pragma message("You do not seem to have the Visual C++ Processor Pack installed, so use of SSE2 instructions will be disabled.")
-#endif
-
-#define CRYPTOPP_INTEGER_SSE2 (CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86)
-
-NAMESPACE_BEGIN(CryptoPP)
-
-bool AssignIntToInteger(const std::type_info &valueType, void *pInteger, const void *pInt)
-{
- if (valueType != typeid(Integer))
- return false;
- *reinterpret_cast<Integer *>(pInteger) = *reinterpret_cast<const int *>(pInt);
- return true;
-}
-
-inline static int Compare(const word *A, const word *B, size_t N)
-{
- while (N--)
- if (A[N] > B[N])
- return 1;
- else if (A[N] < B[N])
- return -1;
-
- return 0;
-}
-
-inline static int Increment(word *A, size_t N, word B=1)
-{
- assert(N);
- word t = A[0];
- A[0] = t+B;
- if (A[0] >= t)
- return 0;
- for (unsigned i=1; i<N; i++)
- if (++A[i])
- return 0;
- return 1;
-}
-
-inline static int Decrement(word *A, size_t N, word B=1)
-{
- assert(N);
- word t = A[0];
- A[0] = t-B;
- if (A[0] <= t)
- return 0;
- for (unsigned i=1; i<N; i++)
- if (A[i]--)
- return 0;
- return 1;
-}
-
-static void TwosComplement(word *A, size_t N)
-{
- Decrement(A, N);
- for (unsigned i=0; i<N; i++)
- A[i] = ~A[i];
-}
-
-static word AtomicInverseModPower2(word A)
-{
- assert(A%2==1);
-
- word R=A%8;
-
- for (unsigned i=3; i<WORD_BITS; i*=2)
- R = R*(2-R*A);
-
- assert(R*A==1);
- return R;
-}
-
-// ********************************************************
-
-#if !defined(CRYPTOPP_NATIVE_DWORD_AVAILABLE) || (defined(__x86_64__) && defined(CRYPTOPP_WORD128_AVAILABLE))
- #define Declare2Words(x) word x##0, x##1;
- #define AssignWord(a, b) a##0 = b; a##1 = 0;
- #define Add2WordsBy1(a, b, c) a##0 = b##0 + c; a##1 = b##1 + (a##0 < c);
- #define LowWord(a) a##0
- #define HighWord(a) a##1
- #ifdef _MSC_VER
- #define MultiplyWordsLoHi(p0, p1, a, b) p0 = _umul128(a, b, &p1);
- #ifndef __INTEL_COMPILER
- #define Double3Words(c, d) d##1 = __shiftleft128(d##0, d##1, 1); d##0 = __shiftleft128(c, d##0, 1); c *= 2;
- #endif
- #elif defined(__DECCXX)
- #define MultiplyWordsLoHi(p0, p1, a, b) p0 = a*b; p1 = asm("umulh %a0, %a1, %v0", a, b);
- #elif defined(__x86_64__)
- #if defined(__SUNPRO_CC) && __SUNPRO_CC < 0x5100
- // Sun Studio's gcc-style inline assembly is heavily bugged as of version 5.9 Patch 124864-09 2008/12/16, but this one works
- #define MultiplyWordsLoHi(p0, p1, a, b) asm ("mulq %3" : "=a"(p0), "=d"(p1) : "a"(a), "r"(b) : "cc");
- #else
- #define MultiplyWordsLoHi(p0, p1, a, b) asm ("mulq %3" : "=a"(p0), "=d"(p1) : "a"(a), "g"(b) : "cc");
- #define MulAcc(c, d, a, b) asm ("mulq %6; addq %3, %0; adcq %4, %1; adcq $0, %2;" : "+r"(c), "+r"(d##0), "+r"(d##1), "=a"(p0), "=d"(p1) : "a"(a), "g"(b) : "cc");
- #define Double3Words(c, d) asm ("addq %0, %0; adcq %1, %1; adcq %2, %2;" : "+r"(c), "+r"(d##0), "+r"(d##1) : : "cc");
- #define Acc2WordsBy1(a, b) asm ("addq %2, %0; adcq $0, %1;" : "+r"(a##0), "+r"(a##1) : "r"(b) : "cc");
- #define Acc2WordsBy2(a, b) asm ("addq %2, %0; adcq %3, %1;" : "+r"(a##0), "+r"(a##1) : "r"(b##0), "r"(b##1) : "cc");
- #define Acc3WordsBy2(c, d, e) asm ("addq %5, %0; adcq %6, %1; adcq $0, %2;" : "+r"(c), "=r"(e##0), "=r"(e##1) : "1"(d##0), "2"(d##1), "r"(e##0), "r"(e##1) : "cc");
- #endif
- #endif
- #define MultiplyWords(p, a, b) MultiplyWordsLoHi(p##0, p##1, a, b)
- #ifndef Double3Words
- #define Double3Words(c, d) d##1 = 2*d##1 + (d##0>>(WORD_BITS-1)); d##0 = 2*d##0 + (c>>(WORD_BITS-1)); c *= 2;
- #endif
- #ifndef Acc2WordsBy2
- #define Acc2WordsBy2(a, b) a##0 += b##0; a##1 += a##0 < b##0; a##1 += b##1;
- #endif
- #define AddWithCarry(u, a, b) {word t = a+b; u##0 = t + u##1; u##1 = (t<a) + (u##0<t);}
- #define SubtractWithBorrow(u, a, b) {word t = a-b; u##0 = t - u##1; u##1 = (t>a) + (u##0>t);}
- #define GetCarry(u) u##1
- #define GetBorrow(u) u##1
-#else
- #define Declare2Words(x) dword x;
- #if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER)
- #define MultiplyWords(p, a, b) p = __emulu(a, b);
- #else
- #define MultiplyWords(p, a, b) p = (dword)a*b;
- #endif
- #define AssignWord(a, b) a = b;
- #define Add2WordsBy1(a, b, c) a = b + c;
- #define Acc2WordsBy2(a, b) a += b;
- #define LowWord(a) word(a)
- #define HighWord(a) word(a>>WORD_BITS)
- #define Double3Words(c, d) d = 2*d + (c>>(WORD_BITS-1)); c *= 2;
- #define AddWithCarry(u, a, b) u = dword(a) + b + GetCarry(u);
- #define SubtractWithBorrow(u, a, b) u = dword(a) - b - GetBorrow(u);
- #define GetCarry(u) HighWord(u)
- #define GetBorrow(u) word(u>>(WORD_BITS*2-1))
-#endif
-#ifndef MulAcc
- #define MulAcc(c, d, a, b) MultiplyWords(p, a, b); Acc2WordsBy1(p, c); c = LowWord(p); Acc2WordsBy1(d, HighWord(p));
-#endif
-#ifndef Acc2WordsBy1
- #define Acc2WordsBy1(a, b) Add2WordsBy1(a, a, b)
-#endif
-#ifndef Acc3WordsBy2
- #define Acc3WordsBy2(c, d, e) Acc2WordsBy1(e, c); c = LowWord(e); Add2WordsBy1(e, d, HighWord(e));
-#endif
-
-class DWord
-{
-public:
- DWord() {}
-
-#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- explicit DWord(word low)
- {
- m_whole = low;
- }
-#else
- explicit DWord(word low)
- {
- m_halfs.low = low;
- m_halfs.high = 0;
- }
-#endif
-
- DWord(word low, word high)
- {
- m_halfs.low = low;
- m_halfs.high = high;
- }
-
- static DWord Multiply(word a, word b)
- {
- DWord r;
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- r.m_whole = (dword)a * b;
- #elif defined(MultiplyWordsLoHi)
- MultiplyWordsLoHi(r.m_halfs.low, r.m_halfs.high, a, b);
- #endif
- return r;
- }
-
- static DWord MultiplyAndAdd(word a, word b, word c)
- {
- DWord r = Multiply(a, b);
- return r += c;
- }
-
- DWord & operator+=(word a)
- {
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- m_whole = m_whole + a;
- #else
- m_halfs.low += a;
- m_halfs.high += (m_halfs.low < a);
- #endif
- return *this;
- }
-
- DWord operator+(word a)
- {
- DWord r;
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- r.m_whole = m_whole + a;
- #else
- r.m_halfs.low = m_halfs.low + a;
- r.m_halfs.high = m_halfs.high + (r.m_halfs.low < a);
- #endif
- return r;
- }
-
- DWord operator-(DWord a)
- {
- DWord r;
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- r.m_whole = m_whole - a.m_whole;
- #else
- r.m_halfs.low = m_halfs.low - a.m_halfs.low;
- r.m_halfs.high = m_halfs.high - a.m_halfs.high - (r.m_halfs.low > m_halfs.low);
- #endif
- return r;
- }
-
- DWord operator-(word a)
- {
- DWord r;
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- r.m_whole = m_whole - a;
- #else
- r.m_halfs.low = m_halfs.low - a;
- r.m_halfs.high = m_halfs.high - (r.m_halfs.low > m_halfs.low);
- #endif
- return r;
- }
-
- // returns quotient, which must fit in a word
- word operator/(word divisor);
-
- word operator%(word a);
-
- bool operator!() const
- {
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- return !m_whole;
- #else
- return !m_halfs.high && !m_halfs.low;
- #endif
- }
-
- word GetLowHalf() const {return m_halfs.low;}
- word GetHighHalf() const {return m_halfs.high;}
- word GetHighHalfAsBorrow() const {return 0-m_halfs.high;}
-
-private:
- union
- {
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- dword m_whole;
- #endif
- struct
- {
- #ifdef IS_LITTLE_ENDIAN
- word low;
- word high;
- #else
- word high;
- word low;
- #endif
- } m_halfs;
- };
-};
-
-class Word
-{
-public:
- Word() {}
-
- Word(word value)
- {
- m_whole = value;
- }
-
- Word(hword low, hword high)
- {
- m_whole = low | (word(high) << (WORD_BITS/2));
- }
-
- static Word Multiply(hword a, hword b)
- {
- Word r;
- r.m_whole = (word)a * b;
- return r;
- }
-
- Word operator-(Word a)
- {
- Word r;
- r.m_whole = m_whole - a.m_whole;
- return r;
- }
-
- Word operator-(hword a)
- {
- Word r;
- r.m_whole = m_whole - a;
- return r;
- }
-
- // returns quotient, which must fit in a word
- hword operator/(hword divisor)
- {
- return hword(m_whole / divisor);
- }
-
- bool operator!() const
- {
- return !m_whole;
- }
-
- word GetWhole() const {return m_whole;}
- hword GetLowHalf() const {return hword(m_whole);}
- hword GetHighHalf() const {return hword(m_whole>>(WORD_BITS/2));}
- hword GetHighHalfAsBorrow() const {return 0-hword(m_whole>>(WORD_BITS/2));}
-
-private:
- word m_whole;
-};
-
-// do a 3 word by 2 word divide, returns quotient and leaves remainder in A
-template <class S, class D>
-S DivideThreeWordsByTwo(S *A, S B0, S B1, D *dummy=NULL)
-{
- // assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a S
- assert(A[2] < B1 || (A[2]==B1 && A[1] < B0));
-
- // estimate the quotient: do a 2 S by 1 S divide
- S Q;
- if (S(B1+1) == 0)
- Q = A[2];
- else if (B1 > 0)
- Q = D(A[1], A[2]) / S(B1+1);
- else
- Q = D(A[0], A[1]) / B0;
-
- // now subtract Q*B from A
- D p = D::Multiply(B0, Q);
- D u = (D) A[0] - p.GetLowHalf();
- A[0] = u.GetLowHalf();
- u = (D) A[1] - p.GetHighHalf() - u.GetHighHalfAsBorrow() - D::Multiply(B1, Q);
- A[1] = u.GetLowHalf();
- A[2] += u.GetHighHalf();
-
- // Q <= actual quotient, so fix it
- while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0))
- {
- u = (D) A[0] - B0;
- A[0] = u.GetLowHalf();
- u = (D) A[1] - B1 - u.GetHighHalfAsBorrow();
- A[1] = u.GetLowHalf();
- A[2] += u.GetHighHalf();
- Q++;
- assert(Q); // shouldn't overflow
- }
-
- return Q;
-}
-
-// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1
-template <class S, class D>
-inline D DivideFourWordsByTwo(S *T, const D &Al, const D &Ah, const D &B)
-{
- if (!B) // if divisor is 0, we assume divisor==2**(2*WORD_BITS)
- return D(Ah.GetLowHalf(), Ah.GetHighHalf());
- else
- {
- S Q[2];
- T[0] = Al.GetLowHalf();
- T[1] = Al.GetHighHalf();
- T[2] = Ah.GetLowHalf();
- T[3] = Ah.GetHighHalf();
- Q[1] = DivideThreeWordsByTwo<S, D>(T+1, B.GetLowHalf(), B.GetHighHalf());
- Q[0] = DivideThreeWordsByTwo<S, D>(T, B.GetLowHalf(), B.GetHighHalf());
- return D(Q[0], Q[1]);
- }
-}
-
-// returns quotient, which must fit in a word
-inline word DWord::operator/(word a)
-{
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- return word(m_whole / a);
- #else
- hword r[4];
- return DivideFourWordsByTwo<hword, Word>(r, m_halfs.low, m_halfs.high, a).GetWhole();
- #endif
-}
-
-inline word DWord::operator%(word a)
-{
- #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
- return word(m_whole % a);
- #else
- if (a < (word(1) << (WORD_BITS/2)))
- {
- hword h = hword(a);
- word r = m_halfs.high % h;
- r = ((m_halfs.low >> (WORD_BITS/2)) + (r << (WORD_BITS/2))) % h;
- return hword((hword(m_halfs.low) + (r << (WORD_BITS/2))) % h);
- }
- else
- {
- hword r[4];
- DivideFourWordsByTwo<hword, Word>(r, m_halfs.low, m_halfs.high, a);
- return Word(r[0], r[1]).GetWhole();
- }
- #endif
-}
-
-// ********************************************************
-
-// use some tricks to share assembly code between MSVC and GCC
-#if defined(__GNUC__)
- #define AddPrologue \
- int result; \
- __asm__ __volatile__ \
- ( \
- ".intel_syntax noprefix;"
- #define AddEpilogue \
- ".att_syntax prefix;" \
- : "=a" (result)\
- : "d" (C), "a" (A), "D" (B), "c" (N) \
- : "%esi", "memory", "cc" \
- );\
- return result;
- #define MulPrologue \
- __asm__ __volatile__ \
- ( \
- ".intel_syntax noprefix;" \
- AS1( push ebx) \
- AS2( mov ebx, edx)
- #define MulEpilogue \
- AS1( pop ebx) \
- ".att_syntax prefix;" \
- : \
- : "d" (s_maskLow16), "c" (C), "a" (A), "D" (B) \
- : "%esi", "memory", "cc" \
- );
- #define SquPrologue MulPrologue
- #define SquEpilogue \
- AS1( pop ebx) \
- ".att_syntax prefix;" \
- : \
- : "d" (s_maskLow16), "c" (C), "a" (A) \
- : "%esi", "%edi", "memory", "cc" \
- );
- #define TopPrologue MulPrologue
- #define TopEpilogue \
- AS1( pop ebx) \
- ".att_syntax prefix;" \
- : \
- : "d" (s_maskLow16), "c" (C), "a" (A), "D" (B), "S" (L) \
- : "memory", "cc" \
- );
-#else
- #define AddPrologue \
- __asm push edi \
- __asm push esi \
- __asm mov eax, [esp+12] \
- __asm mov edi, [esp+16]
- #define AddEpilogue \
- __asm pop esi \
- __asm pop edi \
- __asm ret 8
-#if _MSC_VER < 1300
- #define SaveEBX __asm push ebx
- #define RestoreEBX __asm pop ebx
-#else
- #define SaveEBX
- #define RestoreEBX
-#endif
- #define SquPrologue \
- AS2( mov eax, A) \
- AS2( mov ecx, C) \
- SaveEBX \
- AS2( lea ebx, s_maskLow16)
- #define MulPrologue \
- AS2( mov eax, A) \
- AS2( mov edi, B) \
- AS2( mov ecx, C) \
- SaveEBX \
- AS2( lea ebx, s_maskLow16)
- #define TopPrologue \
- AS2( mov eax, A) \
- AS2( mov edi, B) \
- AS2( mov ecx, C) \
- AS2( mov esi, L) \
- SaveEBX \
- AS2( lea ebx, s_maskLow16)
- #define SquEpilogue RestoreEBX
- #define MulEpilogue RestoreEBX
- #define TopEpilogue RestoreEBX
-#endif
-
-#ifdef CRYPTOPP_X64_MASM_AVAILABLE
-extern "C" {
-int Baseline_Add(size_t N, word *C, const word *A, const word *B);
-int Baseline_Sub(size_t N, word *C, const word *A, const word *B);
-}
-#elif defined(CRYPTOPP_X64_ASM_AVAILABLE) && defined(__GNUC__) && defined(CRYPTOPP_WORD128_AVAILABLE)
-int Baseline_Add(size_t N, word *C, const word *A, const word *B)
-{
- word result;
- __asm__ __volatile__
- (
- ".intel_syntax;"
- AS1( neg %1)
- ASJ( jz, 1, f)
- AS2( mov %0,[%3+8*%1])
- AS2( add %0,[%4+8*%1])
- AS2( mov [%2+8*%1],%0)
- ASL(0)
- AS2( mov %0,[%3+8*%1+8])
- AS2( adc %0,[%4+8*%1+8])
- AS2( mov [%2+8*%1+8],%0)
- AS2( lea %1,[%1+2])
- ASJ( jrcxz, 1, f)
- AS2( mov %0,[%3+8*%1])
- AS2( adc %0,[%4+8*%1])
- AS2( mov [%2+8*%1],%0)
- ASJ( jmp, 0, b)
- ASL(1)
- AS2( mov %0, 0)
- AS2( adc %0, %0)
- ".att_syntax;"
- : "=&r" (result), "+c" (N)
- : "r" (C+N), "r" (A+N), "r" (B+N)
- : "memory", "cc"
- );
- return (int)result;
-}
-
-int Baseline_Sub(size_t N, word *C, const word *A, const word *B)
-{
- word result;
- __asm__ __volatile__
- (
- ".intel_syntax;"
- AS1( neg %1)
- ASJ( jz, 1, f)
- AS2( mov %0,[%3+8*%1])
- AS2( sub %0,[%4+8*%1])
- AS2( mov [%2+8*%1],%0)
- ASL(0)
- AS2( mov %0,[%3+8*%1+8])
- AS2( sbb %0,[%4+8*%1+8])
- AS2( mov [%2+8*%1+8],%0)
- AS2( lea %1,[%1+2])
- ASJ( jrcxz, 1, f)
- AS2( mov %0,[%3+8*%1])
- AS2( sbb %0,[%4+8*%1])
- AS2( mov [%2+8*%1],%0)
- ASJ( jmp, 0, b)
- ASL(1)
- AS2( mov %0, 0)
- AS2( adc %0, %0)
- ".att_syntax;"
- : "=&r" (result), "+c" (N)
- : "r" (C+N), "r" (A+N), "r" (B+N)
- : "memory", "cc"
- );
- return (int)result;
-}
-#elif defined(CRYPTOPP_X86_ASM_AVAILABLE) && CRYPTOPP_BOOL_X86
-CRYPTOPP_NAKED int CRYPTOPP_FASTCALL Baseline_Add(size_t N, word *C, const word *A, const word *B)
-{
- AddPrologue
-
- // now: eax = A, edi = B, edx = C, ecx = N
- AS2( lea eax, [eax+4*ecx])
- AS2( lea edi, [edi+4*ecx])
- AS2( lea edx, [edx+4*ecx])
-
- AS1( neg ecx) // ecx is negative index
- AS2( test ecx, 2) // this clears carry flag
- ASJ( jz, 0, f)
- AS2( sub ecx, 2)
- ASJ( jmp, 1, f)
-
- ASL(0)
- ASJ( jecxz, 2, f) // loop until ecx overflows and becomes zero
- AS2( mov esi,[eax+4*ecx])
- AS2( adc esi,[edi+4*ecx])
- AS2( mov [edx+4*ecx],esi)
- AS2( mov esi,[eax+4*ecx+4])
- AS2( adc esi,[edi+4*ecx+4])
- AS2( mov [edx+4*ecx+4],esi)
- ASL(1)
- AS2( mov esi,[eax+4*ecx+8])
- AS2( adc esi,[edi+4*ecx+8])
- AS2( mov [edx+4*ecx+8],esi)
- AS2( mov esi,[eax+4*ecx+12])
- AS2( adc esi,[edi+4*ecx+12])
- AS2( mov [edx+4*ecx+12],esi)
-
- AS2( lea ecx,[ecx+4]) // advance index, avoid inc which causes slowdown on Intel Core 2
- ASJ( jmp, 0, b)
-
- ASL(2)
- AS2( mov eax, 0)
- AS1( setc al) // store carry into eax (return result register)
-
- AddEpilogue
-}
-
-CRYPTOPP_NAKED int CRYPTOPP_FASTCALL Baseline_Sub(size_t N, word *C, const word *A, const word *B)
-{
- AddPrologue
-
- // now: eax = A, edi = B, edx = C, ecx = N
- AS2( lea eax, [eax+4*ecx])
- AS2( lea edi, [edi+4*ecx])
- AS2( lea edx, [edx+4*ecx])
-
- AS1( neg ecx) // ecx is negative index
- AS2( test ecx, 2) // this clears carry flag
- ASJ( jz, 0, f)
- AS2( sub ecx, 2)
- ASJ( jmp, 1, f)
-
- ASL(0)
- ASJ( jecxz, 2, f) // loop until ecx overflows and becomes zero
- AS2( mov esi,[eax+4*ecx])
- AS2( sbb esi,[edi+4*ecx])
- AS2( mov [edx+4*ecx],esi)
- AS2( mov esi,[eax+4*ecx+4])
- AS2( sbb esi,[edi+4*ecx+4])
- AS2( mov [edx+4*ecx+4],esi)
- ASL(1)
- AS2( mov esi,[eax+4*ecx+8])
- AS2( sbb esi,[edi+4*ecx+8])
- AS2( mov [edx+4*ecx+8],esi)
- AS2( mov esi,[eax+4*ecx+12])
- AS2( sbb esi,[edi+4*ecx+12])
- AS2( mov [edx+4*ecx+12],esi)
-
- AS2( lea ecx,[ecx+4]) // advance index, avoid inc which causes slowdown on Intel Core 2
- ASJ( jmp, 0, b)
-
- ASL(2)
- AS2( mov eax, 0)
- AS1( setc al) // store carry into eax (return result register)
-
- AddEpilogue
-}
-
-#if CRYPTOPP_INTEGER_SSE2
-CRYPTOPP_NAKED int CRYPTOPP_FASTCALL SSE2_Add(size_t N, word *C, const word *A, const word *B)
-{
- AddPrologue
-
- // now: eax = A, edi = B, edx = C, ecx = N
- AS2( lea eax, [eax+4*ecx])
- AS2( lea edi, [edi+4*ecx])
- AS2( lea edx, [edx+4*ecx])
-
- AS1( neg ecx) // ecx is negative index
- AS2( pxor mm2, mm2)
- ASJ( jz, 2, f)
- AS2( test ecx, 2) // this clears carry flag
- ASJ( jz, 0, f)
- AS2( sub ecx, 2)
- ASJ( jmp, 1, f)
-
- ASL(0)
- AS2( movd mm0, DWORD PTR [eax+4*ecx])
- AS2( movd mm1, DWORD PTR [edi+4*ecx])
- AS2( paddq mm0, mm1)
- AS2( paddq mm2, mm0)
- AS2( movd DWORD PTR [edx+4*ecx], mm2)
- AS2( psrlq mm2, 32)
-
- AS2( movd mm0, DWORD PTR [eax+4*ecx+4])
- AS2( movd mm1, DWORD PTR [edi+4*ecx+4])
- AS2( paddq mm0, mm1)
- AS2( paddq mm2, mm0)
- AS2( movd DWORD PTR [edx+4*ecx+4], mm2)
- AS2( psrlq mm2, 32)
-
- ASL(1)
- AS2( movd mm0, DWORD PTR [eax+4*ecx+8])
- AS2( movd mm1, DWORD PTR [edi+4*ecx+8])
- AS2( paddq mm0, mm1)
- AS2( paddq mm2, mm0)
- AS2( movd DWORD PTR [edx+4*ecx+8], mm2)
- AS2( psrlq mm2, 32)
-
- AS2( movd mm0, DWORD PTR [eax+4*ecx+12])
- AS2( movd mm1, DWORD PTR [edi+4*ecx+12])
- AS2( paddq mm0, mm1)
- AS2( paddq mm2, mm0)
- AS2( movd DWORD PTR [edx+4*ecx+12], mm2)
- AS2( psrlq mm2, 32)
-
- AS2( add ecx, 4)
- ASJ( jnz, 0, b)
-
- ASL(2)
- AS2( movd eax, mm2)
- AS1( emms)
-
- AddEpilogue
-}
-CRYPTOPP_NAKED int CRYPTOPP_FASTCALL SSE2_Sub(size_t N, word *C, const word *A, const word *B)
-{
- AddPrologue
-
- // now: eax = A, edi = B, edx = C, ecx = N
- AS2( lea eax, [eax+4*ecx])
- AS2( lea edi, [edi+4*ecx])
- AS2( lea edx, [edx+4*ecx])
-
- AS1( neg ecx) // ecx is negative index
- AS2( pxor mm2, mm2)
- ASJ( jz, 2, f)
- AS2( test ecx, 2) // this clears carry flag
- ASJ( jz, 0, f)
- AS2( sub ecx, 2)
- ASJ( jmp, 1, f)
-
- ASL(0)
- AS2( movd mm0, DWORD PTR [eax+4*ecx])
- AS2( movd mm1, DWORD PTR [edi+4*ecx])
- AS2( psubq mm0, mm1)
- AS2( psubq mm0, mm2)
- AS2( movd DWORD PTR [edx+4*ecx], mm0)
- AS2( psrlq mm0, 63)
-
- AS2( movd mm2, DWORD PTR [eax+4*ecx+4])
- AS2( movd mm1, DWORD PTR [edi+4*ecx+4])
- AS2( psubq mm2, mm1)
- AS2( psubq mm2, mm0)
- AS2( movd DWORD PTR [edx+4*ecx+4], mm2)
- AS2( psrlq mm2, 63)
-
- ASL(1)
- AS2( movd mm0, DWORD PTR [eax+4*ecx+8])
- AS2( movd mm1, DWORD PTR [edi+4*ecx+8])
- AS2( psubq mm0, mm1)
- AS2( psubq mm0, mm2)
- AS2( movd DWORD PTR [edx+4*ecx+8], mm0)
- AS2( psrlq mm0, 63)
-
- AS2( movd mm2, DWORD PTR [eax+4*ecx+12])
- AS2( movd mm1, DWORD PTR [edi+4*ecx+12])
- AS2( psubq mm2, mm1)
- AS2( psubq mm2, mm0)
- AS2( movd DWORD PTR [edx+4*ecx+12], mm2)
- AS2( psrlq mm2, 63)
-
- AS2( add ecx, 4)
- ASJ( jnz, 0, b)
-
- ASL(2)
- AS2( movd eax, mm2)
- AS1( emms)
-
- AddEpilogue
-}
-#endif // #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
-#else
-int CRYPTOPP_FASTCALL Baseline_Add(size_t N, word *C, const word *A, const word *B)
-{
- assert (N%2 == 0);
-
- Declare2Words(u);
- AssignWord(u, 0);
- for (size_t i=0; i<N; i+=2)
- {
- AddWithCarry(u, A[i], B[i]);
- C[i] = LowWord(u);
- AddWithCarry(u, A[i+1], B[i+1]);
- C[i+1] = LowWord(u);
- }
- return int(GetCarry(u));
-}
-
-int CRYPTOPP_FASTCALL Baseline_Sub(size_t N, word *C, const word *A, const word *B)
-{
- assert (N%2 == 0);
-
- Declare2Words(u);
- AssignWord(u, 0);
- for (size_t i=0; i<N; i+=2)
- {
- SubtractWithBorrow(u, A[i], B[i]);
- C[i] = LowWord(u);
- SubtractWithBorrow(u, A[i+1], B[i+1]);
- C[i+1] = LowWord(u);
- }
- return int(GetBorrow(u));
-}
-#endif
-
-static word LinearMultiply(word *C, const word *A, word B, size_t N)
-{
- word carry=0;
- for(unsigned i=0; i<N; i++)
- {
- Declare2Words(p);
- MultiplyWords(p, A[i], B);
- Acc2WordsBy1(p, carry);
- C[i] = LowWord(p);
- carry = HighWord(p);
- }
- return carry;
-}
-
-#ifndef CRYPTOPP_DOXYGEN_PROCESSING
-
-#define Mul_2 \
- Mul_Begin(2) \
- Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \
- Mul_End(1, 1)
-
-#define Mul_4 \
- Mul_Begin(4) \
- Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \
- Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \
- Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \
- Mul_SaveAcc(3, 1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) \
- Mul_SaveAcc(4, 2, 3) Mul_Acc(3, 2) \
- Mul_End(5, 3)
-
-#define Mul_8 \
- Mul_Begin(8) \
- Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \
- Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \
- Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \
- Mul_SaveAcc(3, 0, 4) Mul_Acc(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) Mul_Acc(4, 0) \
- Mul_SaveAcc(4, 0, 5) Mul_Acc(1, 4) Mul_Acc(2, 3) Mul_Acc(3, 2) Mul_Acc(4, 1) Mul_Acc(5, 0) \
- Mul_SaveAcc(5, 0, 6) Mul_Acc(1, 5) Mul_Acc(2, 4) Mul_Acc(3, 3) Mul_Acc(4, 2) Mul_Acc(5, 1) Mul_Acc(6, 0) \
- Mul_SaveAcc(6, 0, 7) Mul_Acc(1, 6) Mul_Acc(2, 5) Mul_Acc(3, 4) Mul_Acc(4, 3) Mul_Acc(5, 2) Mul_Acc(6, 1) Mul_Acc(7, 0) \
- Mul_SaveAcc(7, 1, 7) Mul_Acc(2, 6) Mul_Acc(3, 5) Mul_Acc(4, 4) Mul_Acc(5, 3) Mul_Acc(6, 2) Mul_Acc(7, 1) \
- Mul_SaveAcc(8, 2, 7) Mul_Acc(3, 6) Mul_Acc(4, 5) Mul_Acc(5, 4) Mul_Acc(6, 3) Mul_Acc(7, 2) \
- Mul_SaveAcc(9, 3, 7) Mul_Acc(4, 6) Mul_Acc(5, 5) Mul_Acc(6, 4) Mul_Acc(7, 3) \
- Mul_SaveAcc(10, 4, 7) Mul_Acc(5, 6) Mul_Acc(6, 5) Mul_Acc(7, 4) \
- Mul_SaveAcc(11, 5, 7) Mul_Acc(6, 6) Mul_Acc(7, 5) \
- Mul_SaveAcc(12, 6, 7) Mul_Acc(7, 6) \
- Mul_End(13, 7)
-
-#define Mul_16 \
- Mul_Begin(16) \
- Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \
- Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \
- Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \
- Mul_SaveAcc(3, 0, 4) Mul_Acc(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) Mul_Acc(4, 0) \
- Mul_SaveAcc(4, 0, 5) Mul_Acc(1, 4) Mul_Acc(2, 3) Mul_Acc(3, 2) Mul_Acc(4, 1) Mul_Acc(5, 0) \
- Mul_SaveAcc(5, 0, 6) Mul_Acc(1, 5) Mul_Acc(2, 4) Mul_Acc(3, 3) Mul_Acc(4, 2) Mul_Acc(5, 1) Mul_Acc(6, 0) \
- Mul_SaveAcc(6, 0, 7) Mul_Acc(1, 6) Mul_Acc(2, 5) Mul_Acc(3, 4) Mul_Acc(4, 3) Mul_Acc(5, 2) Mul_Acc(6, 1) Mul_Acc(7, 0) \
- Mul_SaveAcc(7, 0, 8) Mul_Acc(1, 7) Mul_Acc(2, 6) Mul_Acc(3, 5) Mul_Acc(4, 4) Mul_Acc(5, 3) Mul_Acc(6, 2) Mul_Acc(7, 1) Mul_Acc(8, 0) \
- Mul_SaveAcc(8, 0, 9) Mul_Acc(1, 8) Mul_Acc(2, 7) Mul_Acc(3, 6) Mul_Acc(4, 5) Mul_Acc(5, 4) Mul_Acc(6, 3) Mul_Acc(7, 2) Mul_Acc(8, 1) Mul_Acc(9, 0) \
- Mul_SaveAcc(9, 0, 10) Mul_Acc(1, 9) Mul_Acc(2, 8) Mul_Acc(3, 7) Mul_Acc(4, 6) Mul_Acc(5, 5) Mul_Acc(6, 4) Mul_Acc(7, 3) Mul_Acc(8, 2) Mul_Acc(9, 1) Mul_Acc(10, 0) \
- Mul_SaveAcc(10, 0, 11) Mul_Acc(1, 10) Mul_Acc(2, 9) Mul_Acc(3, 8) Mul_Acc(4, 7) Mul_Acc(5, 6) Mul_Acc(6, 5) Mul_Acc(7, 4) Mul_Acc(8, 3) Mul_Acc(9, 2) Mul_Acc(10, 1) Mul_Acc(11, 0) \
- Mul_SaveAcc(11, 0, 12) Mul_Acc(1, 11) Mul_Acc(2, 10) Mul_Acc(3, 9) Mul_Acc(4, 8) Mul_Acc(5, 7) Mul_Acc(6, 6) Mul_Acc(7, 5) Mul_Acc(8, 4) Mul_Acc(9, 3) Mul_Acc(10, 2) Mul_Acc(11, 1) Mul_Acc(12, 0) \
- Mul_SaveAcc(12, 0, 13) Mul_Acc(1, 12) Mul_Acc(2, 11) Mul_Acc(3, 10) Mul_Acc(4, 9) Mul_Acc(5, 8) Mul_Acc(6, 7) Mul_Acc(7, 6) Mul_Acc(8, 5) Mul_Acc(9, 4) Mul_Acc(10, 3) Mul_Acc(11, 2) Mul_Acc(12, 1) Mul_Acc(13, 0) \
- Mul_SaveAcc(13, 0, 14) Mul_Acc(1, 13) Mul_Acc(2, 12) Mul_Acc(3, 11) Mul_Acc(4, 10) Mul_Acc(5, 9) Mul_Acc(6, 8) Mul_Acc(7, 7) Mul_Acc(8, 6) Mul_Acc(9, 5) Mul_Acc(10, 4) Mul_Acc(11, 3) Mul_Acc(12, 2) Mul_Acc(13, 1) Mul_Acc(14, 0) \
- Mul_SaveAcc(14, 0, 15) Mul_Acc(1, 14) Mul_Acc(2, 13) Mul_Acc(3, 12) Mul_Acc(4, 11) Mul_Acc(5, 10) Mul_Acc(6, 9) Mul_Acc(7, 8) Mul_Acc(8, 7) Mul_Acc(9, 6) Mul_Acc(10, 5) Mul_Acc(11, 4) Mul_Acc(12, 3) Mul_Acc(13, 2) Mul_Acc(14, 1) Mul_Acc(15, 0) \
- Mul_SaveAcc(15, 1, 15) Mul_Acc(2, 14) Mul_Acc(3, 13) Mul_Acc(4, 12) Mul_Acc(5, 11) Mul_Acc(6, 10) Mul_Acc(7, 9) Mul_Acc(8, 8) Mul_Acc(9, 7) Mul_Acc(10, 6) Mul_Acc(11, 5) Mul_Acc(12, 4) Mul_Acc(13, 3) Mul_Acc(14, 2) Mul_Acc(15, 1) \
- Mul_SaveAcc(16, 2, 15) Mul_Acc(3, 14) Mul_Acc(4, 13) Mul_Acc(5, 12) Mul_Acc(6, 11) Mul_Acc(7, 10) Mul_Acc(8, 9) Mul_Acc(9, 8) Mul_Acc(10, 7) Mul_Acc(11, 6) Mul_Acc(12, 5) Mul_Acc(13, 4) Mul_Acc(14, 3) Mul_Acc(15, 2) \
- Mul_SaveAcc(17, 3, 15) Mul_Acc(4, 14) Mul_Acc(5, 13) Mul_Acc(6, 12) Mul_Acc(7, 11) Mul_Acc(8, 10) Mul_Acc(9, 9) Mul_Acc(10, 8) Mul_Acc(11, 7) Mul_Acc(12, 6) Mul_Acc(13, 5) Mul_Acc(14, 4) Mul_Acc(15, 3) \
- Mul_SaveAcc(18, 4, 15) Mul_Acc(5, 14) Mul_Acc(6, 13) Mul_Acc(7, 12) Mul_Acc(8, 11) Mul_Acc(9, 10) Mul_Acc(10, 9) Mul_Acc(11, 8) Mul_Acc(12, 7) Mul_Acc(13, 6) Mul_Acc(14, 5) Mul_Acc(15, 4) \
- Mul_SaveAcc(19, 5, 15) Mul_Acc(6, 14) Mul_Acc(7, 13) Mul_Acc(8, 12) Mul_Acc(9, 11) Mul_Acc(10, 10) Mul_Acc(11, 9) Mul_Acc(12, 8) Mul_Acc(13, 7) Mul_Acc(14, 6) Mul_Acc(15, 5) \
- Mul_SaveAcc(20, 6, 15) Mul_Acc(7, 14) Mul_Acc(8, 13) Mul_Acc(9, 12) Mul_Acc(10, 11) Mul_Acc(11, 10) Mul_Acc(12, 9) Mul_Acc(13, 8) Mul_Acc(14, 7) Mul_Acc(15, 6) \
- Mul_SaveAcc(21, 7, 15) Mul_Acc(8, 14) Mul_Acc(9, 13) Mul_Acc(10, 12) Mul_Acc(11, 11) Mul_Acc(12, 10) Mul_Acc(13, 9) Mul_Acc(14, 8) Mul_Acc(15, 7) \
- Mul_SaveAcc(22, 8, 15) Mul_Acc(9, 14) Mul_Acc(10, 13) Mul_Acc(11, 12) Mul_Acc(12, 11) Mul_Acc(13, 10) Mul_Acc(14, 9) Mul_Acc(15, 8) \
- Mul_SaveAcc(23, 9, 15) Mul_Acc(10, 14) Mul_Acc(11, 13) Mul_Acc(12, 12) Mul_Acc(13, 11) Mul_Acc(14, 10) Mul_Acc(15, 9) \
- Mul_SaveAcc(24, 10, 15) Mul_Acc(11, 14) Mul_Acc(12, 13) Mul_Acc(13, 12) Mul_Acc(14, 11) Mul_Acc(15, 10) \
- Mul_SaveAcc(25, 11, 15) Mul_Acc(12, 14) Mul_Acc(13, 13) Mul_Acc(14, 12) Mul_Acc(15, 11) \
- Mul_SaveAcc(26, 12, 15) Mul_Acc(13, 14) Mul_Acc(14, 13) Mul_Acc(15, 12) \
- Mul_SaveAcc(27, 13, 15) Mul_Acc(14, 14) Mul_Acc(15, 13) \
- Mul_SaveAcc(28, 14, 15) Mul_Acc(15, 14) \
- Mul_End(29, 15)
-
-#define Squ_2 \
- Squ_Begin(2) \
- Squ_End(2)
-
-#define Squ_4 \
- Squ_Begin(4) \
- Squ_SaveAcc(1, 0, 2) Squ_Diag(1) \
- Squ_SaveAcc(2, 0, 3) Squ_Acc(1, 2) Squ_NonDiag \
- Squ_SaveAcc(3, 1, 3) Squ_Diag(2) \
- Squ_SaveAcc(4, 2, 3) Squ_NonDiag \
- Squ_End(4)
-
-#define Squ_8 \
- Squ_Begin(8) \
- Squ_SaveAcc(1, 0, 2) Squ_Diag(1) \
- Squ_SaveAcc(2, 0, 3) Squ_Acc(1, 2) Squ_NonDiag \
- Squ_SaveAcc(3, 0, 4) Squ_Acc(1, 3) Squ_Diag(2) \
- Squ_SaveAcc(4, 0, 5) Squ_Acc(1, 4) Squ_Acc(2, 3) Squ_NonDiag \
- Squ_SaveAcc(5, 0, 6) Squ_Acc(1, 5) Squ_Acc(2, 4) Squ_Diag(3) \
- Squ_SaveAcc(6, 0, 7) Squ_Acc(1, 6) Squ_Acc(2, 5) Squ_Acc(3, 4) Squ_NonDiag \
- Squ_SaveAcc(7, 1, 7) Squ_Acc(2, 6) Squ_Acc(3, 5) Squ_Diag(4) \
- Squ_SaveAcc(8, 2, 7) Squ_Acc(3, 6) Squ_Acc(4, 5) Squ_NonDiag \
- Squ_SaveAcc(9, 3, 7) Squ_Acc(4, 6) Squ_Diag(5) \
- Squ_SaveAcc(10, 4, 7) Squ_Acc(5, 6) Squ_NonDiag \
- Squ_SaveAcc(11, 5, 7) Squ_Diag(6) \
- Squ_SaveAcc(12, 6, 7) Squ_NonDiag \
- Squ_End(8)
-
-#define Squ_16 \
- Squ_Begin(16) \
- Squ_SaveAcc(1, 0, 2) Squ_Diag(1) \
- Squ_SaveAcc(2, 0, 3) Squ_Acc(1, 2) Squ_NonDiag \
- Squ_SaveAcc(3, 0, 4) Squ_Acc(1, 3) Squ_Diag(2) \
- Squ_SaveAcc(4, 0, 5) Squ_Acc(1, 4) Squ_Acc(2, 3) Squ_NonDiag \
- Squ_SaveAcc(5, 0, 6) Squ_Acc(1, 5) Squ_Acc(2, 4) Squ_Diag(3) \
- Squ_SaveAcc(6, 0, 7) Squ_Acc(1, 6) Squ_Acc(2, 5) Squ_Acc(3, 4) Squ_NonDiag \
- Squ_SaveAcc(7, 0, 8) Squ_Acc(1, 7) Squ_Acc(2, 6) Squ_Acc(3, 5) Squ_Diag(4) \
- Squ_SaveAcc(8, 0, 9) Squ_Acc(1, 8) Squ_Acc(2, 7) Squ_Acc(3, 6) Squ_Acc(4, 5) Squ_NonDiag \
- Squ_SaveAcc(9, 0, 10) Squ_Acc(1, 9) Squ_Acc(2, 8) Squ_Acc(3, 7) Squ_Acc(4, 6) Squ_Diag(5) \
- Squ_SaveAcc(10, 0, 11) Squ_Acc(1, 10) Squ_Acc(2, 9) Squ_Acc(3, 8) Squ_Acc(4, 7) Squ_Acc(5, 6) Squ_NonDiag \
- Squ_SaveAcc(11, 0, 12) Squ_Acc(1, 11) Squ_Acc(2, 10) Squ_Acc(3, 9) Squ_Acc(4, 8) Squ_Acc(5, 7) Squ_Diag(6) \
- Squ_SaveAcc(12, 0, 13) Squ_Acc(1, 12) Squ_Acc(2, 11) Squ_Acc(3, 10) Squ_Acc(4, 9) Squ_Acc(5, 8) Squ_Acc(6, 7) Squ_NonDiag \
- Squ_SaveAcc(13, 0, 14) Squ_Acc(1, 13) Squ_Acc(2, 12) Squ_Acc(3, 11) Squ_Acc(4, 10) Squ_Acc(5, 9) Squ_Acc(6, 8) Squ_Diag(7) \
- Squ_SaveAcc(14, 0, 15) Squ_Acc(1, 14) Squ_Acc(2, 13) Squ_Acc(3, 12) Squ_Acc(4, 11) Squ_Acc(5, 10) Squ_Acc(6, 9) Squ_Acc(7, 8) Squ_NonDiag \
- Squ_SaveAcc(15, 1, 15) Squ_Acc(2, 14) Squ_Acc(3, 13) Squ_Acc(4, 12) Squ_Acc(5, 11) Squ_Acc(6, 10) Squ_Acc(7, 9) Squ_Diag(8) \
- Squ_SaveAcc(16, 2, 15) Squ_Acc(3, 14) Squ_Acc(4, 13) Squ_Acc(5, 12) Squ_Acc(6, 11) Squ_Acc(7, 10) Squ_Acc(8, 9) Squ_NonDiag \
- Squ_SaveAcc(17, 3, 15) Squ_Acc(4, 14) Squ_Acc(5, 13) Squ_Acc(6, 12) Squ_Acc(7, 11) Squ_Acc(8, 10) Squ_Diag(9) \
- Squ_SaveAcc(18, 4, 15) Squ_Acc(5, 14) Squ_Acc(6, 13) Squ_Acc(7, 12) Squ_Acc(8, 11) Squ_Acc(9, 10) Squ_NonDiag \
- Squ_SaveAcc(19, 5, 15) Squ_Acc(6, 14) Squ_Acc(7, 13) Squ_Acc(8, 12) Squ_Acc(9, 11) Squ_Diag(10) \
- Squ_SaveAcc(20, 6, 15) Squ_Acc(7, 14) Squ_Acc(8, 13) Squ_Acc(9, 12) Squ_Acc(10, 11) Squ_NonDiag \
- Squ_SaveAcc(21, 7, 15) Squ_Acc(8, 14) Squ_Acc(9, 13) Squ_Acc(10, 12) Squ_Diag(11) \
- Squ_SaveAcc(22, 8, 15) Squ_Acc(9, 14) Squ_Acc(10, 13) Squ_Acc(11, 12) Squ_NonDiag \
- Squ_SaveAcc(23, 9, 15) Squ_Acc(10, 14) Squ_Acc(11, 13) Squ_Diag(12) \
- Squ_SaveAcc(24, 10, 15) Squ_Acc(11, 14) Squ_Acc(12, 13) Squ_NonDiag \
- Squ_SaveAcc(25, 11, 15) Squ_Acc(12, 14) Squ_Diag(13) \
- Squ_SaveAcc(26, 12, 15) Squ_Acc(13, 14) Squ_NonDiag \
- Squ_SaveAcc(27, 13, 15) Squ_Diag(14) \
- Squ_SaveAcc(28, 14, 15) Squ_NonDiag \
- Squ_End(16)
-
-#define Bot_2 \
- Mul_Begin(2) \
- Bot_SaveAcc(0, 0, 1) Bot_Acc(1, 0) \
- Bot_End(2)
-
-#define Bot_4 \
- Mul_Begin(4) \
- Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \
- Mul_SaveAcc(1, 2, 0) Mul_Acc(1, 1) Mul_Acc(0, 2) \
- Bot_SaveAcc(2, 0, 3) Bot_Acc(1, 2) Bot_Acc(2, 1) Bot_Acc(3, 0) \
- Bot_End(4)
-
-#define Bot_8 \
- Mul_Begin(8) \
- Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \
- Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \
- Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \
- Mul_SaveAcc(3, 0, 4) Mul_Acc(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) Mul_Acc(4, 0) \
- Mul_SaveAcc(4, 0, 5) Mul_Acc(1, 4) Mul_Acc(2, 3) Mul_Acc(3, 2) Mul_Acc(4, 1) Mul_Acc(5, 0) \
- Mul_SaveAcc(5, 0, 6) Mul_Acc(1, 5) Mul_Acc(2, 4) Mul_Acc(3, 3) Mul_Acc(4, 2) Mul_Acc(5, 1) Mul_Acc(6, 0) \
- Bot_SaveAcc(6, 0, 7) Bot_Acc(1, 6) Bot_Acc(2, 5) Bot_Acc(3, 4) Bot_Acc(4, 3) Bot_Acc(5, 2) Bot_Acc(6, 1) Bot_Acc(7, 0) \
- Bot_End(8)
-
-#define Bot_16 \
- Mul_Begin(16) \
- Mul_SaveAcc(0, 0, 1) Mul_Acc(1, 0) \
- Mul_SaveAcc(1, 0, 2) Mul_Acc(1, 1) Mul_Acc(2, 0) \
- Mul_SaveAcc(2, 0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \
- Mul_SaveAcc(3, 0, 4) Mul_Acc(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) Mul_Acc(4, 0) \
- Mul_SaveAcc(4, 0, 5) Mul_Acc(1, 4) Mul_Acc(2, 3) Mul_Acc(3, 2) Mul_Acc(4, 1) Mul_Acc(5, 0) \
- Mul_SaveAcc(5, 0, 6) Mul_Acc(1, 5) Mul_Acc(2, 4) Mul_Acc(3, 3) Mul_Acc(4, 2) Mul_Acc(5, 1) Mul_Acc(6, 0) \
- Mul_SaveAcc(6, 0, 7) Mul_Acc(1, 6) Mul_Acc(2, 5) Mul_Acc(3, 4) Mul_Acc(4, 3) Mul_Acc(5, 2) Mul_Acc(6, 1) Mul_Acc(7, 0) \
- Mul_SaveAcc(7, 0, 8) Mul_Acc(1, 7) Mul_Acc(2, 6) Mul_Acc(3, 5) Mul_Acc(4, 4) Mul_Acc(5, 3) Mul_Acc(6, 2) Mul_Acc(7, 1) Mul_Acc(8, 0) \
- Mul_SaveAcc(8, 0, 9) Mul_Acc(1, 8) Mul_Acc(2, 7) Mul_Acc(3, 6) Mul_Acc(4, 5) Mul_Acc(5, 4) Mul_Acc(6, 3) Mul_Acc(7, 2) Mul_Acc(8, 1) Mul_Acc(9, 0) \
- Mul_SaveAcc(9, 0, 10) Mul_Acc(1, 9) Mul_Acc(2, 8) Mul_Acc(3, 7) Mul_Acc(4, 6) Mul_Acc(5, 5) Mul_Acc(6, 4) Mul_Acc(7, 3) Mul_Acc(8, 2) Mul_Acc(9, 1) Mul_Acc(10, 0) \
- Mul_SaveAcc(10, 0, 11) Mul_Acc(1, 10) Mul_Acc(2, 9) Mul_Acc(3, 8) Mul_Acc(4, 7) Mul_Acc(5, 6) Mul_Acc(6, 5) Mul_Acc(7, 4) Mul_Acc(8, 3) Mul_Acc(9, 2) Mul_Acc(10, 1) Mul_Acc(11, 0) \
- Mul_SaveAcc(11, 0, 12) Mul_Acc(1, 11) Mul_Acc(2, 10) Mul_Acc(3, 9) Mul_Acc(4, 8) Mul_Acc(5, 7) Mul_Acc(6, 6) Mul_Acc(7, 5) Mul_Acc(8, 4) Mul_Acc(9, 3) Mul_Acc(10, 2) Mul_Acc(11, 1) Mul_Acc(12, 0) \
- Mul_SaveAcc(12, 0, 13) Mul_Acc(1, 12) Mul_Acc(2, 11) Mul_Acc(3, 10) Mul_Acc(4, 9) Mul_Acc(5, 8) Mul_Acc(6, 7) Mul_Acc(7, 6) Mul_Acc(8, 5) Mul_Acc(9, 4) Mul_Acc(10, 3) Mul_Acc(11, 2) Mul_Acc(12, 1) Mul_Acc(13, 0) \
- Mul_SaveAcc(13, 0, 14) Mul_Acc(1, 13) Mul_Acc(2, 12) Mul_Acc(3, 11) Mul_Acc(4, 10) Mul_Acc(5, 9) Mul_Acc(6, 8) Mul_Acc(7, 7) Mul_Acc(8, 6) Mul_Acc(9, 5) Mul_Acc(10, 4) Mul_Acc(11, 3) Mul_Acc(12, 2) Mul_Acc(13, 1) Mul_Acc(14, 0) \
- Bot_SaveAcc(14, 0, 15) Bot_Acc(1, 14) Bot_Acc(2, 13) Bot_Acc(3, 12) Bot_Acc(4, 11) Bot_Acc(5, 10) Bot_Acc(6, 9) Bot_Acc(7, 8) Bot_Acc(8, 7) Bot_Acc(9, 6) Bot_Acc(10, 5) Bot_Acc(11, 4) Bot_Acc(12, 3) Bot_Acc(13, 2) Bot_Acc(14, 1) Bot_Acc(15, 0) \
- Bot_End(16)
-
-#endif
-
-#if 0
-#define Mul_Begin(n) \
- Declare2Words(p) \
- Declare2Words(c) \
- Declare2Words(d) \
- MultiplyWords(p, A[0], B[0]) \
- AssignWord(c, LowWord(p)) \
- AssignWord(d, HighWord(p))
-
-#define Mul_Acc(i, j) \
- MultiplyWords(p, A[i], B[j]) \
- Acc2WordsBy1(c, LowWord(p)) \
- Acc2WordsBy1(d, HighWord(p))
-
-#define Mul_SaveAcc(k, i, j) \
- R[k] = LowWord(c); \
- Add2WordsBy1(c, d, HighWord(c)) \
- MultiplyWords(p, A[i], B[j]) \
- AssignWord(d, HighWord(p)) \
- Acc2WordsBy1(c, LowWord(p))
-
-#define Mul_End(n) \
- R[2*n-3] = LowWord(c); \
- Acc2WordsBy1(d, HighWord(c)) \
- MultiplyWords(p, A[n-1], B[n-1])\
- Acc2WordsBy2(d, p) \
- R[2*n-2] = LowWord(d); \
- R[2*n-1] = HighWord(d);
-
-#define Bot_SaveAcc(k, i, j) \
- R[k] = LowWord(c); \
- word e = LowWord(d) + HighWord(c); \
- e += A[i] * B[j];
-
-#define Bot_Acc(i, j) \
- e += A[i] * B[j];
-
-#define Bot_End(n) \
- R[n-1] = e;
-#else
-#define Mul_Begin(n) \
- Declare2Words(p) \
- word c; \
- Declare2Words(d) \
- MultiplyWords(p, A[0], B[0]) \
- c = LowWord(p); \
- AssignWord(d, HighWord(p))
-
-#define Mul_Acc(i, j) \
- MulAcc(c, d, A[i], B[j])
-
-#define Mul_SaveAcc(k, i, j) \
- R[k] = c; \
- c = LowWord(d); \
- AssignWord(d, HighWord(d)) \
- MulAcc(c, d, A[i], B[j])
-
-#define Mul_End(k, i) \
- R[k] = c; \
- MultiplyWords(p, A[i], B[i]) \
- Acc2WordsBy2(p, d) \
- R[k+1] = LowWord(p); \
- R[k+2] = HighWord(p);
-
-#define Bot_SaveAcc(k, i, j) \
- R[k] = c; \
- c = LowWord(d); \
- c += A[i] * B[j];
-
-#define Bot_Acc(i, j) \
- c += A[i] * B[j];
-
-#define Bot_End(n) \
- R[n-1] = c;
-#endif
-
-#define Squ_Begin(n) \
- Declare2Words(p) \
- word c; \
- Declare2Words(d) \
- Declare2Words(e) \
- MultiplyWords(p, A[0], A[0]) \
- R[0] = LowWord(p); \
- AssignWord(e, HighWord(p)) \
- MultiplyWords(p, A[0], A[1]) \
- c = LowWord(p); \
- AssignWord(d, HighWord(p)) \
- Squ_NonDiag \
-
-#define Squ_NonDiag \
- Double3Words(c, d)
-
-#define Squ_SaveAcc(k, i, j) \
- Acc3WordsBy2(c, d, e) \
- R[k] = c; \
- MultiplyWords(p, A[i], A[j]) \
- c = LowWord(p); \
- AssignWord(d, HighWord(p)) \
-
-#define Squ_Acc(i, j) \
- MulAcc(c, d, A[i], A[j])
-
-#define Squ_Diag(i) \
- Squ_NonDiag \
- MulAcc(c, d, A[i], A[i])
-
-#define Squ_End(n) \
- Acc3WordsBy2(c, d, e) \
- R[2*n-3] = c; \
- MultiplyWords(p, A[n-1], A[n-1])\
- Acc2WordsBy2(p, e) \
- R[2*n-2] = LowWord(p); \
- R[2*n-1] = HighWord(p);
-
-void Baseline_Multiply2(word *R, const word *A, const word *B)
-{
- Mul_2
-}
-
-void Baseline_Multiply4(word *R, const word *A, const word *B)
-{
- Mul_4
-}
-
-void Baseline_Multiply8(word *R, const word *A, const word *B)
-{
- Mul_8
-}
-
-void Baseline_Square2(word *R, const word *A)
-{
- Squ_2
-}
-
-void Baseline_Square4(word *R, const word *A)
-{
- Squ_4
-}
-
-void Baseline_Square8(word *R, const word *A)
-{
- Squ_8
-}
-
-void Baseline_MultiplyBottom2(word *R, const word *A, const word *B)
-{
- Bot_2
-}
-
-void Baseline_MultiplyBottom4(word *R, const word *A, const word *B)
-{
- Bot_4
-}
-
-void Baseline_MultiplyBottom8(word *R, const word *A, const word *B)
-{
- Bot_8
-}
-
-#define Top_Begin(n) \
- Declare2Words(p) \
- word c; \
- Declare2Words(d) \
- MultiplyWords(p, A[0], B[n-2]);\
- AssignWord(d, HighWord(p));
-
-#define Top_Acc(i, j) \
- MultiplyWords(p, A[i], B[j]);\
- Acc2WordsBy1(d, HighWord(p));
-
-#define Top_SaveAcc0(i, j) \
- c = LowWord(d); \
- AssignWord(d, HighWord(d)) \
- MulAcc(c, d, A[i], B[j])
-
-#define Top_SaveAcc1(i, j) \
- c = L<c; \
- Acc2WordsBy1(d, c); \
- c = LowWord(d); \
- AssignWord(d, HighWord(d)) \
- MulAcc(c, d, A[i], B[j])
-
-void Baseline_MultiplyTop2(word *R, const word *A, const word *B, word L)
-{
- word T[4];
- Baseline_Multiply2(T, A, B);
- R[0] = T[2];
- R[1] = T[3];
-}
-
-void Baseline_MultiplyTop4(word *R, const word *A, const word *B, word L)
-{
- Top_Begin(4)
- Top_Acc(1, 1) Top_Acc(2, 0) \
- Top_SaveAcc0(0, 3) Mul_Acc(1, 2) Mul_Acc(2, 1) Mul_Acc(3, 0) \
- Top_SaveAcc1(1, 3) Mul_Acc(2, 2) Mul_Acc(3, 1) \
- Mul_SaveAcc(0, 2, 3) Mul_Acc(3, 2) \
- Mul_End(1, 3)
-}
-
-void Baseline_MultiplyTop8(word *R, const word *A, const word *B, word L)
-{
- Top_Begin(8)
- Top_Acc(1, 5) Top_Acc(2, 4) Top_Acc(3, 3) Top_Acc(4, 2) Top_Acc(5, 1) Top_Acc(6, 0) \
- Top_SaveAcc0(0, 7) Mul_Acc(1, 6) Mul_Acc(2, 5) Mul_Acc(3, 4) Mul_Acc(4, 3) Mul_Acc(5, 2) Mul_Acc(6, 1) Mul_Acc(7, 0) \
- Top_SaveAcc1(1, 7) Mul_Acc(2, 6) Mul_Acc(3, 5) Mul_Acc(4, 4) Mul_Acc(5, 3) Mul_Acc(6, 2) Mul_Acc(7, 1) \
- Mul_SaveAcc(0, 2, 7) Mul_Acc(3, 6) Mul_Acc(4, 5) Mul_Acc(5, 4) Mul_Acc(6, 3) Mul_Acc(7, 2) \
- Mul_SaveAcc(1, 3, 7) Mul_Acc(4, 6) Mul_Acc(5, 5) Mul_Acc(6, 4) Mul_Acc(7, 3) \
- Mul_SaveAcc(2, 4, 7) Mul_Acc(5, 6) Mul_Acc(6, 5) Mul_Acc(7, 4) \
- Mul_SaveAcc(3, 5, 7) Mul_Acc(6, 6) Mul_Acc(7, 5) \
- Mul_SaveAcc(4, 6, 7) Mul_Acc(7, 6) \
- Mul_End(5, 7)
-}
-
-#if !CRYPTOPP_INTEGER_SSE2 // save memory by not compiling these functions when SSE2 is available
-void Baseline_Multiply16(word *R, const word *A, const word *B)
-{
- Mul_16
-}
-
-void Baseline_Square16(word *R, const word *A)
-{
- Squ_16
-}
-
-void Baseline_MultiplyBottom16(word *R, const word *A, const word *B)
-{
- Bot_16
-}
-
-void Baseline_MultiplyTop16(word *R, const word *A, const word *B, word L)
-{
- Top_Begin(16)
- Top_Acc(1, 13) Top_Acc(2, 12) Top_Acc(3, 11) Top_Acc(4, 10) Top_Acc(5, 9) Top_Acc(6, 8) Top_Acc(7, 7) Top_Acc(8, 6) Top_Acc(9, 5) Top_Acc(10, 4) Top_Acc(11, 3) Top_Acc(12, 2) Top_Acc(13, 1) Top_Acc(14, 0) \
- Top_SaveAcc0(0, 15) Mul_Acc(1, 14) Mul_Acc(2, 13) Mul_Acc(3, 12) Mul_Acc(4, 11) Mul_Acc(5, 10) Mul_Acc(6, 9) Mul_Acc(7, 8) Mul_Acc(8, 7) Mul_Acc(9, 6) Mul_Acc(10, 5) Mul_Acc(11, 4) Mul_Acc(12, 3) Mul_Acc(13, 2) Mul_Acc(14, 1) Mul_Acc(15, 0) \
- Top_SaveAcc1(1, 15) Mul_Acc(2, 14) Mul_Acc(3, 13) Mul_Acc(4, 12) Mul_Acc(5, 11) Mul_Acc(6, 10) Mul_Acc(7, 9) Mul_Acc(8, 8) Mul_Acc(9, 7) Mul_Acc(10, 6) Mul_Acc(11, 5) Mul_Acc(12, 4) Mul_Acc(13, 3) Mul_Acc(14, 2) Mul_Acc(15, 1) \
- Mul_SaveAcc(0, 2, 15) Mul_Acc(3, 14) Mul_Acc(4, 13) Mul_Acc(5, 12) Mul_Acc(6, 11) Mul_Acc(7, 10) Mul_Acc(8, 9) Mul_Acc(9, 8) Mul_Acc(10, 7) Mul_Acc(11, 6) Mul_Acc(12, 5) Mul_Acc(13, 4) Mul_Acc(14, 3) Mul_Acc(15, 2) \
- Mul_SaveAcc(1, 3, 15) Mul_Acc(4, 14) Mul_Acc(5, 13) Mul_Acc(6, 12) Mul_Acc(7, 11) Mul_Acc(8, 10) Mul_Acc(9, 9) Mul_Acc(10, 8) Mul_Acc(11, 7) Mul_Acc(12, 6) Mul_Acc(13, 5) Mul_Acc(14, 4) Mul_Acc(15, 3) \
- Mul_SaveAcc(2, 4, 15) Mul_Acc(5, 14) Mul_Acc(6, 13) Mul_Acc(7, 12) Mul_Acc(8, 11) Mul_Acc(9, 10) Mul_Acc(10, 9) Mul_Acc(11, 8) Mul_Acc(12, 7) Mul_Acc(13, 6) Mul_Acc(14, 5) Mul_Acc(15, 4) \
- Mul_SaveAcc(3, 5, 15) Mul_Acc(6, 14) Mul_Acc(7, 13) Mul_Acc(8, 12) Mul_Acc(9, 11) Mul_Acc(10, 10) Mul_Acc(11, 9) Mul_Acc(12, 8) Mul_Acc(13, 7) Mul_Acc(14, 6) Mul_Acc(15, 5) \
- Mul_SaveAcc(4, 6, 15) Mul_Acc(7, 14) Mul_Acc(8, 13) Mul_Acc(9, 12) Mul_Acc(10, 11) Mul_Acc(11, 10) Mul_Acc(12, 9) Mul_Acc(13, 8) Mul_Acc(14, 7) Mul_Acc(15, 6) \
- Mul_SaveAcc(5, 7, 15) Mul_Acc(8, 14) Mul_Acc(9, 13) Mul_Acc(10, 12) Mul_Acc(11, 11) Mul_Acc(12, 10) Mul_Acc(13, 9) Mul_Acc(14, 8) Mul_Acc(15, 7) \
- Mul_SaveAcc(6, 8, 15) Mul_Acc(9, 14) Mul_Acc(10, 13) Mul_Acc(11, 12) Mul_Acc(12, 11) Mul_Acc(13, 10) Mul_Acc(14, 9) Mul_Acc(15, 8) \
- Mul_SaveAcc(7, 9, 15) Mul_Acc(10, 14) Mul_Acc(11, 13) Mul_Acc(12, 12) Mul_Acc(13, 11) Mul_Acc(14, 10) Mul_Acc(15, 9) \
- Mul_SaveAcc(8, 10, 15) Mul_Acc(11, 14) Mul_Acc(12, 13) Mul_Acc(13, 12) Mul_Acc(14, 11) Mul_Acc(15, 10) \
- Mul_SaveAcc(9, 11, 15) Mul_Acc(12, 14) Mul_Acc(13, 13) Mul_Acc(14, 12) Mul_Acc(15, 11) \
- Mul_SaveAcc(10, 12, 15) Mul_Acc(13, 14) Mul_Acc(14, 13) Mul_Acc(15, 12) \
- Mul_SaveAcc(11, 13, 15) Mul_Acc(14, 14) Mul_Acc(15, 13) \
- Mul_SaveAcc(12, 14, 15) Mul_Acc(15, 14) \
- Mul_End(13, 15)
-}
-#endif
-
-// ********************************************************
-
-#if CRYPTOPP_INTEGER_SSE2
-
-CRYPTOPP_ALIGN_DATA(16) static const word32 s_maskLow16[4] CRYPTOPP_SECTION_ALIGN16 = {0xffff,0xffff,0xffff,0xffff};
-
-#undef Mul_Begin
-#undef Mul_Acc
-#undef Top_Begin
-#undef Top_Acc
-#undef Squ_Acc
-#undef Squ_NonDiag
-#undef Squ_Diag
-#undef Squ_SaveAcc
-#undef Squ_Begin
-#undef Mul_SaveAcc
-#undef Bot_Acc
-#undef Bot_SaveAcc
-#undef Bot_End
-#undef Squ_End
-#undef Mul_End
-
-#define SSE2_FinalSave(k) \
- AS2( psllq xmm5, 16) \
- AS2( paddq xmm4, xmm5) \
- AS2( movq QWORD PTR [ecx+8*(k)], xmm4)
-
-#define SSE2_SaveShift(k) \
- AS2( movq xmm0, xmm6) \
- AS2( punpckhqdq xmm6, xmm0) \
- AS2( movq xmm1, xmm7) \
- AS2( punpckhqdq xmm7, xmm1) \
- AS2( paddd xmm6, xmm0) \
- AS2( pslldq xmm6, 4) \
- AS2( paddd xmm7, xmm1) \
- AS2( paddd xmm4, xmm6) \
- AS2( pslldq xmm7, 4) \
- AS2( movq xmm6, xmm4) \
- AS2( paddd xmm5, xmm7) \
- AS2( movq xmm7, xmm5) \
- AS2( movd DWORD PTR [ecx+8*(k)], xmm4) \
- AS2( psrlq xmm6, 16) \
- AS2( paddq xmm6, xmm7) \
- AS2( punpckhqdq xmm4, xmm0) \
- AS2( punpckhqdq xmm5, xmm0) \
- AS2( movq QWORD PTR [ecx+8*(k)+2], xmm6) \
- AS2( psrlq xmm6, 3*16) \
- AS2( paddd xmm4, xmm6) \
-
-#define Squ_SSE2_SaveShift(k) \
- AS2( movq xmm0, xmm6) \
- AS2( punpckhqdq xmm6, xmm0) \
- AS2( movq xmm1, xmm7) \
- AS2( punpckhqdq xmm7, xmm1) \
- AS2( paddd xmm6, xmm0) \
- AS2( pslldq xmm6, 4) \
- AS2( paddd xmm7, xmm1) \
- AS2( paddd xmm4, xmm6) \
- AS2( pslldq xmm7, 4) \
- AS2( movhlps xmm6, xmm4) \
- AS2( movd DWORD PTR [ecx+8*(k)], xmm4) \
- AS2( paddd xmm5, xmm7) \
- AS2( movhps QWORD PTR [esp+12], xmm5)\
- AS2( psrlq xmm4, 16) \
- AS2( paddq xmm4, xmm5) \
- AS2( movq QWORD PTR [ecx+8*(k)+2], xmm4) \
- AS2( psrlq xmm4, 3*16) \
- AS2( paddd xmm4, xmm6) \
- AS2( movq QWORD PTR [esp+4], xmm4)\
-
-#define SSE2_FirstMultiply(i) \
- AS2( movdqa xmm7, [esi+(i)*16])\
- AS2( movdqa xmm5, [edi-(i)*16])\
- AS2( pmuludq xmm5, xmm7) \
- AS2( movdqa xmm4, [ebx])\
- AS2( movdqa xmm6, xmm4) \
- AS2( pand xmm4, xmm5) \
- AS2( psrld xmm5, 16) \
- AS2( pmuludq xmm7, [edx-(i)*16])\
- AS2( pand xmm6, xmm7) \
- AS2( psrld xmm7, 16)
-
-#define Squ_Begin(n) \
- SquPrologue \
- AS2( mov esi, esp)\
- AS2( and esp, 0xfffffff0)\
- AS2( lea edi, [esp-32*n])\
- AS2( sub esp, 32*n+16)\
- AS1( push esi)\
- AS2( mov esi, edi) \
- AS2( xor edx, edx) \
- ASL(1) \
- ASS( pshufd xmm0, [eax+edx], 3,1,2,0) \
- ASS( pshufd xmm1, [eax+edx], 2,0,3,1) \
- AS2( movdqa [edi+2*edx], xmm0) \
- AS2( psrlq xmm0, 32) \
- AS2( movdqa [edi+2*edx+16], xmm0) \
- AS2( movdqa [edi+16*n+2*edx], xmm1) \
- AS2( psrlq xmm1, 32) \
- AS2( movdqa [edi+16*n+2*edx+16], xmm1) \
- AS2( add edx, 16) \
- AS2( cmp edx, 8*(n)) \
- ASJ( jne, 1, b) \
- AS2( lea edx, [edi+16*n])\
- SSE2_FirstMultiply(0) \
-
-#define Squ_Acc(i) \
- ASL(LSqu##i) \
- AS2( movdqa xmm1, [esi+(i)*16]) \
- AS2( movdqa xmm0, [edi-(i)*16]) \
- AS2( movdqa xmm2, [ebx]) \
- AS2( pmuludq xmm0, xmm1) \
- AS2( pmuludq xmm1, [edx-(i)*16]) \
- AS2( movdqa xmm3, xmm2) \
- AS2( pand xmm2, xmm0) \
- AS2( psrld xmm0, 16) \
- AS2( paddd xmm4, xmm2) \
- AS2( paddd xmm5, xmm0) \
- AS2( pand xmm3, xmm1) \
- AS2( psrld xmm1, 16) \
- AS2( paddd xmm6, xmm3) \
- AS2( paddd xmm7, xmm1) \
-
-#define Squ_Acc1(i)
-#define Squ_Acc2(i) ASC(call, LSqu##i)
-#define Squ_Acc3(i) Squ_Acc2(i)
-#define Squ_Acc4(i) Squ_Acc2(i)
-#define Squ_Acc5(i) Squ_Acc2(i)
-#define Squ_Acc6(i) Squ_Acc2(i)
-#define Squ_Acc7(i) Squ_Acc2(i)
-#define Squ_Acc8(i) Squ_Acc2(i)
-
-#define SSE2_End(E, n) \
- SSE2_SaveShift(2*(n)-3) \
- AS2( movdqa xmm7, [esi+16]) \
- AS2( movdqa xmm0, [edi]) \
- AS2( pmuludq xmm0, xmm7) \
- AS2( movdqa xmm2, [ebx]) \
- AS2( pmuludq xmm7, [edx]) \
- AS2( movdqa xmm6, xmm2) \
- AS2( pand xmm2, xmm0) \
- AS2( psrld xmm0, 16) \
- AS2( paddd xmm4, xmm2) \
- AS2( paddd xmm5, xmm0) \
- AS2( pand xmm6, xmm7) \
- AS2( psrld xmm7, 16) \
- SSE2_SaveShift(2*(n)-2) \
- SSE2_FinalSave(2*(n)-1) \
- AS1( pop esp)\
- E
-
-#define Squ_End(n) SSE2_End(SquEpilogue, n)
-#define Mul_End(n) SSE2_End(MulEpilogue, n)
-#define Top_End(n) SSE2_End(TopEpilogue, n)
-
-#define Squ_Column1(k, i) \
- Squ_SSE2_SaveShift(k) \
- AS2( add esi, 16) \
- SSE2_FirstMultiply(1)\
- Squ_Acc##i(i) \
- AS2( paddd xmm4, xmm4) \
- AS2( paddd xmm5, xmm5) \
- AS2( movdqa xmm3, [esi]) \
- AS2( movq xmm1, QWORD PTR [esi+8]) \
- AS2( pmuludq xmm1, xmm3) \
- AS2( pmuludq xmm3, xmm3) \
- AS2( movdqa xmm0, [ebx])\
- AS2( movdqa xmm2, xmm0) \
- AS2( pand xmm0, xmm1) \
- AS2( psrld xmm1, 16) \
- AS2( paddd xmm6, xmm0) \
- AS2( paddd xmm7, xmm1) \
- AS2( pand xmm2, xmm3) \
- AS2( psrld xmm3, 16) \
- AS2( paddd xmm6, xmm6) \
- AS2( paddd xmm7, xmm7) \
- AS2( paddd xmm4, xmm2) \
- AS2( paddd xmm5, xmm3) \
- AS2( movq xmm0, QWORD PTR [esp+4])\
- AS2( movq xmm1, QWORD PTR [esp+12])\
- AS2( paddd xmm4, xmm0)\
- AS2( paddd xmm5, xmm1)\
-
-#define Squ_Column0(k, i) \
- Squ_SSE2_SaveShift(k) \
- AS2( add edi, 16) \
- AS2( add edx, 16) \
- SSE2_FirstMultiply(1)\
- Squ_Acc##i(i) \
- AS2( paddd xmm6, xmm6) \
- AS2( paddd xmm7, xmm7) \
- AS2( paddd xmm4, xmm4) \
- AS2( paddd xmm5, xmm5) \
- AS2( movq xmm0, QWORD PTR [esp+4])\
- AS2( movq xmm1, QWORD PTR [esp+12])\
- AS2( paddd xmm4, xmm0)\
- AS2( paddd xmm5, xmm1)\
-
-#define SSE2_MulAdd45 \
- AS2( movdqa xmm7, [esi]) \
- AS2( movdqa xmm0, [edi]) \
- AS2( pmuludq xmm0, xmm7) \
- AS2( movdqa xmm2, [ebx]) \
- AS2( pmuludq xmm7, [edx]) \
- AS2( movdqa xmm6, xmm2) \
- AS2( pand xmm2, xmm0) \
- AS2( psrld xmm0, 16) \
- AS2( paddd xmm4, xmm2) \
- AS2( paddd xmm5, xmm0) \
- AS2( pand xmm6, xmm7) \
- AS2( psrld xmm7, 16)
-
-#define Mul_Begin(n) \
- MulPrologue \
- AS2( mov esi, esp)\
- AS2( and esp, 0xfffffff0)\
- AS2( sub esp, 48*n+16)\
- AS1( push esi)\
- AS2( xor edx, edx) \
- ASL(1) \
- ASS( pshufd xmm0, [eax+edx], 3,1,2,0) \
- ASS( pshufd xmm1, [eax+edx], 2,0,3,1) \
- ASS( pshufd xmm2, [edi+edx], 3,1,2,0) \
- AS2( movdqa [esp+20+2*edx], xmm0) \
- AS2( psrlq xmm0, 32) \
- AS2( movdqa [esp+20+2*edx+16], xmm0) \
- AS2( movdqa [esp+20+16*n+2*edx], xmm1) \
- AS2( psrlq xmm1, 32) \
- AS2( movdqa [esp+20+16*n+2*edx+16], xmm1) \
- AS2( movdqa [esp+20+32*n+2*edx], xmm2) \
- AS2( psrlq xmm2, 32) \
- AS2( movdqa [esp+20+32*n+2*edx+16], xmm2) \
- AS2( add edx, 16) \
- AS2( cmp edx, 8*(n)) \
- ASJ( jne, 1, b) \
- AS2( lea edi, [esp+20])\
- AS2( lea edx, [esp+20+16*n])\
- AS2( lea esi, [esp+20+32*n])\
- SSE2_FirstMultiply(0) \
-
-#define Mul_Acc(i) \
- ASL(LMul##i) \
- AS2( movdqa xmm1, [esi+i/2*(1-(i-2*(i/2))*2)*16]) \
- AS2( movdqa xmm0, [edi-i/2*(1-(i-2*(i/2))*2)*16]) \
- AS2( movdqa xmm2, [ebx]) \
- AS2( pmuludq xmm0, xmm1) \
- AS2( pmuludq xmm1, [edx-i/2*(1-(i-2*(i/2))*2)*16]) \
- AS2( movdqa xmm3, xmm2) \
- AS2( pand xmm2, xmm0) \
- AS2( psrld xmm0, 16) \
- AS2( paddd xmm4, xmm2) \
- AS2( paddd xmm5, xmm0) \
- AS2( pand xmm3, xmm1) \
- AS2( psrld xmm1, 16) \
- AS2( paddd xmm6, xmm3) \
- AS2( paddd xmm7, xmm1) \
-
-#define Mul_Acc1(i)
-#define Mul_Acc2(i) ASC(call, LMul##i)
-#define Mul_Acc3(i) Mul_Acc2(i)
-#define Mul_Acc4(i) Mul_Acc2(i)
-#define Mul_Acc5(i) Mul_Acc2(i)
-#define Mul_Acc6(i) Mul_Acc2(i)
-#define Mul_Acc7(i) Mul_Acc2(i)
-#define Mul_Acc8(i) Mul_Acc2(i)
-#define Mul_Acc9(i) Mul_Acc2(i)
-#define Mul_Acc10(i) Mul_Acc2(i)
-#define Mul_Acc11(i) Mul_Acc2(i)
-#define Mul_Acc12(i) Mul_Acc2(i)
-#define Mul_Acc13(i) Mul_Acc2(i)
-#define Mul_Acc14(i) Mul_Acc2(i)
-#define Mul_Acc15(i) Mul_Acc2(i)
-#define Mul_Acc16(i) Mul_Acc2(i)
-
-#define Mul_Column1(k, i) \
- SSE2_SaveShift(k) \
- AS2( add esi, 16) \
- SSE2_MulAdd45\
- Mul_Acc##i(i) \
-
-#define Mul_Column0(k, i) \
- SSE2_SaveShift(k) \
- AS2( add edi, 16) \
- AS2( add edx, 16) \
- SSE2_MulAdd45\
- Mul_Acc##i(i) \
-
-#define Bot_Acc(i) \
- AS2( movdqa xmm1, [esi+i/2*(1-(i-2*(i/2))*2)*16]) \
- AS2( movdqa xmm0, [edi-i/2*(1-(i-2*(i/2))*2)*16]) \
- AS2( pmuludq xmm0, xmm1) \
- AS2( pmuludq xmm1, [edx-i/2*(1-(i-2*(i/2))*2)*16]) \
- AS2( paddq xmm4, xmm0) \
- AS2( paddd xmm6, xmm1)
-
-#define Bot_SaveAcc(k) \
- SSE2_SaveShift(k) \
- AS2( add edi, 16) \
- AS2( add edx, 16) \
- AS2( movdqa xmm6, [esi]) \
- AS2( movdqa xmm0, [edi]) \
- AS2( pmuludq xmm0, xmm6) \
- AS2( paddq xmm4, xmm0) \
- AS2( psllq xmm5, 16) \
- AS2( paddq xmm4, xmm5) \
- AS2( pmuludq xmm6, [edx])
-
-#define Bot_End(n) \
- AS2( movhlps xmm7, xmm6) \
- AS2( paddd xmm6, xmm7) \
- AS2( psllq xmm6, 32) \
- AS2( paddd xmm4, xmm6) \
- AS2( movq QWORD PTR [ecx+8*((n)-1)], xmm4) \
- AS1( pop esp)\
- MulEpilogue
-
-#define Top_Begin(n) \
- TopPrologue \
- AS2( mov edx, esp)\
- AS2( and esp, 0xfffffff0)\
- AS2( sub esp, 48*n+16)\
- AS1( push edx)\
- AS2( xor edx, edx) \
- ASL(1) \
- ASS( pshufd xmm0, [eax+edx], 3,1,2,0) \
- ASS( pshufd xmm1, [eax+edx], 2,0,3,1) \
- ASS( pshufd xmm2, [edi+edx], 3,1,2,0) \
- AS2( movdqa [esp+20+2*edx], xmm0) \
- AS2( psrlq xmm0, 32) \
- AS2( movdqa [esp+20+2*edx+16], xmm0) \
- AS2( movdqa [esp+20+16*n+2*edx], xmm1) \
- AS2( psrlq xmm1, 32) \
- AS2( movdqa [esp+20+16*n+2*edx+16], xmm1) \
- AS2( movdqa [esp+20+32*n+2*edx], xmm2) \
- AS2( psrlq xmm2, 32) \
- AS2( movdqa [esp+20+32*n+2*edx+16], xmm2) \
- AS2( add edx, 16) \
- AS2( cmp edx, 8*(n)) \
- ASJ( jne, 1, b) \
- AS2( mov eax, esi) \
- AS2( lea edi, [esp+20+00*n+16*(n/2-1)])\
- AS2( lea edx, [esp+20+16*n+16*(n/2-1)])\
- AS2( lea esi, [esp+20+32*n+16*(n/2-1)])\
- AS2( pxor xmm4, xmm4)\
- AS2( pxor xmm5, xmm5)
-
-#define Top_Acc(i) \
- AS2( movq xmm0, QWORD PTR [esi+i/2*(1-(i-2*(i/2))*2)*16+8]) \
- AS2( pmuludq xmm0, [edx-i/2*(1-(i-2*(i/2))*2)*16]) \
- AS2( psrlq xmm0, 48) \
- AS2( paddd xmm5, xmm0)\
-
-#define Top_Column0(i) \
- AS2( psllq xmm5, 32) \
- AS2( add edi, 16) \
- AS2( add edx, 16) \
- SSE2_MulAdd45\
- Mul_Acc##i(i) \
-
-#define Top_Column1(i) \
- SSE2_SaveShift(0) \
- AS2( add esi, 16) \
- SSE2_MulAdd45\
- Mul_Acc##i(i) \
- AS2( shr eax, 16) \
- AS2( movd xmm0, eax)\
- AS2( movd xmm1, [ecx+4])\
- AS2( psrld xmm1, 16)\
- AS2( pcmpgtd xmm1, xmm0)\
- AS2( psrld xmm1, 31)\
- AS2( paddd xmm4, xmm1)\
-
-void SSE2_Square4(word *C, const word *A)
-{
- Squ_Begin(2)
- Squ_Column0(0, 1)
- Squ_End(2)
-}
-
-void SSE2_Square8(word *C, const word *A)
-{
- Squ_Begin(4)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Squ_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Squ_Column0(0, 1)
- Squ_Column1(1, 1)
- Squ_Column0(2, 2)
- Squ_Column1(3, 1)
- Squ_Column0(4, 1)
- Squ_End(4)
-}
-
-void SSE2_Square16(word *C, const word *A)
-{
- Squ_Begin(8)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Squ_Acc(4) Squ_Acc(3) Squ_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Squ_Column0(0, 1)
- Squ_Column1(1, 1)
- Squ_Column0(2, 2)
- Squ_Column1(3, 2)
- Squ_Column0(4, 3)
- Squ_Column1(5, 3)
- Squ_Column0(6, 4)
- Squ_Column1(7, 3)
- Squ_Column0(8, 3)
- Squ_Column1(9, 2)
- Squ_Column0(10, 2)
- Squ_Column1(11, 1)
- Squ_Column0(12, 1)
- Squ_End(8)
-}
-
-void SSE2_Square32(word *C, const word *A)
-{
- Squ_Begin(16)
- ASJ( jmp, 0, f)
- Squ_Acc(8) Squ_Acc(7) Squ_Acc(6) Squ_Acc(5) Squ_Acc(4) Squ_Acc(3) Squ_Acc(2)
- AS1( ret) ASL(0)
- Squ_Column0(0, 1)
- Squ_Column1(1, 1)
- Squ_Column0(2, 2)
- Squ_Column1(3, 2)
- Squ_Column0(4, 3)
- Squ_Column1(5, 3)
- Squ_Column0(6, 4)
- Squ_Column1(7, 4)
- Squ_Column0(8, 5)
- Squ_Column1(9, 5)
- Squ_Column0(10, 6)
- Squ_Column1(11, 6)
- Squ_Column0(12, 7)
- Squ_Column1(13, 7)
- Squ_Column0(14, 8)
- Squ_Column1(15, 7)
- Squ_Column0(16, 7)
- Squ_Column1(17, 6)
- Squ_Column0(18, 6)
- Squ_Column1(19, 5)
- Squ_Column0(20, 5)
- Squ_Column1(21, 4)
- Squ_Column0(22, 4)
- Squ_Column1(23, 3)
- Squ_Column0(24, 3)
- Squ_Column1(25, 2)
- Squ_Column0(26, 2)
- Squ_Column1(27, 1)
- Squ_Column0(28, 1)
- Squ_End(16)
-}
-
-void SSE2_Multiply4(word *C, const word *A, const word *B)
-{
- Mul_Begin(2)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Mul_Column0(0, 2)
- Mul_End(2)
-}
-
-void SSE2_Multiply8(word *C, const word *A, const word *B)
-{
- Mul_Begin(4)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(4) Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Mul_Column0(0, 2)
- Mul_Column1(1, 3)
- Mul_Column0(2, 4)
- Mul_Column1(3, 3)
- Mul_Column0(4, 2)
- Mul_End(4)
-}
-
-void SSE2_Multiply16(word *C, const word *A, const word *B)
-{
- Mul_Begin(8)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Mul_Column0(0, 2)
- Mul_Column1(1, 3)
- Mul_Column0(2, 4)
- Mul_Column1(3, 5)
- Mul_Column0(4, 6)
- Mul_Column1(5, 7)
- Mul_Column0(6, 8)
- Mul_Column1(7, 7)
- Mul_Column0(8, 6)
- Mul_Column1(9, 5)
- Mul_Column0(10, 4)
- Mul_Column1(11, 3)
- Mul_Column0(12, 2)
- Mul_End(8)
-}
-
-void SSE2_Multiply32(word *C, const word *A, const word *B)
-{
- Mul_Begin(16)
- ASJ( jmp, 0, f)
- Mul_Acc(16) Mul_Acc(15) Mul_Acc(14) Mul_Acc(13) Mul_Acc(12) Mul_Acc(11) Mul_Acc(10) Mul_Acc(9) Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
- Mul_Column0(0, 2)
- Mul_Column1(1, 3)
- Mul_Column0(2, 4)
- Mul_Column1(3, 5)
- Mul_Column0(4, 6)
- Mul_Column1(5, 7)
- Mul_Column0(6, 8)
- Mul_Column1(7, 9)
- Mul_Column0(8, 10)
- Mul_Column1(9, 11)
- Mul_Column0(10, 12)
- Mul_Column1(11, 13)
- Mul_Column0(12, 14)
- Mul_Column1(13, 15)
- Mul_Column0(14, 16)
- Mul_Column1(15, 15)
- Mul_Column0(16, 14)
- Mul_Column1(17, 13)
- Mul_Column0(18, 12)
- Mul_Column1(19, 11)
- Mul_Column0(20, 10)
- Mul_Column1(21, 9)
- Mul_Column0(22, 8)
- Mul_Column1(23, 7)
- Mul_Column0(24, 6)
- Mul_Column1(25, 5)
- Mul_Column0(26, 4)
- Mul_Column1(27, 3)
- Mul_Column0(28, 2)
- Mul_End(16)
-}
-
-void SSE2_MultiplyBottom4(word *C, const word *A, const word *B)
-{
- Mul_Begin(2)
- Bot_SaveAcc(0) Bot_Acc(2)
- Bot_End(2)
-}
-
-void SSE2_MultiplyBottom8(word *C, const word *A, const word *B)
-{
- Mul_Begin(4)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Mul_Column0(0, 2)
- Mul_Column1(1, 3)
- Bot_SaveAcc(2) Bot_Acc(4) Bot_Acc(3) Bot_Acc(2)
- Bot_End(4)
-}
-
-void SSE2_MultiplyBottom16(word *C, const word *A, const word *B)
-{
- Mul_Begin(8)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Mul_Column0(0, 2)
- Mul_Column1(1, 3)
- Mul_Column0(2, 4)
- Mul_Column1(3, 5)
- Mul_Column0(4, 6)
- Mul_Column1(5, 7)
- Bot_SaveAcc(6) Bot_Acc(8) Bot_Acc(7) Bot_Acc(6) Bot_Acc(5) Bot_Acc(4) Bot_Acc(3) Bot_Acc(2)
- Bot_End(8)
-}
-
-void SSE2_MultiplyBottom32(word *C, const word *A, const word *B)
-{
- Mul_Begin(16)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(15) Mul_Acc(14) Mul_Acc(13) Mul_Acc(12) Mul_Acc(11) Mul_Acc(10) Mul_Acc(9) Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Mul_Column0(0, 2)
- Mul_Column1(1, 3)
- Mul_Column0(2, 4)
- Mul_Column1(3, 5)
- Mul_Column0(4, 6)
- Mul_Column1(5, 7)
- Mul_Column0(6, 8)
- Mul_Column1(7, 9)
- Mul_Column0(8, 10)
- Mul_Column1(9, 11)
- Mul_Column0(10, 12)
- Mul_Column1(11, 13)
- Mul_Column0(12, 14)
- Mul_Column1(13, 15)
- Bot_SaveAcc(14) Bot_Acc(16) Bot_Acc(15) Bot_Acc(14) Bot_Acc(13) Bot_Acc(12) Bot_Acc(11) Bot_Acc(10) Bot_Acc(9) Bot_Acc(8) Bot_Acc(7) Bot_Acc(6) Bot_Acc(5) Bot_Acc(4) Bot_Acc(3) Bot_Acc(2)
- Bot_End(16)
-}
-
-void SSE2_MultiplyTop8(word *C, const word *A, const word *B, word L)
-{
- Top_Begin(4)
- Top_Acc(3) Top_Acc(2) Top_Acc(1)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(4) Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Top_Column0(4)
- Top_Column1(3)
- Mul_Column0(0, 2)
- Top_End(2)
-}
-
-void SSE2_MultiplyTop16(word *C, const word *A, const word *B, word L)
-{
- Top_Begin(8)
- Top_Acc(7) Top_Acc(6) Top_Acc(5) Top_Acc(4) Top_Acc(3) Top_Acc(2) Top_Acc(1)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Top_Column0(8)
- Top_Column1(7)
- Mul_Column0(0, 6)
- Mul_Column1(1, 5)
- Mul_Column0(2, 4)
- Mul_Column1(3, 3)
- Mul_Column0(4, 2)
- Top_End(4)
-}
-
-void SSE2_MultiplyTop32(word *C, const word *A, const word *B, word L)
-{
- Top_Begin(16)
- Top_Acc(15) Top_Acc(14) Top_Acc(13) Top_Acc(12) Top_Acc(11) Top_Acc(10) Top_Acc(9) Top_Acc(8) Top_Acc(7) Top_Acc(6) Top_Acc(5) Top_Acc(4) Top_Acc(3) Top_Acc(2) Top_Acc(1)
-#ifndef __GNUC__
- ASJ( jmp, 0, f)
- Mul_Acc(16) Mul_Acc(15) Mul_Acc(14) Mul_Acc(13) Mul_Acc(12) Mul_Acc(11) Mul_Acc(10) Mul_Acc(9) Mul_Acc(8) Mul_Acc(7) Mul_Acc(6) Mul_Acc(5) Mul_Acc(4) Mul_Acc(3) Mul_Acc(2)
- AS1( ret) ASL(0)
-#endif
- Top_Column0(16)
- Top_Column1(15)
- Mul_Column0(0, 14)
- Mul_Column1(1, 13)
- Mul_Column0(2, 12)
- Mul_Column1(3, 11)
- Mul_Column0(4, 10)
- Mul_Column1(5, 9)
- Mul_Column0(6, 8)
- Mul_Column1(7, 7)
- Mul_Column0(8, 6)
- Mul_Column1(9, 5)
- Mul_Column0(10, 4)
- Mul_Column1(11, 3)
- Mul_Column0(12, 2)
- Top_End(8)
-}
-
-#endif // #if CRYPTOPP_INTEGER_SSE2
-
-// ********************************************************
-
-typedef int (CRYPTOPP_FASTCALL * PAdd)(size_t N, word *C, const word *A, const word *B);
-typedef void (* PMul)(word *C, const word *A, const word *B);
-typedef void (* PSqu)(word *C, const word *A);
-typedef void (* PMulTop)(word *C, const word *A, const word *B, word L);
-
-#if CRYPTOPP_INTEGER_SSE2
-static PAdd s_pAdd = &Baseline_Add, s_pSub = &Baseline_Sub;
-static size_t s_recursionLimit = 8;
-#else
-static const size_t s_recursionLimit = 16;
-#endif
-
-static PMul s_pMul[9], s_pBot[9];
-static PSqu s_pSqu[9];
-static PMulTop s_pTop[9];
-
-static void SetFunctionPointers()
-{
- s_pMul[0] = &Baseline_Multiply2;
- s_pBot[0] = &Baseline_MultiplyBottom2;
- s_pSqu[0] = &Baseline_Square2;
- s_pTop[0] = &Baseline_MultiplyTop2;
- s_pTop[1] = &Baseline_MultiplyTop4;
-
-#if CRYPTOPP_INTEGER_SSE2
- if (HasSSE2())
- {
-#if _MSC_VER != 1200 || defined(NDEBUG)
- if (IsP4())
- {
- s_pAdd = &SSE2_Add;
- s_pSub = &SSE2_Sub;
- }
-#endif
-
- s_recursionLimit = 32;
-
- s_pMul[1] = &SSE2_Multiply4;
- s_pMul[2] = &SSE2_Multiply8;
- s_pMul[4] = &SSE2_Multiply16;
- s_pMul[8] = &SSE2_Multiply32;
-
- s_pBot[1] = &SSE2_MultiplyBottom4;
- s_pBot[2] = &SSE2_MultiplyBottom8;
- s_pBot[4] = &SSE2_MultiplyBottom16;
- s_pBot[8] = &SSE2_MultiplyBottom32;
-
- s_pSqu[1] = &SSE2_Square4;
- s_pSqu[2] = &SSE2_Square8;
- s_pSqu[4] = &SSE2_Square16;
- s_pSqu[8] = &SSE2_Square32;
-
- s_pTop[2] = &SSE2_MultiplyTop8;
- s_pTop[4] = &SSE2_MultiplyTop16;
- s_pTop[8] = &SSE2_MultiplyTop32;
- }
- else
-#endif
- {
- s_pMul[1] = &Baseline_Multiply4;
- s_pMul[2] = &Baseline_Multiply8;
-
- s_pBot[1] = &Baseline_MultiplyBottom4;
- s_pBot[2] = &Baseline_MultiplyBottom8;
-
- s_pSqu[1] = &Baseline_Square4;
- s_pSqu[2] = &Baseline_Square8;
-
- s_pTop[2] = &Baseline_MultiplyTop8;
-
-#if !CRYPTOPP_INTEGER_SSE2
- s_pMul[4] = &Baseline_Multiply16;
- s_pBot[4] = &Baseline_MultiplyBottom16;
- s_pSqu[4] = &Baseline_Square16;
- s_pTop[4] = &Baseline_MultiplyTop16;
-#endif
- }
-}
-
-inline int Add(word *C, const word *A, const word *B, size_t N)
-{
-#if CRYPTOPP_INTEGER_SSE2
- return s_pAdd(N, C, A, B);
-#else
- return Baseline_Add(N, C, A, B);
-#endif
-}
-
-inline int Subtract(word *C, const word *A, const word *B, size_t N)
-{
-#if CRYPTOPP_INTEGER_SSE2
- return s_pSub(N, C, A, B);
-#else
- return Baseline_Sub(N, C, A, B);
-#endif
-}
-
-// ********************************************************
-
-
-#define A0 A
-#define A1 (A+N2)
-#define B0 B
-#define B1 (B+N2)
-
-#define T0 T
-#define T1 (T+N2)
-#define T2 (T+N)
-#define T3 (T+N+N2)
-
-#define R0 R
-#define R1 (R+N2)
-#define R2 (R+N)
-#define R3 (R+N+N2)
-
-// R[2*N] - result = A*B
-// T[2*N] - temporary work space
-// A[N] --- multiplier
-// B[N] --- multiplicant
-
-void RecursiveMultiply(word *R, word *T, const word *A, const word *B, size_t N)
-{
- assert(N>=2 && N%2==0);
-
- if (N <= s_recursionLimit)
- s_pMul[N/4](R, A, B);
- else
- {
- const size_t N2 = N/2;
-
- size_t AN2 = Compare(A0, A1, N2) > 0 ? 0 : N2;
- Subtract(R0, A + AN2, A + (N2 ^ AN2), N2);
-
- size_t BN2 = Compare(B0, B1, N2) > 0 ? 0 : N2;
- Subtract(R1, B + BN2, B + (N2 ^ BN2), N2);
-
- RecursiveMultiply(R2, T2, A1, B1, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- RecursiveMultiply(R0, T2, A0, B0, N2);
-
- // now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1
-
- int c2 = Add(R2, R2, R1, N2);
- int c3 = c2;
- c2 += Add(R1, R2, R0, N2);
- c3 += Add(R2, R2, R3, N2);
-
- if (AN2 == BN2)
- c3 -= Subtract(R1, R1, T0, N);
- else
- c3 += Add(R1, R1, T0, N);
-
- c3 += Increment(R2, N2, c2);
- assert (c3 >= 0 && c3 <= 2);
- Increment(R3, N2, c3);
- }
-}
-
-// R[2*N] - result = A*A
-// T[2*N] - temporary work space
-// A[N] --- number to be squared
-
-void RecursiveSquare(word *R, word *T, const word *A, size_t N)
-{
- assert(N && N%2==0);
-
- if (N <= s_recursionLimit)
- s_pSqu[N/4](R, A);
- else
- {
- const size_t N2 = N/2;
-
- RecursiveSquare(R0, T2, A0, N2);
- RecursiveSquare(R2, T2, A1, N2);
- RecursiveMultiply(T0, T2, A0, A1, N2);
-
- int carry = Add(R1, R1, T0, N);
- carry += Add(R1, R1, T0, N);
- Increment(R3, N2, carry);
- }
-}
-
-// R[N] - bottom half of A*B
-// T[3*N/2] - temporary work space
-// A[N] - multiplier
-// B[N] - multiplicant
-
-void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, size_t N)
-{
- assert(N>=2 && N%2==0);
-
- if (N <= s_recursionLimit)
- s_pBot[N/4](R, A, B);
- else
- {
- const size_t N2 = N/2;
-
- RecursiveMultiply(R, T, A0, B0, N2);
- RecursiveMultiplyBottom(T0, T1, A1, B0, N2);
- Add(R1, R1, T0, N2);
- RecursiveMultiplyBottom(T0, T1, A0, B1, N2);
- Add(R1, R1, T0, N2);
- }
-}
-
-// R[N] --- upper half of A*B
-// T[2*N] - temporary work space
-// L[N] --- lower half of A*B
-// A[N] --- multiplier
-// B[N] --- multiplicant
-
-void MultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, size_t N)
-{
- assert(N>=2 && N%2==0);
-
- if (N <= s_recursionLimit)
- s_pTop[N/4](R, A, B, L[N-1]);
- else
- {
- const size_t N2 = N/2;
-
- size_t AN2 = Compare(A0, A1, N2) > 0 ? 0 : N2;
- Subtract(R0, A + AN2, A + (N2 ^ AN2), N2);
-
- size_t BN2 = Compare(B0, B1, N2) > 0 ? 0 : N2;
- Subtract(R1, B + BN2, B + (N2 ^ BN2), N2);
-
- RecursiveMultiply(T0, T2, R0, R1, N2);
- RecursiveMultiply(R0, T2, A1, B1, N2);
-
- // now T[01] holds (A1-A0)*(B0-B1) = A1*B0+A0*B1-A1*B1-A0*B0, R[01] holds A1*B1
-
- int t, c3;
- int c2 = Subtract(T2, L+N2, L, N2);
-
- if (AN2 == BN2)
- {
- c2 -= Add(T2, T2, T0, N2);
- t = (Compare(T2, R0, N2) == -1);
- c3 = t - Subtract(T2, T2, T1, N2);
- }
- else
- {
- c2 += Subtract(T2, T2, T0, N2);
- t = (Compare(T2, R0, N2) == -1);
- c3 = t + Add(T2, T2, T1, N2);
- }
-
- c2 += t;
- if (c2 >= 0)
- c3 += Increment(T2, N2, c2);
- else
- c3 -= Decrement(T2, N2, -c2);
- c3 += Add(R0, T2, R1, N2);
-
- assert (c3 >= 0 && c3 <= 2);
- Increment(R1, N2, c3);
- }
-}
-
-inline void Multiply(word *R, word *T, const word *A, const word *B, size_t N)
-{
- RecursiveMultiply(R, T, A, B, N);
-}
-
-inline void Square(word *R, word *T, const word *A, size_t N)
-{
- RecursiveSquare(R, T, A, N);
-}
-
-inline void MultiplyBottom(word *R, word *T, const word *A, const word *B, size_t N)
-{
- RecursiveMultiplyBottom(R, T, A, B, N);
-}
-
-// R[NA+NB] - result = A*B
-// T[NA+NB] - temporary work space
-// A[NA] ---- multiplier
-// B[NB] ---- multiplicant
-
-void AsymmetricMultiply(word *R, word *T, const word *A, size_t NA, const word *B, size_t NB)
-{
- if (NA == NB)
- {
- if (A == B)
- Square(R, T, A, NA);
- else
- Multiply(R, T, A, B, NA);
-
- return;
- }
-
- if (NA > NB)
- {
- std::swap(A, B);
- std::swap(NA, NB);
- }
-
- assert(NB % NA == 0);
-
- if (NA==2 && !A[1])
- {
- switch (A[0])
- {
- case 0:
- SetWords(R, 0, NB+2);
- return;
- case 1:
- CopyWords(R, B, NB);
- R[NB] = R[NB+1] = 0;
- return;
- default:
- R[NB] = LinearMultiply(R, B, A[0], NB);
- R[NB+1] = 0;
- return;
- }
- }
-
- size_t i;
- if ((NB/NA)%2 == 0)
- {
- Multiply(R, T, A, B, NA);
- CopyWords(T+2*NA, R+NA, NA);
-
- for (i=2*NA; i<NB; i+=2*NA)
- Multiply(T+NA+i, T, A, B+i, NA);
- for (i=NA; i<NB; i+=2*NA)
- Multiply(R+i, T, A, B+i, NA);
- }
- else
- {
- for (i=0; i<NB; i+=2*NA)
- Multiply(R+i, T, A, B+i, NA);
- for (i=NA; i<NB; i+=2*NA)
- Multiply(T+NA+i, T, A, B+i, NA);
- }
-
- if (Add(R+NA, R+NA, T+2*NA, NB-NA))
- Increment(R+NB, NA);
-}
-
-// R[N] ----- result = A inverse mod 2**(WORD_BITS*N)
-// T[3*N/2] - temporary work space
-// A[N] ----- an odd number as input
-
-void RecursiveInverseModPower2(word *R, word *T, const word *A, size_t N)
-{
- if (N==2)
- {
- T[0] = AtomicInverseModPower2(A[0]);
- T[1] = 0;
- s_pBot[0](T+2, T, A);
- TwosComplement(T+2, 2);
- Increment(T+2, 2, 2);
- s_pBot[0](R, T, T+2);
- }
- else
- {
- const size_t N2 = N/2;
- RecursiveInverseModPower2(R0, T0, A0, N2);
- T0[0] = 1;
- SetWords(T0+1, 0, N2-1);
- MultiplyTop(R1, T1, T0, R0, A0, N2);
- MultiplyBottom(T0, T1, R0, A1, N2);
- Add(T0, R1, T0, N2);
- TwosComplement(T0, N2);
- MultiplyBottom(R1, T1, R0, T0, N2);
- }
-}
-
-// R[N] --- result = X/(2**(WORD_BITS*N)) mod M
-// T[3*N] - temporary work space
-// X[2*N] - number to be reduced
-// M[N] --- modulus
-// U[N] --- multiplicative inverse of M mod 2**(WORD_BITS*N)
-
-void MontgomeryReduce(word *R, word *T, word *X, const word *M, const word *U, size_t N)
-{
-#if 1
- MultiplyBottom(R, T, X, U, N);
- MultiplyTop(T, T+N, X, R, M, N);
- word borrow = Subtract(T, X+N, T, N);
- // defend against timing attack by doing this Add even when not needed
- word carry = Add(T+N, T, M, N);
- assert(carry | !borrow);
- CopyWords(R, T + ((0-borrow) & N), N);
-#elif 0
- const word u = 0-U[0];
- Declare2Words(p)
- for (size_t i=0; i<N; i++)
- {
- const word t = u * X[i];
- word c = 0;
- for (size_t j=0; j<N; j+=2)
- {
- MultiplyWords(p, t, M[j]);
- Acc2WordsBy1(p, X[i+j]);
- Acc2WordsBy1(p, c);
- X[i+j] = LowWord(p);
- c = HighWord(p);
- MultiplyWords(p, t, M[j+1]);
- Acc2WordsBy1(p, X[i+j+1]);
- Acc2WordsBy1(p, c);
- X[i+j+1] = LowWord(p);
- c = HighWord(p);
- }
-
- if (Increment(X+N+i, N-i, c))
- while (!Subtract(X+N, X+N, M, N)) {}
- }
-
- memcpy(R, X+N, N*WORD_SIZE);
-#else
- __m64 u = _mm_cvtsi32_si64(0-U[0]), p;
- for (size_t i=0; i<N; i++)
- {
- __m64 t = _mm_cvtsi32_si64(X[i]);
- t = _mm_mul_su32(t, u);
- __m64 c = _mm_setzero_si64();
- for (size_t j=0; j<N; j+=2)
- {
- p = _mm_mul_su32(t, _mm_cvtsi32_si64(M[j]));
- p = _mm_add_si64(p, _mm_cvtsi32_si64(X[i+j]));
- c = _mm_add_si64(c, p);
- X[i+j] = _mm_cvtsi64_si32(c);
- c = _mm_srli_si64(c, 32);
- p = _mm_mul_su32(t, _mm_cvtsi32_si64(M[j+1]));
- p = _mm_add_si64(p, _mm_cvtsi32_si64(X[i+j+1]));
- c = _mm_add_si64(c, p);
- X[i+j+1] = _mm_cvtsi64_si32(c);
- c = _mm_srli_si64(c, 32);
- }
-
- if (Increment(X+N+i, N-i, _mm_cvtsi64_si32(c)))
- while (!Subtract(X+N, X+N, M, N)) {}
- }
-
- memcpy(R, X+N, N*WORD_SIZE);
- _mm_empty();
-#endif
-}
-
-// R[N] --- result = X/(2**(WORD_BITS*N/2)) mod M
-// T[2*N] - temporary work space
-// X[2*N] - number to be reduced
-// M[N] --- modulus
-// U[N/2] - multiplicative inverse of M mod 2**(WORD_BITS*N/2)
-// V[N] --- 2**(WORD_BITS*3*N/2) mod M
-
-void HalfMontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, const word *V, size_t N)
-{
- assert(N%2==0 && N>=4);
-
-#define M0 M
-#define M1 (M+N2)
-#define V0 V
-#define V1 (V+N2)
-
-#define X0 X
-#define X1 (X+N2)
-#define X2 (X+N)
-#define X3 (X+N+N2)
-
- const size_t N2 = N/2;
- Multiply(T0, T2, V0, X3, N2);
- int c2 = Add(T0, T0, X0, N);
- MultiplyBottom(T3, T2, T0, U, N2);
- MultiplyTop(T2, R, T0, T3, M0, N2);
- c2 -= Subtract(T2, T1, T2, N2);
- Multiply(T0, R, T3, M1, N2);
- c2 -= Subtract(T0, T2, T0, N2);
- int c3 = -(int)Subtract(T1, X2, T1, N2);
- Multiply(R0, T2, V1, X3, N2);
- c3 += Add(R, R, T, N);
-
- if (c2>0)
- c3 += Increment(R1, N2);
- else if (c2<0)
- c3 -= Decrement(R1, N2, -c2);
-
- assert(c3>=-1 && c3<=1);
- if (c3>0)
- Subtract(R, R, M, N);
- else if (c3<0)
- Add(R, R, M, N);
-
-#undef M0
-#undef M1
-#undef V0
-#undef V1
-
-#undef X0
-#undef X1
-#undef X2
-#undef X3
-}
-
-#undef A0
-#undef A1
-#undef B0
-#undef B1
-
-#undef T0
-#undef T1
-#undef T2
-#undef T3
-
-#undef R0
-#undef R1
-#undef R2
-#undef R3
-
-/*
-// do a 3 word by 2 word divide, returns quotient and leaves remainder in A
-static word SubatomicDivide(word *A, word B0, word B1)
-{
- // assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a word
- assert(A[2] < B1 || (A[2]==B1 && A[1] < B0));
-
- // estimate the quotient: do a 2 word by 1 word divide
- word Q;
- if (B1+1 == 0)
- Q = A[2];
- else
- Q = DWord(A[1], A[2]).DividedBy(B1+1);
-
- // now subtract Q*B from A
- DWord p = DWord::Multiply(B0, Q);
- DWord u = (DWord) A[0] - p.GetLowHalf();
- A[0] = u.GetLowHalf();
- u = (DWord) A[1] - p.GetHighHalf() - u.GetHighHalfAsBorrow() - DWord::Multiply(B1, Q);
- A[1] = u.GetLowHalf();
- A[2] += u.GetHighHalf();
-
- // Q <= actual quotient, so fix it
- while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0))
- {
- u = (DWord) A[0] - B0;
- A[0] = u.GetLowHalf();
- u = (DWord) A[1] - B1 - u.GetHighHalfAsBorrow();
- A[1] = u.GetLowHalf();
- A[2] += u.GetHighHalf();
- Q++;
- assert(Q); // shouldn't overflow
- }
-
- return Q;
-}
-
-// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1
-static inline void AtomicDivide(word *Q, const word *A, const word *B)
-{
- if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS)
- {
- Q[0] = A[2];
- Q[1] = A[3];
- }
- else
- {
- word T[4];
- T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3];
- Q[1] = SubatomicDivide(T+1, B[0], B[1]);
- Q[0] = SubatomicDivide(T, B[0], B[1]);
-
-#ifndef NDEBUG
- // multiply quotient and divisor and add remainder, make sure it equals dividend
- assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0])));
- word P[4];
- LowLevel::Multiply2(P, Q, B);
- Add(P, P, T, 4);
- assert(memcmp(P, A, 4*WORD_SIZE)==0);
-#endif
- }
-}
-*/
-
-static inline void AtomicDivide(word *Q, const word *A, const word *B)
-{
- word T[4];
- DWord q = DivideFourWordsByTwo<word, DWord>(T, DWord(A[0], A[1]), DWord(A[2], A[3]), DWord(B[0], B[1]));
- Q[0] = q.GetLowHalf();
- Q[1] = q.GetHighHalf();
-
-#ifndef NDEBUG
- if (B[0] || B[1])
- {
- // multiply quotient and divisor and add remainder, make sure it equals dividend
- assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0])));
- word P[4];
- s_pMul[0](P, Q, B);
- Add(P, P, T, 4);
- assert(memcmp(P, A, 4*WORD_SIZE)==0);
- }
-#endif
-}
-
-// for use by Divide(), corrects the underestimated quotient {Q1,Q0}
-static void CorrectQuotientEstimate(word *R, word *T, word *Q, const word *B, size_t N)
-{
- assert(N && N%2==0);
-
- AsymmetricMultiply(T, T+N+2, Q, 2, B, N);
-
- word borrow = Subtract(R, R, T, N+2);
- assert(!borrow && !R[N+1]);
-
- while (R[N] || Compare(R, B, N) >= 0)
- {
- R[N] -= Subtract(R, R, B, N);
- Q[1] += (++Q[0]==0);
- assert(Q[0] || Q[1]); // no overflow
- }
-}
-
-// R[NB] -------- remainder = A%B
-// Q[NA-NB+2] --- quotient = A/B
-// T[NA+3*(NB+2)] - temp work space
-// A[NA] -------- dividend
-// B[NB] -------- divisor
-
-void Divide(word *R, word *Q, word *T, const word *A, size_t NA, const word *B, size_t NB)
-{
- assert(NA && NB && NA%2==0 && NB%2==0);
- assert(B[NB-1] || B[NB-2]);
- assert(NB <= NA);
-
- // set up temporary work space
- word *const TA=T;
- word *const TB=T+NA+2;
- word *const TP=T+NA+2+NB;
-
- // copy B into TB and normalize it so that TB has highest bit set to 1
- unsigned shiftWords = (B[NB-1]==0);
- TB[0] = TB[NB-1] = 0;
- CopyWords(TB+shiftWords, B, NB-shiftWords);
- unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]);
- assert(shiftBits < WORD_BITS);
- ShiftWordsLeftByBits(TB, NB, shiftBits);
-
- // copy A into TA and normalize it
- TA[0] = TA[NA] = TA[NA+1] = 0;
- CopyWords(TA+shiftWords, A, NA);
- ShiftWordsLeftByBits(TA, NA+2, shiftBits);
-
- if (TA[NA+1]==0 && TA[NA] <= 1)
- {
- Q[NA-NB+1] = Q[NA-NB] = 0;
- while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0)
- {
- TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB);
- ++Q[NA-NB];
- }
- }
- else
- {
- NA+=2;
- assert(Compare(TA+NA-NB, TB, NB) < 0);
- }
-
- word BT[2];
- BT[0] = TB[NB-2] + 1;
- BT[1] = TB[NB-1] + (BT[0]==0);
-
- // start reducing TA mod TB, 2 words at a time
- for (size_t i=NA-2; i>=NB; i-=2)
- {
- AtomicDivide(Q+i-NB, TA+i-2, BT);
- CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB);
- }
-
- // copy TA into R, and denormalize it
- CopyWords(R, TA+shiftWords, NB);
- ShiftWordsRightByBits(R, NB, shiftBits);
-}
-
-static inline size_t EvenWordCount(const word *X, size_t N)
-{
- while (N && X[N-2]==0 && X[N-1]==0)
- N-=2;
- return N;
-}
-
-// return k
-// R[N] --- result = A^(-1) * 2^k mod M
-// T[4*N] - temporary work space
-// A[NA] -- number to take inverse of
-// M[N] --- modulus
-
-unsigned int AlmostInverse(word *R, word *T, const word *A, size_t NA, const word *M, size_t N)
-{
- assert(NA<=N && N && N%2==0);
-
- word *b = T;
- word *c = T+N;
- word *f = T+2*N;
- word *g = T+3*N;
- size_t bcLen=2, fgLen=EvenWordCount(M, N);
- unsigned int k=0;
- bool s=false;
-
- SetWords(T, 0, 3*N);
- b[0]=1;
- CopyWords(f, A, NA);
- CopyWords(g, M, N);
-
- while (1)
- {
- word t=f[0];
- while (!t)
- {
- if (EvenWordCount(f, fgLen)==0)
- {
- SetWords(R, 0, N);
- return 0;
- }
-
- ShiftWordsRightByWords(f, fgLen, 1);
- bcLen += 2 * (c[bcLen-1] != 0);
- assert(bcLen <= N);
- ShiftWordsLeftByWords(c, bcLen, 1);
- k+=WORD_BITS;
- t=f[0];
- }
-
- unsigned int i = TrailingZeros(t);
- t >>= i;
- k += i;
-
- if (t==1 && f[1]==0 && EvenWordCount(f+2, fgLen-2)==0)
- {
- if (s)
- Subtract(R, M, b, N);
- else
- CopyWords(R, b, N);
- return k;
- }
-
- ShiftWordsRightByBits(f, fgLen, i);
- t = ShiftWordsLeftByBits(c, bcLen, i);
- c[bcLen] += t;
- bcLen += 2 * (t!=0);
- assert(bcLen <= N);
-
- bool swap = Compare(f, g, fgLen)==-1;
- ConditionalSwapPointers(swap, f, g);
- ConditionalSwapPointers(swap, b, c);
- s ^= swap;
-
- fgLen -= 2 * !(f[fgLen-2] | f[fgLen-1]);
-
- Subtract(f, f, g, fgLen);
- t = Add(b, b, c, bcLen);
- b[bcLen] += t;
- bcLen += 2*t;
- assert(bcLen <= N);
- }
-}
-
-// R[N] - result = A/(2^k) mod M
-// A[N] - input
-// M[N] - modulus
-
-void DivideByPower2Mod(word *R, const word *A, size_t k, const word *M, size_t N)
-{
- CopyWords(R, A, N);
-
- while (k--)
- {
- if (R[0]%2==0)
- ShiftWordsRightByBits(R, N, 1);
- else
- {
- word carry = Add(R, R, M, N);
- ShiftWordsRightByBits(R, N, 1);
- R[N-1] += carry<<(WORD_BITS-1);
- }
- }
-}
-
-// R[N] - result = A*(2^k) mod M
-// A[N] - input
-// M[N] - modulus
-
-void MultiplyByPower2Mod(word *R, const word *A, size_t k, const word *M, size_t N)
-{
- CopyWords(R, A, N);
-
- while (k--)
- if (ShiftWordsLeftByBits(R, N, 1) || Compare(R, M, N)>=0)
- Subtract(R, R, M, N);
-}
-
-// ******************************************************************
-
-InitializeInteger::InitializeInteger()
-{
- if (!g_pAssignIntToInteger)
- {
- SetFunctionPointers();
- g_pAssignIntToInteger = AssignIntToInteger;
- }
-}
-
-static const unsigned int RoundupSizeTable[] = {2, 2, 2, 4, 4, 8, 8, 8, 8};
-
-static inline size_t RoundupSize(size_t n)
-{
- if (n<=8)
- return RoundupSizeTable[n];
- else if (n<=16)
- return 16;
- else if (n<=32)
- return 32;
- else if (n<=64)
- return 64;
- else return size_t(1) << BitPrecision(n-1);
-}
-
-Integer::Integer()
- : reg(2), sign(POSITIVE)
-{
- reg[0] = reg[1] = 0;
-}
-
-Integer::Integer(const Integer& t)
- : reg(RoundupSize(t.WordCount())), sign(t.sign)
-{
- CopyWords(reg, t.reg, reg.size());
-}
-
-Integer::Integer(Sign s, lword value)
- : reg(2), sign(s)
-{
- reg[0] = word(value);
- reg[1] = word(SafeRightShift<WORD_BITS>(value));
-}
-
-Integer::Integer(signed long value)
- : reg(2)
-{
- if (value >= 0)
- sign = POSITIVE;
- else
- {
- sign = NEGATIVE;
- value = -value;
- }
- reg[0] = word(value);
- reg[1] = word(SafeRightShift<WORD_BITS>((unsigned long)value));
-}
-
-Integer::Integer(Sign s, word high, word low)
- : reg(2), sign(s)
-{
- reg[0] = low;
- reg[1] = high;
-}
-
-bool Integer::IsConvertableToLong() const
-{
- if (ByteCount() > sizeof(long))
- return false;
-
- unsigned long value = (unsigned long)reg[0];
- value += SafeLeftShift<WORD_BITS, unsigned long>((unsigned long)reg[1]);
-
- if (sign==POSITIVE)
- return (signed long)value >= 0;
- else
- return -(signed long)value < 0;
-}
-
-signed long Integer::ConvertToLong() const
-{
- assert(IsConvertableToLong());
-
- unsigned long value = (unsigned long)reg[0];
- value += SafeLeftShift<WORD_BITS, unsigned long>((unsigned long)reg[1]);
- return sign==POSITIVE ? value : -(signed long)value;
-}
-
-Integer::Integer(BufferedTransformation &encodedInteger, size_t byteCount, Signedness s)
-{
- Decode(encodedInteger, byteCount, s);
-}
-
-Integer::Integer(const byte *encodedInteger, size_t byteCount, Signedness s)
-{
- Decode(encodedInteger, byteCount, s);
-}
-
-Integer::Integer(BufferedTransformation &bt)
-{
- BERDecode(bt);
-}
-
-Integer::Integer(RandomNumberGenerator &rng, size_t bitcount)
-{
- Randomize(rng, bitcount);
-}
-
-Integer::Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv, const Integer &mod)
-{
- if (!Randomize(rng, min, max, rnType, equiv, mod))
- throw Integer::RandomNumberNotFound();
-}
-
-Integer Integer::Power2(size_t e)
-{
- Integer r((word)0, BitsToWords(e+1));
- r.SetBit(e);
- return r;
-}
-
-template <long i>
-struct NewInteger
-{
- Integer * operator()() const
- {
- return new Integer(i);
- }
-};
-
-const Integer &Integer::Zero()
-{
- return Singleton<Integer>().Ref();
-}
-
-const Integer &Integer::One()
-{
- return Singleton<Integer, NewInteger<1> >().Ref();
-}
-
-const Integer &Integer::Two()
-{
- return Singleton<Integer, NewInteger<2> >().Ref();
-}
-
-bool Integer::operator!() const
-{
- return IsNegative() ? false : (reg[0]==0 && WordCount()==0);
-}
-
-Integer& Integer::operator=(const Integer& t)
-{
- if (this != &t)
- {
- if (reg.size() != t.reg.size() || t.reg[t.reg.size()/2] == 0)
- reg.New(RoundupSize(t.WordCount()));
- CopyWords(reg, t.reg, reg.size());
- sign = t.sign;
- }
- return *this;
-}
-
-bool Integer::GetBit(size_t n) const
-{
- if (n/WORD_BITS >= reg.size())
- return 0;
- else
- return bool((reg[n/WORD_BITS] >> (n % WORD_BITS)) & 1);
-}
-
-void Integer::SetBit(size_t n, bool value)
-{
- if (value)
- {
- reg.CleanGrow(RoundupSize(BitsToWords(n+1)));
- reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS));
- }
- else
- {
- if (n/WORD_BITS < reg.size())
- reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS));
- }
-}
-
-byte Integer::GetByte(size_t n) const
-{
- if (n/WORD_SIZE >= reg.size())
- return 0;
- else
- return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8));
-}
-
-void Integer::SetByte(size_t n, byte value)
-{
- reg.CleanGrow(RoundupSize(BytesToWords(n+1)));
- reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE));
- reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE));
-}
-
-lword Integer::GetBits(size_t i, size_t n) const
-{
- lword v = 0;
- assert(n <= sizeof(v)*8);
- for (unsigned int j=0; j<n; j++)
- v |= lword(GetBit(i+j)) << j;
- return v;
-}
-
-Integer Integer::operator-() const
-{
- Integer result(*this);
- result.Negate();
- return result;
-}
-
-Integer Integer::AbsoluteValue() const
-{
- Integer result(*this);
- result.sign = POSITIVE;
- return result;
-}
-
-void Integer::swap(Integer &a)
-{
- reg.swap(a.reg);
- std::swap(sign, a.sign);
-}
-
-Integer::Integer(word value, size_t length)
- : reg(RoundupSize(length)), sign(POSITIVE)
-{
- reg[0] = value;
- SetWords(reg+1, 0, reg.size()-1);
-}
-
-template <class T>
-static Integer StringToInteger(const T *str)
-{
- int radix;
- // GCC workaround
- // std::char_traits<wchar_t>::length() not defined in GCC 3.2 and STLport 4.5.3
- unsigned int length;
- for (length = 0; str[length] != 0; length++) {}
-
- Integer v;
-
- if (length == 0)
- return v;
-
- switch (str[length-1])
- {
- case 'h':
- case 'H':
- radix=16;
- break;
- case 'o':
- case 'O':
- radix=8;
- break;
- case 'b':
- case 'B':
- radix=2;
- break;
- default:
- radix=10;
- }
-
- if (length > 2 && str[0] == '0' && str[1] == 'x')
- radix = 16;
-
- for (unsigned i=0; i<length; i++)
- {
- int digit;
-
- if (str[i] >= '0' && str[i] <= '9')
- digit = str[i] - '0';
- else if (str[i] >= 'A' && str[i] <= 'F')
- digit = str[i] - 'A' + 10;
- else if (str[i] >= 'a' && str[i] <= 'f')
- digit = str[i] - 'a' + 10;
- else
- digit = radix;
-
- if (digit < radix)
- {
- v *= radix;
- v += digit;
- }
- }
-
- if (str[0] == '-')
- v.Negate();
-
- return v;
-}
-
-Integer::Integer(const char *str)
- : reg(2), sign(POSITIVE)
-{
- *this = StringToInteger(str);
-}
-
-Integer::Integer(const wchar_t *str)
- : reg(2), sign(POSITIVE)
-{
- *this = StringToInteger(str);
-}
-
-unsigned int Integer::WordCount() const
-{
- return (unsigned int)CountWords(reg, reg.size());
-}
-
-unsigned int Integer::ByteCount() const
-{
- unsigned wordCount = WordCount();
- if (wordCount)
- return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]);
- else
- return 0;
-}
-
-unsigned int Integer::BitCount() const
-{
- unsigned wordCount = WordCount();
- if (wordCount)
- return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]);
- else
- return 0;
-}
-
-void Integer::Decode(const byte *input, size_t inputLen, Signedness s)
-{
- StringStore store(input, inputLen);
- Decode(store, inputLen, s);
-}
-
-void Integer::Decode(BufferedTransformation &bt, size_t inputLen, Signedness s)
-{
- assert(bt.MaxRetrievable() >= inputLen);
-
- byte b;
- bt.Peek(b);
- sign = ((s==SIGNED) && (b & 0x80)) ? NEGATIVE : POSITIVE;
-
- while (inputLen>0 && (sign==POSITIVE ? b==0 : b==0xff))
- {
- bt.Skip(1);
- inputLen--;
- bt.Peek(b);
- }
-
- reg.CleanNew(RoundupSize(BytesToWords(inputLen)));
-
- for (size_t i=inputLen; i > 0; i--)
- {
- bt.Get(b);
- reg[(i-1)/WORD_SIZE] |= word(b) << ((i-1)%WORD_SIZE)*8;
- }
-
- if (sign == NEGATIVE)
- {
- for (size_t i=inputLen; i<reg.size()*WORD_SIZE; i++)
- reg[i/WORD_SIZE] |= word(0xff) << (i%WORD_SIZE)*8;
- TwosComplement(reg, reg.size());
- }
-}
-
-size_t Integer::MinEncodedSize(Signedness signedness) const
-{
- unsigned int outputLen = STDMAX(1U, ByteCount());
- if (signedness == UNSIGNED)
- return outputLen;
- if (NotNegative() && (GetByte(outputLen-1) & 0x80))
- outputLen++;
- if (IsNegative() && *this < -Power2(outputLen*8-1))
- outputLen++;
- return outputLen;
-}
-
-void Integer::Encode(byte *output, size_t outputLen, Signedness signedness) const
-{
- ArraySink sink(output, outputLen);
- Encode(sink, outputLen, signedness);
-}
-
-void Integer::Encode(BufferedTransformation &bt, size_t outputLen, Signedness signedness) const
-{
- if (signedness == UNSIGNED || NotNegative())
- {
- for (size_t i=outputLen; i > 0; i--)
- bt.Put(GetByte(i-1));
- }
- else
- {
- // take two's complement of *this
- Integer temp = Integer::Power2(8*STDMAX((size_t)ByteCount(), outputLen)) + *this;
- temp.Encode(bt, outputLen, UNSIGNED);
- }
-}
-
-void Integer::DEREncode(BufferedTransformation &bt) const
-{
- DERGeneralEncoder enc(bt, INTEGER);
- Encode(enc, MinEncodedSize(SIGNED), SIGNED);
- enc.MessageEnd();
-}
-
-void Integer::BERDecode(const byte *input, size_t len)
-{
- StringStore store(input, len);
- BERDecode(store);
-}
-
-void Integer::BERDecode(BufferedTransformation &bt)
-{
- BERGeneralDecoder dec(bt, INTEGER);
- if (!dec.IsDefiniteLength() || dec.MaxRetrievable() < dec.RemainingLength())
- BERDecodeError();
- Decode(dec, (size_t)dec.RemainingLength(), SIGNED);
- dec.MessageEnd();
-}
-
-void Integer::DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const
-{
- DERGeneralEncoder enc(bt, OCTET_STRING);
- Encode(enc, length);
- enc.MessageEnd();
-}
-
-void Integer::BERDecodeAsOctetString(BufferedTransformation &bt, size_t length)
-{
- BERGeneralDecoder dec(bt, OCTET_STRING);
- if (!dec.IsDefiniteLength() || dec.RemainingLength() != length)
- BERDecodeError();
- Decode(dec, length);
- dec.MessageEnd();
-}
-
-size_t Integer::OpenPGPEncode(byte *output, size_t len) const
-{
- ArraySink sink(output, len);
- return OpenPGPEncode(sink);
-}
-
-size_t Integer::OpenPGPEncode(BufferedTransformation &bt) const
-{
- word16 bitCount = BitCount();
- bt.PutWord16(bitCount);
- size_t byteCount = BitsToBytes(bitCount);
- Encode(bt, byteCount);
- return 2 + byteCount;
-}
-
-void Integer::OpenPGPDecode(const byte *input, size_t len)
-{
- StringStore store(input, len);
- OpenPGPDecode(store);
-}
-
-void Integer::OpenPGPDecode(BufferedTransformation &bt)
-{
- word16 bitCount;
- if (bt.GetWord16(bitCount) != 2 || bt.MaxRetrievable() < BitsToBytes(bitCount))
- throw OpenPGPDecodeErr();
- Decode(bt, BitsToBytes(bitCount));
-}
-
-void Integer::Randomize(RandomNumberGenerator &rng, size_t nbits)
-{
- const size_t nbytes = nbits/8 + 1;
- SecByteBlock buf(nbytes);
- rng.GenerateBlock(buf, nbytes);
- if (nbytes)
- buf[0] = (byte)Crop(buf[0], nbits % 8);
- Decode(buf, nbytes, UNSIGNED);
-}
-
-void Integer::Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max)
-{
- if (min > max)
- throw InvalidArgument("Integer: Min must be no greater than Max");
-
- Integer range = max - min;
- const unsigned int nbits = range.BitCount();
-
- do
- {
- Randomize(rng, nbits);
- }
- while (*this > range);
-
- *this += min;
-}
-
-bool Integer::Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv, const Integer &mod)
-{
- return GenerateRandomNoThrow(rng, MakeParameters("Min", min)("Max", max)("RandomNumberType", rnType)("EquivalentTo", equiv)("Mod", mod));
-}
-
-class KDF2_RNG : public RandomNumberGenerator
-{
-public:
- KDF2_RNG(const byte *seed, size_t seedSize)
- : m_counter(0), m_counterAndSeed(seedSize + 4)
- {
- memcpy(m_counterAndSeed + 4, seed, seedSize);
- }
-
- void GenerateBlock(byte *output, size_t size)
- {
- PutWord(false, BIG_ENDIAN_ORDER, m_counterAndSeed, m_counter);
- ++m_counter;
- P1363_KDF2<SHA1>::DeriveKey(output, size, m_counterAndSeed, m_counterAndSeed.size(), NULL, 0);
- }
-
-private:
- word32 m_counter;
- SecByteBlock m_counterAndSeed;
-};
-
-bool Integer::GenerateRandomNoThrow(RandomNumberGenerator &i_rng, const NameValuePairs &params)
-{
- Integer min = params.GetValueWithDefault("Min", Integer::Zero());
- Integer max;
- if (!params.GetValue("Max", max))
- {
- int bitLength;
- if (params.GetIntValue("BitLength", bitLength))
- max = Integer::Power2(bitLength);
- else
- throw InvalidArgument("Integer: missing Max argument");
- }
- if (min > max)
- throw InvalidArgument("Integer: Min must be no greater than Max");
-
- Integer equiv = params.GetValueWithDefault("EquivalentTo", Integer::Zero());
- Integer mod = params.GetValueWithDefault("Mod", Integer::One());
-
- if (equiv.IsNegative() || equiv >= mod)
- throw InvalidArgument("Integer: invalid EquivalentTo and/or Mod argument");
-
- Integer::RandomNumberType rnType = params.GetValueWithDefault("RandomNumberType", Integer::ANY);
-
- member_ptr<KDF2_RNG> kdf2Rng;
- ConstByteArrayParameter seed;
- if (params.GetValue(Name::Seed(), seed))
- {
- ByteQueue bq;
- DERSequenceEncoder seq(bq);
- min.DEREncode(seq);
- max.DEREncode(seq);
- equiv.DEREncode(seq);
- mod.DEREncode(seq);
- DEREncodeUnsigned(seq, rnType);
- DEREncodeOctetString(seq, seed.begin(), seed.size());
- seq.MessageEnd();
-
- SecByteBlock finalSeed((size_t)bq.MaxRetrievable());
- bq.Get(finalSeed, finalSeed.size());
- kdf2Rng.reset(new KDF2_RNG(finalSeed.begin(), finalSeed.size()));
- }
- RandomNumberGenerator &rng = kdf2Rng.get() ? (RandomNumberGenerator &)*kdf2Rng : i_rng;
-
- switch (rnType)
- {
- case ANY:
- if (mod == One())
- Randomize(rng, min, max);
- else
- {
- Integer min1 = min + (equiv-min)%mod;
- if (max < min1)
- return false;
- Randomize(rng, Zero(), (max - min1) / mod);
- *this *= mod;
- *this += min1;
- }
- return true;
-
- case PRIME:
- {
- const PrimeSelector *pSelector = params.GetValueWithDefault(Name::PointerToPrimeSelector(), (const PrimeSelector *)NULL);
-
- int i;
- i = 0;
- while (1)
- {
- if (++i==16)
- {
- // check if there are any suitable primes in [min, max]
- Integer first = min;
- if (FirstPrime(first, max, equiv, mod, pSelector))
- {
- // if there is only one suitable prime, we're done
- *this = first;
- if (!FirstPrime(first, max, equiv, mod, pSelector))
- return true;
- }
- else
- return false;
- }
-
- Randomize(rng, min, max);
- if (FirstPrime(*this, STDMIN(*this+mod*PrimeSearchInterval(max), max), equiv, mod, pSelector))
- return true;
- }
- }
-
- default:
- throw InvalidArgument("Integer: invalid RandomNumberType argument");
- }
-}
-
-std::istream& operator>>(std::istream& in, Integer &a)
-{
- char c;
- unsigned int length = 0;
- SecBlock<char> str(length + 16);
-
- std::ws(in);
-
- do
- {
- in.read(&c, 1);
- str[length++] = c;
- if (length >= str.size())
- str.Grow(length + 16);
- }
- while (in && (c=='-' || c=='x' || (c>='0' && c<='9') || (c>='a' && c<='f') || (c>='A' && c<='F') || c=='h' || c=='H' || c=='o' || c=='O' || c==',' || c=='.'));
-
- if (in.gcount())
- in.putback(c);
- str[length-1] = '\0';
- a = Integer(str);
-
- return in;
-}
-
-std::ostream& operator<<(std::ostream& out, const Integer &a)
-{
- // Get relevant conversion specifications from ostream.
- long f = out.flags() & std::ios::basefield; // Get base digits.
- int base, block;
- char suffix;
- switch(f)
- {
- case std::ios::oct :
- base = 8;
- block = 8;
- suffix = 'o';
- break;
- case std::ios::hex :
- base = 16;
- block = 4;
- suffix = 'h';
- break;
- default :
- base = 10;
- block = 3;
- suffix = '.';
- }
-
- Integer temp1=a, temp2;
-
- if (a.IsNegative())
- {
- out << '-';
- temp1.Negate();
- }
-
- if (!a)
- out << '0';
-
- static const char upper[]="0123456789ABCDEF";
- static const char lower[]="0123456789abcdef";
-
- const char* vec = (out.flags() & std::ios::uppercase) ? upper : lower;
- unsigned i=0;
- SecBlock<char> s(a.BitCount() / (BitPrecision(base)-1) + 1);
-
- while (!!temp1)
- {
- word digit;
- Integer::Divide(digit, temp2, temp1, base);
- s[i++]=vec[digit];
- temp1.swap(temp2);
- }
-
- while (i--)
- {
- out << s[i];
-// if (i && !(i%block))
-// out << ",";
- }
- return out << suffix;
-}
-
-Integer& Integer::operator++()
-{
- if (NotNegative())
- {
- if (Increment(reg, reg.size()))
- {
- reg.CleanGrow(2*reg.size());
- reg[reg.size()/2]=1;
- }
- }
- else
- {
- word borrow = Decrement(reg, reg.size());
- assert(!borrow);
- if (WordCount()==0)
- *this = Zero();
- }
- return *this;
-}
-
-Integer& Integer::operator--()
-{
- if (IsNegative())
- {
- if (Increment(reg, reg.size()))
- {
- reg.CleanGrow(2*reg.size());
- reg[reg.size()/2]=1;
- }
- }
- else
- {
- if (Decrement(reg, reg.size()))
- *this = -One();
- }
- return *this;
-}
-
-void PositiveAdd(Integer &sum, const Integer &a, const Integer& b)
-{
- int carry;
- if (a.reg.size() == b.reg.size())
- carry = Add(sum.reg, a.reg, b.reg, a.reg.size());
- else if (a.reg.size() > b.reg.size())
- {
- carry = Add(sum.reg, a.reg, b.reg, b.reg.size());
- CopyWords(sum.reg+b.reg.size(), a.reg+b.reg.size(), a.reg.size()-b.reg.size());
- carry = Increment(sum.reg+b.reg.size(), a.reg.size()-b.reg.size(), carry);
- }
- else
- {
- carry = Add(sum.reg, a.reg, b.reg, a.reg.size());
- CopyWords(sum.reg+a.reg.size(), b.reg+a.reg.size(), b.reg.size()-a.reg.size());
- carry = Increment(sum.reg+a.reg.size(), b.reg.size()-a.reg.size(), carry);
- }
-
- if (carry)
- {
- sum.reg.CleanGrow(2*sum.reg.size());
- sum.reg[sum.reg.size()/2] = 1;
- }
- sum.sign = Integer::POSITIVE;
-}
-
-void PositiveSubtract(Integer &diff, const Integer &a, const Integer& b)
-{
- unsigned aSize = a.WordCount();
- aSize += aSize%2;
- unsigned bSize = b.WordCount();
- bSize += bSize%2;
-
- if (aSize == bSize)
- {
- if (Compare(a.reg, b.reg, aSize) >= 0)
- {
- Subtract(diff.reg, a.reg, b.reg, aSize);
- diff.sign = Integer::POSITIVE;
- }
- else
- {
- Subtract(diff.reg, b.reg, a.reg, aSize);
- diff.sign = Integer::NEGATIVE;
- }
- }
- else if (aSize > bSize)
- {
- word borrow = Subtract(diff.reg, a.reg, b.reg, bSize);
- CopyWords(diff.reg+bSize, a.reg+bSize, aSize-bSize);
- borrow = Decrement(diff.reg+bSize, aSize-bSize, borrow);
- assert(!borrow);
- diff.sign = Integer::POSITIVE;
- }
- else
- {
- word borrow = Subtract(diff.reg, b.reg, a.reg, aSize);
- CopyWords(diff.reg+aSize, b.reg+aSize, bSize-aSize);
- borrow = Decrement(diff.reg+aSize, bSize-aSize, borrow);
- assert(!borrow);
- diff.sign = Integer::NEGATIVE;
- }
-}
-
-// MSVC .NET 2003 workaround
-template <class T> inline const T& STDMAX2(const T& a, const T& b)
-{
- return a < b ? b : a;
-}
-
-Integer Integer::Plus(const Integer& b) const
-{
- Integer sum((word)0, STDMAX2(reg.size(), b.reg.size()));
- if (NotNegative())
- {
- if (b.NotNegative())
- PositiveAdd(sum, *this, b);
- else
- PositiveSubtract(sum, *this, b);
- }
- else
- {
- if (b.NotNegative())
- PositiveSubtract(sum, b, *this);
- else
- {
- PositiveAdd(sum, *this, b);
- sum.sign = Integer::NEGATIVE;
- }
- }
- return sum;
-}
-
-Integer& Integer::operator+=(const Integer& t)
-{
- reg.CleanGrow(t.reg.size());
- if (NotNegative())
- {
- if (t.NotNegative())
- PositiveAdd(*this, *this, t);
- else
- PositiveSubtract(*this, *this, t);
- }
- else
- {
- if (t.NotNegative())
- PositiveSubtract(*this, t, *this);
- else
- {
- PositiveAdd(*this, *this, t);
- sign = Integer::NEGATIVE;
- }
- }
- return *this;
-}
-
-Integer Integer::Minus(const Integer& b) const
-{
- Integer diff((word)0, STDMAX2(reg.size(), b.reg.size()));
- if (NotNegative())
- {
- if (b.NotNegative())
- PositiveSubtract(diff, *this, b);
- else
- PositiveAdd(diff, *this, b);
- }
- else
- {
- if (b.NotNegative())
- {
- PositiveAdd(diff, *this, b);
- diff.sign = Integer::NEGATIVE;
- }
- else
- PositiveSubtract(diff, b, *this);
- }
- return diff;
-}
-
-Integer& Integer::operator-=(const Integer& t)
-{
- reg.CleanGrow(t.reg.size());
- if (NotNegative())
- {
- if (t.NotNegative())
- PositiveSubtract(*this, *this, t);
- else
- PositiveAdd(*this, *this, t);
- }
- else
- {
- if (t.NotNegative())
- {
- PositiveAdd(*this, *this, t);
- sign = Integer::NEGATIVE;
- }
- else
- PositiveSubtract(*this, t, *this);
- }
- return *this;
-}
-
-Integer& Integer::operator<<=(size_t n)
-{
- const size_t wordCount = WordCount();
- const size_t shiftWords = n / WORD_BITS;
- const unsigned int shiftBits = (unsigned int)(n % WORD_BITS);
-
- reg.CleanGrow(RoundupSize(wordCount+BitsToWords(n)));
- ShiftWordsLeftByWords(reg, wordCount + shiftWords, shiftWords);
- ShiftWordsLeftByBits(reg+shiftWords, wordCount+BitsToWords(shiftBits), shiftBits);
- return *this;
-}
-
-Integer& Integer::operator>>=(size_t n)
-{
- const size_t wordCount = WordCount();
- const size_t shiftWords = n / WORD_BITS;
- const unsigned int shiftBits = (unsigned int)(n % WORD_BITS);
-
- ShiftWordsRightByWords(reg, wordCount, shiftWords);
- if (wordCount > shiftWords)
- ShiftWordsRightByBits(reg, wordCount-shiftWords, shiftBits);
- if (IsNegative() && WordCount()==0) // avoid -0
- *this = Zero();
- return *this;
-}
-
-void PositiveMultiply(Integer &product, const Integer &a, const Integer &b)
-{
- size_t aSize = RoundupSize(a.WordCount());
- size_t bSize = RoundupSize(b.WordCount());
-
- product.reg.CleanNew(RoundupSize(aSize+bSize));
- product.sign = Integer::POSITIVE;
-
- IntegerSecBlock workspace(aSize + bSize);
- AsymmetricMultiply(product.reg, workspace, a.reg, aSize, b.reg, bSize);
-}
-
-void Multiply(Integer &product, const Integer &a, const Integer &b)
-{
- PositiveMultiply(product, a, b);
-
- if (a.NotNegative() != b.NotNegative())
- product.Negate();
-}
-
-Integer Integer::Times(const Integer &b) const
-{
- Integer product;
- Multiply(product, *this, b);
- return product;
-}
-
-/*
-void PositiveDivide(Integer &remainder, Integer &quotient,
- const Integer &dividend, const Integer &divisor)
-{
- remainder.reg.CleanNew(divisor.reg.size());
- remainder.sign = Integer::POSITIVE;
- quotient.reg.New(0);
- quotient.sign = Integer::POSITIVE;
- unsigned i=dividend.BitCount();
- while (i--)
- {
- word overflow = ShiftWordsLeftByBits(remainder.reg, remainder.reg.size(), 1);
- remainder.reg[0] |= dividend[i];
- if (overflow || remainder >= divisor)
- {
- Subtract(remainder.reg, remainder.reg, divisor.reg, remainder.reg.size());
- quotient.SetBit(i);
- }
- }
-}
-*/
-
-void PositiveDivide(Integer &remainder, Integer &quotient,
- const Integer &a, const Integer &b)
-{
- unsigned aSize = a.WordCount();
- unsigned bSize = b.WordCount();
-
- if (!bSize)
- throw Integer::DivideByZero();
-
- if (aSize < bSize)
- {
- remainder = a;
- remainder.sign = Integer::POSITIVE;
- quotient = Integer::Zero();
- return;
- }
-
- aSize += aSize%2; // round up to next even number
- bSize += bSize%2;
-
- remainder.reg.CleanNew(RoundupSize(bSize));
- remainder.sign = Integer::POSITIVE;
- quotient.reg.CleanNew(RoundupSize(aSize-bSize+2));
- quotient.sign = Integer::POSITIVE;
-
- IntegerSecBlock T(aSize+3*(bSize+2));
- Divide(remainder.reg, quotient.reg, T, a.reg, aSize, b.reg, bSize);
-}
-
-void Integer::Divide(Integer &remainder, Integer &quotient, const Integer &dividend, const Integer &divisor)
-{
- PositiveDivide(remainder, quotient, dividend, divisor);
-
- if (dividend.IsNegative())
- {
- quotient.Negate();
- if (remainder.NotZero())
- {
- --quotient;
- remainder = divisor.AbsoluteValue() - remainder;
- }
- }
-
- if (divisor.IsNegative())
- quotient.Negate();
-}
-
-void Integer::DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n)
-{
- q = a;
- q >>= n;
-
- const size_t wordCount = BitsToWords(n);
- if (wordCount <= a.WordCount())
- {
- r.reg.resize(RoundupSize(wordCount));
- CopyWords(r.reg, a.reg, wordCount);
- SetWords(r.reg+wordCount, 0, r.reg.size()-wordCount);
- if (n % WORD_BITS != 0)
- r.reg[wordCount-1] %= (word(1) << (n % WORD_BITS));
- }
- else
- {
- r.reg.resize(RoundupSize(a.WordCount()));
- CopyWords(r.reg, a.reg, r.reg.size());
- }
- r.sign = POSITIVE;
-
- if (a.IsNegative() && r.NotZero())
- {
- --q;
- r = Power2(n) - r;
- }
-}
-
-Integer Integer::DividedBy(const Integer &b) const
-{
- Integer remainder, quotient;
- Integer::Divide(remainder, quotient, *this, b);
- return quotient;
-}
-
-Integer Integer::Modulo(const Integer &b) const
-{
- Integer remainder, quotient;
- Integer::Divide(remainder, quotient, *this, b);
- return remainder;
-}
-
-void Integer::Divide(word &remainder, Integer &quotient, const Integer &dividend, word divisor)
-{
- if (!divisor)
- throw Integer::DivideByZero();
-
- assert(divisor);
-
- if ((divisor & (divisor-1)) == 0) // divisor is a power of 2
- {
- quotient = dividend >> (BitPrecision(divisor)-1);
- remainder = dividend.reg[0] & (divisor-1);
- return;
- }
-
- unsigned int i = dividend.WordCount();
- quotient.reg.CleanNew(RoundupSize(i));
- remainder = 0;
- while (i--)
- {
- quotient.reg[i] = DWord(dividend.reg[i], remainder) / divisor;
- remainder = DWord(dividend.reg[i], remainder) % divisor;
- }
-
- if (dividend.NotNegative())
- quotient.sign = POSITIVE;
- else
- {
- quotient.sign = NEGATIVE;
- if (remainder)
- {
- --quotient;
- remainder = divisor - remainder;
- }
- }
-}
-
-Integer Integer::DividedBy(word b) const
-{
- word remainder;
- Integer quotient;
- Integer::Divide(remainder, quotient, *this, b);
- return quotient;
-}
-
-word Integer::Modulo(word divisor) const
-{
- if (!divisor)
- throw Integer::DivideByZero();
-
- assert(divisor);
-
- word remainder;
-
- if ((divisor & (divisor-1)) == 0) // divisor is a power of 2
- remainder = reg[0] & (divisor-1);
- else
- {
- unsigned int i = WordCount();
-
- if (divisor <= 5)
- {
- DWord sum(0, 0);
- while (i--)
- sum += reg[i];
- remainder = sum % divisor;
- }
- else
- {
- remainder = 0;
- while (i--)
- remainder = DWord(reg[i], remainder) % divisor;
- }
- }
-
- if (IsNegative() && remainder)
- remainder = divisor - remainder;
-
- return remainder;
-}
-
-void Integer::Negate()
-{
- if (!!(*this)) // don't flip sign if *this==0
- sign = Sign(1-sign);
-}
-
-int Integer::PositiveCompare(const Integer& t) const
-{
- unsigned size = WordCount(), tSize = t.WordCount();
-
- if (size == tSize)
- return CryptoPP::Compare(reg, t.reg, size);
- else
- return size > tSize ? 1 : -1;
-}
-
-int Integer::Compare(const Integer& t) const
-{
- if (NotNegative())
- {
- if (t.NotNegative())
- return PositiveCompare(t);
- else
- return 1;
- }
- else
- {
- if (t.NotNegative())
- return -1;
- else
- return -PositiveCompare(t);
- }
-}
-
-Integer Integer::SquareRoot() const
-{
- if (!IsPositive())
- return Zero();
-
- // overestimate square root
- Integer x, y = Power2((BitCount()+1)/2);
- assert(y*y >= *this);
-
- do
- {
- x = y;
- y = (x + *this/x) >> 1;
- } while (y<x);
-
- return x;
-}
-
-bool Integer::IsSquare() const
-{
- Integer r = SquareRoot();
- return *this == r.Squared();
-}
-
-bool Integer::IsUnit() const
-{
- return (WordCount() == 1) && (reg[0] == 1);
-}
-
-Integer Integer::MultiplicativeInverse() const
-{
- return IsUnit() ? *this : Zero();
-}
-
-Integer a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m)
-{
- return x*y%m;
-}
-
-Integer a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m)
-{
- ModularArithmetic mr(m);
- return mr.Exponentiate(x, e);
-}
-
-Integer Integer::Gcd(const Integer &a, const Integer &b)
-{
- return EuclideanDomainOf<Integer>().Gcd(a, b);
-}
-
-Integer Integer::InverseMod(const Integer &m) const
-{
- assert(m.NotNegative());
-
- if (IsNegative())
- return Modulo(m).InverseMod(m);
-
- if (m.IsEven())
- {
- if (!m || IsEven())
- return Zero(); // no inverse
- if (*this == One())
- return One();
-
- Integer u = m.Modulo(*this).InverseMod(*this);
- return !u ? Zero() : (m*(*this-u)+1)/(*this);
- }
-
- SecBlock<word> T(m.reg.size() * 4);
- Integer r((word)0, m.reg.size());
- unsigned k = AlmostInverse(r.reg, T, reg, reg.size(), m.reg, m.reg.size());
- DivideByPower2Mod(r.reg, r.reg, k, m.reg, m.reg.size());
- return r;
-}
-
-word Integer::InverseMod(word mod) const
-{
- word g0 = mod, g1 = *this % mod;
- word v0 = 0, v1 = 1;
- word y;
-
- while (g1)
- {
- if (g1 == 1)
- return v1;
- y = g0 / g1;
- g0 = g0 % g1;
- v0 += y * v1;
-
- if (!g0)
- break;
- if (g0 == 1)
- return mod-v0;
- y = g1 / g0;
- g1 = g1 % g0;
- v1 += y * v0;
- }
- return 0;
-}
-
-// ********************************************************
-
-ModularArithmetic::ModularArithmetic(BufferedTransformation &bt)
-{
- BERSequenceDecoder seq(bt);
- OID oid(seq);
- if (oid != ASN1::prime_field())
- BERDecodeError();
- m_modulus.BERDecode(seq);
- seq.MessageEnd();
- m_result.reg.resize(m_modulus.reg.size());
-}
-
-void ModularArithmetic::DEREncode(BufferedTransformation &bt) const
-{
- DERSequenceEncoder seq(bt);
- ASN1::prime_field().DEREncode(seq);
- m_modulus.DEREncode(seq);
- seq.MessageEnd();
-}
-
-void ModularArithmetic::DEREncodeElement(BufferedTransformation &out, const Element &a) const
-{
- a.DEREncodeAsOctetString(out, MaxElementByteLength());
-}
-
-void ModularArithmetic::BERDecodeElement(BufferedTransformation &in, Element &a) const
-{
- a.BERDecodeAsOctetString(in, MaxElementByteLength());
-}
-
-const Integer& ModularArithmetic::Half(const Integer &a) const
-{
- if (a.reg.size()==m_modulus.reg.size())
- {
- CryptoPP::DivideByPower2Mod(m_result.reg.begin(), a.reg, 1, m_modulus.reg, a.reg.size());
- return m_result;
- }
- else
- return m_result1 = (a.IsEven() ? (a >> 1) : ((a+m_modulus) >> 1));
-}
-
-const Integer& ModularArithmetic::Add(const Integer &a, const Integer &b) const
-{
- if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size())
- {
- if (CryptoPP::Add(m_result.reg.begin(), a.reg, b.reg, a.reg.size())
- || Compare(m_result.reg, m_modulus.reg, a.reg.size()) >= 0)
- {
- CryptoPP::Subtract(m_result.reg.begin(), m_result.reg, m_modulus.reg, a.reg.size());
- }
- return m_result;
- }
- else
- {
- m_result1 = a+b;
- if (m_result1 >= m_modulus)
- m_result1 -= m_modulus;
- return m_result1;
- }
-}
-
-Integer& ModularArithmetic::Accumulate(Integer &a, const Integer &b) const
-{
- if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size())
- {
- if (CryptoPP::Add(a.reg, a.reg, b.reg, a.reg.size())
- || Compare(a.reg, m_modulus.reg, a.reg.size()) >= 0)
- {
- CryptoPP::Subtract(a.reg, a.reg, m_modulus.reg, a.reg.size());
- }
- }
- else
- {
- a+=b;
- if (a>=m_modulus)
- a-=m_modulus;
- }
-
- return a;
-}
-
-const Integer& ModularArithmetic::Subtract(const Integer &a, const Integer &b) const
-{
- if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size())
- {
- if (CryptoPP::Subtract(m_result.reg.begin(), a.reg, b.reg, a.reg.size()))
- CryptoPP::Add(m_result.reg.begin(), m_result.reg, m_modulus.reg, a.reg.size());
- return m_result;
- }
- else
- {
- m_result1 = a-b;
- if (m_result1.IsNegative())
- m_result1 += m_modulus;
- return m_result1;
- }
-}
-
-Integer& ModularArithmetic::Reduce(Integer &a, const Integer &b) const
-{
- if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size())
- {
- if (CryptoPP::Subtract(a.reg, a.reg, b.reg, a.reg.size()))
- CryptoPP::Add(a.reg, a.reg, m_modulus.reg, a.reg.size());
- }
- else
- {
- a-=b;
- if (a.IsNegative())
- a+=m_modulus;
- }
-
- return a;
-}
-
-const Integer& ModularArithmetic::Inverse(const Integer &a) const
-{
- if (!a)
- return a;
-
- CopyWords(m_result.reg.begin(), m_modulus.reg, m_modulus.reg.size());
- if (CryptoPP::Subtract(m_result.reg.begin(), m_result.reg, a.reg, a.reg.size()))
- Decrement(m_result.reg.begin()+a.reg.size(), m_modulus.reg.size()-a.reg.size());
-
- return m_result;
-}
-
-Integer ModularArithmetic::CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const
-{
- if (m_modulus.IsOdd())
- {
- MontgomeryRepresentation dr(m_modulus);
- return dr.ConvertOut(dr.CascadeExponentiate(dr.ConvertIn(x), e1, dr.ConvertIn(y), e2));
- }
- else
- return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);
-}
-
-void ModularArithmetic::SimultaneousExponentiate(Integer *results, const Integer &base, const Integer *exponents, unsigned int exponentsCount) const
-{
- if (m_modulus.IsOdd())
- {
- MontgomeryRepresentation dr(m_modulus);
- dr.SimultaneousExponentiate(results, dr.ConvertIn(base), exponents, exponentsCount);
- for (unsigned int i=0; i<exponentsCount; i++)
- results[i] = dr.ConvertOut(results[i]);
- }
- else
- AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);
-}
-
-MontgomeryRepresentation::MontgomeryRepresentation(const Integer &m) // modulus must be odd
- : ModularArithmetic(m),
- m_u((word)0, m_modulus.reg.size()),
- m_workspace(5*m_modulus.reg.size())
-{
- if (!m_modulus.IsOdd())
- throw InvalidArgument("MontgomeryRepresentation: Montgomery representation requires an odd modulus");
-
- RecursiveInverseModPower2(m_u.reg, m_workspace, m_modulus.reg, m_modulus.reg.size());
-}
-
-const Integer& MontgomeryRepresentation::Multiply(const Integer &a, const Integer &b) const
-{
- word *const T = m_workspace.begin();
- word *const R = m_result.reg.begin();
- const size_t N = m_modulus.reg.size();
- assert(a.reg.size()<=N && b.reg.size()<=N);
-
- AsymmetricMultiply(T, T+2*N, a.reg, a.reg.size(), b.reg, b.reg.size());
- SetWords(T+a.reg.size()+b.reg.size(), 0, 2*N-a.reg.size()-b.reg.size());
- MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N);
- return m_result;
-}
-
-const Integer& MontgomeryRepresentation::Square(const Integer &a) const
-{
- word *const T = m_workspace.begin();
- word *const R = m_result.reg.begin();
- const size_t N = m_modulus.reg.size();
- assert(a.reg.size()<=N);
-
- CryptoPP::Square(T, T+2*N, a.reg, a.reg.size());
- SetWords(T+2*a.reg.size(), 0, 2*N-2*a.reg.size());
- MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N);
- return m_result;
-}
-
-Integer MontgomeryRepresentation::ConvertOut(const Integer &a) const
-{
- word *const T = m_workspace.begin();
- word *const R = m_result.reg.begin();
- const size_t N = m_modulus.reg.size();
- assert(a.reg.size()<=N);
-
- CopyWords(T, a.reg, a.reg.size());
- SetWords(T+a.reg.size(), 0, 2*N-a.reg.size());
- MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N);
- return m_result;
-}
-
-const Integer& MontgomeryRepresentation::MultiplicativeInverse(const Integer &a) const
-{
-// return (EuclideanMultiplicativeInverse(a, modulus)<<(2*WORD_BITS*modulus.reg.size()))%modulus;
- word *const T = m_workspace.begin();
- word *const R = m_result.reg.begin();
- const size_t N = m_modulus.reg.size();
- assert(a.reg.size()<=N);
-
- CopyWords(T, a.reg, a.reg.size());
- SetWords(T+a.reg.size(), 0, 2*N-a.reg.size());
- MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N);
- unsigned k = AlmostInverse(R, T, R, N, m_modulus.reg, N);
-
-// cout << "k=" << k << " N*32=" << 32*N << endl;
-
- if (k>N*WORD_BITS)
- DivideByPower2Mod(R, R, k-N*WORD_BITS, m_modulus.reg, N);
- else
- MultiplyByPower2Mod(R, R, N*WORD_BITS-k, m_modulus.reg, N);
-
- return m_result;
-}
-
-NAMESPACE_END
-
-#endif