summaryrefslogtreecommitdiffstats
path: root/converter/source/cDeNotch.cpp
blob: c2963f365484a6a307867851c3d836139a31d9d0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#include "cDeNotch.h"
#include <iostream>
#include <fstream>
#include <cstring>
#include <stdio.h>
#include <ctype.h>
#include "zlib.h"
#include "cNBTData.h"
#include "cTimer.h"
#include "cQuicksort.h"
#include "cDeNotch.h"
#ifdef _WIN32
#include "wdirent.h"
#else
#include <dirent.h>
#endif



cDeNotch::cDeNotch ( ) {

}

int cDeNotch:: Converter ( std::string mcrSource, std::string pakOutput ) {
	char SourceFile[128];
        char OutputFile[128];


	FILE* f  = 0;
        FILE* wf = 0;
	#ifdef _WIN32
		sprintf_s(SourceFile, 128, "region\\%s", mcrSource.c_str() ); //replace hard coded file with file array variable
	        sprintf_s(OutputFile, 128, "world\\%s", pakOutput.c_str() ); //parce x and z from file array variable and place into pak file format
		if( fopen_s(&wf, OutputFile, "wb" ) == 0 ) {} else { std::cout << "uhoh!" << std::endl; return false; } //open new pak file for writing
	#else
		sprintf(SourceFile, "region/%s", mcrSource.c_str() ); //same as above but for linux
                sprintf(OutputFile, "world/%s", pakOutput.c_str() );
		if( (wf = fopen(OutputFile, "wb" )) != 0 ) {} else { std::cout << "uhoh!" << std::endl; return false; }
	#endif


	printf ("Now Converting %s to %s\n", mcrSource.c_str(), pakOutput.c_str() );
	if( (f = fopen(SourceFile, "rb" )) != 0 ) {	// no error

		char* t_FakeHeader;
		t_FakeHeader = new char[1*1024*1024]; //1MB Temp FakeHeader array
		int t_FakeHeaderSz  = -1; //Size of data in array

                char* t_CompChunk;
                t_CompChunk  = new char[5*1024*1024]; //5MB Temp Compressed Chunk Data array
                int t_CompChunkSz   = -1; //Size of data in array

		char PakVersion   = 1;
		char ChunkVersion = 1;
		short NumChunks   = 0;

		unsigned char byte1 = 0;
		unsigned char byte2 = 0;
		unsigned char byte3 = 0;
		unsigned char byte4 = 0;
		unsigned char byte5 = 0;
		unsigned char trash = 0;
		unsigned int  frloc = 0;

		int toffset     = 0;
		int compdlength = 0;

		int toffarr[1024];

		//loop through notch's header
		for( short i = 0; i < 1024 ; ++i ) {//loop through first 4096 bytes of data, 4 bytes at a time
			//Region files begin with an 8kiB header containing information about which chunks are present in the region file, when they were last updated, and where they can be found. The location in the region file of a chunk at (x, z) (in chunk coordinates) can be found at byte offset 4 * ((x mod 32) + (z mod 32) * 32) in its region file. Its timestamp can be found 4096 bytes later in the file. The remainder of the file consists of data for up to 1024 chunks, interspersed with an arbitrary amount of unused space. 
			//we are only using the first 4096 bytes. We don't need the timestamps right now.
			if( fread( &byte1, sizeof(byte1), 1, f) != 1 ) { std::cout << "ERROR 21hs READING FROM FILE " << SourceFile; fclose(f); return false; }
                        if( fread( &byte2, sizeof(byte2), 1, f) != 1 ) { std::cout << "ERROR ks93 READING FROM FILE " << SourceFile; fclose(f); return false; }
                        if( fread( &byte3, sizeof(byte3), 1, f) != 1 ) { std::cout << "ERROR 2s5f READING FROM FILE " << SourceFile; fclose(f); return false; }//first three bytes area big-endian representation of the chunk offsets in no particular order.
                        if( fread( &byte4, sizeof(byte4), 1, f) != 1 ) { std::cout << "ERROR dhj3 READING FROM FILE " << SourceFile; fclose(f); return false; }//we don't need to use this byte right now.
			toffset = 4096 * ((byte1*256*256) + (byte2*256) + byte3);//find the chunk offsets using the first three bytes of each long;
			toffarr[i] = toffset;//array of chunk offset locatiosn in the fle.
		}
		for ( short i = 0; i < 4096; i++ ) {//loop through next 4096 bytes of the header.
			//keeping this code here in case we need it later. not using it right now.
			if( fread( &trash, sizeof(byte4), 1, f) != 1 ) { std::cout << "ERROR 2jkd READING FROM FILE " << SourceFile; fclose(f); return false; }
		}
		frloc = 8192; //current location of fread is at 4096+ 4096 since we read through and collected important info from the header.

		cQuicksort Quick;
                Quick.quicksort(toffarr, 0, 1023); //sort the array from smallest to larget offset locations so we only have to read through the file once.

                for ( short ia = 0; ia < 1024; ia++ ) {//a region file can hold a maximum of 1024 chunks (32*32)
			if (ia < 3500 ) { //only run chunk # 3
			if (toffarr[ia] < 8192) { //offsets of less than 8192 are impossible. 0 means there is no chunk in a particular location.
				if (toffarr[ia] > 0) { std::cout << "ERROR 2s31 IN COLLECTED CHUNK OFFSETS " << toffarr[ia]; fclose(f); return false; } //values between 0 and 8192 should be impossible. 
				//This file does not contain the max 1024 chunks, skip until we get to the first
			} else { // found a chunk offset value
				//Chunk data begins with a (big-endian) four-byte length field which indicates the exact length of the remaining chunk data in bytes. The following byte indicates the compression scheme used for chunk data, and the remaining (length-1) bytes are the compressed chunk data. 
				//printf("Working on chunk %i :: %i\n", ia, toffarr[ia]);
                        	if( fread( &byte1, sizeof(byte1), 1, f) != 1 ) { std::cout << "ERROR 2t32 READING FROM FILE " << SourceFile; fclose(f); return false; }
                        	if( fread( &byte2, sizeof(byte2), 1, f) != 1 ) { std::cout << "ERROR 2y51 READING FROM FILE " << SourceFile; fclose(f); return false; }
                        	if( fread( &byte3, sizeof(byte3), 1, f) != 1 ) { std::cout << "ERROR 3424 READING FROM FILE " << SourceFile; fclose(f); return false; }
				if( fread( &byte4, sizeof(byte4), 1, f) != 1 ) { std::cout << "ERROR sd22 READING FROM FILE " << SourceFile; fclose(f); return false; }
				compdlength = ((byte1*256*256*256) + (byte2*256*256) + (byte3*256) + byte4 - 0); //length of compressed chunk data
                                if( fread( &byte5, sizeof(byte5), 1, f) != 1 ) { std::cout << "ERROR 2341 READING FROM FILE " << SourceFile; fclose(f); return false; } //compression type, 1 = GZip (RFC1952) (unused in practice) , 2 = Zlib (RFC1950) 

				frloc += 5; //moved ahead 5 bytes while reading data.

				char* compBlockData = new char[compdlength];
				if( fread( compBlockData, compdlength, 1, f) != 1 ) { std::cout << "ERROR rf22 READING FROM FILE " << SourceFile; fclose(f); return false; }
				frloc = frloc + compdlength;

				uLongf DestSize = 128576;// uncompressed chunks should never be larger than this

				char* BlockData = new char[ DestSize ];

                                int errorcode = uncompress( (Bytef*)BlockData, &DestSize, (Bytef*)compBlockData, compdlength ); //DestSize will update to the actual uncompressed data size after this opperation.
				int testr = (int)DestSize; //testing something, can't remember what.
				if( errorcode != Z_OK ){
					printf("ERROR: Decompressing chunk data! %i", errorcode );
					switch( errorcode )
					{
						case Z_MEM_ERROR:
							printf("Not enough memory");
							break;
						case Z_BUF_ERROR:
							printf("Not enough room in output buffer");
							break;
						case Z_DATA_ERROR:
							printf("Input data corrupted or incomplete");
							break;
						default:
							break;
					};
				}

				NumChunks++;
				cNBTData* NBTData = new cNBTData(BlockData, (int)DestSize);
				NBTData->ParseData();
				//NBTData->PrintData();
                                NBTData->OpenCompound("");
                                NBTData->OpenCompound("Level"); // You need to open the right compounds before you can access the data in it

				//NBT Data for blocks should look something like this:
				//==== STRUCTURED NBT DATA ====
				// COMPOUND ( )
				//     COMPOUND
				//         COMPOUND (Level)
				//            LIST (Entities)
				//            LIST (TileEntities)
				//            INTEGER LastUpdate (0)
				//            INTEGER xPos (0)
				//            INTEGER zPos (0)
				//            BYTE TerrainPopulated (1)
				//            BYTE ARRAY BlockLight (length: 16384)
				//            BYTE ARRAY Blocks (length: 32768)
				//            BYTE ARRAY Data (length: 16384)
				//            BYTE ARRAY HeightMap (length: 256)
        			//	      BYTE ARRAY SkyLight (length: 16384)
				//=============================

				int UncompressedChunkSz = (32768+16384+16384+16384);
				char* UncompressedChunk = new char[ UncompressedChunkSz ];
				uLongf CompressedSize   = compressBound( UncompressedChunkSz );
				char* CompressedChunk   = new char[ CompressedSize ];
				int UnChunkArrLoc       = 0;
				int xPos                = NBTData->GetInteger("xPos");
				int zPos                = NBTData->GetInteger("zPos");

				memcpy( t_FakeHeader + t_FakeHeaderSz + 1, &xPos, sizeof(int) );t_FakeHeaderSz += sizeof(int);
				memcpy( t_FakeHeader + t_FakeHeaderSz + 1, &zPos, sizeof(int) );t_FakeHeaderSz += sizeof(int);


				//todo: inserert json code and add it to chunk data

				memcpy( UncompressedChunk + UnChunkArrLoc, NBTData->GetByteArray("Blocks"), 32768 );UnChunkArrLoc += 32768;
				memcpy( UncompressedChunk + UnChunkArrLoc, NBTData->GetByteArray("Data"), 16384 );UnChunkArrLoc += 16384;
				memcpy( UncompressedChunk + UnChunkArrLoc, NBTData->GetByteArray("BlockLight"), 16384 );UnChunkArrLoc += 16384;
				memcpy( UncompressedChunk + UnChunkArrLoc, NBTData->GetByteArray("SkyLight"), 16384 );UnChunkArrLoc += 16384;

				errorcode = compress2( (Bytef*)CompressedChunk, &CompressedSize, (const Bytef*)UncompressedChunk, UncompressedChunkSz, Z_DEFAULT_COMPRESSION);
				if( errorcode != Z_OK )
				{
					printf("Error compressing data (%i)", errorcode );
                                        break;
				}

				memcpy( t_FakeHeader + t_FakeHeaderSz + 1, &CompressedSize, sizeof(int) );t_FakeHeaderSz += sizeof(int);
				memcpy( t_FakeHeader + t_FakeHeaderSz + 1, &UncompressedChunkSz, sizeof(int) );t_FakeHeaderSz += sizeof(int);
				memcpy( t_CompChunk + t_CompChunkSz + 1, CompressedChunk, CompressedSize );t_CompChunkSz += CompressedSize;

				NBTData->CloseCompound();// Close the compounds after you're done
				NBTData->CloseCompound();

				delete [] UncompressedChunk;
				delete [] CompressedChunk;
				delete [] compBlockData;
				delete [] BlockData;
				//delete [] NBTData;

				while ( (frloc < toffarr[ia+1]) && (ia<1023) ) { //loop through Notch's junk data until we get to another chunk offset possition to start the loop again
					if( fread( &trash, sizeof(byte4), 1, f) != 1 ) { std::cout << "ERROR 2nkd READING FROM FILE " << SourceFile; fclose(f); return false; }
					frloc ++;
				}

			}
			} //only run chunk # 3

		}
                fwrite( &PakVersion, sizeof(PakVersion), 1, wf );
                fwrite( &ChunkVersion, sizeof(ChunkVersion), 1, wf );
		fwrite( &NumChunks, sizeof(NumChunks), 1, wf );
                fwrite( t_FakeHeader, t_FakeHeaderSz+1, 1, wf );
                fwrite( t_CompChunk, t_CompChunkSz+1, 1, wf );
                delete [] t_FakeHeader;
                delete [] t_CompChunk;

	        fclose(wf); //close file.
		fclose(f); //close file.
	}
	return true;
};