#pragma once #include "RedstoneHandler.h" #include "Blocks/BlockComparator.h" class cRedstoneComparatorHandler : public cRedstoneHandler { typedef cRedstoneHandler super; public: cRedstoneComparatorHandler(cWorld & a_World) : super(a_World) { } unsigned char GetFrontPowerLevel(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, unsigned char a_HighestSidePowerLevel, unsigned char a_HighestRearPowerLevel) { if (cBlockComparatorHandler::IsInSubtractionMode(a_Meta)) { // Subtraction mode return static_cast(std::max(static_cast(a_HighestRearPowerLevel) - a_HighestSidePowerLevel, 0)); } else { // Comparison mode return (std::max(a_HighestSidePowerLevel, a_HighestRearPowerLevel) == a_HighestSidePowerLevel) ? 0 : a_HighestRearPowerLevel; } } virtual unsigned char GetPowerDeliveredToPosition(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, const Vector3i & a_QueryPosition, BLOCKTYPE a_QueryBlockType) override { UNUSED(a_QueryPosition); UNUSED(a_QueryBlockType); return (cBlockComparatorHandler::GetFrontCoordinate(a_Position, a_Meta & 0x3) == a_QueryPosition) ? static_cast(m_World.GetRedstoneSimulator())->GetChunkData()->GetCachedPowerData(a_Position).PowerLevel : 0; } virtual unsigned char GetPowerLevel(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta) override { UNUSED(a_Position); UNUSED(a_BlockType); class cContainerCallback : public cBlockEntityCallback { public: cContainerCallback() : m_SignalStrength(0) { } virtual bool Item(cBlockEntity * a_BlockEntity) override { auto & Contents = static_cast(a_BlockEntity)->GetContents(); float Fullness = 0; // Is a floating-point type to allow later calculation to produce a non-truncated value for (int Slot = 0; Slot != Contents.GetNumSlots(); ++Slot) { Fullness += static_cast(Contents.GetSlot(Slot).m_ItemCount) / Contents.GetSlot(Slot).GetMaxStackSize(); } m_SignalStrength = (Fullness < 0.001 /* container empty? */) ? 0 : static_cast(1 + (Fullness / Contents.GetNumSlots()) * 14); return false; } unsigned char m_SignalStrength; } CCB; auto RearCoordinate = cBlockComparatorHandler::GetRearCoordinate(a_Position, a_Meta & 0x3); m_World.DoWithBlockEntityAt(RearCoordinate.x, RearCoordinate.y, RearCoordinate.z, CCB); auto RearPower = CCB.m_SignalStrength; auto PotentialSourceHandler = cIncrementalRedstoneSimulator::CreateComponent(m_World, m_World.GetBlock(RearCoordinate), static_cast(m_World.GetRedstoneSimulator())->GetChunkData()); if (PotentialSourceHandler != nullptr) { BLOCKTYPE Type; NIBBLETYPE Meta; if (m_World.GetBlockTypeMeta(RearCoordinate.x, RearCoordinate.y, RearCoordinate.z, Type, Meta)) { RearPower = std::max(CCB.m_SignalStrength, PotentialSourceHandler->GetPowerDeliveredToPosition(RearCoordinate, Type, Meta, a_Position, a_BlockType)); } } return RearPower; } virtual cVector3iArray Update(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta, PoweringData a_PoweringData) override { // Note that a_PoweringData here contains the maximum * side * power level, as specified by GetValidSourcePositions // LOGD("Evaluating ALU the comparator (%d %d %d)", a_Position.x, a_Position.y, a_Position.z); auto Data = static_cast(m_World.GetRedstoneSimulator())->GetChunkData(); auto DelayInfo = Data->GetMechanismDelayInfo(a_Position); // Delay is used here to prevent an infinite loop (#3168) if (DelayInfo == nullptr) { auto RearPower = GetPowerLevel(a_Position, a_BlockType, a_Meta); auto FrontPower = GetFrontPowerLevel(a_Position, a_BlockType, a_Meta, a_PoweringData.PowerLevel, RearPower); auto PreviousFrontPower = static_cast(m_World.GetRedstoneSimulator())->GetChunkData()->ExchangeUpdateOncePowerData(a_Position, PoweringData(a_PoweringData.PoweringBlock, FrontPower)); bool ShouldBeOn = (RearPower > 0); // Provide visual indication by examining * rear * power level bool ShouldUpdate = (FrontPower != PreviousFrontPower.PowerLevel); // "Business logic" (:P) - determine by examining *side* power levels if (ShouldUpdate || (ShouldBeOn != cBlockComparatorHandler::IsOn(a_Meta))) { Data->m_MechanismDelays[a_Position] = std::make_pair(1, ShouldBeOn); } } else { int DelayTicks; bool ShouldPowerOn; std::tie(DelayTicks, ShouldPowerOn) = *DelayInfo; if (DelayTicks == 0) { m_World.SetBlockMeta(a_Position, ShouldPowerOn ? (a_Meta | 0x8) : (a_Meta & 0x7)); Data->m_MechanismDelays.erase(a_Position); // Assume that an update (to front power) is needed. // Note: potential inconsistencies will arise as power data is updated before-delay due to limitations of the power data caching functionality (only stores one bool) // This means that other mechanisms like wires may get our new power data before our delay has finished // This also means that we have to manually update ourselves to be aware of any changes that happened in the previous redstone tick return StaticAppend(GetAdjustedRelatives(a_Position, GetRelativeLaterals()), { a_Position }); } } return {}; } virtual cVector3iArray GetValidSourcePositions(const Vector3i & a_Position, BLOCKTYPE a_BlockType, NIBBLETYPE a_Meta) override { UNUSED(a_BlockType); return cVector3iArray {cBlockComparatorHandler::GetSideCoordinate(a_Position, a_Meta & 0x3, false), cBlockComparatorHandler::GetSideCoordinate(a_Position, a_Meta & 0x3, true)}; } };