diff options
Diffstat (limited to 'CryptoPP/xtr.h')
-rw-r--r-- | CryptoPP/xtr.h | 215 |
1 files changed, 0 insertions, 215 deletions
diff --git a/CryptoPP/xtr.h b/CryptoPP/xtr.h deleted file mode 100644 index 89d39f03e..000000000 --- a/CryptoPP/xtr.h +++ /dev/null @@ -1,215 +0,0 @@ -#ifndef CRYPTOPP_XTR_H -#define CRYPTOPP_XTR_H - -/** \file - "The XTR public key system" by Arjen K. Lenstra and Eric R. Verheul -*/ - -#include "modarith.h" - -NAMESPACE_BEGIN(CryptoPP) - -//! an element of GF(p^2) -class GFP2Element -{ -public: - GFP2Element() {} - GFP2Element(const Integer &c1, const Integer &c2) : c1(c1), c2(c2) {} - GFP2Element(const byte *encodedElement, unsigned int size) - : c1(encodedElement, size/2), c2(encodedElement+size/2, size/2) {} - - void Encode(byte *encodedElement, unsigned int size) - { - c1.Encode(encodedElement, size/2); - c2.Encode(encodedElement+size/2, size/2); - } - - bool operator==(const GFP2Element &rhs) const {return c1 == rhs.c1 && c2 == rhs.c2;} - bool operator!=(const GFP2Element &rhs) const {return !operator==(rhs);} - - void swap(GFP2Element &a) - { - c1.swap(a.c1); - c2.swap(a.c2); - } - - static const GFP2Element & Zero(); - - Integer c1, c2; -}; - -//! GF(p^2), optimal normal basis -template <class F> -class GFP2_ONB : public AbstractRing<GFP2Element> -{ -public: - typedef F BaseField; - - GFP2_ONB(const Integer &p) : modp(p) - { - if (p%3 != 2) - throw InvalidArgument("GFP2_ONB: modulus must be equivalent to 2 mod 3"); - } - - const Integer& GetModulus() const {return modp.GetModulus();} - - GFP2Element ConvertIn(const Integer &a) const - { - t = modp.Inverse(modp.ConvertIn(a)); - return GFP2Element(t, t); - } - - GFP2Element ConvertIn(const GFP2Element &a) const - {return GFP2Element(modp.ConvertIn(a.c1), modp.ConvertIn(a.c2));} - - GFP2Element ConvertOut(const GFP2Element &a) const - {return GFP2Element(modp.ConvertOut(a.c1), modp.ConvertOut(a.c2));} - - bool Equal(const GFP2Element &a, const GFP2Element &b) const - { - return modp.Equal(a.c1, b.c1) && modp.Equal(a.c2, b.c2); - } - - const Element& Identity() const - { - return GFP2Element::Zero(); - } - - const Element& Add(const Element &a, const Element &b) const - { - result.c1 = modp.Add(a.c1, b.c1); - result.c2 = modp.Add(a.c2, b.c2); - return result; - } - - const Element& Inverse(const Element &a) const - { - result.c1 = modp.Inverse(a.c1); - result.c2 = modp.Inverse(a.c2); - return result; - } - - const Element& Double(const Element &a) const - { - result.c1 = modp.Double(a.c1); - result.c2 = modp.Double(a.c2); - return result; - } - - const Element& Subtract(const Element &a, const Element &b) const - { - result.c1 = modp.Subtract(a.c1, b.c1); - result.c2 = modp.Subtract(a.c2, b.c2); - return result; - } - - Element& Accumulate(Element &a, const Element &b) const - { - modp.Accumulate(a.c1, b.c1); - modp.Accumulate(a.c2, b.c2); - return a; - } - - Element& Reduce(Element &a, const Element &b) const - { - modp.Reduce(a.c1, b.c1); - modp.Reduce(a.c2, b.c2); - return a; - } - - bool IsUnit(const Element &a) const - { - return a.c1.NotZero() || a.c2.NotZero(); - } - - const Element& MultiplicativeIdentity() const - { - result.c1 = result.c2 = modp.Inverse(modp.MultiplicativeIdentity()); - return result; - } - - const Element& Multiply(const Element &a, const Element &b) const - { - t = modp.Add(a.c1, a.c2); - t = modp.Multiply(t, modp.Add(b.c1, b.c2)); - result.c1 = modp.Multiply(a.c1, b.c1); - result.c2 = modp.Multiply(a.c2, b.c2); - result.c1.swap(result.c2); - modp.Reduce(t, result.c1); - modp.Reduce(t, result.c2); - modp.Reduce(result.c1, t); - modp.Reduce(result.c2, t); - return result; - } - - const Element& MultiplicativeInverse(const Element &a) const - { - return result = Exponentiate(a, modp.GetModulus()-2); - } - - const Element& Square(const Element &a) const - { - const Integer &ac1 = (&a == &result) ? (t = a.c1) : a.c1; - result.c1 = modp.Multiply(modp.Subtract(modp.Subtract(a.c2, a.c1), a.c1), a.c2); - result.c2 = modp.Multiply(modp.Subtract(modp.Subtract(ac1, a.c2), a.c2), ac1); - return result; - } - - Element Exponentiate(const Element &a, const Integer &e) const - { - Integer edivp, emodp; - Integer::Divide(emodp, edivp, e, modp.GetModulus()); - Element b = PthPower(a); - return AbstractRing<GFP2Element>::CascadeExponentiate(a, emodp, b, edivp); - } - - const Element & PthPower(const Element &a) const - { - result = a; - result.c1.swap(result.c2); - return result; - } - - void RaiseToPthPower(Element &a) const - { - a.c1.swap(a.c2); - } - - // a^2 - 2a^p - const Element & SpecialOperation1(const Element &a) const - { - assert(&a != &result); - result = Square(a); - modp.Reduce(result.c1, a.c2); - modp.Reduce(result.c1, a.c2); - modp.Reduce(result.c2, a.c1); - modp.Reduce(result.c2, a.c1); - return result; - } - - // x * z - y * z^p - const Element & SpecialOperation2(const Element &x, const Element &y, const Element &z) const - { - assert(&x != &result && &y != &result && &z != &result); - t = modp.Add(x.c2, y.c2); - result.c1 = modp.Multiply(z.c1, modp.Subtract(y.c1, t)); - modp.Accumulate(result.c1, modp.Multiply(z.c2, modp.Subtract(t, x.c1))); - t = modp.Add(x.c1, y.c1); - result.c2 = modp.Multiply(z.c2, modp.Subtract(y.c2, t)); - modp.Accumulate(result.c2, modp.Multiply(z.c1, modp.Subtract(t, x.c2))); - return result; - } - -protected: - BaseField modp; - mutable GFP2Element result; - mutable Integer t; -}; - -void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits); - -GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p); - -NAMESPACE_END - -#endif |