diff options
Diffstat (limited to 'CryptoPP/xtr.cpp')
-rw-r--r-- | CryptoPP/xtr.cpp | 100 |
1 files changed, 100 insertions, 0 deletions
diff --git a/CryptoPP/xtr.cpp b/CryptoPP/xtr.cpp new file mode 100644 index 000000000..673907054 --- /dev/null +++ b/CryptoPP/xtr.cpp @@ -0,0 +1,100 @@ +// cryptlib.cpp - written and placed in the public domain by Wei Dai + +#include "pch.h" +#include "xtr.h" +#include "nbtheory.h" + +#include "algebra.cpp" + +NAMESPACE_BEGIN(CryptoPP) + +const GFP2Element & GFP2Element::Zero() +{ + return Singleton<GFP2Element>().Ref(); +} + +void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits) +{ + assert(qbits > 9); // no primes exist for pbits = 10, qbits = 9 + assert(pbits > qbits); + + const Integer minQ = Integer::Power2(qbits - 1); + const Integer maxQ = Integer::Power2(qbits) - 1; + const Integer minP = Integer::Power2(pbits - 1); + const Integer maxP = Integer::Power2(pbits) - 1; + + Integer r1, r2; + do + { + bool qFound = q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12); + assert(qFound); + bool solutionsExist = SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q); + assert(solutionsExist); + } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit()?r1:r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3*q)); + assert(((p.Squared() - p + 1) % q).IsZero()); + + GFP2_ONB<ModularArithmetic> gfp2(p); + GFP2Element three = gfp2.ConvertIn(3), t; + + while (true) + { + g.c1.Randomize(rng, Integer::Zero(), p-1); + g.c2.Randomize(rng, Integer::Zero(), p-1); + t = XTR_Exponentiate(g, p+1, p); + if (t.c1 == t.c2) + continue; + g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p); + if (g != three) + break; + } + assert(XTR_Exponentiate(g, q, p) == three); +} + +GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p) +{ + unsigned int bitCount = e.BitCount(); + if (bitCount == 0) + return GFP2Element(-3, -3); + + // find the lowest bit of e that is 1 + unsigned int lowest1bit; + for (lowest1bit=0; e.GetBit(lowest1bit) == 0; lowest1bit++) {} + + GFP2_ONB<MontgomeryRepresentation> gfp2(p); + GFP2Element c = gfp2.ConvertIn(b); + GFP2Element cp = gfp2.PthPower(c); + GFP2Element S[5] = {gfp2.ConvertIn(3), c, gfp2.SpecialOperation1(c)}; + + // do all exponents bits except the lowest zeros starting from the top + unsigned int i; + for (i = e.BitCount() - 1; i>lowest1bit; i--) + { + if (e.GetBit(i)) + { + gfp2.RaiseToPthPower(S[0]); + gfp2.Accumulate(S[0], gfp2.SpecialOperation2(S[2], c, S[1])); + S[1] = gfp2.SpecialOperation1(S[1]); + S[2] = gfp2.SpecialOperation1(S[2]); + S[0].swap(S[1]); + } + else + { + gfp2.RaiseToPthPower(S[2]); + gfp2.Accumulate(S[2], gfp2.SpecialOperation2(S[0], cp, S[1])); + S[1] = gfp2.SpecialOperation1(S[1]); + S[0] = gfp2.SpecialOperation1(S[0]); + S[2].swap(S[1]); + } + } + + // now do the lowest zeros + while (i--) + S[1] = gfp2.SpecialOperation1(S[1]); + + return gfp2.ConvertOut(S[1]); +} + +template class AbstractRing<GFP2Element>; +template class AbstractGroup<GFP2Element>; + +NAMESPACE_END |