#include "Globals.h" // NOTE: MSVC stupidness requires this to be the same across all modules #include "Noise.h" #define FAST_FLOOR(x) (((x) < 0) ? (((int)x) - 1) : ((int)x)) //////////////////////////////////////////////////////////////////////////////// // Globals: void Debug3DNoise(const NOISE_DATATYPE * a_Noise, int a_SizeX, int a_SizeY, int a_SizeZ, const AString & a_FileNameBase) { const int BUF_SIZE = 512; ASSERT(a_SizeX <= BUF_SIZE); // Just stretch it, if needed // Save in XY cuts: cFile f1; if (f1.Open(Printf("%s_XY (%d).grab", a_FileNameBase.c_str(), a_SizeX), cFile::fmWrite)) { for (int z = 0; z < a_SizeZ; z++) { for (int y = 0; y < a_SizeY; y++) { int idx = y * a_SizeX + z * a_SizeX * a_SizeY; unsigned char buf[BUF_SIZE]; for (int x = 0; x < a_SizeX; x++) { buf[x] = (unsigned char)(std::min(255, std::max(0, (int)(128 + 32 * a_Noise[idx++])))); } f1.Write(buf, a_SizeX); } // for y unsigned char buf[BUF_SIZE]; memset(buf, 0, a_SizeX); f1.Write(buf, a_SizeX); } // for z } // if (XY file open) cFile f2; if (f2.Open(Printf("%s_XZ (%d).grab", a_FileNameBase.c_str(), a_SizeX), cFile::fmWrite)) { for (int y = 0; y < a_SizeY; y++) { for (int z = 0; z < a_SizeZ; z++) { int idx = y * a_SizeX + z * a_SizeX * a_SizeY; unsigned char buf[BUF_SIZE]; for (int x = 0; x < a_SizeX; x++) { buf[x] = (unsigned char)(std::min(255, std::max(0, (int)(128 + 32 * a_Noise[idx++])))); } f2.Write(buf, a_SizeX); } // for z unsigned char buf[BUF_SIZE]; memset(buf, 0, a_SizeX); f2.Write(buf, a_SizeX); } // for y } // if (XZ file open) } void Debug2DNoise(const NOISE_DATATYPE * a_Noise, int a_SizeX, int a_SizeY, const AString & a_FileNameBase) { const int BUF_SIZE = 512; ASSERT(a_SizeX <= BUF_SIZE); // Just stretch it, if needed cFile f1; if (f1.Open(Printf("%s (%d).grab", a_FileNameBase.c_str(), a_SizeX), cFile::fmWrite)) { for (int y = 0; y < a_SizeY; y++) { int idx = y * a_SizeX; unsigned char buf[BUF_SIZE]; for (int x = 0; x < a_SizeX; x++) { buf[x] = (unsigned char)(std::min(255, std::max(0, (int)(128 + 32 * a_Noise[idx++])))); } f1.Write(buf, a_SizeX); } // for y } // if (file open) } //////////////////////////////////////////////////////////////////////////////// // cCubicCell2D: class cCubicCell2D { public: cCubicCell2D( const cNoise & a_Noise, ///< Noise to use for generating the random values NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values ); /// Uses current m_WorkRnds[] to generate part of the array void Generate( int a_FromX, int a_ToX, int a_FromY, int a_ToY ); /// Initializes m_WorkRnds[] with the specified Floor values void InitWorkRnds(int a_FloorX, int a_FloorY); /// Updates m_WorkRnds[] for the new Floor values. void Move(int a_NewFloorX, int a_NewFloorY); protected: typedef NOISE_DATATYPE Workspace[4][4]; const cNoise & m_Noise; Workspace * m_WorkRnds; ///< The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering) Workspace m_Workspace1; ///< Buffer 1 for workspace doublebuffering, used in Move() Workspace m_Workspace2; ///< Buffer 2 for workspace doublebuffering, used in Move() int m_CurFloorX; int m_CurFloorY; NOISE_DATATYPE * m_Array; int m_SizeX, m_SizeY; const NOISE_DATATYPE * m_FracX; const NOISE_DATATYPE * m_FracY; } ; cCubicCell2D::cCubicCell2D( const cNoise & a_Noise, ///< Noise to use for generating the random values NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values ) : m_Noise(a_Noise), m_WorkRnds(&m_Workspace1), m_CurFloorX(0), m_CurFloorY(0), m_Array(a_Array), m_SizeX(a_SizeX), m_SizeY(a_SizeY), m_FracX(a_FracX), m_FracY(a_FracY) { } void cCubicCell2D::Generate( int a_FromX, int a_ToX, int a_FromY, int a_ToY ) { for (int y = a_FromY; y < a_ToY; y++) { NOISE_DATATYPE Interp[4]; NOISE_DATATYPE FracY = m_FracY[y]; Interp[0] = cNoise::CubicInterpolate((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], (*m_WorkRnds)[0][2], (*m_WorkRnds)[0][3], FracY); Interp[1] = cNoise::CubicInterpolate((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], (*m_WorkRnds)[1][2], (*m_WorkRnds)[1][3], FracY); Interp[2] = cNoise::CubicInterpolate((*m_WorkRnds)[2][0], (*m_WorkRnds)[2][1], (*m_WorkRnds)[2][2], (*m_WorkRnds)[2][3], FracY); Interp[3] = cNoise::CubicInterpolate((*m_WorkRnds)[3][0], (*m_WorkRnds)[3][1], (*m_WorkRnds)[3][2], (*m_WorkRnds)[3][3], FracY); int idx = y * m_SizeX + a_FromX; for (int x = a_FromX; x < a_ToX; x++) { m_Array[idx++] = cNoise::CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]); } // for x } // for y } void cCubicCell2D::InitWorkRnds(int a_FloorX, int a_FloorY) { m_CurFloorX = a_FloorX; m_CurFloorY = a_FloorY; for (int x = 0; x < 4; x++) { int cx = a_FloorX + x - 1; for (int y = 0; y < 4; y++) { int cy = a_FloorY + y - 1; (*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy); } } } void cCubicCell2D::Move(int a_NewFloorX, int a_NewFloorY) { // Swap the doublebuffer: int OldFloorX = m_CurFloorX; int OldFloorY = m_CurFloorY; Workspace * OldWorkRnds = m_WorkRnds; m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1; // Reuse as much of the old workspace as possible: int DiffX = OldFloorX - a_NewFloorX; int DiffY = OldFloorY - a_NewFloorY; for (int x = 0; x < 4; x++) { int cx = a_NewFloorX + x - 1; int OldX = x - DiffX; // Where would this X be in the old grid? for (int y = 0; y < 4; y++) { int cy = a_NewFloorY + y - 1; int OldY = y - DiffY; // Where would this Y be in the old grid? if ((OldX >= 0) && (OldX < 4) && (OldY >= 0) && (OldY < 4)) { (*m_WorkRnds)[x][y] = (*OldWorkRnds)[OldX][OldY]; } else { (*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy); } } } m_CurFloorX = a_NewFloorX; m_CurFloorY = a_NewFloorY; } //////////////////////////////////////////////////////////////////////////////// // cCubicCell3D: class cCubicCell3D { public: cCubicCell3D( const cNoise & a_Noise, ///< Noise to use for generating the random values NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values const NOISE_DATATYPE * a_FracY, ///< Pointer to the attay that stores the Y fractional values const NOISE_DATATYPE * a_FracZ ///< Pointer to the array that stores the Z fractional values ); /// Uses current m_WorkRnds[] to generate part of the array void Generate( int a_FromX, int a_ToX, int a_FromY, int a_ToY, int a_FromZ, int a_ToZ ); /// Initializes m_WorkRnds[] with the specified Floor values void InitWorkRnds(int a_FloorX, int a_FloorY, int a_FloorZ); /// Updates m_WorkRnds[] for the new Floor values. void Move(int a_NewFloorX, int a_NewFloorY, int a_NewFloorZ); protected: typedef NOISE_DATATYPE Workspace[4][4][4]; const cNoise & m_Noise; Workspace * m_WorkRnds; ///< The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering) Workspace m_Workspace1; ///< Buffer 1 for workspace doublebuffering, used in Move() Workspace m_Workspace2; ///< Buffer 2 for workspace doublebuffering, used in Move() int m_CurFloorX; int m_CurFloorY; int m_CurFloorZ; NOISE_DATATYPE * m_Array; int m_SizeX, m_SizeY, m_SizeZ; const NOISE_DATATYPE * m_FracX; const NOISE_DATATYPE * m_FracY; const NOISE_DATATYPE * m_FracZ; } ; cCubicCell3D::cCubicCell3D( const cNoise & a_Noise, ///< Noise to use for generating the random values NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values const NOISE_DATATYPE * a_FracY, ///< Pointer to the attay that stores the Y fractional values const NOISE_DATATYPE * a_FracZ ///< Pointer to the array that stores the Z fractional values ) : m_Noise(a_Noise), m_WorkRnds(&m_Workspace1), m_CurFloorX(0), m_CurFloorY(0), m_CurFloorZ(0), m_Array(a_Array), m_SizeX(a_SizeX), m_SizeY(a_SizeY), m_SizeZ(a_SizeZ), m_FracX(a_FracX), m_FracY(a_FracY), m_FracZ(a_FracZ) { } void cCubicCell3D::Generate( int a_FromX, int a_ToX, int a_FromY, int a_ToY, int a_FromZ, int a_ToZ ) { for (int z = a_FromZ; z < a_ToZ; z++) { int idxZ = z * m_SizeX * m_SizeY; NOISE_DATATYPE Interp2[4][4]; NOISE_DATATYPE FracZ = m_FracZ[z]; for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { Interp2[x][y] = cNoise::CubicInterpolate((*m_WorkRnds)[x][y][0], (*m_WorkRnds)[x][y][1], (*m_WorkRnds)[x][y][2], (*m_WorkRnds)[x][y][3], FracZ); } } for (int y = a_FromY; y < a_ToY; y++) { NOISE_DATATYPE Interp[4]; NOISE_DATATYPE FracY = m_FracY[y]; Interp[0] = cNoise::CubicInterpolate(Interp2[0][0], Interp2[0][1], Interp2[0][2], Interp2[0][3], FracY); Interp[1] = cNoise::CubicInterpolate(Interp2[1][0], Interp2[1][1], Interp2[1][2], Interp2[1][3], FracY); Interp[2] = cNoise::CubicInterpolate(Interp2[2][0], Interp2[2][1], Interp2[2][2], Interp2[2][3], FracY); Interp[3] = cNoise::CubicInterpolate(Interp2[3][0], Interp2[3][1], Interp2[3][2], Interp2[3][3], FracY); int idx = idxZ + y * m_SizeX + a_FromX; for (int x = a_FromX; x < a_ToX; x++) { m_Array[idx++] = cNoise::CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]); } // for x } // for y } // for z } void cCubicCell3D::InitWorkRnds(int a_FloorX, int a_FloorY, int a_FloorZ) { m_CurFloorX = a_FloorX; m_CurFloorY = a_FloorY; m_CurFloorZ = a_FloorZ; for (int x = 0; x < 4; x++) { int cx = a_FloorX + x - 1; for (int y = 0; y < 4; y++) { int cy = a_FloorY + y - 1; for (int z = 0; z < 4; z++) { int cz = a_FloorZ + z - 1; (*m_WorkRnds)[x][y][z] = (NOISE_DATATYPE)m_Noise.IntNoise3D(cx, cy, cz); } } } } void cCubicCell3D::Move(int a_NewFloorX, int a_NewFloorY, int a_NewFloorZ) { // Swap the doublebuffer: int OldFloorX = m_CurFloorX; int OldFloorY = m_CurFloorY; int OldFloorZ = m_CurFloorZ; Workspace * OldWorkRnds = m_WorkRnds; m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1; // Reuse as much of the old workspace as possible: int DiffX = OldFloorX - a_NewFloorX; int DiffY = OldFloorY - a_NewFloorY; int DiffZ = OldFloorZ - a_NewFloorZ; for (int x = 0; x < 4; x++) { int cx = a_NewFloorX + x - 1; int OldX = x - DiffX; // Where would this X be in the old grid? for (int y = 0; y < 4; y++) { int cy = a_NewFloorY + y - 1; int OldY = y - DiffY; // Where would this Y be in the old grid? for (int z = 0; z < 4; z++) { int cz = a_NewFloorZ + z - 1; int OldZ = z - DiffZ; if ((OldX >= 0) && (OldX < 4) && (OldY >= 0) && (OldY < 4) && (OldZ >= 0) && (OldZ < 4)) { (*m_WorkRnds)[x][y][z] = (*OldWorkRnds)[OldX][OldY][OldZ]; } else { (*m_WorkRnds)[x][y][z] = (NOISE_DATATYPE)m_Noise.IntNoise3D(cx, cy, cz); } } // for z } // for y } // for x m_CurFloorX = a_NewFloorX; m_CurFloorY = a_NewFloorY; m_CurFloorZ = a_NewFloorZ; } //////////////////////////////////////////////////////////////////////////////// // cNoise: cNoise::cNoise(int a_Seed) : m_Seed(a_Seed) { } cNoise::cNoise(const cNoise & a_Noise) : m_Seed(a_Noise.m_Seed) { } NOISE_DATATYPE cNoise::LinearNoise1D(NOISE_DATATYPE a_X) const { int BaseX = FAST_FLOOR(a_X); NOISE_DATATYPE FracX = a_X - BaseX; return LinearInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX); } NOISE_DATATYPE cNoise::CosineNoise1D(NOISE_DATATYPE a_X) const { int BaseX = FAST_FLOOR(a_X); NOISE_DATATYPE FracX = a_X - BaseX; return CosineInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX); } NOISE_DATATYPE cNoise::CubicNoise1D(NOISE_DATATYPE a_X) const { int BaseX = FAST_FLOOR(a_X); NOISE_DATATYPE FracX = a_X - BaseX; return CubicInterpolate(IntNoise1D(BaseX - 1), IntNoise1D(BaseX), IntNoise1D(BaseX + 1), IntNoise1D(BaseX + 2), FracX); } NOISE_DATATYPE cNoise::SmoothNoise1D(int a_X) const { return IntNoise1D(a_X) / 2 + IntNoise1D(a_X - 1) / 4 + IntNoise1D(a_X + 1) / 4; } NOISE_DATATYPE cNoise::CubicNoise2D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y) const { const int BaseX = FAST_FLOOR(a_X); const int BaseY = FAST_FLOOR(a_Y); const NOISE_DATATYPE points[4][4] = { { IntNoise2D(BaseX - 1, BaseY - 1), IntNoise2D(BaseX, BaseY - 1), IntNoise2D(BaseX + 1, BaseY - 1), IntNoise2D(BaseX + 2, BaseY - 1), }, { IntNoise2D(BaseX - 1, BaseY), IntNoise2D(BaseX, BaseY), IntNoise2D(BaseX + 1, BaseY), IntNoise2D(BaseX + 2, BaseY), }, { IntNoise2D(BaseX - 1, BaseY + 1), IntNoise2D(BaseX, BaseY + 1), IntNoise2D(BaseX + 1, BaseY + 1), IntNoise2D(BaseX + 2, BaseY + 1), }, { IntNoise2D(BaseX - 1, BaseY + 2), IntNoise2D(BaseX, BaseY + 2), IntNoise2D(BaseX + 1, BaseY + 2), IntNoise2D(BaseX + 2, BaseY + 2), }, }; const NOISE_DATATYPE FracX = a_X - BaseX; const NOISE_DATATYPE interp1 = CubicInterpolate(points[0][0], points[0][1], points[0][2], points[0][3], FracX); const NOISE_DATATYPE interp2 = CubicInterpolate(points[1][0], points[1][1], points[1][2], points[1][3], FracX); const NOISE_DATATYPE interp3 = CubicInterpolate(points[2][0], points[2][1], points[2][2], points[2][3], FracX); const NOISE_DATATYPE interp4 = CubicInterpolate(points[3][0], points[3][1], points[3][2], points[3][3], FracX); const NOISE_DATATYPE FracY = a_Y - BaseY; return CubicInterpolate(interp1, interp2, interp3, interp4, FracY); } NOISE_DATATYPE cNoise::CubicNoise3D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z) const { const int BaseX = FAST_FLOOR(a_X); const int BaseY = FAST_FLOOR(a_Y); const int BaseZ = FAST_FLOOR(a_Z); const NOISE_DATATYPE points1[4][4] = { { IntNoise3D(BaseX - 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ - 1), }, { IntNoise3D(BaseX - 1, BaseY, BaseZ - 1), IntNoise3D(BaseX, BaseY, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY, BaseZ - 1), }, { IntNoise3D(BaseX - 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ - 1), }, { IntNoise3D(BaseX - 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ - 1), }, }; const NOISE_DATATYPE FracX = (a_X) - BaseX; const NOISE_DATATYPE x1interp1 = CubicInterpolate( points1[0][0], points1[0][1], points1[0][2], points1[0][3], FracX); const NOISE_DATATYPE x1interp2 = CubicInterpolate( points1[1][0], points1[1][1], points1[1][2], points1[1][3], FracX); const NOISE_DATATYPE x1interp3 = CubicInterpolate( points1[2][0], points1[2][1], points1[2][2], points1[2][3], FracX); const NOISE_DATATYPE x1interp4 = CubicInterpolate( points1[3][0], points1[3][1], points1[3][2], points1[3][3], FracX); const NOISE_DATATYPE points2[4][4] = { { IntNoise3D(BaseX - 1, BaseY - 1, BaseZ), IntNoise3D(BaseX, BaseY - 1, BaseZ), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ), }, { IntNoise3D(BaseX - 1, BaseY, BaseZ), IntNoise3D(BaseX, BaseY, BaseZ), IntNoise3D(BaseX + 1, BaseY, BaseZ), IntNoise3D(BaseX + 2, BaseY, BaseZ), }, { IntNoise3D(BaseX - 1, BaseY + 1, BaseZ), IntNoise3D(BaseX, BaseY + 1, BaseZ), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ), }, { IntNoise3D(BaseX - 1, BaseY + 2, BaseZ), IntNoise3D(BaseX, BaseY + 2, BaseZ), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ), }, }; const NOISE_DATATYPE x2interp1 = CubicInterpolate( points2[0][0], points2[0][1], points2[0][2], points2[0][3], FracX); const NOISE_DATATYPE x2interp2 = CubicInterpolate( points2[1][0], points2[1][1], points2[1][2], points2[1][3], FracX); const NOISE_DATATYPE x2interp3 = CubicInterpolate( points2[2][0], points2[2][1], points2[2][2], points2[2][3], FracX); const NOISE_DATATYPE x2interp4 = CubicInterpolate( points2[3][0], points2[3][1], points2[3][2], points2[3][3], FracX); const NOISE_DATATYPE points3[4][4] = { { IntNoise3D( BaseX-1, BaseY-1, BaseZ+1), IntNoise3D( BaseX, BaseY-1, BaseZ+1), IntNoise3D( BaseX+1, BaseY-1, BaseZ+1), IntNoise3D( BaseX+2, BaseY-1, BaseZ + 1), }, { IntNoise3D( BaseX-1, BaseY, BaseZ+1), IntNoise3D( BaseX, BaseY, BaseZ+1), IntNoise3D( BaseX+1, BaseY, BaseZ+1), IntNoise3D( BaseX+2, BaseY, BaseZ + 1), }, { IntNoise3D( BaseX-1, BaseY+1, BaseZ+1), IntNoise3D( BaseX, BaseY+1, BaseZ+1), IntNoise3D( BaseX+1, BaseY+1, BaseZ+1), IntNoise3D( BaseX+2, BaseY+1, BaseZ + 1), }, { IntNoise3D( BaseX-1, BaseY+2, BaseZ+1), IntNoise3D( BaseX, BaseY+2, BaseZ+1), IntNoise3D( BaseX+1, BaseY+2, BaseZ+1), IntNoise3D( BaseX+2, BaseY+2, BaseZ + 1), }, }; const NOISE_DATATYPE x3interp1 = CubicInterpolate( points3[0][0], points3[0][1], points3[0][2], points3[0][3], FracX); const NOISE_DATATYPE x3interp2 = CubicInterpolate( points3[1][0], points3[1][1], points3[1][2], points3[1][3], FracX); const NOISE_DATATYPE x3interp3 = CubicInterpolate( points3[2][0], points3[2][1], points3[2][2], points3[2][3], FracX); const NOISE_DATATYPE x3interp4 = CubicInterpolate( points3[3][0], points3[3][1], points3[3][2], points3[3][3], FracX); const NOISE_DATATYPE points4[4][4] = { { IntNoise3D( BaseX-1, BaseY-1, BaseZ+2), IntNoise3D( BaseX, BaseY-1, BaseZ+2), IntNoise3D( BaseX+1, BaseY-1, BaseZ+2), IntNoise3D( BaseX+2, BaseY-1, BaseZ+2), }, { IntNoise3D( BaseX-1, BaseY, BaseZ+2), IntNoise3D( BaseX, BaseY, BaseZ+2), IntNoise3D( BaseX+1, BaseY, BaseZ+2), IntNoise3D( BaseX+2, BaseY, BaseZ+2), }, { IntNoise3D( BaseX-1, BaseY+1, BaseZ+2), IntNoise3D( BaseX, BaseY+1, BaseZ+2), IntNoise3D( BaseX+1, BaseY+1, BaseZ+2), IntNoise3D( BaseX+2, BaseY+1, BaseZ+2), }, { IntNoise3D( BaseX-1, BaseY+2, BaseZ+2), IntNoise3D( BaseX, BaseY+2, BaseZ+2), IntNoise3D( BaseX+1, BaseY+2, BaseZ+2), IntNoise3D( BaseX+2, BaseY+2, BaseZ+2), }, }; const NOISE_DATATYPE x4interp1 = CubicInterpolate( points4[0][0], points4[0][1], points4[0][2], points4[0][3], FracX); const NOISE_DATATYPE x4interp2 = CubicInterpolate( points4[1][0], points4[1][1], points4[1][2], points4[1][3], FracX); const NOISE_DATATYPE x4interp3 = CubicInterpolate( points4[2][0], points4[2][1], points4[2][2], points4[2][3], FracX); const NOISE_DATATYPE x4interp4 = CubicInterpolate( points4[3][0], points4[3][1], points4[3][2], points4[3][3], FracX); const NOISE_DATATYPE FracY = (a_Y) - BaseY; const NOISE_DATATYPE yinterp1 = CubicInterpolate( x1interp1, x1interp2, x1interp3, x1interp4, FracY); const NOISE_DATATYPE yinterp2 = CubicInterpolate( x2interp1, x2interp2, x2interp3, x2interp4, FracY); const NOISE_DATATYPE yinterp3 = CubicInterpolate( x3interp1, x3interp2, x3interp3, x3interp4, FracY); const NOISE_DATATYPE yinterp4 = CubicInterpolate( x4interp1, x4interp2, x4interp3, x4interp4, FracY); const NOISE_DATATYPE FracZ = (a_Z) - BaseZ; return CubicInterpolate( yinterp1, yinterp2, yinterp3, yinterp4, FracZ); } //////////////////////////////////////////////////////////////////////////////// // cCubicNoise: #ifdef _DEBUG int cCubicNoise::m_NumSingleX = 0; int cCubicNoise::m_NumSingleXY = 0; int cCubicNoise::m_NumSingleY = 0; int cCubicNoise::m_NumCalls = 0; #endif // _DEBUG cCubicNoise::cCubicNoise(int a_Seed) : m_Noise(a_Seed) { } void cCubicNoise::Generate2D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Size of the array (num doubles), in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY ///< Noise-space coords of the array in the Y direction ) const { ASSERT(a_SizeX > 0); ASSERT(a_SizeY > 0); ASSERT(a_SizeX < MAX_SIZE); ASSERT(a_SizeY < MAX_SIZE); ASSERT(a_StartX < a_EndX); ASSERT(a_StartY < a_EndY); // Calculate the integral and fractional parts of each coord: int FloorX[MAX_SIZE]; int FloorY[MAX_SIZE]; NOISE_DATATYPE FracX[MAX_SIZE]; NOISE_DATATYPE FracY[MAX_SIZE]; int SameX[MAX_SIZE]; int SameY[MAX_SIZE]; int NumSameX, NumSameY; CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX); CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY); cCubicCell2D Cell(m_Noise, a_Array, a_SizeX, a_SizeY, FracX, FracY); Cell.InitWorkRnds(FloorX[0], FloorY[0]); #ifdef _DEBUG // Statistics on the noise-space coords: if (NumSameX == 1) { m_NumSingleX++; if (NumSameY == 1) { m_NumSingleXY++; } } if (NumSameY == 1) { m_NumSingleY++; } m_NumCalls++; #endif // _DEBUG // Calculate query values using Cell: int FromY = 0; for (int y = 0; y < NumSameY; y++) { int ToY = FromY + SameY[y]; int FromX = 0; int CurFloorY = FloorY[FromY]; for (int x = 0; x < NumSameX; x++) { int ToX = FromX + SameX[x]; Cell.Generate(FromX, ToX, FromY, ToY); Cell.Move(FloorX[ToX], CurFloorY); FromX = ToX; } Cell.Move(FloorX[0], FloorY[ToY]); FromY = ToY; } } void cCubicNoise::Generate3D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, int a_SizeZ, ///< Size of the array (num doubles), in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ ///< Noise-space coords of the array in the Y direction ) const { ASSERT(a_SizeX < MAX_SIZE); ASSERT(a_SizeY < MAX_SIZE); ASSERT(a_SizeZ < MAX_SIZE); ASSERT(a_StartX < a_EndX); ASSERT(a_StartY < a_EndY); ASSERT(a_StartZ < a_EndZ); // Calculate the integral and fractional parts of each coord: int FloorX[MAX_SIZE]; int FloorY[MAX_SIZE]; int FloorZ[MAX_SIZE]; NOISE_DATATYPE FracX[MAX_SIZE]; NOISE_DATATYPE FracY[MAX_SIZE]; NOISE_DATATYPE FracZ[MAX_SIZE]; int SameX[MAX_SIZE]; int SameY[MAX_SIZE]; int SameZ[MAX_SIZE]; int NumSameX, NumSameY, NumSameZ; CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX); CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY); CalcFloorFrac(a_SizeZ, a_StartZ, a_EndZ, FloorZ, FracZ, SameZ, NumSameZ); cCubicCell3D Cell( m_Noise, a_Array, a_SizeX, a_SizeY, a_SizeZ, FracX, FracY, FracZ ); Cell.InitWorkRnds(FloorX[0], FloorY[0], FloorZ[0]); // Calculate query values using Cell: int FromZ = 0; for (int z = 0; z < NumSameZ; z++) { int ToZ = FromZ + SameZ[z]; int CurFloorZ = FloorZ[FromZ]; int FromY = 0; for (int y = 0; y < NumSameY; y++) { int ToY = FromY + SameY[y]; int CurFloorY = FloorY[FromY]; int FromX = 0; for (int x = 0; x < NumSameX; x++) { int ToX = FromX + SameX[x]; Cell.Generate(FromX, ToX, FromY, ToY, FromZ, ToZ); Cell.Move(FloorX[ToX], CurFloorY, CurFloorZ); FromX = ToX; } Cell.Move(FloorX[0], FloorY[ToY], CurFloorZ); FromY = ToY; } // for y Cell.Move(FloorX[0], FloorY[0], FloorZ[ToZ]); FromZ = ToZ; } // for z } void cCubicNoise::CalcFloorFrac( int a_Size, NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End, int * a_Floor, NOISE_DATATYPE * a_Frac, int * a_Same, int & a_NumSame ) const { ASSERT(a_Size > 0); NOISE_DATATYPE val = a_Start; NOISE_DATATYPE dif = (a_End - a_Start) / (a_Size - 1); for (int i = 0; i < a_Size; i++) { a_Floor[i] = FAST_FLOOR(val); a_Frac[i] = val - a_Floor[i]; val += dif; } // Mark up the same floor values into a_Same / a_NumSame: int CurFloor = a_Floor[0]; int LastSame = 0; a_NumSame = 0; for (int i = 1; i < a_Size; i++) { if (a_Floor[i] != CurFloor) { a_Same[a_NumSame] = i - LastSame; LastSame = i; a_NumSame += 1; CurFloor = a_Floor[i]; } } // for i - a_Floor[] if (LastSame < a_Size) { a_Same[a_NumSame] = a_Size - LastSame; a_NumSame += 1; } } //////////////////////////////////////////////////////////////////////////////// // cPerlinNoise: cPerlinNoise::cPerlinNoise(void) : m_Seed(0) { } cPerlinNoise::cPerlinNoise(int a_Seed) : m_Seed(a_Seed) { } void cPerlinNoise::SetSeed(int a_Seed) { m_Seed = a_Seed; } void cPerlinNoise::AddOctave(float a_Frequency, float a_Amplitude) { m_Octaves.push_back(cOctave(m_Seed * ((int)m_Octaves.size() + 4) * 4 + 1024, a_Frequency, a_Amplitude)); } void cPerlinNoise::Generate2D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE * a_Workspace ///< Workspace that this function can use and trash ) const { if (m_Octaves.empty()) { // No work to be done ASSERT(!"Perlin: No octaves to generate!"); return; } bool ShouldFreeWorkspace = (a_Workspace == nullptr); int ArrayCount = a_SizeX * a_SizeY; if (ShouldFreeWorkspace) { a_Workspace = new NOISE_DATATYPE[ArrayCount]; } // Generate the first octave directly into array: const cOctave & FirstOctave = m_Octaves.front(); FirstOctave.m_Noise.Generate2D( a_Workspace, a_SizeX, a_SizeY, a_StartX * FirstOctave.m_Frequency, a_EndX * FirstOctave.m_Frequency, a_StartY * FirstOctave.m_Frequency, a_EndY * FirstOctave.m_Frequency ); NOISE_DATATYPE Amplitude = FirstOctave.m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] = a_Workspace[i] * Amplitude; } // Add each octave: for (cOctaves::const_iterator itr = m_Octaves.begin() + 1, end = m_Octaves.end(); itr != end; ++itr) { // Generate cubic noise for the octave: itr->m_Noise.Generate2D( a_Workspace, a_SizeX, a_SizeY, a_StartX * itr->m_Frequency, a_EndX * itr->m_Frequency, a_StartY * itr->m_Frequency, a_EndY * itr->m_Frequency ); // Add the cubic noise into the output: NOISE_DATATYPE Amplitude = itr->m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] += a_Workspace[i] * Amplitude; } } if (ShouldFreeWorkspace) { delete[] a_Workspace; a_Workspace = nullptr; } } void cPerlinNoise::Generate3D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z] int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ, ///< Noise-space coords of the array in the Z direction NOISE_DATATYPE * a_Workspace ///< Workspace that this function can use and trash ) const { if (m_Octaves.empty()) { // No work to be done ASSERT(!"Perlin: No octaves to generate!"); return; } bool ShouldFreeWorkspace = (a_Workspace == nullptr); int ArrayCount = a_SizeX * a_SizeY * a_SizeZ; if (ShouldFreeWorkspace) { a_Workspace = new NOISE_DATATYPE[ArrayCount]; } // Generate the first octave directly into array: const cOctave & FirstOctave = m_Octaves.front(); FirstOctave.m_Noise.Generate3D( a_Workspace, a_SizeX, a_SizeY, a_SizeZ, a_StartX * FirstOctave.m_Frequency, a_EndX * FirstOctave.m_Frequency, a_StartY * FirstOctave.m_Frequency, a_EndY * FirstOctave.m_Frequency, a_StartZ * FirstOctave.m_Frequency, a_EndZ * FirstOctave.m_Frequency ); NOISE_DATATYPE Amplitude = FirstOctave.m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] = a_Workspace[i] * Amplitude; } // Add each octave: for (cOctaves::const_iterator itr = m_Octaves.begin() + 1, end = m_Octaves.end(); itr != end; ++itr) { // Generate cubic noise for the octave: itr->m_Noise.Generate3D( a_Workspace, a_SizeX, a_SizeY, a_SizeZ, a_StartX * itr->m_Frequency, a_EndX * itr->m_Frequency, a_StartY * itr->m_Frequency, a_EndY * itr->m_Frequency, a_StartZ * itr->m_Frequency, a_EndZ * itr->m_Frequency ); // Add the cubic noise into the output: NOISE_DATATYPE Amplitude = itr->m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] += a_Workspace[i] * Amplitude; } } if (ShouldFreeWorkspace) { delete[] a_Workspace; a_Workspace = nullptr; } } //////////////////////////////////////////////////////////////////////////////// // cRidgedMultiNoise: cRidgedMultiNoise::cRidgedMultiNoise(void) : m_Seed(0) { } cRidgedMultiNoise::cRidgedMultiNoise(int a_Seed) : m_Seed(a_Seed) { } void cRidgedMultiNoise::SetSeed(int a_Seed) { m_Seed = a_Seed; } void cRidgedMultiNoise::AddOctave(float a_Frequency, float a_Amplitude) { m_Octaves.push_back(cOctave(m_Seed * ((int)m_Octaves.size() + 4) * 4 + 1024, a_Frequency, a_Amplitude)); } void cRidgedMultiNoise::Generate2D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE * a_Workspace ///< Workspace that this function can use and trash ) const { if (m_Octaves.empty()) { // No work to be done ASSERT(!"RidgedMulti: No octaves to generate!"); return; } bool ShouldFreeWorkspace = (a_Workspace == nullptr); int ArrayCount = a_SizeX * a_SizeY; if (ShouldFreeWorkspace) { a_Workspace = new NOISE_DATATYPE[ArrayCount]; } // Generate the first octave directly into array: const cOctave & FirstOctave = m_Octaves.front(); FirstOctave.m_Noise.Generate2D( a_Workspace, a_SizeX, a_SizeY, a_StartX * FirstOctave.m_Frequency, a_EndX * FirstOctave.m_Frequency, a_StartY * FirstOctave.m_Frequency, a_EndY * FirstOctave.m_Frequency ); NOISE_DATATYPE Amplitude = FirstOctave.m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] = fabs(a_Workspace[i] * Amplitude); } // Add each octave: for (cOctaves::const_iterator itr = m_Octaves.begin() + 1, end = m_Octaves.end(); itr != end; ++itr) { // Generate cubic noise for the octave: itr->m_Noise.Generate2D( a_Workspace, a_SizeX, a_SizeY, a_StartX * itr->m_Frequency, a_EndX * itr->m_Frequency, a_StartY * itr->m_Frequency, a_EndY * itr->m_Frequency ); // Add the cubic noise into the output: NOISE_DATATYPE Amplitude = itr->m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] += fabs(a_Workspace[i] * Amplitude); } } if (ShouldFreeWorkspace) { delete[] a_Workspace; a_Workspace = nullptr; } } void cRidgedMultiNoise::Generate3D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z] int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ, ///< Noise-space coords of the array in the Z direction NOISE_DATATYPE * a_Workspace ///< Workspace that this function can use and trash ) const { if (m_Octaves.empty()) { // No work to be done ASSERT(!"RidgedMulti: No octaves to generate!"); return; } bool ShouldFreeWorkspace = (a_Workspace == nullptr); int ArrayCount = a_SizeX * a_SizeY * a_SizeZ; if (ShouldFreeWorkspace) { a_Workspace = new NOISE_DATATYPE[ArrayCount]; } // Generate the first octave directly into array: const cOctave & FirstOctave = m_Octaves.front(); FirstOctave.m_Noise.Generate3D( a_Workspace, a_SizeX, a_SizeY, a_SizeZ, a_StartX * FirstOctave.m_Frequency, a_EndX * FirstOctave.m_Frequency, a_StartY * FirstOctave.m_Frequency, a_EndY * FirstOctave.m_Frequency, a_StartZ * FirstOctave.m_Frequency, a_EndZ * FirstOctave.m_Frequency ); NOISE_DATATYPE Amplitude = FirstOctave.m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] = a_Workspace[i] * Amplitude; } // Add each octave: for (cOctaves::const_iterator itr = m_Octaves.begin() + 1, end = m_Octaves.end(); itr != end; ++itr) { // Generate cubic noise for the octave: itr->m_Noise.Generate3D( a_Workspace, a_SizeX, a_SizeY, a_SizeZ, a_StartX * itr->m_Frequency, a_EndX * itr->m_Frequency, a_StartY * itr->m_Frequency, a_EndY * itr->m_Frequency, a_StartZ * itr->m_Frequency, a_EndZ * itr->m_Frequency ); // Add the cubic noise into the output: NOISE_DATATYPE Amplitude = itr->m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] += a_Workspace[i] * Amplitude; } } if (ShouldFreeWorkspace) { delete[] a_Workspace; a_Workspace = nullptr; } }