diff options
Diffstat (limited to 'lib/cryptopp/polynomi.cpp')
-rw-r--r-- | lib/cryptopp/polynomi.cpp | 577 |
1 files changed, 577 insertions, 0 deletions
diff --git a/lib/cryptopp/polynomi.cpp b/lib/cryptopp/polynomi.cpp new file mode 100644 index 000000000..734cae926 --- /dev/null +++ b/lib/cryptopp/polynomi.cpp @@ -0,0 +1,577 @@ +// polynomi.cpp - written and placed in the public domain by Wei Dai + +// Part of the code for polynomial evaluation and interpolation +// originally came from Hal Finney's public domain secsplit.c. + +#include "pch.h" +#include "polynomi.h" +#include "secblock.h" + +#include <sstream> +#include <iostream> + +NAMESPACE_BEGIN(CryptoPP) + +template <class T> +void PolynomialOver<T>::Randomize(RandomNumberGenerator &rng, const RandomizationParameter ¶meter, const Ring &ring) +{ + m_coefficients.resize(parameter.m_coefficientCount); + for (unsigned int i=0; i<m_coefficients.size(); ++i) + m_coefficients[i] = ring.RandomElement(rng, parameter.m_coefficientParameter); +} + +template <class T> +void PolynomialOver<T>::FromStr(const char *str, const Ring &ring) +{ + std::istringstream in((char *)str); + bool positive = true; + CoefficientType coef; + unsigned int power; + + while (in) + { + std::ws(in); + if (in.peek() == 'x') + coef = ring.MultiplicativeIdentity(); + else + in >> coef; + + std::ws(in); + if (in.peek() == 'x') + { + in.get(); + std::ws(in); + if (in.peek() == '^') + { + in.get(); + in >> power; + } + else + power = 1; + } + else + power = 0; + + if (!positive) + coef = ring.Inverse(coef); + + SetCoefficient(power, coef, ring); + + std::ws(in); + switch (in.get()) + { + case '+': + positive = true; + break; + case '-': + positive = false; + break; + default: + return; // something's wrong with the input string + } + } +} + +template <class T> +unsigned int PolynomialOver<T>::CoefficientCount(const Ring &ring) const +{ + unsigned count = m_coefficients.size(); + while (count && ring.Equal(m_coefficients[count-1], ring.Identity())) + count--; + const_cast<std::vector<CoefficientType> &>(m_coefficients).resize(count); + return count; +} + +template <class T> +typename PolynomialOver<T>::CoefficientType PolynomialOver<T>::GetCoefficient(unsigned int i, const Ring &ring) const +{ + return (i < m_coefficients.size()) ? m_coefficients[i] : ring.Identity(); +} + +template <class T> +PolynomialOver<T>& PolynomialOver<T>::operator=(const PolynomialOver<T>& t) +{ + if (this != &t) + { + m_coefficients.resize(t.m_coefficients.size()); + for (unsigned int i=0; i<m_coefficients.size(); i++) + m_coefficients[i] = t.m_coefficients[i]; + } + return *this; +} + +template <class T> +PolynomialOver<T>& PolynomialOver<T>::Accumulate(const PolynomialOver<T>& t, const Ring &ring) +{ + unsigned int count = t.CoefficientCount(ring); + + if (count > CoefficientCount(ring)) + m_coefficients.resize(count, ring.Identity()); + + for (unsigned int i=0; i<count; i++) + ring.Accumulate(m_coefficients[i], t.GetCoefficient(i, ring)); + + return *this; +} + +template <class T> +PolynomialOver<T>& PolynomialOver<T>::Reduce(const PolynomialOver<T>& t, const Ring &ring) +{ + unsigned int count = t.CoefficientCount(ring); + + if (count > CoefficientCount(ring)) + m_coefficients.resize(count, ring.Identity()); + + for (unsigned int i=0; i<count; i++) + ring.Reduce(m_coefficients[i], t.GetCoefficient(i, ring)); + + return *this; +} + +template <class T> +typename PolynomialOver<T>::CoefficientType PolynomialOver<T>::EvaluateAt(const CoefficientType &x, const Ring &ring) const +{ + int degree = Degree(ring); + + if (degree < 0) + return ring.Identity(); + + CoefficientType result = m_coefficients[degree]; + for (int j=degree-1; j>=0; j--) + { + result = ring.Multiply(result, x); + ring.Accumulate(result, m_coefficients[j]); + } + return result; +} + +template <class T> +PolynomialOver<T>& PolynomialOver<T>::ShiftLeft(unsigned int n, const Ring &ring) +{ + unsigned int i = CoefficientCount(ring) + n; + m_coefficients.resize(i, ring.Identity()); + while (i > n) + { + i--; + m_coefficients[i] = m_coefficients[i-n]; + } + while (i) + { + i--; + m_coefficients[i] = ring.Identity(); + } + return *this; +} + +template <class T> +PolynomialOver<T>& PolynomialOver<T>::ShiftRight(unsigned int n, const Ring &ring) +{ + unsigned int count = CoefficientCount(ring); + if (count > n) + { + for (unsigned int i=0; i<count-n; i++) + m_coefficients[i] = m_coefficients[i+n]; + m_coefficients.resize(count-n, ring.Identity()); + } + else + m_coefficients.resize(0, ring.Identity()); + return *this; +} + +template <class T> +void PolynomialOver<T>::SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring) +{ + if (i >= m_coefficients.size()) + m_coefficients.resize(i+1, ring.Identity()); + m_coefficients[i] = value; +} + +template <class T> +void PolynomialOver<T>::Negate(const Ring &ring) +{ + unsigned int count = CoefficientCount(ring); + for (unsigned int i=0; i<count; i++) + m_coefficients[i] = ring.Inverse(m_coefficients[i]); +} + +template <class T> +void PolynomialOver<T>::swap(PolynomialOver<T> &t) +{ + m_coefficients.swap(t.m_coefficients); +} + +template <class T> +bool PolynomialOver<T>::Equals(const PolynomialOver<T>& t, const Ring &ring) const +{ + unsigned int count = CoefficientCount(ring); + + if (count != t.CoefficientCount(ring)) + return false; + + for (unsigned int i=0; i<count; i++) + if (!ring.Equal(m_coefficients[i], t.m_coefficients[i])) + return false; + + return true; +} + +template <class T> +PolynomialOver<T> PolynomialOver<T>::Plus(const PolynomialOver<T>& t, const Ring &ring) const +{ + unsigned int i; + unsigned int count = CoefficientCount(ring); + unsigned int tCount = t.CoefficientCount(ring); + + if (count > tCount) + { + PolynomialOver<T> result(ring, count); + + for (i=0; i<tCount; i++) + result.m_coefficients[i] = ring.Add(m_coefficients[i], t.m_coefficients[i]); + for (; i<count; i++) + result.m_coefficients[i] = m_coefficients[i]; + + return result; + } + else + { + PolynomialOver<T> result(ring, tCount); + + for (i=0; i<count; i++) + result.m_coefficients[i] = ring.Add(m_coefficients[i], t.m_coefficients[i]); + for (; i<tCount; i++) + result.m_coefficients[i] = t.m_coefficients[i]; + + return result; + } +} + +template <class T> +PolynomialOver<T> PolynomialOver<T>::Minus(const PolynomialOver<T>& t, const Ring &ring) const +{ + unsigned int i; + unsigned int count = CoefficientCount(ring); + unsigned int tCount = t.CoefficientCount(ring); + + if (count > tCount) + { + PolynomialOver<T> result(ring, count); + + for (i=0; i<tCount; i++) + result.m_coefficients[i] = ring.Subtract(m_coefficients[i], t.m_coefficients[i]); + for (; i<count; i++) + result.m_coefficients[i] = m_coefficients[i]; + + return result; + } + else + { + PolynomialOver<T> result(ring, tCount); + + for (i=0; i<count; i++) + result.m_coefficients[i] = ring.Subtract(m_coefficients[i], t.m_coefficients[i]); + for (; i<tCount; i++) + result.m_coefficients[i] = ring.Inverse(t.m_coefficients[i]); + + return result; + } +} + +template <class T> +PolynomialOver<T> PolynomialOver<T>::Inverse(const Ring &ring) const +{ + unsigned int count = CoefficientCount(ring); + PolynomialOver<T> result(ring, count); + + for (unsigned int i=0; i<count; i++) + result.m_coefficients[i] = ring.Inverse(m_coefficients[i]); + + return result; +} + +template <class T> +PolynomialOver<T> PolynomialOver<T>::Times(const PolynomialOver<T>& t, const Ring &ring) const +{ + if (IsZero(ring) || t.IsZero(ring)) + return PolynomialOver<T>(); + + unsigned int count1 = CoefficientCount(ring), count2 = t.CoefficientCount(ring); + PolynomialOver<T> result(ring, count1 + count2 - 1); + + for (unsigned int i=0; i<count1; i++) + for (unsigned int j=0; j<count2; j++) + ring.Accumulate(result.m_coefficients[i+j], ring.Multiply(m_coefficients[i], t.m_coefficients[j])); + + return result; +} + +template <class T> +PolynomialOver<T> PolynomialOver<T>::DividedBy(const PolynomialOver<T>& t, const Ring &ring) const +{ + PolynomialOver<T> remainder, quotient; + Divide(remainder, quotient, *this, t, ring); + return quotient; +} + +template <class T> +PolynomialOver<T> PolynomialOver<T>::Modulo(const PolynomialOver<T>& t, const Ring &ring) const +{ + PolynomialOver<T> remainder, quotient; + Divide(remainder, quotient, *this, t, ring); + return remainder; +} + +template <class T> +PolynomialOver<T> PolynomialOver<T>::MultiplicativeInverse(const Ring &ring) const +{ + return Degree(ring)==0 ? ring.MultiplicativeInverse(m_coefficients[0]) : ring.Identity(); +} + +template <class T> +bool PolynomialOver<T>::IsUnit(const Ring &ring) const +{ + return Degree(ring)==0 && ring.IsUnit(m_coefficients[0]); +} + +template <class T> +std::istream& PolynomialOver<T>::Input(std::istream &in, const Ring &ring) +{ + char c; + unsigned int length = 0; + SecBlock<char> str(length + 16); + bool paren = false; + + std::ws(in); + + if (in.peek() == '(') + { + paren = true; + in.get(); + } + + do + { + in.read(&c, 1); + str[length++] = c; + if (length >= str.size()) + str.Grow(length + 16); + } + // if we started with a left paren, then read until we find a right paren, + // otherwise read until the end of the line + while (in && ((paren && c != ')') || (!paren && c != '\n'))); + + str[length-1] = '\0'; + *this = PolynomialOver<T>(str, ring); + + return in; +} + +template <class T> +std::ostream& PolynomialOver<T>::Output(std::ostream &out, const Ring &ring) const +{ + unsigned int i = CoefficientCount(ring); + if (i) + { + bool firstTerm = true; + + while (i--) + { + if (m_coefficients[i] != ring.Identity()) + { + if (firstTerm) + { + firstTerm = false; + if (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity())) + out << m_coefficients[i]; + } + else + { + CoefficientType inverse = ring.Inverse(m_coefficients[i]); + std::ostringstream pstr, nstr; + + pstr << m_coefficients[i]; + nstr << inverse; + + if (pstr.str().size() <= nstr.str().size()) + { + out << " + "; + if (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity())) + out << m_coefficients[i]; + } + else + { + out << " - "; + if (!i || !ring.Equal(inverse, ring.MultiplicativeIdentity())) + out << inverse; + } + } + + switch (i) + { + case 0: + break; + case 1: + out << "x"; + break; + default: + out << "x^" << i; + } + } + } + } + else + { + out << ring.Identity(); + } + return out; +} + +template <class T> +void PolynomialOver<T>::Divide(PolynomialOver<T> &r, PolynomialOver<T> &q, const PolynomialOver<T> &a, const PolynomialOver<T> &d, const Ring &ring) +{ + unsigned int i = a.CoefficientCount(ring); + const int dDegree = d.Degree(ring); + + if (dDegree < 0) + throw DivideByZero(); + + r = a; + q.m_coefficients.resize(STDMAX(0, int(i - dDegree))); + + while (i > (unsigned int)dDegree) + { + --i; + q.m_coefficients[i-dDegree] = ring.Divide(r.m_coefficients[i], d.m_coefficients[dDegree]); + for (int j=0; j<=dDegree; j++) + ring.Reduce(r.m_coefficients[i-dDegree+j], ring.Multiply(q.m_coefficients[i-dDegree], d.m_coefficients[j])); + } + + r.CoefficientCount(ring); // resize r.m_coefficients +} + +// ******************************************************** + +// helper function for Interpolate() and InterpolateAt() +template <class T> +void RingOfPolynomialsOver<T>::CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const +{ + for (unsigned int j=0; j<n; ++j) + alpha[j] = y[j]; + + for (unsigned int k=1; k<n; ++k) + { + for (unsigned int j=n-1; j>=k; --j) + { + m_ring.Reduce(alpha[j], alpha[j-1]); + + CoefficientType d = m_ring.Subtract(x[j], x[j-k]); + if (!m_ring.IsUnit(d)) + throw InterpolationFailed(); + alpha[j] = m_ring.Divide(alpha[j], d); + } + } +} + +template <class T> +typename RingOfPolynomialsOver<T>::Element RingOfPolynomialsOver<T>::Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const +{ + assert(n > 0); + + std::vector<CoefficientType> alpha(n); + CalculateAlpha(alpha, x, y, n); + + std::vector<CoefficientType> coefficients((size_t)n, m_ring.Identity()); + coefficients[0] = alpha[n-1]; + + for (int j=n-2; j>=0; --j) + { + for (unsigned int i=n-j-1; i>0; i--) + coefficients[i] = m_ring.Subtract(coefficients[i-1], m_ring.Multiply(coefficients[i], x[j])); + + coefficients[0] = m_ring.Subtract(alpha[j], m_ring.Multiply(coefficients[0], x[j])); + } + + return PolynomialOver<T>(coefficients.begin(), coefficients.end()); +} + +template <class T> +typename RingOfPolynomialsOver<T>::CoefficientType RingOfPolynomialsOver<T>::InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const +{ + assert(n > 0); + + std::vector<CoefficientType> alpha(n); + CalculateAlpha(alpha, x, y, n); + + CoefficientType result = alpha[n-1]; + for (int j=n-2; j>=0; --j) + { + result = m_ring.Multiply(result, m_ring.Subtract(position, x[j])); + m_ring.Accumulate(result, alpha[j]); + } + return result; +} + +template <class Ring, class Element> +void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n) +{ + for (unsigned int i=0; i<n; i++) + { + Element t = ring.MultiplicativeIdentity(); + for (unsigned int j=0; j<n; j++) + if (i != j) + t = ring.Multiply(t, ring.Subtract(x[i], x[j])); + w[i] = ring.MultiplicativeInverse(t); + } +} + +template <class Ring, class Element> +void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n) +{ + assert(n > 0); + + std::vector<Element> a(2*n-1); + unsigned int i; + + for (i=0; i<n; i++) + a[n-1+i] = ring.Subtract(position, x[i]); + + for (i=n-1; i>1; i--) + a[i-1] = ring.Multiply(a[2*i], a[2*i-1]); + + a[0] = ring.MultiplicativeIdentity(); + + for (i=0; i<n-1; i++) + { + std::swap(a[2*i+1], a[2*i+2]); + a[2*i+1] = ring.Multiply(a[i], a[2*i+1]); + a[2*i+2] = ring.Multiply(a[i], a[2*i+2]); + } + + for (i=0; i<n; i++) + v[i] = ring.Multiply(a[n-1+i], w[i]); +} + +template <class Ring, class Element> +Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n) +{ + Element result = ring.Identity(); + for (unsigned int i=0; i<n; i++) + ring.Accumulate(result, ring.Multiply(y[i], v[i])); + return result; +} + +// ******************************************************** + +template <class T, int instance> +const PolynomialOverFixedRing<T, instance> &PolynomialOverFixedRing<T, instance>::Zero() +{ + return Singleton<ThisType>().Ref(); +} + +template <class T, int instance> +const PolynomialOverFixedRing<T, instance> &PolynomialOverFixedRing<T, instance>::One() +{ + return Singleton<ThisType, NewOnePolynomial>().Ref(); +} + +NAMESPACE_END |