#include "Globals.h" #include "PathFinder.h" #include "BlockType.h" #include "../BlockInfo.h" #include "../Chunk.h" cPathFinder::cPathFinder(float a_MobWidth, float a_MobHeight) : m_Width(a_MobWidth), m_Height(a_MobHeight), m_GiveUpCounter(0), m_NotFoundCooldown(0) { } ePathFinderStatus cPathFinder::GetNextWayPoint(cChunk & a_Chunk, const Vector3d & a_Source, Vector3d * a_Destination, Vector3d * a_OutputWaypoint, bool a_DontCare) { m_FinalDestination = *a_Destination; m_Source = a_Source; // If a recent PATH_NOT_FOUND was returned, we rest for a few ticks. if (m_NotFoundCooldown > 0) { m_NotFoundCooldown -= 1; return ePathFinderStatus::CALCULATING; } // Tweak the destination. If something is wrong with the destination or the chunk, rest for a while. if (!(EnsureProperPoint(m_FinalDestination, a_Chunk) && EnsureProperPoint(m_Source, a_Chunk))) { m_NotFoundCooldown = 20; return ePathFinderStatus::PATH_NOT_FOUND; } /* printf("%d %d %d -> %d %d %d\n", static_cast(m_Source.x), static_cast(m_Source.y), static_cast(m_Source.z), static_cast(m_FinalDestination.x), static_cast(m_FinalDestination.y), static_cast(m_FinalDestination.z)); */ // Rest is over. Prepare m_Path by calling ResetPathFinding. if (m_NotFoundCooldown == 0) { m_NotFoundCooldown = -1; ResetPathFinding(a_Chunk); } // If m_Path has not been initialized yet, initialize it. if (!m_Path->IsValid()) { ResetPathFinding(a_Chunk); } switch (m_Path->CalculationStep(a_Chunk)) { case ePathFinderStatus::NEARBY_FOUND: { m_NoPathToTarget = true; m_PathDestination = m_Path->AcceptNearbyPath(); if (a_DontCare) { m_FinalDestination = m_PathDestination; *a_Destination = m_FinalDestination; // Modify the mob's final destination because it doesn't care about reaching an exact spot } else { m_DeviationOrigin = m_FinalDestination; // This is the only case in which m_DeviationOrigin != m_PathDestination } return ePathFinderStatus::CALCULATING; // The next call will trigger the PATH_FOUND case } case ePathFinderStatus::PATH_NOT_FOUND: { m_NotFoundCooldown = 20; return ePathFinderStatus::PATH_NOT_FOUND; } case ePathFinderStatus::CALCULATING: { return ePathFinderStatus::CALCULATING; } case ePathFinderStatus::PATH_FOUND: { m_GiveUpCounter -= 1; if (m_GiveUpCounter == 0) { if (a_DontCare) { // We're having trouble reaching the next waypoint but the mob // Doesn't care where to go, just tell him we got there ;) m_FinalDestination = m_Source; *a_Destination = m_FinalDestination; ResetPathFinding(a_Chunk); return ePathFinderStatus::CALCULATING; } else { ResetPathFinding(a_Chunk); return ePathFinderStatus::CALCULATING; } } if (PathIsTooOld()) { ResetPathFinding(a_Chunk); return ePathFinderStatus::CALCULATING; } if (m_Path->NoMoreWayPoints()) { // We're always heading towards m_PathDestination. // If m_PathDestination is exactly m_FinalDestination, then we're about to reach the destination. if (m_PathDestination == m_FinalDestination) { *a_OutputWaypoint = m_FinalDestination; return ePathFinderStatus::PATH_FOUND; } else { // Otherwise, we've finished our approximate path and time to recalc. ResetPathFinding(a_Chunk); return ePathFinderStatus::CALCULATING; } } Vector3d Waypoint(m_WayPoint); Vector3d Source(m_Source); Waypoint.y = 0; Source.y = 0; if (m_Path->IsFirstPoint() || (((Waypoint - Source).SqrLength() < WAYPOINT_RADIUS) && (m_Source.y >= m_WayPoint.y))) { // if the mob has just started or if the mob reached a waypoint, give them a new waypoint. m_WayPoint = m_Path->GetNextPoint(); m_GiveUpCounter = 40; return ePathFinderStatus::PATH_FOUND; } else { // Otherwise, the mob is still walking towards its waypoint, we'll patiently wait. We won't update m_WayPoint. *a_OutputWaypoint = m_WayPoint; return ePathFinderStatus::PATH_FOUND; } } } UNREACHABLE("Unsupported path finder status"); } void cPathFinder::ResetPathFinding(cChunk &a_Chunk) { m_GiveUpCounter = 40; m_NoPathToTarget = false; m_PathDestination = m_FinalDestination; m_DeviationOrigin = m_PathDestination; m_Path.reset(new cPath(a_Chunk, m_Source, m_PathDestination, 20, m_Width, m_Height)); } bool cPathFinder::EnsureProperPoint(Vector3d & a_Vector, cChunk & a_Chunk) { cChunk * Chunk = a_Chunk.GetNeighborChunk(FloorC(a_Vector.x), FloorC(a_Vector.z)); BLOCKTYPE BlockType; NIBBLETYPE BlockMeta; if ((Chunk == nullptr) || !Chunk->IsValid()) { return false; } // If destination in the air, first try to go 1 block north, or east, or west. // This fixes the player leaning issue. // If that failed, we instead go down to the lowest air block. auto Below = a_Vector.Floor().addedY(-1); if (!cChunkDef::IsValidHeight(Below)) { return false; } auto BelowRel = cChunkDef::AbsoluteToRelative(Below); Chunk->GetBlockTypeMeta(BelowRel, BlockType, BlockMeta); if (!(IsWaterOrSolid(BlockType))) { constexpr std::array Offsets = { { {-1, 0, 0}, {1, 0, 0}, {0, 0, -1}, {0, 0, 1}, {-1, 0, -1}, {-1, 0, 1}, {1, 0, -1}, {1, 0, 1}, } }; // Looks for a neighbouring block one block in x or z direction that is water or solid. bool InTheAir = true; for (const auto & Offset : Offsets) { auto InspectPos = Below + Offset; Chunk = a_Chunk.GetNeighborChunk(InspectPos.x, InspectPos.z); if ((Chunk == nullptr) || !Chunk->IsValid()) { return false; } auto InspectRel = cChunkDef::AbsoluteToRelative(InspectPos); Chunk->GetBlockTypeMeta(InspectRel, BlockType, BlockMeta); if (IsWaterOrSolid((BlockType))) { BelowRel = InspectRel; InTheAir = false; break; } } // Go down to the lowest air block. if (InTheAir) { while (cChunkDef::IsValidHeight(BelowRel.addedY(-1))) { Chunk->GetBlockTypeMeta(BelowRel.addedY(-1), BlockType, BlockMeta); if (IsWaterOrSolid(BlockType)) { break; } BelowRel.y -= 1; } } } // If destination in water or solid, go up to the first air block. while (BelowRel.y < cChunkDef::Height) { Chunk->GetBlockTypeMeta(BelowRel, BlockType, BlockMeta); if (!IsWaterOrSolid(BlockType)) { break; } BelowRel.y += 1; } return true; } bool cPathFinder::IsWaterOrSolid(BLOCKTYPE a_BlockType) { return ((a_BlockType == E_BLOCK_STATIONARY_WATER) || cBlockInfo::IsSolid(a_BlockType)); } bool cPathFinder::PathIsTooOld() const { size_t acceptableDeviation = m_Path->WayPointsLeft() / 2; if (acceptableDeviation == 0) { acceptableDeviation = 1; } const auto DeviationSqr = (m_FinalDestination - m_DeviationOrigin).SqrLength(); return (DeviationSqr > (acceptableDeviation * acceptableDeviation)); }